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Abstract

Among secure multi-party computation protocols, linear secret sharing schemes often do
not rely on cryptographic assumptions and are among the most straightforward to explain
and to implement correctly in software. However, basic versions of such schemes either limit
participants to evaluating linear operations involving private values or require those participants
to communicate synchronously during a computation phase. A straightforward, information-
theoretically secure extension to such schemes is presented that can evaluate arithmetic sum-of-
products expressions that contain multiplication operations involving non-zero private values.
Notably, this extension does not require that participants communicate during the computation
phase. Instead, a preprocessing phase is required that is independent of the private input values
(but is dependent on the number of factors and terms in the sum-of-products expression).

1 Introduction

In their most basic form, linear secret-sharing schemes (LSSS) [27, 12] allow groups of parties
to execute secure multi-party computation (MPC) workflows that involve linear operations on
private inputs. The simplicity of such schemes can be highly advantageous in real-world applications
[25] because (1) they can be information-theoretically secure (ITS) while still being relatively
straightforward to explain to non-experts, (2) implementing them in software does not require
skills beyond those of many professional software engineers, and (3) they can support asynchronous
participation by parties if only linear operations are applied to inputs. In fact, the latter trade-off
has a degree of freedom: some non-linear operations involving private values are possible while
maintaining a non-interactive computation phase that is compatible with asynchronous workflows.

We introduce a novel ITS LSSS-based MPC protocol optimized specifically for non-linear
operations involving non-zero values (i.e., multiplicative group elements). This protocol supports
the evaluation of expressions that are an arithmetic sum of products via a computation phase that
requires no communication. While additive secret sharing is sufficient to demonstrate the protocol’s
features [23], in this report we present a protocol variant based on Shamir’s secret sharing scheme
[27] and assume n = 2t+ 1 semi-honest parties with up to t passive adversaries.



1.1 Masked Factors

We consider an expression to be an arithmetic sum of products if it consists of a summation of
A ∈ Z+ addends or terms, wherein each term (referenced by its index a ∈ {1, . . . , A}) consists of
Ma ∈ Z+ multiplicands or factors:

A∑
a=1

Ma∏
m=1

xa,m.

We define a masked factor ⟨x⟩λ hiding a non-zero secret x ∈ Z∗
p with independent uniformly random

mask exponent λ ∈ Zp−1 as
⟨x⟩λ = x · g−λ ∈ Z∗

p,

where g is a public generator in Z∗
p. We refer to the element g−λ as the multiplicative mask. To

simplify notation, we often use ⟨x⟩ when λ is implicit.
A masked factor ⟨x⟩λ may be seen as a ciphertext within an encryption scheme with symmetric

key λ [4]. This encryption scheme has two main properties. First, it is multiplicatively homomorphic.
That is, ⟨x1⟩λ1 · ⟨x2⟩λ2 = ⟨x1 · x2⟩λ1+λ2 . Second, it is perfectly secure (i.e., ITS). That is, if
X,K denote random variables representing the secret and the masked factor, respectively, then
Pr[X = x|K = ⟨x⟩] = Pr[X = x]. In other words, knowledge of the masked factor ⟨x⟩ does not
change the probability that the secret is x. This can be seen intuitively by considering that for every
sample ⟨x⟩λ ∈ Z∗

p of K, there is a unique element g−λ ∈ Z∗
p (and consequently a unique λ ∈ Zp−1)

such that ⟨x⟩λ ≡ x · g−λ (mod p). Thus, no information is leaked about the secret.

1.2 Linear Secret-Sharing Schemes

Since every masked factor is perfectly secure, the key remaining question is how to protect its mask
exponent λ. Since the only operations performed on mask exponents are linear (see Equation 1 in
Section 2.2), any linear scheme can be used to hide a mask exponent λ. This includes additively
homomorphic cryptosystems [10, 24, 8] or somewhat homomorphic encryption (SHE) and fully
homomorphic encryption (FHE) schemes such as BGV [7]. In this paper, we focus on linear secret-
sharing schemes in order to minimize the number of cryptographic assumptions required, to maintain
the simplicity of the protocol’s building blocks (enabling easier communication with non-experts
and more straightforward implementations), and to prioritize performance. While additive secret
sharing would meet these goals most readily [23], we focus on Shamir’s secret sharing (SSS) scheme
to set the groundwork for extensions in setups with more general (t, n) access structures.

SSS works on finite fields, which poses a problem because the element λ that must be hidden
lies in Zp−1. To tackle this, we rely on a prime field Fp with additional structure. Namely, p is
a safe prime so that p = 2q + 1, where q is also prime. This way, p − 1 = 2q is the product of
two prime numbers and by the Chinese remainder theorem (CRT) there is a ring isomorphism
Zp−1

∼= Z2 × Zq
∼= F2 × Fq. The problem with F2 is that it does not allow applying SSS to n > 1

parties. To address this issue, we work with the extension field F2k for 2k > n. By convention, we
store the bit in F2 in the independent polynomial coefficient in F2[X]. The rest of the coefficients
are not used and represent k − 1 overhead bits. We denote a Shamir sharing of an element a ∈ Fr

as [a]r = {[a]1, ..., [a]n}, where [a]i is party Pi’s share (for i ∈ {1, . . . , n}). In this report, we always
drop the superscript r when r = p is the safe prime and denote by [a] a Shamir sharing in Fp. We

define a sharing JλK of an element λ ∈ Zp−1 as a 2-tuple JλK = ([λ]2
k
, [λ]q) ∈ F2k × Fq of Shamir

sharings. We denote by JλKi party Pi’s share. Since ⌈log2(p− 1)⌉ = ⌈log2(q)⌉+1 and k = ⌈log2(n)⌉,
this share requires ⌈log2(p − 1)⌉ − 1 + ⌈log2(n)⌉ bits for a ⌈log2(p − 1)⌉-bit element λ, incurring
a small overhead of k − 1 = ⌈log2(n)⌉ − 1 bits. For example, for n = 10 and n = 100 nodes, this
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overhead represents 3 and 6 bits, respectively. We refer to FREVEAL as the ideal functionality that
reconstructs a secret from its shares using polynomial interpolation. The reconstruction via FREVEAL

of λ ∈ Zp−1 from a sharing JλK = ([λ]2
k
, [λ]q) implies two FREVEAL operations (in F2k and Fq) and

one CRT invocation.

2 Protocol

The overall protocol consists of two distinct phases: an interactive preprocessing phase that is
independent of the values of the inputs (but dependent on the number of terms and the number
of factors in each term within the arithmetic sum-of-products expression) and a non-interactive
computation phase.

2.1 Preprocessing Phase

Presented in Figure 1 is the ideal preprocessing functionality FPREPROC for a sum of products
z =

∑A
a=1

∏Ma
m=1 xa,m. FPREPROC generates a sharing Jλa,mK of a random element λa,m ∈ Zp−1 for

each input at position (a,m) where a ∈ {1, ..., A} and m ∈ {1, ...,Ma}. It also generates sharings
JγK and [gγ ] for each addend term such that γa is subject to the constraint

γa =

Ma∑
m=1

λa,m.

These sharings can be computed using standard MPC protocols [12]. Typically, computing a sharing
of a random element requires adding n secret-shared elements, whereas computing [gγ ] requires a
protocol πEXP that multiplies n secret-shared elements [13].

Preprocessing Functionality, FPREPROC.

{[gγa ]}, {Jλa,mK} ← FPREPROC(C)

1. For every factor input at position (a,m) (where a ∈ {1, ..., A} and m ∈ {1, ...,Ma})
in the arithmetic circuit C implementing the sum of products, the parties compute a
sharing Jλa,mK of a random element λa,m ∈ Zp−1.

2. For every addend term (corresponding to index a ∈ {1, ..., A}), the parties compute a
sharing [gγa ] for an element γa ∈ Zp−1 such that

JγaK =
Ma∑
m=1

Jλa,mK. (1)

3. Output {[gγa ]}, {Jλa,mK}.

Figure 1: Ideal functionality for the preprocessing phase.
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2.2 Computation Phase

We break down the expression for a sum of products z ∈ Fp so that it is written

z =

A∑
a=1

ya,

where for a ∈ {1, ..., A} and {xa,m}, {ya} ∈ Z∗
p,

ya =

Ma∏
m=1

xa,m.

The protocol presented in Figure 2 computes z after the parties broadcast their inputs {xa,m} as
masked factors {⟨xa,m⟩λa,m}. Notice that the computation phase is non-interactive.

Computation Protocol, π.
z ← π(C)

where preprocessing FPREPROC has generated {[gγa ]}, {Jλa,mK} for a ∈ {1, . . . , A} and
m ∈ {1, ...,Ma}, subject to γa =

∑Ma
m=1 λa,m.

Input Stage

1. Every party receives a sharing Jλa,mK of a mask exponent for every input xa,m they
contribute to the computation.

2. They reconstruct λa,m, then compute and broadcast ⟨xa,m⟩λa,m = xa,m · g−λa,m ∈ Z∗
p.

Evaluation Stage

3. Parties locally compute the below.

(a) For each product (i.e., addend term) having index a where a ∈ {1, ..., A},

[ya] = [gγa ] ·
Ma∏
m=1

⟨xa,m⟩λa,m . (2)

(b) For the overall sum of products,

[z] =
A∑

a=1

[ya]. (3)

Output Stage

4. The parties reveal z ∈ Fp from its sharing [z].

5. Output z

Figure 2: Protocol for the computation phase with local evaluation stage.
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2.3 Correctness and Security

The correctness of the computation phase follows from the fact that Equation 2 holds, as [gγa ] ·∏Ma
m=1⟨xa,m⟩λa,m = [gγa ] ·

∏Ma
m=1(xa,m · g−λa,m) = [gγa ] · g−

∑Ma
m=1 λa,m · ya = [gγa−

∑Ma
m=1 λa,m · ya] = [ya].

Pi
⟨xa,m⟩λa,m 22xa,m·g−λa,m

66 Pj

Jλa,mK

vv ∑A
a=1([gγa ]·

∏Ma
m=1⟨xa,m⟩λa,m)hh

[z]

hh

Figure 3: Computation phase interactions between distinct parties Pi and Pj for i, j ∈ {1, . . . , n}.

For security, we argue that protocol π is a secure realization of an add-of-mults functionality.
Consider an add-of-mults arithmetic circuit where a single addition gate accepts the results of
A multiplication gates, where the gate corresponding to index a ∈ {1, . . . , A} has Ma inputs.
If ñ =

∑A
a=1Ma then the add-of-mults functionality is a function F : (Z∗

p)
ñ → (Zp) where

F ({xa,m}) =
∑A

a=1

∏Ma
m=1 xa,m. If preprocessing is implemented securely, protocol π is a secure

computation of functionality F because a party that provides input xa,m learns only an independent
random mask λa,m. When this party broadcasts ⟨xa,m⟩λa,m , nothing is revealed about xa,m to the
other parties because xa,m is in Z∗

p and g−λa,m acts as a uniform one-time pad in the group Z∗
p

(the one-time pad itself being secret with respect to the other parties by the properties of the
secret-shared Jλa,mK). As π is non-interactive, it reveals nothing beyond these broadcast values
except the sharing [z] sent in the fourth step of the protocol. Because z is the correct output, it
reveals nothing except for the intended output of the function F on the inputs {xa,m} corresponding
to the above broadcasts. Moreover, [z] leaks nothing because each share value in [z] is distributed
(uniformly) according to the choices of the random λa,m values in the preprocessing phase.

3 Related Work

Information-theoretic MPC has a long history, dating back to the popular BGW protocol [3, 9,
26] of the late 1980s, but the round complexity of this MPC protocol and its modern variants [16,
11, 18] is linear in the multiplicative depth of the circuit. Work on constant-round MPC began
decades ago [4, 14], and it is now known that any function can be computed in two rounds at a cost
that is at least exponential in the circuit depth [19, 20, 15, 2, 1, 22]. Such protocols do not rely on
familiar input representations or even on secret sharing techniques, as those require communication
to perform multiplications [5]; furthermore, ITS can require an honest majority. Our approach is
more similar to work [17, 6] leveraged to deploy a four-round secure Poisson regression protocol [21].

4 Conclusion

We have presented a technique that can be employed within the context of LSSS to enable the
evaluation of an arithmetic sum of products via a non-interactive computation phase (at the
expense of an input-independent preprocessing phase that can be implemented using standard
MPC protocols). This technique maintains the information theoretic security of LSSS, is relatively
straightforward to communicate and implement, and is compatible with asynchronous workflows.
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