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Abstract. In many applications, low area and low latency are required
for the chip-level implementation of cryptographic primitives. The low-
cost implementations of linear layers usually play a crucial role for sym-
metric ciphers. Some heuristic methods, such as the forward search and
the backward search, minimize the number of XOR gates of the linear
layer under the minimum latency limitation.
For the sake of achieving further optimization for such implementation of
the linear layer, we put forward a new general search framework attaching
the division optimization and extending base techniques in this paper. In
terms of the number of XOR gates and the searching time, our new search
algorithm is better than the previous heuristics, including the forward
search and the backward search when testing matrices provided by them.
We obtain an improved implementation of AES MixColumns requiring
only 102 XORs under minimum latency, which outdoes the previous best
record provided by the forward search.

Keywords: Lightweight cryptography · Linear layers · Low latency ·
AES

1 Introduction

In recent years, lightweight cryptography has been applied to provide security
and privacy in many fields, such as Internet of Things (IoTs), wireless sensor
networks, and Radio-Frequency IDentification (RFID) tags. These devices limit
the use of resources, such as circuit size, power consumption, and latency. Var-
ious restrictions may lead to new security threats in design, cryptanalysis, and
implementation. Generally, lightweight cryptography ensures secure encryption
and satisfies the requirement of limited resource.

Research on lightweight cryptography usually falls in two directions. The
first direction focuses on designing new ciphers based on lightweight compo-
nents. They are efficient in either hardware or software implementations. Plenty
of related works have been introduced [5,8,20]. Another direction is to optimize
the implementation of existing ciphers. The second direction often boils down to



the optimization of lightweight diffusion and confusion components. The Sbox is
one of the most popular confusion components of symmetric-key ciphers. Many
tools are proposed to optimize the primitive, such as LIGHTER [17] and PEIGEN [7].
In addition, the diffusion components are essential matrices, and the Maximal
Distance Separable (MDS) matrices are the most well-known diffusion compo-
nents.

In terms of implementation for lightweight cryptography primitives, there are
many criteria. The most popular one should be the gate equivalents (GE) re-
quired by the chip-level implementation of the cryptographic algorithm.4 GE
effectively approximates the complexity of digital electronic circuits. Generally,
two components are relevant to the cost. The diffusion component, i.e., the lin-
ear layer, is typically realized with many XOR gates. Reducing XOR operations
will lead to a non-negligible decreasing the number of GE. Such optimization for
the number of XORs can be formulated as the Shortest Linear Program (SLP)
problem. Although it has been shown to be an NP-hard problem [11], there is
still a growing body of work solely concentrating on decreasing the GE. More
and more concerns for heuristics searching for sub-optimal solutions have arisen
(see [4,12,19,30,31] for an incomplete list).

Therefore, as an important criterion, latency has been attracting more and
more attention. Many of the applications require low latency, including auto-
mobiles, robots, or mission-critical computation applications. It impacts the
throughput of encryption/decryption and plays an important role in the low-
energy consideration of ciphers [5]. In CHES 2021, Leander et al. propose a new
cipher SPEEDY, which explores a low-latency architecture. Usually, the depth of
the circuit can be utilized to approximate the latency. The depth is the criti-
cal path length of the circuit. The low-latency optimization for linear layers is
formulated as the Shortest Linear Program problem with the minimum Depth
(SLPD).

Focusing on optimizing low-latency implementations, there are two kinds of
heuristics. The first one is the forward search and the second one is the backward
search. For the forward search algorithm, firstly, Li et al. provided a method by
adding a depth constraint in BP algorithm (called LSL algorithm) [21], and BP
algorithm is given in [12]. Subsequently, the LSL algorithm was adapted by Banik
et al. [6] by considering the influence of different permutations for matrices. The
backward search algorithm is constructed by Liu et al. in [25].

1.1 Our Contributions

For the sake of achieving further optimization for linear matrices, the new heuris-
tics for them is important. This paper focuses on improving the previous heuris-
tics for the low-latency implementations of linear layers. For the forward search
and backward search, we find that many good candidate implementations have

4 The unit of gate size is Gate Equivalent (GE), where one GE equals the area of
a 2-input NAND gate. The cost of other gates in terms of GE is a normalized ratio
between their area and one NAND gate area.
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been discarded because the search space has been reduced greatly. Therefore, we
aim to deal with this problem and propose a new search framework attaching
two optimization techniques.

The framework splits the given circuit and extends the base to optimize the
parallel circuit step by step to finish the whole circuit optimization for any heuris-
tics. We notice that the candidate circuits recommended by the heuristics are
strongly dependent on all the output signals. The fewer optimized output signals
may lead to better circuits. We provide the division optimization technique by
splitting the output signals and step-wise optimizing, which can provide more
good candidate implementations. In addition, different heuristics usually utilize
different search spaces. Some good circuits will never be recommended. Thus,
we put forward the extending base technique to break through the limitation of
the forward search and backward search.

Based on the above techniques, we propose a general optimization aiming at
improving the given circuit for matrices. Concretely, rather than optimizing the
complete matrices, the framework only takes a partial circuit into account and
extends additional base values for the heuristics.

We apply the framework to linear layers of block ciphers and find many
low-latency candidates for implementation. The benchmark results are shown
in Table 1. Although these matrices have been optimized by the forward search
and backward search, we still improved 9 of them. One particularly interesting
case is that we obtain an implementation of AES MixColumns requiring only 102
XORs with depth 3, which breaks the previous record with 103 XORs. We also
apply the framework to 4254 MDS matrices proposed in [21], and achieve better
implementations in XOR gates for 77.5% of them. From these matrices, we find a
smaller matrix requiring 85 XOR gates (reducing one gate than before).

Then, we synthesize the results of AES MixColumns using the ASIC library
named UMC 55 nm, which shows that our implementation has lower power and
latency.

1.2 Organization

In Section 2, we give some basic notations and metrics. Moreover, in Section 3,
we discuss the problems of existing heuristics and propose two optimization
techniques. The general optimization framework is introduced in Section 4. All
the results and implementations in hardware are given in Section 5. Finally, we
conclude and propose future research directions in Section 6.

2 Preliminaries

2.1 Notations

Let F2 be the finite field with two elements 0 and 1 and Fn
2 be the the vector

space of all n-dimensional vectors over F2. Mm×n denotes an m×n matrix over
F2 and wt(M) denotes the Hamming weight of a matrix M over Mm×n, which
counts the number of 1’s contained in M .
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Table 1: The XOR number/depth of implementation costs of matrices.

Matrix Size [19] [31] [23] [21]∗ [6]∗ [25]∗ This paper∗

AES [14] 32 97/8 92/6 91/7 105/3 103/3 103/3 102/3

SMALLSCALE AES [13] 16 47/7 43/5 43/5 49/3 49/3 47/3 47/3

JOLTIK [16] 16 48/4 44/7 43/8 51/3 50/3 48/3 48/3

QARMA128 [3] 32 48/3 48/3 48/3 48/2 48/2 48/2 48/2

MIDORI [5] 16 24/4 24/3 24/3 24/2 24/2 24/2 24/2

PRINCE M0,M1 [10] 16 24/4 24/6 24/6 24/2 24/2 24/2 24/2

PRIDE L0 − L3 [1] 16 24/3 24/3 24/3 24/2 24/2 24/2 24/2

QARMA64 [3] 16 24/3 24/5 24/5 24/2 24/2 24/2 24/2

SKINNY64 [8] 16 12/2 12/2 12/2 12/2 12/2 12/2 12/2

CAMELLIA [2] 8 16/4 16/4 16/4 20/3 - 19/3 19/3

[19] 32 84/4 - - 96/3 - 92/3 89/3

[29](Hadamard) 16 48/3 44/7 44/7 51/3 50/3 49/3 48/3

[24](Circulant) 16 44/3 44/6 43/4 47/3 44/3 44/3 44/3

[22](Circulant) 16 44/5 44/8 43/4 47/3 44/3 44/3 44/3

[9](Circulant) 16 42/5 41/6 40/5 47/3 43/3 45/3 43/3

[28](Toeplitz) 16 43/5 41/7 40/7 44/3 43/3 45/3 43/3

[17] 16 43/5 41/6 40/6 45/3 45/3 45/3 44/3

[29](Involutory) 16 48/4 44/8 43/8 51/3 49/3 48/3 48/3

[22](Involutory) 16 48/4 44/6 43/8 51/3 49/3 48/3 48/3

[28](Involutory) 16 42/4 38/8 37/7 48/3 46/3 45/3 43/3

[17](Involutory) 16 47/7 41/6 41/10 47/3 47/3 47/3 47/3

[29](Hadamard) 32 100/5 90/6 91/7 102/3 99/3 100/3 99/3

[24](Circulant) 32 112/5 121/11 107/6 114/3 113/3 113/3 112/3

[22] 32 102/3 104/6 99/4 102/3 103/3 102/3 102/3

[9](Circulant) 32 110/5 114/10 105/7 112/3 110/3 111/3 110/3

[28](Toeplitz) 32 107/5 114/12 100/9 107/3 107/3 107/3 107/3

[17](Subfield) 32 86/5 82/7 80/6 90/3 90/3 93/3 90/3

[29](Involutory) 32 100/6 91/6 89/8 102/3 100/3 100/3 99/3

[22](Involutory) 32 91/6 87/6 86/9 99/3 95/3 94/3 93/3

[28](Involutory) 32 100/6 93/8 92/8 104/4 102/4 109/4 102/4

[17](Involutory) 32 91/7 83/6 84/6 94/3 94/3 97/3 94/3

[21](Involutory) 32 - - - 88/3 - 86/3 85/3

∗ The results take the number of XOR gates into account with respect to the minimum
depth.
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Given the matrix M and the input values t⃗ = (t0, t1, ..., tn−1)
T , each output

value yi can be computed by ai0t0 ⊕ ai1t1 ⊕ . . .⊕ ai(n−1)tn−1, where each coef-
ficient aij is the entry of matrix M at i-th row and j-th column. We can then
associate yi with a binary vector:

[ai0, ai1, . . . , ai(n−1)]. (1)

Generally, every value t can be computed by a0t0 ⊕ a1t1 ⊕ . . .⊕ an−1tn−1 and is
associated with [a0, a1, . . . , an−1].

For three values t1, t2, and t3, we say t2 and t3 generate t1 if t1 = t2 ⊕ t3
with ⊕ element-wise plus is included in the circuit. We define its depth D(t) as
the maximum number of XOR gates of a path from input values to t. For each
input value ti, D(ti) is 0. The depth of a circuit is the critical path length of the
circuit. For each value t, the minimum depth Dmin(t) is defined as

⌈log2(wt(t))⌉. (2)

Suppose that a set A contains different values, the depth of A is defined as

D(A) = max
v∈A

{D(v)}, (3)

and the minimum depth of A is defined as

Dmin(A) = max
v∈A

{⌈log2(wt(v))⌉}. (4)

Similarly, the minimum depth of a matrix M is defined as

Dmin(M) = max
yi∈M

{⌈log2(wt(yi))⌉}, (5)

where yi is the i-th output value of M . Finding a circuit with respect to the
minimum depth means that the depth of the circuit equals the minimum depth
of M . For the circuit C, we also use D(C) to represent the depth of C.

2.2 SLP Problem and SLPD

Definition 1 ([11]). The Shortest Linear Program (SLP) problem is defined as
finding a solution with the least XOR gates to compute M over Mm×n.

The problem is extended by considering the depth of the solution [6,21,25].
We call it the SLP problem with respect to the minimum Depth (SLPD). The
solution always reaches the minimum depth with the smallest XOR gates.

A possible solution is the exhaustive search method, which is discussed in
Supplementary Materials A. Unfortunately, most of matrices used in linear layers
are too larger to utilize the exhaustive search. Thus, different heuristics are used
to optimize the matrices.
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2.3 State-of-the-art Works

Two heuristics to solve SLPD have been presented, which are the forward search
and the backward search, respectively.

Forward search. Forward search is based on the BP algorithm [12], which
combines input signals to reach the output signals. We review the algorithm in
the following (see Algorithm 1).

Given a binary matrix M , the input signals are {t0, t1, ..., tn−1} and the
output signals are {y0, y1, ..., ym−1}. The base set B and the output set O contain
all the input signals and output signals, respectively. Then, they initialize an
m-integer vector Dist which keeps track of the distances of each target value
from B. The Dist is [δ(B, y0), δ(B, y1), ..., δ(B, ym−1)], where δ(B, yi) indicates
the minimum number of XOR gates required that can obtain yi from B. Then,
they repeatedly pick two values from B, add them together as a new value, and
puts the new value into B. Such update process is based on the following rules.

– Rule 1: Perform XOR on every unique pair of values in B to generate a new
value. The new value is used to re-evaluate the Dist vector, and calculate
the new distance

∑m−1
i=0 Dist[i].

– Rule 2: If a pair can generate the target signal, then choose it first. Oth-
erwise, select the smallest

∑m−1
i=0 Dist[i] and put the corresponding value

into B. In case of tie, use the Euclidean norm of Dist to determine which
candidate is better.

– Rule 3: If there still exist many candidates, choose one randomly.

Algorithm 1 BP Algorithm

Input: A matrix M over Mm×n

Output: A circuit C to implement M
1: Initial the base set B ← {t0, t1, . . . , tn−1}
2: Initial the output set O ← {y0, y1, . . . , ym−1}
3: Initial the circuit C ← ϕ
4: while O ̸= ϕ do
5: Choose a candidate t|B| = ti ⊕ tj based on Rule 1, Rule 2, and Rule 3
6: if t|B| ∈ O then
7: O ← O/{t|B|}
8: end if
9: C ← C ∪ {t|B| = ti ⊕ tj}
10: B ← B ∪ {t|B|}
11: end while
12: return C

Because the original BP Algorithm is not applicable in low-latency scenario,
Li et al. [21] enhance the algorithm with circuit depth awareness (called LSL
algorithm). Overall, they append a function Pick() to choose two values from
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the base set B to generate new value, in which the depth of the new value can
not exceed a specified depth bound. Other steps of the algorithm is the same as
the BP algorithm.

In order to improve the LSL algorithm, Banik et al. [6] modify the target
matrix M by adding permutations. Specifically, they generate two permutations
P and Q and let MR = P · M · Q. A permutation only shuffles the rows and
columns of M and keeps the linear relation unchanged. Then, they run the LSL
algorithm many times for different MR to find better circuits. Through their
idea, additional randomness can be introduced in the original matrix.

We take an example to show the forward search. Suppose that the target
matrix M1 is 

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 0 1

 .

The input set B is {t0, t1, t2, t3, t4, t5} and the output set O is {y0, y1, y2, y3, y4}.
Then, let the circuit satisfy the low-latency limitation L = {D(M1) = Dmin(M1) =
3}. The initial Dist is [1, 2, 3, 4, 4]. In Table 2, we provide the circuit produced
by the forward search. Note that the depth of t8 is 3, and then t8 can not be used
in the subsequent optimization. t9 and t11 are generated to meet the limitation.

Table 2: The implementation of M1 using the forward search.

No. Operation Depth New value New dist

1 t6 = t0 ⊕ t1//y0 1 t6 = [1, 1, 0, 0, 0, 0] [0,1,2,3,3] = 9
2 t7 = t6 ⊕ t2//y1 2 t7 = [1, 1, 1, 0, 0, 0] [0,0,1,2,2] = 5
3 t8 = t7 ⊕ t3//y2 3 t8 = [1, 1, 1, 1, 0, 0] [0, 0,0,1,1] = 2
4 t9 = t3 ⊕ t4 1 t9 = [0, 0, 0, 1, 1, 0] [0, 0, 0, 1, 1] = 2
5 t10 = t7 ⊕ t9//y3 3 t10 = [1, 1, 1, 1, 1, 0] [0, 0, 0,0, 1] = 1
6 t11 = t3 ⊕ t5 1 t11 = [0, 0, 0, 1, 0, 1] [0, 0, 0, 0, 1] = 1
7 t12 = t7 ⊕ t11//y4 3 t12 = [1, 1, 1, 1, 0, 1] [0, 0, 0, 0,0] = 0

Backward search. The backward search is proposed in [25], which iteratively
splits the output values until all the input values appear. The backward search
utilizes a completely different strategy with the low-latency metric. In the algo-
rithm, the output values and input values are put into the working set W and
the input set X , respectively. Then, the predecessor set P saves the values that
can be used to split W.
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To exemplify this algorithm, we give an example to show the backward search.
Suppose that the target matrix M2 is

1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0

 .

The input signals are t0, t1, t2, t3, t4, t5, t6, t7 and the target signals are y0, y1, y2, y3.

– Initialization. In M2, yi represents the i-th row of the matrix, and tj
can be represented by the unit vector with the j-th bit 1. We set the
predecessor set P = ϕ, the working set W = {y0, y1, y2, y3}, and X =
{t0, t1, t2, t3, t4, t5, t6, t7}. Then, we have

Dmin(y0) = 3,Dmin(y1) = 2,Dmin(y2) = 2,Dmin(y3) = 1.

– Step 1. Dmin(W) = 3. If a value t ∈ W and Dmin(t) < 3, we will put it
into P from W. Therefore, W = {y0}, and P = {y1, y2, y3}.

– Step 2. Generate t8 = [1, 1, 1, 1, 0, 0, 0, 0] and t9 = [0, 0, 0, 0, 1, 1, 0, 0] to
split y0 by y0 = t8 ⊕ t9. Therefore, W = ϕ. P = {y1, y2, y3, t8, t9}. Since
W = ϕ, let W = P and P = ϕ. Now Dmin(W) = 2. Then, we put y3 and t9
into P.

– Step 3. Produce t10 = [0, 0, 0, 0, 0, 0, 1, 1] to split y1 by y1 = t9⊕ t10. Now,
W = {y2, t8}, and P = {y3, t9, t10}.

– Step 4. Split y2 by y2 = t5 ⊕ t10. Now W = {t8} and P = {y3, t5, t9, t10}.
Create t11 = [1, 1, 0, 0, 0, 0, 0, 0] and t12 = [0, 0, 1, 1, 0, 0, 0, 0] to split t8. Then,
W = ϕ, P = {y3, t5, t9, t10, t11, t12}.

– Step 5. Since W = ϕ, let W = P and P = ϕ. The maximum depth is
Dmin(W) = 1. y3, t9, t10, t11 and t12 can be split by the unit vectors. We
show the complete circuit in Table 3.

Table 3: The splitting process of M2 using the backward search.

No. Operation Depth New value Minimum depth

1 y0 = t8 ⊕ t9 3 y0 = [1, 1, 1, 1, 1, 1, 0, 0] Dmin(y0) = 3
2 y1 = t9 ⊕ t10 2 y1 = [0, 0, 0, 0, 1, 1, 1, 1] Dmin(y1) = 2
3 y2 = t5 ⊕ t10 2 y2 = [0, 0, 0, 0, 0, 1, 1, 1] Dmin(y2) = 2
4 t8 = t11 ⊕ t12 2 t8 = [1, 1, 1, 1, 0, 0, 0, 0] Dmin(t8) = 2
5 t10 = t6 ⊕ t7 1 t10 = [0, 0, 0, 0, 0, 0, 1, 1] Dmin(t10) = 1
6 t11 = t0 ⊕ t1 1 t11 = [1, 1, 0, 0, 0, 0, 0, 0] Dmin(t11) = 1
7 t12 = t2 ⊕ t3 1 t12 = [0, 0, 1, 1, 0, 0, 0, 0] Dmin(t12) = 1
8 t9 = t4 ⊕ t5 1 t9 = [0, 0, 0, 0, 1, 1, 0, 0] Dmin(t9) = 1
9 y3 = t5 ⊕ t6 1 y3 = [0, 0, 0, 0, 0, 1, 1, 0] Dmin(y3) = 1
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The complete algorithm for the backward search can be seen in Algorithm 2.
W and P are matched O and B in the forward search, respectively. The difference
is that both W and P are dynamically changed. X ∪W ̸= X indicates that there
is at least one non-input value inW, which will be split according to the following
five rules, which are used to reduce the search space.

– Rule 1: If Dmin(t) < Dmin(W) (t ∈ W), t will be put into P (see Step 1
in the example of M2).

– Rule 2: If ∃p1, p2 ∈ P, ∃w ∈ W s.t. w = p1 ⊕ p2, w will be removed from
W.

– Rule 3: If ∃p1 ∈ P, ∃w ∈ W s.t. p2 = w ⊕ p1 and Dmin(p2) < Dmin(w),
remove w and append p2 in P (see Step 3 in the example of M2).

– Rule 4: If ∃p1, p2, p3, ∃w1, w2 ∈ W s.t. w1 = p1 ⊕ p2, w2 = p2 ⊕ p3, where
Dmin(p1),Dmin(p2), Dmin(p3) < max(Dmin(w1),Dmin(w2)), remove w1 and
w2, and put p1, p2 and p3 into P.

– Rule 5: This is the default rule. Split w (w ∈ W) into p1 and p2 (Dmin(p1) <
Dmin(w), Dmin(p2) < Dmin(w)). p1 and p2 are put into P (see Step 2 in the
example of M2).

Algorithm 2 Backward Search

Input: A matrix M over Mm×n

Output: A circuit C to implement M
1: W ← {y0, y1, . . . , ym−1} ▷ the working set
2: X ← {t0, t1, . . . , tn−1} ▷ the input set
3: P ← ϕ ▷ the predecessor set
4: C ← ϕ ▷ the circuit
5: while X ∪W ̸= X do
6: while W ̸= ϕ do
7: choose a value w ∈ W by Rule 1-Rule 5 and split w by w = p⊕ q.
8: if p /∈ P then
9: P ← P ∪ {p}
10: end if
11: if q /∈ P then
12: P ← P ∪ {q}
13: end if
14: C ← C ∪ {w = p⊕ q}
15: end while
16: W ← P
17: P ← ϕ
18: end while
19: return C

9



3 New Techniques for Heuristics

In this section, in order to further improve the previous forward search and back-
ward search, we propose two heuristic techniques based on the ideas of splitting
the output set and extending the base set, which are called the division opti-
mization technique and extending base technique, respectively. The applications
of these techniques will be introduced in our new framework in Section 4.

3.1 Division Optimization Technique

The division optimization technique takes the division of output set into account.
For the output set O = {y0, y1, . . . , ym−1}, we observe that the next candidate
for the heuristic algorithm is usually dependent on the output set O, which
means that the results are related to specific output sets. However, previous
methods treat O as a whole. Thus, the division of the output set may provide
more possibilities.

Rational of division optimization technique. Suppose that we have the base
set B = {t0, t1, . . . , tn−1}. Our goal is to search for a circuit from B to O. Usually,
the search space SB for the next candidates is too large to traverse all the choices.
The heuristic algorithm is used to reduce the search space. We use Hf to define
Rule 1 and Rule 2 in the forward search algorithm. In order to implement O,
the search space for next choice is expressed as HO

f (SB). In addition, there exist
some limitations for the values, such as the minimum depth saved in L.

Now, we formalize the division optimization technique. The technique splits
the output set into two disjoint sets and optimizes them in order. The output
set O can be split into two different sets, where

O = O0 ∪ O1, O0 ∩ O1 = ϕ. (6)

The initial base set B is {t0, t1, . . . , tn−1}. We first optimize O0 and generate
the updated base set and circuit. Then, O1 is optimized based on the newly
produced base set and circuit from O0. Note that the optimization order of O0

and O1 may affect results. Thus, we can traverse all possible combinations. The
complete algorithm to use the division optimization technique in the forward
search can be seen in Algorithm 3.

Applying division optimization technique to M1. The output set O of M1 can
be split into two different output sets,

O0 = {y2, y3, y4},O1 = {y0, y1}.
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Algorithm 3 Division Optimization Technique for the Forward Search

Input: A matrix M over Mm×n

Output: A circuit C to implement M
1: Initial the output set O ← {y0, y1, . . . , ym−1}
2: O = O0 ∪ O1, O0 ∩ O1 = ϕ
3: Initial the base set B ← {t0, t1, . . . , tn−1}
4: Initial the circuit C ← ϕ
5: for k ∈ [0, 1] do ▷ optimizing O0 and O1 in order
6: while Ok ̸= ϕ do
7: Randomly choose a new value t|B| = ti ⊕ tj from HOk

f (SB)
8: if t|B| ∈ Ok then
9: Ok ← Ok/{t|B|}
10: end if
11: C ← C ∪ {t|B| = ti ⊕ tj}
12: B ← B ∪ {t|B|}
13: end while
14: end for
15: return C

Firstly, we apply the forward search to optimize O0 with the base set B0 is also
{t0, t1, t2, t3, t4, t5}. The obtained circuit C0 to implement O0 is as follows,

t6 = t0 ⊕ t1,

t7 = t2 ⊕ t3,

t9 = t6 ⊕ t7//y2,

t10 = t4 ⊕ t9//y3,

t11 = t5 ⊕ t9//y4.

Then, we can utilize the above generated circuit C0 to optimize another output
setO1 with the forward search. The current base set B1 is {t0, t1, t2, t3, t4, t5, t6, t7,
t9, t10, t11}. The circuit C1 to implement O1 is as follows,

t6//y0,

t8 = t2 ⊕ t6//y1.

We merge these two circuits and generate the new circuit to implement O with
6 XOR gates (see Table 4). Compared with Table 2, instead of the distance con-
sidered, the new circuit takes both the depth and the XOR number into account.
As a result, one XOR gate is reduced.

The reason that the forward search misses the better circuit and will never
find it lies in Rule 2 of the BP algorithm. We perform XOR operations on every
unique pair of values in B. If one choice can generate one output signal, it will
be chosen first. y0, y1, and y2 must be generated in order. However, y2 cannot be
used to produce the new values as D(y2) is 3. Therefore, the algorithm has to use
t9 and t11 to generate t10 and t12, respectively. Using the division optimization
technique, the depth of y2 is only 2 and can be used in subsequent circuits.
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Table 4: The new implementation of M1.

No. Operation Depth New value New dist

1 t6 = t0 ⊕ t1//y0 1 t6 = [1, 1, 0, 0, 0, 0] [0,1,2,3,3] = 9
2 t7 = t2 ⊕ t3 1 t7 = [0, 0, 1, 1, 0, 0] [0, 1,1,2,2] = 6
3 t8 = t2 ⊕ t6//y1 2 t8 = [1, 1, 1, 0, 0, 0] [0,0, 1, 2, 2] = 5
4 t9 = t6 ⊕ t7//y2 2 t9 = [1, 1, 1, 1, 0, 0] [0, 0,0,1,1] = 2
5 t10 = t4 ⊕ t9//y3 3 t10 = [1, 1, 1, 1, 1, 0] [0, 0, 0,0, 1] = 1
6 t11 = t5 ⊕ t9//y4 3 t11 = [1, 1, 1, 1, 0, 1] [0, 0, 0, 0,0] = 0

3.2 Extending Base Technique

Motivation for extending base set. In most cases, |Hf (SB)| is smaller than the
complete search space |SB|, some choices c are missed (c ∈ SB and c /∈ Hf (SB)).
In order to illustrate it, we takeM1 as an example. For the original forward search
for M1, the whole search space SB for next candidate and the corresponding
distance are shown in Table 5.

Table 5: SB and the corresponding distance.

New value New dist New value New dist New value New dist

t6 = t0 ⊕ t1 [0, 1, 2, 3, 3] = 9 t7 = t0 ⊕ t2 [1, 1, 2, 3, 3] = 10 t8 = t0 ⊕ t3 [1, 2, 2, 3, 3] = 11

t9 = t0 ⊕ t4 [1, 2, 3, 3, 4] = 13 t10 = t0 ⊕ t5 [1, 2, 3, 4, 3] = 13 t11 = t1 ⊕ t2 [1, 1, 2, 3, 3] = 10

t12 = t1 ⊕ t3 [1, 2, 2, 3, 3] = 11 t13 = t1 ⊕ t4 [1, 2, 3, 3, 4] = 13 t14 = t1 ⊕ t5 [1, 2, 3, 4, 3] = 13

t15 = t2 ⊕ t3 [1, 2, 2, 3, 3] = 11 t16 = t2 ⊕ t4 [1, 2, 3, 3, 4] = 13 t17 = t2 ⊕ t5 [1, 2, 3, 4, 3] = 13

t18 = t3 ⊕ t4 [1, 2, 3, 3, 4] = 13 t19 = t3 ⊕ t5 [1, 2, 3, 4, 3] = 13 t20 = t4 ⊕ t5 [1, 2, 3, 4, 4] = 14

According to the rules, t6 = t0 ⊕ t1 has the smallest distance and Hf (SB)
only contain one candidate:

{t6 = t0 ⊕ t1}.

The choice c′ /∈ Hf (SB), has been discarded. Unless an exhaustive search has
proceeded, it is difficult to predict whether discarded choices can lead to a better
circuit.

In this way, only t6 will be put into the new base set and used in the next
optimization. With the impact of t6, some candidates may never be chosen by
the algorithm. Thus,in order to provide more possibilities, we put forward the
extending base set.

For example, we can choose the candidates whose distance is less than 12.
Therefore, t7, t8, t11, t12 and t15 are chosen as candidates. If we choose t15 = t2⊕t3
as the next base value, the base set is extended as {t0, t1, t2, t3, t4, t5, t15} and
new Dist is [1, 2, 2, 3, 3]. We use the forward search to generate the circuit (see
Table 6). The new circuit reduces one XOR gate compared with the original
forward search in Table 2.
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Table 6: The new circuit of M1 based on the restricted base technique.

No. Operation Depth New value New dist

1 t15 = t2 ⊕ t3 1 t15 = [0, 0, 1, 1, 0, 0] [1, 2,2,3,3] = 11
2 t6 = t0 ⊕ t1//y0 1 t6 = [1, 1, 0, 0, 0, 0] [0,1,1,2,2] = 6
3 t7 = t2 ⊕ t6//y1 2 t7 = [1, 1, 1, 0, 0, 0] [0,0, 1, 2, 2] = 5
4 t8 = t6 ⊕ t15//y2 2 t8 = [1, 1, 1, 1, 0, 0] [0, 0,0,1,1] = 2
5 t9 = t4 ⊕ t8//y3 3 t9 = [1, 1, 1, 1, 1, 0] [0, 0, 0,0, 1] = 1
6 t10 = t5 ⊕ t8//y4 3 t10 = [1, 1, 1, 1, 0, 1] [0, 0, 0, 0,0] = 0

Rational of extending base technique. For Hf , |SB/Hf (SB)| may be too large
to traverse all the candidates. Thus, we provide a solution with less search space.
We define Hb as the rules of the backward search. In order to extend the base
set of Hf , we can generate a circuit C′ for the target matrix M by Hb. Every
value in C′ is contained in the additional search space Sb. From Sb, we choose a
subset sb and extend the base set to B∪ sb. Then, we optimize the output set O
with the extended base set B∪ sb. The extending base technique is implemented
in Algorithm 4. We can control any subset sb to extend the base set.

Algorithm 4 Extending Base Technique for the Forward Search

Input: A matrix M over Mm×n, different heuristic algorithms Hf and Hb

Output: A circuit C to implement M
1: Initial the output set O ← {y0, y1, . . . , ym−1}
2: Initial the base set B ← {t0, t1, . . . , tn−1}
3: Initial the circuit C ← ϕ
4: Calculate Sb based on the backward search Hb ▷ the additional search space
5: Choose a subset sb ⊂ Sb ▷ choosing a subset of Sb
6: B ← B ∪ sb ▷ extending the base set using sb
7: while O ̸= ϕ do
8: randomly choose a new value t|B| = ti ⊕ tj from HO

f (SB)
9: if t|B| ∈ O then
10: O ← O/{t|B|}
11: end if
12: C ← C ∪ {t|B| = ti ⊕ tj}
13: B ← B ∪ {t|B|}
14: end while
15: return C

3.3 Applying to the Backward Search

We have introduced our new techniques based on the forward search Hf . Actu-
ally, the techniques can also be used to improve the backward search Hb, where
we replace the output set O and the base set B with the working set W and the
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predecessor set P, respectively. We just adjust the techniques for the backward
search.

For the division optimization technique, we can also optimize O0 and O1

in order. For the extending base technique, we combine the technique with the
backward search in Algorithm 5. We take M2 as an example to illustrate it.

Algorithm 5 Extending Base Technique for the Backward Search

Input: A matrix M over Mm×n, different heuristic algorithms Hf and Hb

Output: A circuit C to implement M
1: W ← {y0, y1, . . . , ym−1} ▷ the working set
2: X ← {t0, t1, . . . , tn−1} ▷ the input set
3: P ← ϕ ▷ the predecessor set
4: C ← ϕ ▷ the circuit
5: Calculate Sf based on the forward search Hf ▷ the additional search space
6: Choose a subset sf ⊂ Sf ▷ choosing a subset of Sf
7: P ← P ∪ sf ▷ extending the base set using sf
8: while X ∪W ̸= X do
9: while W ̸= ϕ do
10: Choose a value w ∈ W by Rule 1-Rule 5 and split w by w = p⊕ q.
11: if p /∈ P then
12: P ← P ∪ {p}
13: end if
14: if q /∈ P then
15: P ← P ∪ {q}
16: end if
17: C ← C ∪ {w = p⊕ q}
18: end while
19: W ← P
20: P ← ϕ
21: end while
22: return C

After the initialization, we have the predecessor set P = ϕ, the working set
W = {y0, y1, y2, y3}, and X = {t0, t1, t2, t3, t4, t5, t6, t7}.

We find the candidate
y1 = t4 ⊕ y2

will never be chosen by Hb. While the candidate y1 = t4 ⊕ y2 belongs to the
search space of Hf . This means {t4, y2} ∈ Sf . We just choose sf = {t4, y2} ∈ Sf

to update P. We can add y1 = t4 ⊕ y2 into the circuit and let P = P ∪ {t4, y2}.
The working set is W = {y0, y3}, while the new predecessor set is P = {y2, t4}.
The running process is shown in Table 7.

In Table 3, t10 is used to split y2. However, we do not generate t10. We can
split y2 by y2 = t7⊕y3. t8 is also split by t8 = t11⊕ t12. The new circuit is shown
in Table 7, which saves one XOR gate. We find that the additional restrictions
relax the depth limit of y1. D(y1) = 3, but Dmin(y1) = 2. According to previous
rules, D(y1) must be 2.
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Table 7: The new implementation of M2.

No. Operation Depth New value Minimum depth

1 y1 = t4 ⊕ y2 3 y1 = [0, 0, 0, 0, 1, 1, 1, 1] Dmin(y1) = 2
2 y0 = t8 ⊕ t9 3 y0 = [1, 1, 1, 1, 1, 1, 0, 0] Dmin(y0) = 3
3 y2 = t7 ⊕ y3 2 y2 = [0, 0, 0, 0, 0, 1, 1, 1] Dmin(y2) = 2
4 t8 = t11 ⊕ t12 2 t8 = [1, 1, 1, 1, 0, 0, 0, 0] Dmin(t8) = 2
5 t11 = t0 ⊕ t1 1 t11 = [1, 1, 0, 0, 0, 0, 0, 0] Dmin(t11) = 1
6 t12 = t2 ⊕ t3 1 t12 = [0, 0, 1, 1, 0, 0, 0, 0] Dmin(t12) = 1
7 t9 = t4 ⊕ t5 1 t9 = [0, 0, 0, 0, 1, 1, 0, 0] Dmin(t9) = 1
8 y3 = t5 ⊕ t6 1 y3 = [0, 0, 0, 0, 0, 1, 1, 0] Dmin(y3) = 1

4 General Framework of Optimization

We have introduced the division optimization technique and the extending base
technique. These techniques can be utilized to improve heuristic algorithms.
For a given circuit from the forward search (or backward search), the division
optimization technique can also be used to divide the partial circuit besides the
output signals. In Table 2, we can choose

t10 = t7 ⊕ t9, t11 = t3 ⊕ t5, t12 = t7 ⊕ t11

as the new target set, where t11 is not the output signal. In addition, we can
extend the base set by appending additional base into the base set. In this
section, we will provide a framework to use the backward search (or forward
search) to optimize the middle part based on the extending base set to update
the given circuit.

4.1 Division of a Given Circuit C

The circuit is split into three parts. The first part is the base part B′
C , which

consists of the previous base set and additional values in C. The second part is
the target set O′

C , which contains some intermediate values and output values.
The rest of the circuit is the unrelated part U ′

C . Then, we can generate a new
circuit to optimize O′

C based on the base part B′
C .

In order to split the circuit, we first introduce the definition of topological
ordering. The problem of finding a topological ordering can be solved in linear
time by Kahn’s algorithm [18].

Definition 2. Given a circuit C, the topological ordering of a circuit C is an
ordering of its values into a sequence, which is denoted as TC. For every XOR gate
ta = tb ⊕ tc, the input values tb and tc of the gate occur earlier in the sequence
than the output value ta.

M1 is taken as an example. We useXa,b,c to represent the XOR gate ta = tb⊕tc,
use Xa,b,c to denote that ta is the output value. The circuit C of M1 in Table 2
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is:

X6,0,1, X7,6,2, X8,7,3, X9,3,4, X10,7,9, X11,3,5, X12,7,11.

The input set B is {t0, t1, t2, t3, t4, t5}, the output set O is {t6, t7, t8, t10, t12}.
The topological ordering is

TC = t0, t1, t2, t3, t4, t5, t6, t9, t11, t7, t8, t10, t12, (7)

where ta represents that ta is the output value.

Based on the topological ordering TC , we split C into three parts (see Fig-
ure 1).

Fig. 1: Division of the given circuit.

– Base part B′
C. The base set B is {t0, . . . , tn−1}. We choose a subset

Tsub ⊂ TC/B to extend the base set B to produce the base part B′
C . We have

the base part B′
C = B ∪ Tsub.

– Target part O′
C. We choose a subset from TC/B′

C as the optimized target
part O′

C .

– Unrelated part U ′
C. The unrelated part U ′

C is TC/{B′
C ∪ O′

C}.

In the example of M1, we choose Tsub = {t6} and the base part B′
C is

{t0, t1, t2, t3, t4, t5, t6}. Then, we choose the target part O′
C is {t8, t10, t12}. The

unrelated part U ′
C is {t7, t9, t11}.

4.2 Updating the Circuit C by Optimizing O′
C with B′

C

Given a division of the circuit C, we optimize the target part O′
C with the base

part B′
C to generate a new circuit. Because the new circuit only contains partial

information of the given circuit C, we call it Cpart. In order to update C, the
following three steps will proceed.

– Step 1. Optimize O′
C with B′

C to generate the partial circuit Cpart.
– Step 2. Merge the partial circuit Cpart and original circuit C into the new

circuit C′.

– Step 3. Remove redundant XOR gates from C′ and set C = C′.
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Generate the partial circuit Cpart. There exist two modes to optimize O′
C

with B′
C to generate the partial circuit Cpart. Suppose that the given circuit C is

generated by the forward search Hf , we have two modes to build Cpart. Mode
1 is to use the same heuristic algorithm Hf to generate Cpart. Mode 2 is to use
another heuristic algorithm Hb to generate Cpart.

For M1, the circuit C is generated by Hf . Let the base part B′
C and the

target part O′
C be {t0, t1, t2, t3, t4, t5, t6} and {t8, t10, t12}, respectively. Using

the forward search, we generate the partial circuit Cpart,

X13,2,3, X8,6,13, X10,8,4, X12,8,5.

Merging Cpart and C into the new circuit C′. After getting Cpart, initialize
C′ = C. We need to merge Cpart and C into the new circuit C′. For each value
ta ∈ TCpart

, there exist two cases, ta /∈ TC or ta ∈ TC . For the first case, we put
the corresponding XOR gates into the new circuit C′. For the second case, we use
the XOR gate in Cpart to replace the previous XOR gate in C′. The processes to
merge Cpart and C into the new circuit C′ can be seen in Algorithm 6.

We still take M1 as an example. The topological ordering of TCpart
is

TCpart
= t0, t1, t2, t3, t4, t5, t6, t13, t8, t10, t12,

where t13 /∈ TC (see Equation (7)). The corresponding XOR gate is X13,2,3. Thus,
we produce the new circuit C′ is

C′ = X6,0,1,X13,2,3, X7,6,2, X8,7,3, X9,3,4, X10,7,9, X11,3,5, X12,7,11. (8)

We notice that t8, t10, t12 ∈ TCpart . So we replace t8, t10, and t12 in TC with the
corresponding ones in TCpart .

C′ = X6,0,1, X13,2,3, X7,6,2,X8,6,13, X9,3,4,X10,8,4, X11,3,5,X12,8,5. (9)

Removing redundant XOR gates. After finishing the merging process, the achieved
circuit C′ may have redundant XOR gates. For an XOR gate Xa,b,c, if ta is not the
output signal and ta is not used to generate any new values, we say that ta and
Xa,b,c are redundant. For example, in Equation (8), t9 is used to generate t10,
while in Equation (9), t9 is not used and t10 is generated by t4 ⊕ t8, so t9 is
redundant.

We use the graph extending technique [26] to remove redundant values from
given circuits. The technique use od(ta) to count the number times that ta is
used. In Equation (9), we have

od(t0) = 1, od(t1) = 1, od(t2) = 2, od(t3) = 3, od(t4) = 2, od(t5) = 2, od(t6) = 2,

od(t7) = 0, od(t8) = 2,od(t9) = 0, od(t10) = 0,od(t11) = 0, od(t12) = 0, od(t13) = 1.

We notice od(t9) = 0 and od(t11) = 0, and t9, t11 are not the output values.
Thus, t9 and t11 are redundant. Thus, it is no need to generate these two values,
so X9,3,4 and X11,3,5 can be removed from C′. New circuit is

C′ = X6,0,1, X7,6,2, X13,2,3,X8,6,13,X10,8,4,X12,8,5. (10)
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Algorithm 6 MergeCircuit()

Input: The previous circuit C and the partial circuit Cpart
Output: The new circuit C′
1: Initial the additional circuit Cadd = ϕ
2: Calculate the topological ordering TC and TCpart

3: for each value ta ∈ TCpart do
4: if ta /∈ TC then
5: Choose the corresponding XOR gate Xa,b,c ∈ Cpart
6: Cadd ← Cadd ∪ {Xa,b,c} ▷ adding additional XOR gates
7: end if
8: end for
9: C′ = C ∪ Cadd
10: for each value ta ∈ TC do
11: if ta ∈ TCpart then
12: Find the corresponding XOR gates Xa,b,c ∈ C and Xa,b′,c′ ∈ Cpart
13: Use Xa,b′,c′ to replace Xa,b,c in C′.
14: end if
15: end for
16: return C′

Then, we use C′ to update C. It reduces one XOR gate. We use the function
Remove() to represent the graph extending technique in Section 4.3.

4.3 Continuous Division Strategy

Considering all the combinations of different B′
C and O′

C , we deduce that it is
infeasible to exhaust them and then try to divide. The number of all the possible
combinations of B′

C is 2|TC|−|B|−1, and for the fixed B′
C , all the possible forms of

O′
C is 2|TC|−|B′

C| − 1. The detailed proof is shown in Supplementary Materials B.
As the circuit size is too large, we cannot traverse all the combinations. For the
circuit of AES MixColumns with 103 XOR gates, the number of the combinations
of B′

C is 271−1. Thus, we give the continuous division strategy, which is executed
in a reasonable time.

For a given circuit C, let |B′
C | be |B| and |O′

C | be 1. Then, we gradually
increase |B′

C | from |B| to |TC |. For every fixed B′
C , we gradually increase |O′

C |
from 1 to |TC | − |B′

C |. In order to reduce the search space, we always choose
the consequent values in TC to extend B and the consequent O′

C . The reduction
process for a given circuit is shown in Algorithm 7.

Combination with heuristics. We can combine our algorithm with any heuris-
tics. Given the target matrix, we can generate a circuit C based on the forward
search or the backward search. Then, we divide the circuit to generate the Cpart,
merge Cpart and C into the new circuit C′, and update C after removing the re-
dundant XOR gates. A tradeoff between the running times of heuristics and the
number of combinations of different B′

C and O′
C need to be considered.
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Algorithm 7 Continuous Division Strategy

Input: A circuit C to implement the target matrix M
Output: A new circuit Cbest to implement M
1: The best circuit Cbest ← C
2: Put the input values and the output values into B and O, respectively
3: Calculate TC = TC [1]TC [2] . . . TC [|TC |]
4: for pre from |B| to |TC | − 1 do
5: B′

C ← TC [1, pre]
6: for tar from 1 to |TC | − pre do
7: for site from pre+ 1 to |TC | − tar + 1 do
8: O′

C ← TC [site, site+ tar]

9: Cpart ← H
O′

C
f (B′

C) or H
O′

C
b (B′

C)
10: C′ = MergeCircuit(C, Cpart) ▷ Algorithm 6
11: C′ = Remove(C′) ▷ using the graph extending graph
12: if |C′| < |Cbest| then
13: C′ ← Cbest
14: end if
15: end for
16: end for
17: end for
18: return Cbest

5 Results and Comparisons

In this section, we provide different experiments for our framework. The source
codes are available at https://github.com/QunLiu-sdu/Improved-Heuristics-for-
Low-latency.

5.1 The AES MixColumns

We first apply our framework to the matrix used in AES MixColumns. In [21],
a circuit of AES MixColumns is reported with 105 XORs and depth 3 (105/3).
Subsequently, in [6,25], the result is decreased to 103/3. However, even after
running their algorithms more time, no better results can be found.

We run Algorithm 7 to optimize the circuit given in [25]. The algorithm has
proceeded for five days of CPU time, which is the same as [30] in CHES 2020.
Finally, we achieved the implementation with 102 XOR gates and depth 3, which is
the best result until now. We provide a new implementation of AES MixColumns
with 102 XORs and depth 3 in Table 8. Recent results are listed in Table 9.

5.2 Hardware Implementation

Our algorithm aims at finding optimized implementation in circuit size, power
consumption, and latency. These criteria are closely related to the standard cell
library. In this respect, we synthesize the implementations of AES MixColumns
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Table 8: An implementation of AES MixColumns with 102 XOR operations. Here
t0, t1, t2, . . . , t31 are input values and y0, y1, y2, . . . , y31 are the 32 output values.

No. Operation Depth No. Operation Depth No. Operation Depth

1 t140 = t18 + t9 1 35 t64 = t4 + t20 1 69 t98 = t84 + t96//y8 3
2 t32 = t5 + t13 1 36 t65 = t64 + t53 2 70 t99 = t9 + t25 1
3 t33 = t21 + t29 1 37 t66 = t12 + t20 1 71 t100 = t95 + t99 2
4 t34 = t15 + t30 1 38 t67 = t5 + t66 2 72 t101 = t100 + t46//y1 3
5 t35 = t7 + t16 1 39 t68 = t33 + t67//y13 3 73 t102 = t1 + t17 1
6 t36 = t23 + t24 1 40 t69 = t67 + t56//y21 3 74 t138 = t10 + t102 2
7 t37 = t1 + t18 1 41 t70 = t14 + t21 1 75 t103 = t95 + t102 2
8 t38 = t17 + t26 1 42 t71 = t5 + t70 2 76 t104 = t103 + t79//y9 3
9 t137 = t38 + t140 2 43 t72 = t71 + t40//y30 3 77 t105 = t4 + t28 1
10 t39 = t6 + t22 1 44 t73 = t18 + t23 1 78 t106 = t105 + t21 2
11 t40 = t39 + t33 2 45 t74 = t11 + t27 1 79 t107 = t56 + t106//y5 3
12 t41 = t14 + t31 1 46 t75 = t73 + t74 2 80 t108 = t32 + t106//y29 3
13 t42 = t41 + t39 2 47 t76 = t3 + t19 1 81 t109 = t19 + t23 1
14 t43 = t7 + t15 1 48 t77 = t73 + t76 2 82 t110 = t105 + t109 2
15 t44 = t43 + t41 2 49 t78 = t16 + t23 1 83 t111 = t110 + t93//y20 3
16 t45 = t0 + t17 1 50 t79 = t78 + t25 2 84 t114 = t137 + t138//y2 3
17 t46 = t7 + t45 2 51 t80 = t0 + t8 1 85 t117 = t2 + t137//y10 3
18 t47 = t6 + t23 1 52 t81 = t31 + t80 2 86 t118 = t10 + t27 1
19 t48 = t7 + t47 2 53 t82 = t81 + t36//y16 3 87 t119 = t15 + t118 2
20 t49 = t48 + t44//y7 3 54 t83 = t81 + t35//y24 3 88 t120 = t77 + t119//y11 3
21 t50 = t42 + t48//y15 3 55 t84 = t78 + t80 2 89 t121 = t11 + t20 1
22 t51 = t34 + t48//y31 3 56 t85 = t2 + t10 1 90 t122 = t15 + t121 2
23 t52 = t12 + t28 1 57 t86 = t85 + t25 2 91 t123 = t54 + t122//y4 3
24 t53 = t3 + t7 1 58 t87 = t86 + t38//y18 3 92 t124 = t110 + t122//y12 3
25 t54 = t52 + t53 2 59 t88 = t86 + t37//y26 3 93 t125 = t11 + t19 1
26 t55 = t13 + t29 1 60 t89 = t3 + t26 1 94 t126 = t2 + t7 1
27 t56 = t52 + t55 2 61 t90 = t89 + t31 2 95 t127 = t125 + t126 2
28 t57 = t30 + t55 2 62 t91 = t75 + t90//y19 3 96 t128 = t127 + t119//y3 3
29 t58 = t57 + t40//y14 3 63 t92 = t12 + t27 1 97 t129 = t127 + t90//y27 3
30 t59 = t14 + t22 1 64 t93 = t92 + t31 2 98 t130 = t9 + t31 1
31 t60 = t59 + t30 2 65 t94 = t65 + t93//y28 3 99 t131 = t1 + t24 1
32 t61 = t32 + t60//y6 3 66 t95 = t8 + t15 1 100 t132 = t130 + t131 2
33 t62 = t40 + t60//y22 3 67 t96 = t24 + t95 2 101 t133 = t132 + t79//y17 3
34 t63 = t44 + t60//y23 3 68 t97 = t96 + t35//y0 3 102 t134 = t132 + t46//y25 3

Table 9: The circuits of matrix used in AES MixColumns. The cost is XOR/depth.
Here 102/3 means it requires 102 XOR gates with depth 3.

Source [19] [30] [31] [23]

XORs/Depth 97/8 94/6 92/6 91/7

Source [21] [25] [6] This paper

XORs/Depth 105/3a103/3a103/3a 102/3a

a With the limitation of minimum depth.
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with UMC 55 nm library and show their performance in hardware (see Ta-
ble 10). The logic synthesis is performed with Synopsys Design Compiler version
R-2020.09-SP4 (using the compile ultra and compile ultra -no autoungroup com-
mands), and simulation is done in Mentor Graphics ModelSim SE v10.2c. Our
AES MixColumns implementation has more advantages than other low-latency
circuits.

Table 10: The results of AES MixColumns in UMC 55 nm library.

Type Latency (us) Area (GE) Power (uW)

[23]a 0.52 227.5 17.5

[26]b 0.65 220.0 16.0
[25]c 0.28 257.5 15.9

This paperd 0.27 255.0 15.6

a Using 91 XORs with depth 7.
b Using 61 XORs and 15 3-input XOR gates.
c Using 103 XORs with depth 3.
d Using 102 XORs with depth 3.

5.3 XOR Gates of Many Proposed Matrices

In this section, we apply our algorithm to several linear layers from the litera-
ture including matrices used in many ciphers [1,2,3,5,8,10,13,14,16] and matrices
independently proposed in many previous works [9,17,19,22,24,28,29].

Comparison. The comparison with [6,21,25] are listed in Table 1. For each
matrix, we take no more than five days of CPU time to run Algorithm 7. Apart
from AES MixColumns, eight better circuits are found by our algorithm. We bold
the optimized results in the table. All the results are required to implement
under the low-latency criterion.

5.4 Matrices from [21]

We apply our algorithm on 4254 matrices given in [21], which have provided the
corresponding circuits with the minimum depth 3 in [21]. The Hamming weight
for them is between 148-172 and the size is 32× 32.

Overall improvements. As a result, we have improved about 3300 (77.57%)
matrices in terms of the number of XOR gates (see Supplementary Materials C
for all the results). For each Hamming weight, we can optimize the minimum
XOR gates in most cases. The minimum number of XORs is decreased from 88 [21]
to 85 (cf. Figure 2 and 3).

21



Fig. 2: Comparison of the optimized percentage with different Hamming weight.

Fig. 3: Comparison of the minimum XOR gates with different Hamming weight.
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New results for the MDS matrices. For the involutory MDS matrices with size
4×4, in which each element is in the field GL(8,F2), in [19], the smallest number
of XORs of is 96/3. The number is decreased to 88/3 through lots of searches and
new heuristics [21], which later has been improved to 86/3 in [25]. With the help
of our algorithm, a new record is reported. We find a circuit requiring 85 XORs
with depth 3 (see Table 11 for the comparison). The characteristic polynomial
is (x4 + x+ 1)2 = x8 + x2 + 1 and the companion matrix A is

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


.

The lightest one that we find is M3,
I8 I8 A−2 A−2

A10 I8 A2 A4

A6 I8 I8 A6

A4 I8 A4 I8

 ,

whose circuit is shown in Table 12.

Table 11: Comparison of the 4 × 4 lightest MDS matrices. The general linear
group GL(n,F2) is formed by all invertible n×n matrices over F2. A ∈ GL(n,F2)
is Involutory if and only if A = A−1.

Entries Involutory Best depth XORs Source

GL(4,F2) ✗ ✗ 35/6 [15]
GL(4,F2) ✗ ✓ 40/3 [25]
GL(4,F2) ✓ ✗ 35/8 [32]
GL(4,F2) ✓ ✓ 43/3 [6], This paper

GL(8,F2) ✗ ✗ 67/6 [15]
GL(8,F2) ✗ ✓ 77/3 [15]
GL(8,F2) ✓ ✗ 70/9 [32]
GL(8,F2) ✓ ✓ 88/3 [21]
GL(8,F2) ✓ ✓ 86/3 [25]
GL(8,F2) ✓ ✓ 85/3 This paper

6 Conclusion

In this paper, we propose two new techniques, the division optimization tech-
nique and the extending base technique. We show the effect of these new tech-
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Table 12: An implementation of M3 with 85 XOR gates.

No. Operation Depth No. Operation Depth No. Operation Depth

1 t32 = t4 + t20 1 30 t61 = t44 + t60//y4 2 59 t94 = t14 + t30 1
2 t33 = t5 + t21 1 31 t64 = t6 + t16 1 60 t95 = t52 + t94//y30 2
3 t34 = t6 + t22 1 32 t65 = t50 + t64//y6 2 61 t96 = t15 + t27 1
4 t35 = t7 + t23 1 33 t66 = t22 + t30 1 62 t97 = t58 + t96//y15 3
5 t36 = t2 + t26 1 34 t67 = t40 + t66 2 63 t98 = t15 + t31 1
6 t37 = t3 + t27 1 35 t68 = t39 + t67//y10 3 64 t99 = t54 + t98//y31 2
7 t38 = t4 + t28 1 36 t69 = t65 + t67//y22 3 65 t100 = t18 + t36 2
8 t39 = t10 + t38 2 37 t70 = t7 + t17 1 66 t101 = t39 + t100//y18 3
9 t40 = t0 + t16 1 38 t71 = t51 + t70//y7 2 67 t102 = t19 + t37 2
10 t41 = t5 + t29 1 39 t72 = t23 + t31 1 68 t103 = t42 + t102//y19 3
11 t42 = t11 + t41 2 40 t73 = t43 + t72 2 69 t108 = t6 + t28 1
12 t43 = t1 + t17 1 41 t74 = t42 + t73//y11 3 70 t109 = t44 + t108 2
13 t44 = t12 + t30 1 42 t75 = t71 + t73//y23 3 71 t110 = t67 + t109//y28 3
14 t45 = t13 + t31 1 43 t76 = t8 + t16 1 72 t105 = t32 + t109//y20 3
15 t46 = t8 + t24 1 44 t77 = t36 + t76//y16 2 73 t111 = t29 + t7 1
16 t47 = t32 + t46//y24 2 45 t78 = t0 + t24 1 74 t112 = t45 + t111 2
17 t48 = t9 + t25 1 46 t79 = t52 + t78 2 75 t113 = t73 + t112//y29 3
18 t49 = t33 + t48//y25 2 47 t80 = t77 + t79//y0 3 76 t107 = t33 + t112//y21 3
19 t50 = t14 + t24 1 48 t81 = t53 + t79//y12 3 77 t114 = t10 + t26 1
20 t51 = t15 + t25 1 49 t82 = t8 + t34 2 78 t115 = t32 + t34 2
21 t52 = t2 + t18 1 50 t83 = t38 + t82//y8 3 79 t116 = t114 + t115//y26 3
22 t53 = t6 + t44 2 51 t84 = t9 + t17 1 80 t117 = t11 + t27 1
23 t54 = t3 + t19 1 52 t85 = t37 + t84//y17 2 81 t118 = t33 + t35 2
24 t55 = t7 + t45 2 53 t86 = t1 + t25 1 82 t119 = t117 + t118//y27 3
25 t56 = t2 + t32 2 54 t87 = t54 + t86 2 83 t120 = t35 + t41 2
26 t57 = t39 + t56//y2 3 55 t88 = t85 + t87//y1 3 84 t63 = t112 + t120//y5 3
27 t58 = t3 + t33 2 56 t89 = t55 + t87//y13 3 85 t91 = t120 + t9//y9 3
28 t59 = t42 + t58//y3 3 57 t92 = t14 + t26 1
29 t60 = t4 + t22 1 58 t93 = t56 + t92//y14 3

niques and propose a new search framework based on them, which can further
optimize given circuits. With the low-latency metric, our new framework con-
tributes to many better implementations. It is noted that many heuristics are
beneficial from our new techniques and framework. We think that applying these
new strategies to other fields is interesting and leave it as promising future work.
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Supplementary Materials

A Exhaustive Search Method for SLPD

For computing y⃗ = Mt⃗, where the matrix M is over Mm×n, a circuit is needed
with n input signals {t0, t1, . . . , tn−1} and m output signals {y0, y1, . . . , ym−1}.
We use the base set B and the output set O to represent the input signals and
the output signals, respectively. Our goal is to search for a circuit C from B to
O. | · | is used to denote the number of elements in the set. We have |B| = n
and |O| = m. Additional limitations, such as the minimum depth, are contained
in L. In this paper, we always focus on the limitation D(C) = Dmin(M), which
indicates that the circuit C meets the requirements of SLPD.

A possible solution is the exhaustive search method (see Algorithm 8). For
each value yi in O, we use the circuit set NCi

to save all the circuits to implement
yi. NBi

contains the corresponding value sets. Finally, all possible circuits to
implement M are saved in Call. However, this is not always practical. In CHES
2019, Maximov and Ekdahl pointed out that the complexity of the exhaustive
search is exponential of |B|, and linear of |O|. The exhaustive search can only
be readily applied to circuits with no more than ten input values [27].

B Running Time of New Framework

The running time tall consists of three parts. The first part is the number of
different combinations of B′

C , O′
C , and U ′

C . The second part is the time to run H.
The third part is the time to execute MergeCircuit() and Remove(). We define
the time to run H once by tHB′

C,O′
C
and define the time to execute MergeCircuit()

and Remove() by topt. Then, we discuss how many kinds of combinations of B′
C ,

O′
C , and U ′

C .
All the possible forms of B′

C can be saved in the set Ball, in which

Ball = {B ∪ B′|B′ ⊂ TC/B}.

The number of Ball is

|Ball| =
(|TC|−|B|

0

)
+
(|TC|−|B|

1

)
+ . . .+

( |TC|−|B|
|TC|−|B|−1

)
.

For any
(
m
n

)
(m ≥ n ≥ 1), we have the following recursion formula:(

m
n

)
=

(
m−1
n−1

)
+
(
m−1
m

)
.

Then, we have (
n
0

)
+
(
n
1

)
+

(
n
2

)
+ . . .+

(
n
n

)
= 2n.

Thus,

|Ball| = 2|TC|−|B| −
(|TC|−|B|
|TC|−|B|

)
= 2|TC|−|B| − 1.
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Algorithm 8 Exhaustive Search for SLPD

Input: A matrix M over Mm×n

Output: All the circuit C to implement M
1: Initial the input set B0 ← {t0, t1, . . . .tn−1} and the corresponding circuit C0 ← ϕ
2: Initial the output set O ← {y0, y1, . . . ym−1}
3: Call ← ϕ ▷ containing all the circuits
4: for each output signal yi ∈ O do
5: N i

B ← ϕ ▷ a set containing all the input sets
6: N i

C ← ϕ ▷ a set containing all the circuits to implement yi
7: Initial N i

B ← {B0} ▷ N i
B only containing the input set B0 first

8: Initial N i
C ← {C0} ▷ putting the corresponding circuit into N i

C
9: FIND = 0
10: while FIND = 0 do
11: for each set B ∈ N i

B and the corresponding circuit C ∈ N i
C do

12: NBtmp = ϕ, NCtmp = ϕ ▷ the sets containing new base sets and circuits
13: for each ti ∈ B do
14: for each tj ∈ B/{ti} do ▷ ti ̸= tj
15: t|B| = ti ⊕ tj
16: if t|B| /∈ B then ▷ generating new value
17: if t|B| = yi then
18: FIND = 1 ▷ finding the output signal
19: end if
20: B′ ← B ∪ {t|B|} ▷ generating a new set to contain t|B|
21: C′ ← C ∪ {t|B| = ti ⊕ tj} ▷ generating the corresponding

circuit
22: NBtmp ← NBtmp ∪ {B′} ▷ storing new base set B′

23: NCtmp ← NCtmp ∪ {C′} ▷ storing the corresponding circuit
24: end if
25: end for
26: end for
27: end for
28: N i

B ← NBtmp

29: N i
C ← NCtmp

30: end while
31: for each element B ∈ N i

B and the corresponding circuit C ∈ N i
C do

32: if yi /∈ B then
33: Remove B from N i

B and remove the corresponding C from N i
C

34: end if
35: end for
36: end for
37: Call = {c0 ∪ c1 . . . ∪ cm−1|c0 ∈ N0

C , c1 ∈ N1
C , . . . cm−1 ∈ Nm−1

C }
38: Delete all the circuits which do not meet the depth limitation from Call
39: Choose the best circuit C from Call
40: return C
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For the fixed B′
C , all the possible forms of O′

C are saved in Oall, in which

Oall = {O′
C |O′

C ⊂ TC/B′
C}.

Similarly, the number of Oall for the fixed B′
C is

|Oall| = 2|TC|−|B′
C| − 1.

As U ′
C = TC/{B′

C ∪ O′
C}, the total running time tall is

tall =
∑

B′
C⊂Ball

∑
O′

C⊂Oall

(tHB′
C,O′

C
+ topt).

C Test for the Matrices from [21]

The results of the matrices from [21] are shown in Table 13. For each Hamming
weight, the total number, the number of optimized matrices and the minimum
number of XOR gates are listed.
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Table 13: Test for 4254 MDS matrices in [21].

Hamming weight Number Opt.aPercentagebMax.cMinXORd

148 18 18 100.0% 3 87
149 48 48 100.0% 5 87
150 72 72 100.0% 3 87
151 48 48 100.0% 3 91
152 60 57 95.0% 2 91
153 72 66 91.7% 2 91
154 84 84 100.0% 3 91
155 24 17 70.8% 2 95
156 48 39 81.3% 2 94
157 72 72 100.0% 2 94
158 84 84 100.0% 2 95
160 162 115 71.0% 2 91
161 96 60 62.5% 2 91
162 132 94 71.2% 2 91
163 120 120 100.0% 3 92
164 144 121 84.0% 3 91
165 240 219 91.3% 3 88
166 228 212 93.0% 3 89
167 216e 187 86.6% 5 89
168 528 366 69.3% 8 85
169 360 264 73.3% 3 86
170 432 317 73.4% 5 87
171 432 278 64.4% 4 88
172 534e 342 64.0% 5 88

All 4254 3300 77.5% 8 85

a The number of matrices that our framework can optimize.
b The percentage of matrices that our framework can optimize.
c The maximum number of reduced XOR gates from our framework.
d The minimum number of XOR gates.
e In [25], there exist two matrices that is counted twice.
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