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Abstract

We study the security of a fundamental family of succinct interactive arguments in the standard model,
stemming from the works of Kilian (1992) and Ben-Sasson, Chiesa, and Spooner (“BCS”, 2016). These
constructions achieve succinctness by combining probabilistic proofs and vector commitments.

Our first result concerns the succinct interactive argument of Kilian, realized with any probabilistically-
checkable proof (PCP) and any vector commitment. We establish the tightest known bounds on the
security of this protocol. Prior analyses incur large overheads, or assume restrictive properties of the
underlying PCP.

Our second result concerns an interactive variant of the BCS succinct non-interactive argument,
which here we call IBCS, realized with any public-coin interactive oracle proof (IOP) and any vector
commitment. We establish the first security bounds for the IBCS protocol. Prior works rely upon this
protocol without proving its security; our result closes this gap.

Finally, we study the capabilities and limitations of succinct arguments based on vector commitments.
We show that a generalization of the IBCS protocol, which we call the Finale protocol, is secure
when realized with any public-query IOP (a notion that we introduce) that satisfies a natural “random
continuation sampling” (RCS) property. We also show a partial converse: if the Finale protocol satisfies
the RCS property (which in particular implies its security), then so does the underlying public-query IOP.

Keywords: succinct interactive arguments; vector commitment schemes
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1 Introduction

A succinct argument for a relation R is a computationally-sound interactive proof where, for a given instance
x, an argument prover seeks to convince the argument verifier that there exists a witness w such that
(x,w) ∈ R, while communicating much fewer than |w| bits. Succinct arguments are a central cryptographic
object, with numerous theoretical and practical applications. In this paper, we study succinct interactive
arguments for NP constructed in the standard model (i.e., without oracles) from falsifiable assumptions.1

In this work we investigate the power and limitations of the VC-based approach, a fundamental paradigm
for constructing succinct arguments from two ingredients: a probabilistic proof and a vector commitment (VC).
Specifically, we set out to understand which probabilistic proofs are amenable to the VC-based approach, and
then to quantitatively relate the security of the succinct argument to the security of the underlying ingredients.
In short, we ask:

What is the security of succinct interactive arguments obtained via the VC-based approach?

Kilian’s protocol [Kil92] is the first known succinct argument, and the most notable example of a succinct
interactive argument obtained via the VC-based approach. The argument prover commits to a probabilistically
checkable proof (PCP) string via a vector commitment scheme (Kilian’s presentation uses a Merkle tree, a VC
built from collision-resistant hash functions), and sends the resulting commitment to the argument verifier;
the argument verifier sends PCP verifier randomness to the argument prover; and finally the argument prover
reveals the values of the queried locations of the PCP string and accompanies these values with opening
information. The argument verifier accepts if the opening information is valid and the PCP verifier accepts.

Despite this simple template, the security of Kilian’s protocol is not well understood. Kilian [Kil92] gives
only an informal analysis. Barak and Goldreich [BG08] give a detailed analysis, but with limitations. First,
their analysis applies only to PCPs that satisfy restrictive properties; second, their analysis incurs overheads;
and third, they restrict their attention to Merkle trees rather than general VCs. This state of affairs motivates
our first question: What is the security of Kilian’s protocol, for any given PCP and VC?

While Kilian’s protocol relies on only basic (and efficient) cryptography, its reliance on PCPs means that
it is of limited practical value, as known PCP constructions have poor concrete efficiency. To address this,
Ben-Sasson, Chiesa, and Spooner [BCS16] introduced a new paradigm for constructing succinct arguments
that builds on Kilian’s idea. To construct a succinct argument, it is not necessary to start with a non-interactive
object such as a PCP; instead, they construct succinct arguments from an interactive generalization of a PCP
called an interactive oracle proof (IOP) [BCS16; RRR16]. Since then, extensive study of IOPs has resulted
in highly efficient IOP constructions, which have facilitated numerous applications of succinct arguments.

The aforementioned BCS protocol in fact compiles a (public-coin) IOP into a succinct non-interactive
argument (SNARG) in the random oracle model. That protocol can be straightforwardly relaxed to an
“interactive BCS” (IBCS) protocol in the standard model that, analogously to Kilian’s protocol, uses a Merkle
tree (more generally, a vector commitment scheme) to compile a public-coin IOP into a corresponding
succinct interactive argument. The IBCS protocol is a key ingredient in a line of work on succinct arguments
with highly efficient provers [BCG20; RR22; HR22] but its security has never been proved, leaving a gap in
those results. This motivates our second question: What is the security of IBCS, for any given public-coin
IOP and VC?

Finally, we observe that one can formulate a natural generalization of IBCS that, syntactically, can be
realized from any IOP (i.e., including private-coin IOPs). This brings us to our final question: for what class
of IOPs is this VC-based approach secure?

1Succinct non-interactive arguments for NP cannot be proved secure via black-box reductions to falsifiable assumptions [GW11].
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1.1 Our results

Throughout this section, we fix a vector commitment scheme VC and denote by ϵVC its position binding error,
an upper bound on the probability that an adversary outputs two openings for the same commitment that
disagree in at least one position. In general, ϵVC is a function of the security parameter λ, length ℓ of the
committed vector, number s of opened entries of the vector, and bound tVC on the adversary size.
Succinct arguments from PCPs. We provide the tightest known security bounds for Kilian’s protocol
[Kil92], a seminal result that combines a PCP system and a vector commitment scheme to obtain a succinct
interactive argument. Let PCP be a PCP system for a relation R with proof length l, query complexity q,
and soundness error ϵPCP (resp. knowledge soundness error κPCP); these parameters can depend on the given
instance x.

Theorem 1 (informal). The soundness error ϵARG of Kilian[PCP,VC] satisfies the following for every security
parameter λ, instance x /∈ L(R), adversary size bound tARG, and error tolerance ϵ > 0:

ϵARG(λ,x, tARG) ≤ ϵPCP(x) + ϵVC
(
λ, l(x), q(x), tVC

)
+ ϵ, where tVC = O

(
l(x)

ϵ
· tARG

)
.

Similarly, the knowledge soundness error satisfies κARG(λ,x, tARG) ≤ κPCP(x) + ϵVC
(
λ, l(x), q(x), tVC

)
+ ϵ.

In particular, if ϵVC is negligible when tVC = poly(λ), then ϵARG(λ,x, poly(λ)) ≤ ϵPCP(x) + negl(λ) (and
similarly for κARG).

The above bound has an intuitive explanation. An adversary that commits to the PCP string Π̃ with maxi-
mal acceptance probability (and opens accordingly) succeeds with probability at least ϵPCP in Kilian[PCP,VC].
Moreover, an adversary that then tries to find a collision when Π̃ is rejected achieves (under some mild
conditions) a success probability of ϵPCP + (1− ϵPCP) · ϵVC. The l

ϵ multiplicative loss in tVC compared to tARG
expresses the cost of rewinding: to reconstruct an almost full PCP string from small fragments revealed in
each (accepting) execution, we must rewind the malicious argument prover sufficiently many times. We leave
it as an open problem to establish whether the security bound in Theorem 1 is tight or can be improved.
Succinct arguments from public-coin IOPs. Interaction often leads to dramatic gains in efficiency for
proof systems. PCPs are no exception: interactive oracle proofs (IOPs) enable such gains by communicating
oracle proof strings across multiple rounds. (In particular, a PCP system is an IOP with a single round.)

Let IOP be an IOP system for a relation R with round complexity k and soundness error ϵIOP (resp.
knowledge soundness error κIOP). Owing to its multiple proof strings, the proof length and query complexity
in an IOP may vary round by round; we let lmax and qmax denote the maximum proof length and query
complexity and let l and q denote the total proof length and query complexity.2

Our second main result provides the first security analysis for the interactive BCS protocol (inspired by
[BCS16]), which extends Kilian’s from the case of PCPs to that of public-coin IOPs. (An IOP is public-coin
if verifier messages are independent uniformly random strings.) As discussed in Section 1.3, this closes a gap
in prior works, which used the interactive BCS protocol as an ingredient (without proving its security).

Theorem 2 (informal). If IOP is public-coin, the soundness error ϵARG of IBCS[IOP,VC] satisfies the
following for every security parameter λ, instance x /∈ L(R), adversary size bound tARG, and error tolerance
ϵ > 0:

ϵARG(λ,x, tARG) ≤ ϵIOP(x) + ϵVC
(
λ, lmax(x), qmax(x), tVC

)
+ ϵ, where tVC = O

(
k(x) · l(x)

ϵ
· tARG

)
.

2If the IOP verifier V makes qi queries to a proof string of length li in round i, then lmax := maxi {li}, qmax := maxi {qi},
l :=

∑
i li and q :=

∑
i qi.
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Similarly, the knowledge soundness error is κARG(λ,x, tARG) ≤ κIOP(x) + ϵVC
(
λ, lmax(x), qmax(x), tVC

)
+ ϵ.

In particular, if ϵVC is negligible when tVC = poly(λ), then ϵARG(λ,x, poly(λ)) ≤ ϵIOP(x) + negl(λ) (and
similarly for κARG).

The above parameters are analogous to those in Theorem 1 for PCPs, except for a dependence on the
round complexity k of the IOP. Again, it is an open question if the loss in tVC compared to tARG is tight.

How general is the VC-based approach? Kilian’s protocol realizes query access to a PCP string via a
vector commitment scheme: the values of positions queried by the PCP verifier are revealed alongside an
opening proof attesting consistency with the commitment. In the IBCS protocol, this VC-based approach is
applied round by round to a public-coin IOP. In general, however, an IOP may not be public-coin. We ask:
which IOPs can be compiled into a secure interactive argument via the VC-based approach?

It is not hard to see that there exist private-coin IOPs for which the VC-based approach is insecure, i.e.,
for which the “natural” generalization of IBCS to private-coin IOPs yields insecure interactive arguments.3

For example, consider a 2-round IOP where the verifier, after receiving the first proof string from the prover,
queries the first proof string at a few locations in order to determine its first message to the prover but
must keep the queried locations secret from the prover in order to ensure soundness.4 In the VC-based
approach, the argument verifier sends the desired queries to the argument prover in order to subsequently
obtain corresponding answers and opening proofs. A malicious argument prover would then be able to use
this information to break IOP soundness when choosing which second proof string to commit to.

The case of public-query IOPs. The above discussion implies that a necessary condition for an IOP to be
compatible with the VC-based approach is being public-query (a notion that we introduce): soundness (or
knowledge soundness) of the IOP must hold even if, whenever the verifier makes a query, the prover learns
that this particular query has been made. (Of course, the IOP verifier’s own randomness remains secret.)

A public-coin IOP is, in particular, public-query. One may conjecture that the VC-based approach works
not only for every public-coin IOP, but also for every public-query IOP. Indeed, we describe a natural protocol
that we call Finale[IOP,VC] that, intuitively, ought to be secure for every public-query IOP.

However, challenges arise when attempting to prove security. The “rewinding proof” of Theorem 2
crucially depends on the existence of an efficient algorithm for sampling IOP verifier randomness conditioned
on a partial transcript of interaction (which includes prior verifier messages and queries). We call this
algorithm a random continuation sampler (RCS). Public-coin IOPs have a (trivial) RCS, but there exist public-
query IOPs that do not: for example, consider an IOP where, in the first round, the verifier cryptographically
commits (via a statistically hiding commitment) to all of its subsequent messages.5 Sampling random
continuations for this proof system is computationally infeasible.

We show that if IOP has an efficient RCS then Finale[IOP,VC] is secure (for any VC). We proceed in
two steps: first, we show that if IOP has an RCS then Finale[IOP,VC] has an RCS; then, we show that if
Finale[IOP,VC] has an RCS then it is (knowledge) sound. We also show a partial converse: if Finale[IOP,VC]
has an RCS, then so does IOP. This suggests that known proof approaches (all of which rely on random
continuations) do not suffice to show the security of Finale[IOP,VC] for general public-query IOPs.

Theorem 3 (informal). Let IOP be a public-query IOP that admits a RCS with running time tS. The soundness
error ϵARG of Finale[IOP,VC] satisfies the following for every security parameter λ, instance x /∈ L(R),

3Of course, other approaches (e.g., using additional cryptography beyond VC schemes) could in principle work with every IOP.
4For example, one can modify an IOP so that the IOP verifier always accepts if the IOP prover guesses the query locations.
5The zero knowledge interactive proof of [GK96] has this form.
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adversary size bound tARG, and error tolerance ϵ > 0:

ϵARG(λ,x, tARG) ≤ ϵIOP(x) + ϵVC(λ, lmax, qmax, tVC) + ϵ, where tVC = O

(
k(x) · l(x)

ϵ
· (tARG + tS)

)
.

Similarly, the knowledge soundness error is κARG(λ,x, tARG) ≤ κIOP(x) + ϵVC(λ, lmax, qmax, tVC) + ϵ.
Moreover, Finale[IOP,VC] admits an RCS if and only if IOP admits an RCS.

We actually prove a stronger version of Theorem 3: our analysis works for every public-query IOP that
admits a RCS with an arbitrary sampling error α, in which case the (knowledge) soundness error bound of
Finale[IOP,VC] depends on both ϵ and α. (See Section 6 for the technical details of this case.)

Remark 1 (simulatable verifiers). The notion of RCS in Theorem 3 is closely related to the notion of a
“simulatable verifier” that appears in the literature on parallel repetition for interactive arguments [HPWP10;
CL10]. Specifically, an IOP admits an RCS (with negligible sampling error α) if and only if the IOP verifier
is (1-)simulatable (without verdict). An interesting research direction is to understand whether there is a
deeper connection between standard-model succinct arguments and parallel repetition. For example, can
counterexamples to parallel repetition [BIN97] lead us to public-query IOPs for which Finale is not sound?

Remark 2 (adaptive choice of x). The results of Theorems 1, 2 and 3 are stated, for simplicity, in the
plain model (no trusted setups), where the argument verifier is responsible for sampling and sending public
parameters pp for VC to the argument prover. However, we actually prove these results in the (adaptive)
common reference string model, wherein public parameters pp for VC are sampled by a trusted party and a
malicious argument prover may adaptively choose the instance x after learning pp. Since in these stronger
theorems there is no pre-set instance x, the analogous statements (for corresponding security properties) in
the common reference model replace x with a size bound n (and hold for all instances such that |x| ≤ n).
The plain model variants are straightforwardly implied (see Section 2.4 and Remark 3.6).

1.2 Discussion

On the price of rewinding. We compare the soundness of Kilian’s protocol when analyzed via: (i) a
rewinding extractor based on a collision resistant hash function; or (ii) a straightline extractor based on an
ideal hash function (a random oracle). Our results enable, for the first time, an accounting of the “price of
rewinding” for succinct arguments: the cost of a more expensive security reduction that works under weaker
assumptions on the underlying cryptography.

(i) Rewinding extractor. Suppose that the vector commitment scheme VC is obtained from a collision-
resistant hash function (via a Merkle tree) with security ϵCRH(λ, tCRH). By Remark 3 this means
that

ϵVC(λ, ℓ, s, tVC) ≤ ϵCRH

(
λ, tCRH = tVC +O(thλ

· q · log l)
)

.

Suppose that ϵCRH(λ, tCRH) ≤ t2CRH/2
λ, which is what would be achieved by an ideal hash function. In

this case, Theorem 1 gives the following upper bound on the soundness error for Kilian[PCP,VC]:

ϵARG(λ,x, tARG) ≤ ϵPCP(x) +O

(
1

2λ
·
(
l

ϵ
· tARG + thλ

· q · log l
)2
)

+ ϵ .

Setting ϵ = Θ((l · tARG)2/3 ·2−λ/3) minimizes the right-hand side at ϵPCP(x)+Θ(l2/3 · (t2ARG ·2−λ)1/3).6

6Ignoring the lower-order term thλ · q · log l.
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(ii) Straightline extractor. Suppose that we model the collision-resistant hash function as an ideal hash
function, and analyze Kilian[PCP,VC] in the random oracle model. Prior work analyzing such protocols
[BCS16] implies the following upper bound on soundness error:

ϵARG(λ,x, tARG) ≤ ϵPCP(x) +O(t2ARG · 2−λ) .

This smaller upper bound is achieved thanks to a straightline (i.e., non-rewinding) extractor for the
vector commitment scheme (which is a Merkle tree in the random oracle model).

Setting parameters. Observe that, neglecting factors in l, the rewinding analysis incurs a cube-root loss in
the second soundness term. To understand better how this loss affects security, we work through an example
of setting concrete parameters for Kilian’s protocol according to each analysis.

Theorem 1 gives that, for every malicious argument prover P̃ of size tARG and instance x /∈ L(R),

Pr
[〈
P̃,V(1λ,x)

〉
= 1
]
≤ ϵPCP(x) + ϵVC(λ, l(x), q(x), tVC) + ϵ,

where tVC ≤ 4 · lϵ · tARG. (The constant 4 is obtained in our analysis in the technical sections.)
Say that we are targeting a soundness error of 2−40 against adversaries of size tARG = 260. Suppose that

the PCP underlying Kilian’s protocol, for the chosen instance size, achieves soundness error ϵPCP = 2−42

with a proof consisting of 230 symbols. Further suppose that the vector commitment scheme has binding
error ϵVC(λ, ℓ, s, tVC) ≤ t2VC/2

λ (the bound achieved by an ideal Merkle tree). Setting ϵ = 2−42 results in a
bound of

tVC ≤ 4 · 230

2−42
· tARG = 274 · tARG

so

ϵVC ≤
(274 · tARG)2

2λ
= 2148−λ · t2ARG = 2268−λ .

Then Theorem 1 indicates that we can set λ = 309 to achieve the desired security level (soundness error of
2−40 against adversaries of size 260).

On the other hand, for the same overall security level, and with the same underlying PCP, the straightline
analysis indicates that setting λ ≈ 160 suffices. Hence, if we are willing to make a qualitatively stronger
assumption about the cryptography, we can obtain succinct arguments which are roughly a factor 2 more
efficient. Note that, for the setting λ = 160, our rewinding analysis cannot give any nontrivial bound against
adversaries of size 260.

Of course, known PCPs are wildly inefficient; in practice, one would use an IOP instead. The explicit
security bound in (the detailed analysis underlying) Theorem 2 for the IBCS protocol enables reasoning
similarly to the above for the case of public-coin IOPs.

Remark 3 (security of underlying components). We derive security bounds for argument systems as
a function of the security bounds of the underlying components. In short, we take ϵVC, ϵPCP, κPCP (and
ϵIOP, κIOP) as given. While statistical soundness bounds on PCPs and IOPs can be calculated (they are
information-theoretic components), the position binding errors for VC must be derived from some (concrete)
computational assumption. For example, if VC is a Merkle tree obtained from a collision-resistant hash
function hλ : {0, 1}2λ → {0, 1}λ computable in time thλ

whose collision probability against tCRH-size
adversaries is bounded by ϵCRH(λ, tCRH) then VC has binding error ϵVC(λ, ℓ, s, tVC) ≤ ϵCRH(λ, tCRH) where
tCRH = tVC + O(thλ

· q · log l) for a small hidden constant that can be derived from the security reduction.
(The reduction transforms a tVC-size adversary AVC against the Merkle tree into a tCRH-size adversary ACRH

against the collision-resistant hash function. Briefly, ACRH runs AVC and then looks for a collision among the
authentication paths output by AVC, resulting in the additive increase of O(thλ

· q · log l) in size.)
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Improved understanding of [BCS16]. Theorem 2 is a step towards a fuller understanding of the (non-
interactive) BCS protocol. While [BCS16] gives a detailed security analysis of the BCS protocol as a whole,
they crucially consider only the specific setting where the VC is implemented as a Merkle tree and the hash
function used in the tree is modeled as a random oracle. It is believed that the BCS protocol is secure when
realized with any vector commitment (in particular, with VCs in the standard model) but this has not been
shown thus far. A natural way to prove this would be to combine (an appropriate strengthening of) Theorem 2
with an analysis of the Fiat–Shamir transformation applied to the resulting argument.7 Note that, while such
an analysis would apply to standard-model VCs, the overall scheme would be proven secure in the random
oracle model (under computational assumptions); indeed, there are (contrived) IOPs for which the BCS
transformation is provably insecure in the standard model [BBHMR19].

A reflection on succinct arguments. Succinct arguments are a rare example of an “advanced” cryptographic
primitive that can be achieved from simple cryptography. Indeed, it is remarkable that, based solely on the
existence of a collision resistant hash function (even given as a black box), one can achieve cryptographic
proof systems with such exceptional efficiency. On the other hand, the security reduction of a succinct
argument is tasked with a challenging goal: find a “long” witness when given a malicious argument prover
that only outputs “short” messages in any given interaction. This naturally leads to rewinding, a fundamental
method of analysis in cryptography. In light of this, Kilian’s protocol occupies a central place in cryptography:
the simplest succinct argument, and its security analysis is a prominent example of extracting a long witness
from sufficiently many short messages obtained via rewinding. This work contributes a long overdue general
security analysis of a central cryptographic paradigm.

The preprocessing case. We omit discussion of the preprocessing setting for succinct arguments, and
believe that future work can build on our security analyses to cover this case. Informally, the preprocessing
setting is an offline-online model that enables succinct verification even for “non-uniform” computations.
The canonical way to construct succinct arguments in the preprocessing setting is to combine a holographic
probabilistic proof and a vector commitment scheme [CHMMVW20; COS20] — this is a direct generalization
of the VC-based approach that we study in this paper. Specifically, each protocol that we study in this paper
(Kilian’s protocol, the IBCS protocol, the Finale protocol) has a straightforward extension to the preprocessing
setting, where the vector commitment scheme is also used in the offline computation phase to commit to the
holographic part of the probabilistic proof. We leave to future work extending our analyses to cover this case.

1.3 Related work

The literature on succinct arguments presents a vast landscape of constructions exhibiting complex tradeoffs
between efficiency, expressiveness and security. The goal of this work is to study the security of the key family
of VC-based constructions. This family occupies a special place in the landscape: it alone demonstrates that
succinct arguments are a standard-model “minicrypt” primitive.8 Moreover, the VC-based approach is the the
only known method for obtaining succinct arguments in the standard model with linear-time provers. Below,
we summarize only the most relevant prior work: security analyses for VC-based succinct arguments.

Succinct arguments from collision-resistant functions. The first construction of a succinct argument is
due to Kilian [Kil92], and follows the VC-based approach (the underlying vector commitment is a Merkle

7The appropriate strengthening refers to showing that IBCS is a succinct interactive argument that satisfies (a suitable computa-
tional notion of) state-restoration soundness (which makes the interactive argument compatible with the Fiat–Shamir transformation)
if the underlying IOP also satisfies state-restoration soundness.

8This is known to be true only of succinct interactive arguments; indeed, succinct non-interactive arguments cannot be proven
secure in the standard model via black-box reductions from any falsifiable assumption [GW11].
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tree constructed from a collision-resistant hash function). The security reduction in [Kil92] is informal, and
does not provide any asymptotic (nor explicit) security bounds.

Barak and Goldreich [BG08] provide a formal analysis of a variant of Kilian’s construction, towards
their goal of constructing zero-knowledge arguments with a non-black-box simulator. Due to their setting,
they restrict their result to the case where the PCP is non-adaptive and reverse-samplable. While the former
restriction is mild (many known PCP constructions are non-adaptive, with few exceptions such as [KPT97]),
the latter restriction is a non-standard strong property of the query algorithm, which has not been shown to
hold for a number of PCP constructions of interest (e.g., the short PCPs in [BS06; BKKMS13]). Under these
conditions, they establish that Kilian’s protocol achieves non-adaptive knowledge soundness, with a constant
multiplicative factor loss in soundness versus the PCP soundness. In contrast, our analysis applies to all PCPs
(including adaptive PCPs) and establishes the tightest known bound for adaptive knowledge soundness.9

Lai and Malavolta [LM19, Appendix C] prove that Kilian’s protocol is secure when realized with any
PCP and vector commitment. In fact, they prove a more general result: a variant of Kilian’s protocol is secure
when realized with any linear PCP and linear map commitment. This generality can lead to shorter proofs.
However, their proof applies only to PCPs with negligible soundness error and does not quantify the security
of the succinct argument in terms of the security of the underlying cryptography.

Chiesa, Ma, Spooner, and Zhandry [CMSZ21] prove post-quantum security of Kilian’s protocol. As part
of their analysis, they give a proof of security for Kilian that also applies to the classical setting. Their analysis
differs significantly from ours due to challenges unique to the quantum setting, and incurs a multiplicative
soundness loss. In this work we consider soundness against classical adversaries only.

Several works [BCG20; RR22; HR22] obtain succinct arguments with very strong efficiency properties
by applying the IBCS protocol to their highly-efficient IOP constructions (along with a Merkle tree based on
linear-time CRHFs). They do not show soundness of the IBCS protocol itself (their focus is on novel IOPs).
This omission has remained a gap in that line of work, and our work closes this gap.

Succinct arguments from ideal hash functions. A line of work studies security reductions for succinct
non-interactive arguments in the random oracle model (ROM) [Mic00; Val08; BCS16; CMS19; CY21a;
CY21b; BGTZ23]. These works take advantage of the ROM in two key ways. First, they use the observability
of oracle queries to construct a vector commitment with a straightline (i.e., non-rewinding) extractor (a
Merkle tree in the ROM). As shown in Section 1.2, this leads to tighter security bounds. In fact, since these
constructions are unconditionally secure in the ROM, it is often possible to compute their exact soundness.
Second, these constructions use the Fiat–Shamir transformation to convert an underlying interactive argument
into a non-interactive one; the general security of this transformation has been shown only in the ROM.

Special-sound protocols. Interactive protocols with special soundness are an important and well-studied
family of public-coin protocols. In the three-message public-coin (Σ-protocol) setting, k-special soundness
means that a witness can be efficiently extracted from any k accepting protocol transcripts with distinct
verifier challenges. A line of works extends this notion to multiple rounds [AC20; ACK22; AF22]. The
concrete security of general special sound protocols is relatively well-understood.

However, as observed in [CMSZ21], for reasonable choices of PCP, Kilian’s protocol is not k-special
sound for any polynomial k (for example, one can find a set of transcripts that includes only queries to a
small fraction of the PCP).10 We are therefore not able to apply results about special soundness directly.

9Formally, our result is incomparable with the one of Barak and Goldreich. In more detail, they use the reverse samplability
property of the PCP to obtain a collision-finder whose running time does not depend on the PCP length. This is necessary in their
setting, as there the size of an extracted PCP is not a priori bounded by any polynomial. It is open whether such a reduction is
possible for (even polynomial-size) PCPs that are not reverse samplable.

10Towards a tighter security proof for Kilian in the post-quantum setting, Lombardi, Ma, and Spooner [LMS22] introduce the
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In concurrent work, Attema, Fehr, and Resch [AFR23] relax the notion of special soundness further: for
an access structure Γ, a protocol is Γ-special sound if there is an efficient procedure to compute a witness
from any set of transcripts whose challenges form an authorized set in Γ. They use this framework to show
that the IBCS protocol applied to the FRI protocol (an IOP of proximity for Reed–Solomon codes [BBHR18])
is a proof of knowledge of a committed codeword (with a quasipolynomial-time extractor). In contrast, rather
than analyzing any specific instantiation, our goal is to give a general security guarantee for the Kilian (resp.
IBCS) protocol, which applies to any PCP (resp. IOP). It seems that Γ-special soundness may not be the
right approach for such generality, as Γ will depend on the underlying PCP/IOP. Our guarantee depends, of
course, on the soundness of the PCP/IOP, which must be analyzed separately.

notion of probabilistic special soundness (PSS), a relaxation of special soundness, and show that Kilian’s protocol is PSS. We do not
follow this approach, as we do not expect it to yield tight security bounds in the classical setting.
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2 Techniques

We overview the main ideas underlying our results. In Section 2.1 we review Kilian’s protocol and sketch our
security analysis for it. In Section 2.2 we review the IBCS protocol and discuss our security analysis for it,
comparing it to that for Kilian’s protocol. In Section 2.3 we overview the Finale protocol (an extension of
the IBCS protocol that is formulated for public-query IOPs) and discuss capabilities and limitations of the
VC-based approach for succinct interactive arguments. In Section 2.4 we discuss adaptive security.

Vector commitment schemes. We fix a vector commitment scheme VC throughout this technical overview,
whose interface and properties are sketched below; see Section 3.2 for formal definitions. Here we omit the
algorithm that samples public parameters (and suppress these parameters in the interfaces of VC).11

• VC.Commit: On input a message m, VC.Commit outputs a commitment cm and auxiliary state aux.
• VC.Open: On input the auxiliary state aux and a query set Q, VC.Open outputs an opening proof pf.
• VC.Check: On input a commitment cm, query set Q, answers ans, and opening proof pf, VC.Check

determines if pf is valid for ans being the restriction to Q of the message committed in cm.
The property of perfect completeness ensures that VC.Check always accepts if pf is output by VC.Open given
the auxiliary information produced by VC.Commit. The security property of VC is position binding: VC has
position binding error ϵVC(λ, ℓ, s, tVC) if, when VC is instantiated with security parameter λ for messages of
length ℓ, every adversary of size tVC that outputs (cm, ans, ans′,Q,Q′, pf, pf ′) with |Q| = |Q′| = s satisfies
the following predicate with probability at most ϵVC(λ, ℓ, s, tVC) (over VC’s public parameters):

∃ i ∈ Q ∩Q′ : ans[i] ̸= ans′[i]
∧ VC.Check(cm,Q, ans, pf) = 1
∧ VC.Check(cm,Q′, ans′, pf ′) = 1

.

In other words, position binding makes it hard to produce two incompatible openings to the same commitment.

Stateful algorithms. Throughout this section, the interactive algorithms that participate in protocols are
stateful. When it is important to distinguish different computation phases of a stateful algorithm, we make
explicit the state passed from one phase to the next.

2.1 Succinct arguments based on PCPs

We review Kilian’s protocol and sketch the main ideas behind Theorem 1; see Section 4 for details.

2.1.1 Kilian’s protocol

Kilian’s protocol [Kil92] obtains a succinct interactive argument by combining two ingredients: a probabilis-
tically checkable proof (PCP) and a vector commitment scheme VC (fixed above). Let PCP = (P,V) be a
PCP system for a relation R with alphabet Σ, proof length l, query complexity q, and verifier randomness
complexity r. Kilian[PCP,VC] is an interactive argument ARG = (P,V) in which the argument prover P
receives an instance x and a witness w, and the argument verifier V receives the instance x. Then P and V
interact, exchanging 3 messages, as follows.

1. P computes the PCP string Π← P(x,w), computes the commitment (cm, aux)← VC.Commit(Π), and
sends cm to V .

11For example, if VC is based on a Merkle tree, the public parameters are the (randomly sampled) collision-resistant function to be
used for hashing the given message down to the Merkle root.
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2. V samples PCP verifier randomness ρ← {0, 1}r and sends it to P .
3. P deduces the set Q of queries that V(x; ρ) makes to Π, sets the query answers ans := Π[Q], generates

an opening proof pf ← VC.Open(aux,Q), and sends the tuple (Q, ans, pf) to V .
4. V performs the following checks.

(a) VC.Check(cm,Q, ans, pf) = 1 (i.e., ans are valid answers for positions Q relative to cm);
(b) V[Q,ans](x; ρ) = 1 (i.e., the PCP verifier V(x; ρ) accepts the answers ans on Q).

Above, the notation V[Q,ans](x; ρ) refers to the decision bit of the PCP verifier V, given instance x and PCP
randomness ρ, when each query j ∈ Q is answered with ans[j] ∈ Σ. (If V queries outside the set Q then
V[Q,ans](x; ρ) = 0.)

2.1.2 Security reduction

Intuitively, the soundness error of Kilian[PCP,VC] should be at most the (statistical) soundness error of PCP
plus the position binding error of VC. The key lemma below formalizes this intuition.

Consider a malicious argument prover P̃ whose first message is the commitment cm. Intuitively, by the
position binding property of VC, P̃ is “bound” to open locations of at most a single underlying PCP string Π̃.
By rewinding P̃ sufficiently many times to recover the underlying PCP string Π̃, we can relate the probability
of P̃ convincing the argument verifier V to the probability of Π̃ convincing the PCP verifier V.

Lemma 1 (informal). There exists a probabilistic algorithm R (the reductor) that, for every instance x,
error parameter ϵ > 0, adversary size bound tARG ∈ N, and tARG-size adversary P̃ , satisfies

Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣
cm← P̃
(Q̃, Π̃)← RP̃(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)

 ≤ ϵVC(λ, l, q, tVC) + ϵ ,

where tVC = O
(
l
ϵ · tARG

)
.

The reductorR handles the aforementioned rewinding process. It constructs a proof string Π̃ ∈ Σl whose
convincing probability is approximately the same as that of the argument prover (up to the position binding
error of VC and an arbitrary error term ϵ). Note thatR requires only black-box access to P̃ .

In the lemma above, the PCP verifier and the argument verifier are “coupled” in that they receive the same
randomness ρ. The lemma states that it is unlikely, for a randomly-chosen ρ, that the argument verifier V
accepts the answers provided by P̃ but the PCP verifier V rejects Π̃ under the same randomness. Intuitively,
this will allow us to approximately equate the probability that P̃ convinces the argument verifier V to the
probability that Π̃ convinces the PCP verifier V.

First we discuss how to use Lemma 1 to establish soundness and knowledge soundness of Kilian[PCP,VC]
in Sections 2.1.3 and 2.1.4. Then in Section 2.1.5 we sketch the proof of Lemma 1.

2.1.3 Soundness analysis

We wish to upper bound the soundness error of Kilian[PCP,VC]. As claimed in Theorem 1, we argue that for
every instance x /∈ L(R), size bound tARG ∈ N, and tARG-size adversary P̃ ,

Pr
[〈
P̃,V(x)

〉
= 1
]
≤ ϵPCP(x) + ϵVC(λ, l, q, tVC) + ϵ .
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By construction of the argument verifier V , the above probability is equivalent to the following:

Pr

 V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)

 .

Below we fix the following experiment (which is the experiment above augmented with an invocation ofR):
cm← P̃
(Q̃, Π̃)← RP̃(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)


Using the law of total probability,

Pr

[
V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

]

= Pr

 V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

+ Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

 .

The term on the right is bounded from above by ϵVC(λ, l, q, tVC) + ϵ, due to Lemma 1.
The term on the left is bounded by ϵPCP(x) (the soundness error of PCP). Indeed, we can view the first

message of P̃ (cm in the experiment above) and the reductorR as a malicious PCP prover P̃ that outputs a
PCP string Π̃:

P̃:
1. Run cm← P̃ .
2. Run (Q̃, Π̃)← RP̃(cm, ϵ).
3. Output Π̃.

Since x /∈ L(R), by the definition of soundness error of PCP,

Pr

 V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

 ≤ Pr

[
VΠ̃(x; ρ) = 1

∣∣∣∣ ρ← {0, 1}r

Π̃← P̃

]
≤ ϵPCP(x) .

2.1.4 Knowledge soundness analysis

We wish to upper bound the knowledge soundness error of Kilian[PCP,VC]. As claimed in Theorem 1, we
argue that there exists a polynomial-time probabilistic extractor E such that for every instance x, size bound
tARG ∈ N, and tARG-size adversary P̃ ,

Pr

[
b = 1
∧ (x,w) /∈ R

∣∣∣∣∣ b←
〈
P̃,V(x)

〉
w← E P̃(x)

]
≤ κPCP(x) + ϵVC(λ, l, q, tVC) + ϵ .
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By construction of the argument verifier V , the above probability is equivalent to the following:

Pr


V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

∣∣∣∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)
w← E P̃(x)

 .

We construct E using the PCP prover P̃ described in Section 2.1.3 and the PCP extractor E (which is
given by the underlying PCP system):

E P̃(x):
1. Run Π̃← P̃.
2. Output w← E(x, Π̃).

Using the law of total probability,

Pr


V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

∣∣∣∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)
w← E P̃(x)



= Pr


V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

+ Pr


V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

 ,

where the last two probabilities are with respect to
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)
Π̃← P̃

w← E(x, Π̃)

 .

The term on the right is bounded by ϵVC(λ, l, q, tVC) + ϵ due to Lemma 1.
The term on the left is bounded by κPCP(x) (the knowledge soundness error of PCP) as shown below:

Pr


V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

 ≤ Pr

 VΠ̃(x; ρ) = 1
∧ (x,w) /∈ R

∣∣∣∣∣∣
ρ← {0, 1}r

Π̃← P̃

w← E(x, Π̃)

 ≤ κPCP(x) .

2.1.5 Proof sketch of Lemma 1

We are left to sketch the proof of Lemma 1. To do so, we present a reductor algorithmR.
The goal ofR is to piece together a PCP string Π̃ obtained from the argument prover P̃ . Intuitively, Π̃

is “fixed” after P̃ outputs a commitment cm, and R attempts to obtain information about Π̃ by rewinding
the second phase of P̃ , when given freshly sampled choices of PCP randomness ρ. Each such execution (if
it outputs a valid opening) reveals a fragment of Π̃. By repeating this process sufficiently many times, R
obtains enough locations of the string Π̃. Below we denote by N = N(ϵ) the number of samples (set later).
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RP̃(aux,·)(cm, ϵ):
1. Initialize a proof string: Π̃ := (σ)l, where σ is an arbitrary element in Σ.
2. Initialize an empty set Q̃ to track which locations of Π̃ are filled in.
3. Repeat the following N times:

(a) Sample PCP verifier randomness ρ← {0, 1}r.
(b) Ask P̃ for answers to this randomness: (Q, ans, pf)← P̃(aux, ρ).
(c) If VC.Check(cm,Q, ans, pf) = 1, set Π̃[Q] := ans and update Q̃ := Q̃ ∪ Q.

4. Output (Q̃, Π̃).

We make explicit the two computation phases of the (stateful) malicious argument prover P̃:

(cm, aux)← P̃ and (Q, ans, pf)← P̃(aux, ρ) ,

where aux is the auxiliary state passed across the two computation phases of P̃ . The reductor R needs to
rerun only the second phase of P̃ , so the oracle forR is P̃(aux, ·).

As stated in Lemma 1, with the above notation we wish to bound the following probability:

Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣
(cm, aux)← P̃
(Q̃, Π̃)← RP̃(aux,·)(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

Observe that, if VC.Check(cm,Q, ans, pf) = 1 then VΠ̃(x; ρ) ̸= 1 ∧V[Q,ans](x; ρ) = 1 implies either:
(i) Π̃ and ans disagree at a position q ∈ Q ∩ Q̃; or (ii) there is query q in Q but not in Q̃. We analyze the two
events separately, which bounds the probability above by a union bound.

(i) Valid openings with disagreeing answers. We informally argue that

Pr

 ∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣
(cm, aux)← P̃
(Q̃, Π̃)← RP̃(aux,·)(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 ≤ ϵVC(λ, l, q, tVC) .

The reductorR checks the validity of the opening for each position it fills into Π̃. Therefore, the event
above implies that there are valid openings to two different values at the same query position; equivalently,
the following adversary AVC, which has size tVC = O(N · tARG), breaks VC’s position binding:

AVC:
1. Run (cm, aux)← P̃ .
2. Run the reductor RP̃(aux,·)(cm, ϵ) and collect the valid query-answer-opening tuples (Q, ans, pf) it

sampled in a set K.
3. Sample fresh randomness ρ← {0, 1}r and obtain another tuple (Q′, ans′, pf ′)← P̃(aux, ρ).
4. For every tuple (Q, ans, pf) ∈ K, if there exists a query q ∈ Q ∩ Q′ such that ans[q] ̸= ans′[q], then

output (cm,Q, ans, pf,Q′, ans′, pf ′).12

12To conform with the algorithm’s syntax, AVC outputs (cm,Q′, ans′, pf′,Q′, ans′, pf′) if no disagreeing openings are found.

15



Note that AVC only checks inconsistencies between (Q′, ans′, pf ′) and tuples in K. In other words, AVC does
not attempt to detect inconsistencies among tuples in K. Even so, AVC captures the bound we wish to prove:

Pr

 ∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣
(cm, aux)← P̃
(Q̃, Π̃)← RP̃(aux,·)(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


≤ Pr

 ∃ q ∈ Q ∩Q′ : ans[q] ̸= ans′[q]
∧VC.Check(cm,Q, ans, pf) = 1
∧VC.Check(cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣ (cm,Q, ans, pf,Q′, ans′, pf ′)← AVC


≤ ϵVC(λ, l, q, tVC) .

(ii) Missing position in Π̃. We show that

Pr

 Q \ Q̃ ≠ ∅
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣
(cm, aux)← P̃
(Q̃, Π̃)← RP̃(aux,·)(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 ≤ l

N
.

To upper bound the probability of a query q ∈ Q not having been filled in byR, we use the probability
that a given position q ∈ [l] is queried. The weight δ(q) of a query q ∈ [l] is the probability that it is queried
by the argument verifier with uniformly sampled randomness. We can write:

Pr
[
Q \ Q̃ ≠ ∅

]
= Pr

[
∃ q ∈ [l] : q ∈ Q ∧ q /∈ Q̃

]
≤
∑
q∈[l]

δ(q) · (1− δ(q))N ,

where the inequality follows from the fact that Q and all query sets used to generate Q̃ correspond to
independently sampled verifier randomness. Note that, for every δ ∈ [0, 1], δ · (1− δ)N ≤ 1/N.13 Hence, the
target probability is upper bounded by l

N .
In fact, the proof for this case is more delicate than sketched above. If a position q ∈ [l] has weight δ(q),

we cannot conclude that q /∈ Q̃ with probability at most (1− δ(q))N, because P̃ may often output invalid
openings for q whileR only includes valid openings. To fix this issue, we use a refined notion: δ(q) is the
probability that during the execution of the interactive argument, the verifier V samples randomness that
corresponds to a query set containing q and the prover P outputs a valid VC opening for the query set.

Setting parameters. By an union bound, the desired probability can be upper bounded by

ϵVC(λ, l, q, tVC) +
l

N
.

Setting N := l
ϵ , we get tVC = O(N · tARG) = O

(
l
ϵ · tARG

)
and l

N = ϵ, yielding the bound stated in Lemma 1.

13A simple derivation of the inequality is the following: with f(x) = x · (1− x)N, we have d
dx

f(δ) = 0 ⇐⇒ δ = 1
N+1

. As
f(0) = f(1) = 0 and δ is the only critical point in [0, 1], it achieves the maximum: maxx∈[0,1] {f(x)} = f(δ) ≤ 1/N.

16



Remark 2.1. Superficially one might hope for an improved analysis showing that one only needs l
q·ϵ

rewindings rather than l
ϵ . Indeed, each rewinding that leads to an accepting transcript yields a freshly sampled

fragment of the PCP containing q locations. However such a bound is unrealistic because, in general, a PCP
may have many dummy queries. For example, consider a PCP where only O(1) of the q queries are “real”,
while all others are dummy queries to fixed locations of the PCP string. That said, there may be other metrics
through which the factor l

ϵ can be slightly improved. We leave this intriguing question to future work.

2.2 Succinct arguments based on public-coin IOPs

We review the IBCS protocol and sketch the main ideas behind Theorem 2; see Section 5 for details.

2.2.1 IBCS protocol

The IBCS protocol (the interactive variant of [BCS16]) obtains a succinct interactive argument by combining
two ingredients: a public-coin interactive oracle proof (IOP) and a vector commitment scheme VC (fixed
above). Let IOP = (P,V) be a public-coin IOP for a relation R with alphabet Σ, round complexity k, proof
lengths (li)i∈[k] and query complexities (qi)i∈[k] (with maximal values lmax, qmax and total values l, q) and
verifier randomness complexity r (ri per round). IBCS[IOP,VC] is an interactive argument ARG = (P,V) in
which the argument prover P receives an instance x and a witness w, and the argument verifier V receives
the instance x. Then P and V interact, across k+ 1 rounds (exchanging 2k+ 1 messages), as follows.

1. For every round i ∈ [k] of the IOP system:
(a) P computes the IOP string Πi ← P(x,w, ρi−1), computes the commitment (cmi, auxi)← VC.Commit(Πi),

and sends cmi to V .
(b) V samples the i-th IOP verifier randomness ρi ← {0, 1}ri and sends it to P .

2. P runs the IOP verifier V(Πi)i∈[k]
(
x, (ρi)i∈[k]

)
to deduce the query sets (Qi)i∈[k] ⊆ [l1]× · · · × [lk] of V

(whereQi is the set of queries to the i-th IOP string), computes opening proofs pfi ← VC.Open(auxi,Qi),
and sets ansi := Πi[Qi] for each i ∈ [k], then sends ((Qi, ansi, pfi))i∈[k] to V .

3. V performs the following checks.
(a) VC.Check(cmi,Qi, ansi, pfi) = 1 for every i ∈ [k] (i.e., all answers have valid openings);
(b) V([Qi,ansi])i∈[k]

(
x; (ρi)i∈[k]

)
= 1 (i.e., the IOP verifier V

(
x; (ρi)i∈[k]

)
accepts the answers).

Similarly to Section 2.1.1, V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
refers to the decision bit of the IOP verifier V, given

instance x and IOP randomness (ρi)i∈[k], when each query q ∈ Qi to the i-th oracle is answered with ansi[q].
(If V queries an oracle outside the corresponding query set then the decision bit is 0.)

2.2.2 Security reduction

The analysis in Section 2.1 extends to the case of public-coin IOPs with a more complicated reductor R,
which is responsible for producing, for each round, an appropriate IOP string for that round, given a partial
transcript of interaction so far. Analogously to Lemma 1, the key step of the security reduction is this lemma.

Lemma 2 (informal). There exists a probabilistic algorithm R (the reductor) that, for every instance x,
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error parameter ϵ > 0, adversary size bound tARG, and tARG-size adversary P̃ , satisfies

Pr


V([Q̃i,Π̃i])i∈[k]

(
x; (ρi)i∈[k]

)
̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
cmi,Qi, ansi, pfi

))
= 1

∣∣∣∣∣∣∣∣∣∣∣

For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
(cmj)j≤i, (ρj)j<i, ϵ

)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)


≤ ϵVC(λ, lmax, qmax, tVC) + ϵ ,

where tVC = O
(
k·l
ϵ · tARG

)
.

Observe that Lemma 2 generalizes Lemma 1, which corresponds to the case k = 1.
Similar to the reductor in the PCP case,R rewinds the IOP adversary to extract an IOP string for each

round. In particular, for each round i, the reductorR is given oracle access to P̃(auxi, ·) (where auxi is the
auxiliary state output along with the i-th commitment cmi) and has the following syntax. For round i, R
receives as input commitments (cmj)j≤i, (partial) verifier randomness (ρj)j<i ∈ {0, 1}r1 × · · · × {0, 1}ri−1 ,
and error tolerance ϵ > 0; thenR outputs an IOP string Π̃i whose entries in Q̃i are valid openings.

With Lemma 2, we can obtain the soundness and knowledge soundness error bounds of Theorem 2 via an
analysis analogous to Sections 2.1.3 and 2.1.4. In this overview we omit this straightforward generalization,
and only sketch the proof of Lemma 2.

2.2.3 Proof sketch of Lemma 2

The reductor R is faced with two challenges. On the one hand, for each round i, the IOP string Π̃i to be
extracted depends on prior randomness (ρj)j<i (since the corresponding commitment cmi depends on these).
On the other hand, for each round i, queries to Π̃i may depend on prior randomness (ρj)j<i and subsequent
randomness (ρj)i≤j≤k. (Indeed, all queries by the IOP verifier may occur after the interaction because we
consider public-coin IOPs.) Therefore,R must sample (ρj)i≤j≤k (i.e., IOP verifier randomness for all rounds
j ≥ i) to see a fragment of Π̃i. We use N = N(ϵ) to denote the number of samples that we set later.

For every i ∈ [k], the reductor algorithmR works as follows.

RP̃(auxi,·)
(
(cmj)j≤i, (ρj)j<i, ϵ

)
:

1. Initialize an IOP string with an arbitrary symbol σ ∈ Σ: set Π̃i := (σ)li .
2. Initialize an empty set Q̃i to store filled locations of Π̃i.
3. Repeat the following N times:

(a) Sample IOP verifier randomness from round i to round k: (ρi, . . . , ρk)← {0, 1}ri+···+rk .
(b) Run the prover P̃ using the sampled randomness (ρi, . . . , ρk) until the end of interaction, and

obtain the query-answer-opening tuple (Qi, ansi, pfi) for the i-th IOP string.
(c) If VC.Check(cmi,Qi, ansi, pfi) = 1, set Π̃i[Qi] := ansi and update Q̃i := Q̃i ∪Qi.

4. Output (Q̃i, Π̃i).

With the above construction, we can prove Lemma 2 with a similar case analysis as Section 2.1.5: if the IOP
verifier V, upon querying the proof strings output byR, disagrees with the argument verifier V , then either:

(i) for some i ∈ [k], Π̃i and ansi disagree at a position q ∈ Qi ∩ Q̃i; or
(ii) for some i ∈ [k], there is query q in Qi but not in Q̃i.
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We bound the probability of the two events separately. We fix this experiment for the rest of the proof:
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
(cmj)j≤i, (ρj)j<i, ϵ

)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)

 .

(i) Valid openings with disagreeing answers. We informally argue that

Pr

[
∃ i ∈ [k], q ∈ Qi ∩ Q̃i : ansi[q] ̸= Π̃i[q]

∧
(∧

i∈[k] VC.Check(cmi,Qi, ansi, pfi)
)
= 1

]
≤ ϵVC(λ, lmax, qmax, tVC) .

We construct an adversary AVC for VC withR and P̃ as in Section 2.1.5.

AVC:
1. Sample (ρi)i∈[k] ← {0, 1}r1+···+rk .
2. For every i ≤ k:

(a) Run (cmi, auxi)← P̃(auxi−1, ρi−1).
(b) RunRP̃(auxi,·)((cmj)j≤i, (ρj)j<i, ϵ) and collect the valid query-answer-opening tuples in a set Ki.

3. Run ((Q′
i, ans

′
i, pf

′
i))i∈[k] ← P̃(auxk, ρk).

4. If there exists i ∈ [k] and (Qi, ansi, pfi) ∈ Ki such that q ∈ Qi ∩ Q′
i and ansi[q] ̸= ans′i[q], output

(cmi,Qi, ansi, pfi,Q′
i, ans

′
i, pf

′
i). (Otherwise, simply output (cm1,Q′

1, ans
′
1, pf

′
1,Q′

1, ans
′
1, pf

′
1).)

Once again, the VC adversary AVC only needs to check for inconsistent answers between ((Qi, ansi, pfi))i∈[k]
and (Ki)i∈[k], rather than also checking inconsistencies within each Ki.

The VC adversary AVC simulates round i of P̃ for i · (N + 1) times (see construction of R), so AVC

runs at most kN full executions of P̃ . Since one full execution of P̃ has size tARG, the size of AVC is at most
O(kN · tARG). Hence setting tVC = O(kN · tARG) bounds the probability above by ϵVC(λ, lmax, qmax, tVC).

(ii) Missing query in Q̃i. By extending the approach in Section 2.1.5, we show that, for every δ ∈ [0, 1],

Pr

 (∃ i ∈ [k] : Qi \ Q̃i ̸= ∅
)

∧
(∧

i∈[k] VC.Check(cmi,Qi, ansi, pfi)
)
= 1

 ≤ l

N
.

For each i ∈ [k] and a given position q ∈ [li], q has weight δ(q) with respect to a randomness prefix
ρ1, . . . , ρi−1 if it is queried by the argument verifier V with probability δ(q) (over ρi+1, . . . , ρk).14 Here we
consider the residual probability after fixing a randomness prefix; this is necessary as this is the distribution
thatR samples from.

Therefore:

Pr
[
∃ i ∈ [k] : Qi \ Q̃i ̸= ∅

]
= Pr

[
∃ i ∈ [k], q ∈ [li] : q ∈ Qi ∧ q /∈ Q̃i

]
14Similarly to Section 2.1.5, here the definition of weight is simplified. In the full proof, we need to consider the fact that P̃ might

output invalid openings.
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≤
k∑

i=1

Pr
[
q ∈ [li] : q ∈ Qi ∧ q /∈ Q̃i

]
≤

k∑
i=1

∑
q∈[li]

δ(q) · (1− δ(q))N

≤ l

N
.

Setting parameters. Setting N := l
ϵ , we have that tVC = O(kN · tARG) = O

(
k·l
ϵ · tARG

)
and l

N = ϵ as desired.

2.3 Why doesn’t the same analysis work for public-query IOPs?

We have discussed how the VC-based approach works for PCPs (in Section 2.1) and for public-coin IOPs (in
Section 2.2). Here we discuss the capabilities and limitations of the this approach towards succinct interactive
arguments. We begin by giving an informal definition of a general (private-coin) IOP.15

Definition 1 (informal). An IOP = (P,V) with round complexity k and randomness complexity r works as
follows.

1. V samples its private random string ρ← {0, 1}r.
2. For every round i ∈ [k]:

(a) P computes the i-th IOP string Πi ← P(x,w,mi−1) and sends it to V.
(b) V computes the i-th query set Qi = (Qi,j)j≤i ← Vq

(
x, ρ, (ansj)j<i

)
, where Qi,j is the set of

queries to the j-th IOP string in round i.
(c) V obtains the answers ansi to Qi by querying (Πj)j≤i.
(d) V computes the i-th message mi ← Vm

(
x, ρ, (ansj)j≤i

)
and sends it to P.

3. V checks that Vd

(
x, ρ, (ansi)i∈[k]

)
= 1.

We use Vq,Vm,Vd to denote the query, message, and decision functions of the IOP verifier V, respectively.

We cannot hope for the VC-based approach to work for every IOP. The argument verifier needs the
argument prover’s help to obtain the answers to its queries; hence, the argument prover learns each round’s
queries as they are made. Unless the underlying IOP remains secure even when queries are revealed to the
IOP prover, the VC-based approach is insecure.

Therefore, at best we can hope for the approach to work for public-query IOPs. These are IOPs in which
soundness (and knowledge soundness) holds even if the IOP prover knows the queries made by the IOP
verifier, or, equivalently, where the latter sends its i-th round query set Qi along with the message mi. This
leads to the following (narrowed) question: Does the VC-based approach work for every public-query IOP?

In Section 2.3.1, we describe a succinct interactive argument that appears secure provided that the
underlying IOP is public-query. In Section 2.3.2, we explain the challenges towards a proof of security for
this protocol. In Section 2.3.3, we identify a property of public-query IOPs (which is trivially satisfied by
public-coin IOPs) that suffices for security. In Section 2.3.4, we partially characterize the class of public-query
IOPs that admit this property. Technical details are in Section 6.

15For notational simplicity, we assume that, within each round of interaction, the IOP verifier queries non-adaptively. All
discussions in this paper directly extend to adaptive queries within each round.
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2.3.1 The Finale protocol

We describe the Finale protocol, a succinct interactive argument obtained from any public-query IOP. It is a
generalization of the IBCS protocol in Section 2.2.1 from public-coin IOPs to public-query IOPs. The main
difference is that, while in the IBCS protocol the argument prover answers queries by the IOP verifier after
the IOP interaction, the argument prover in the Finale protocol answers queries within each round.

Let IOP = (P,V) be a public-query IOP for a relation R with alphabet Σ, round complexity k, maximal
proof length lmax, maximal query complexity qmax, and verifier randomness complexity r. Finale[IOP,VC] is
an interactive argument ARG = (P,V) in which the argument prover P receives an instance x and a witness
w, and the argument verifier V receives the instance x. Then P and V interact, across 2k rounds (exchanging
4k messages), as follows.

1. V samples the verifier randomness ρ← {0, 1}r for V.
2. For every round i ∈ [k] of the IOP system:

(a) P computes the i-th IOP string Πi ← P(x,w,mi−1), computes the corresponding commitment
(cmi, auxi)← VC.Commit(Πi), and sends cmi to V .

(b) V sends the i-th query set Qi = (Qi,j)j≤i ← Vq

(
x, ρ, (ansj)j<i

)
to P , where Qi,j is the set of

queries to Πj in round i.
(c) For each j ≤ i, P computes an opening proof pfi,j ← VC.Open(auxj ,Qi,j).
(d) P sends

(
ansi := (Πi[Qi,j ])j≤i,pf i := (pfi,j)j≤i

)
to V .

(e) Then V sends the i-th message mi ← Vm

(
x, ρ, (ansj)j≤i

)
to P .

3. V checks if the following conditions hold:
(a) Vd

(
x, ρ, (ansi)i∈[k]

)
= 1.

(b) For every i ∈ [k] and j ≤ i, VC.Check(cmj ,Qi,j , ansi,j , pfi,j) = 1.

2.3.2 Is there a security reduction that works for every public-query IOP?

It would be natural to conjecture that the security analysis of the IBCS protocol (for public-coin IOPs) directly
extends to a security analysis for the Finale protocol (for public-query IOPs). However, that is not the case.

The key object in the security analysis is the reductor: R rewinds the malicious argument prover P̃
multiple times, each time simulating a fresh partial interaction between P̃ and the (honest) argument verifier
V . Let us attempt to construct such a reductorR for the Finale protocol.

Consider the goal of the reductor R for the first round. The reductor R receives oracle access to P̃
and receives as input the first commitment cm1 (and error parameter ϵ); the (first) goal of R is to output a
(partially filled) IOP string Π̃1 consistent with cm1. As before, R can rewind P̃ for N(ϵ) times, each time
sampling fresh private randomness for V and simulating a full interaction between P̃ and V .

The problem arises in the second round, where R must simulate partial interactions of the interactive
argument. NowR receives as input the first two commitments (cm1, cm2), the first round’s verifier queries
Q1, the corresponding query answers ans1 and opening proofs pf1, and the first round’s verifier message m1

(as well as the error parameter ϵ). The new goal ofR is to output a (partially filled) IOP string Π̃2 consistent
with cm2. To do so,R must simulate multiple partial interactions between P̃ and V starting from the second
round. This means thatR needs to sample “consistent” private randomness ρ for the argument verifier V: ρ
such that V’s first query set is Q1 and, given answers ans1 to these queries, V’s first message to the argument
prover is m1. More generally,R must have the capability of sampling consistent private randomness starting
from any round (defined by a partial transcript of the interactive argument).

How may we sample from this conditional distribution? For the IBCS protocol, sampling a random
continuation for a partial transcript is trivial because it is public coin: given first round randomness ρ1, sample
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randomness ρ2, . . . , ρk for the remaining rounds; and similarly if starting from a later round. In contrast, in
the Finale protocol, the argument verifier is private-coin: it samples all of its private randomness ρ at the
beginning of the interaction and then uses ρ to deterministically compute queries and messages.

An attempt to sample from the conditional distribution would be for R to repeatedly sample choices
of ρ until one is consistent with ((cm1, cm2), (Q1,ans1,m1)). However, such a sampling strategy would
be inefficient, and would imply (in the resulting reduction) an adversary against VC whose similarly large
runtime makes ϵVC trivial (recall that in Section 2.1.5 the VC adversary AVC usesR as a subroutine).

In sum, the bottleneck of the security reduction approach in Section 2.2.2 is the ability to efficiently and
consistently sample argument verifier randomness consistent with a partial interaction transcript, which in
turn reduces to the ability to sample consistent IOP verifier randomness for the underlying public-query IOP
(as we discuss soon in Section 2.3.3). We are not aware of alternative approaches, and the problem of proving
the Finale protocol secure for every public-query IOP (or proving it insecure for some public-query IOP)
remains open. In the meantime, to achieve a security reduction, we restrict our attention to public-query
IOPs that possess efficient random continuation samplers, which we discuss next.

2.3.3 IOP random continuation sampler leads to security reduction

We sketch how, as claimed in Theorem 3, if the underlying public-query IOP has an efficient random
continuation sampler then the Finale protocol is secure.

Transcripts for general IOPs. A complete interaction transcript for an IOP has the following form:

tr :=
(
(Qi,ansi,mi)

)
i∈[k] .

For every i ∈ [k], a partial interaction transcript tri for an IOP can have the following forms:

• tri =
((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)
, if the IOP verifier is about to send its i-th message mi;

• tri =
((
(Qj ,ansj ,mj)

)
j≤i

)
, if the IOP verifier is about to output its (i+ 1)-th query set Qi+1 (i < k).

An IOP interaction transcript includes only the values of queried locations, and not entire IOP strings.

What is an IOP random continuation sampler? An IOP random continuation sampler (IOP-RCS) receives
as input a partial interaction transcript tri for an IOP and samples the next message for tri at random among
all next messages consistent with tri. (In the technical sections, we also allow for a sampling error α.)
Formally, an IOP-RCS S works as follows:

• If tri =
((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)
, then S(tri) samples the next message mi;

• If tri =
((
(Qj ,ansj ,mj)

)
j≤i

)
and i < k, then S(tri) samples the next query set Qi+1.

How does IOP-RCS help with proving security? As discussed in Section 2.3.2, the key step in the security
reduction is efficiently sampling “consistent random continuations” of a given partial interaction transcript of
the argument system. In other words, we need an ARG random continuation sampler (ARG-RCS) for the
Finale protocol. The notion of ARG-RCS was implicit in prior settings: the construction ofR for Kilian’s
protocol (in Section 2.1.5) and for the IBCS protocol (in Section 2.2.3) implicitly relies on an ARG-RCS,
which is trivial for arguments built from PCPs or public-coin IOPs (it suffices to sample uniform random
strings for future rounds). In the Finale protocol, based on public-query IOPs, an efficient ARG-RCS is not
trivial. Fortunately, we can show that if IOP admits an IOP-RCS then Finale[IOP,VC] admits an ARG-RCS.
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Step 1: IOP-RCS implies ARG-RCS. An ARG-RCS can be defined analogously to an IOP-RCS. A
complete interaction transcript for Finale[IOP,VC] can be written as:

tr :=
(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] .

Such an interaction transcript is syntactically identical to an IOP interaction transcript, but for the additional
inclusion of commitments cmi and openings pf i. Moreover, the argument verifier’s behavior in the interaction
is independent of the commitments and openings (only after the interaction the argument verifier uses them
to check the validity of the answers to the query sets). Hence the transformation from an IOP-RCS S to an
ARG-RCS S is trivial: given a partial argument transcript tri, discard the commitments and openings and
pass the resulting partial IOP transcript to S. More specifically, S is obtained from S as follows:

S(tri):
1. If tri =

((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, (cmi,Qi,ansi,pf i)
)
, output S

(((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
))

;
2. If tri =

((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j≤i

)
and i < k, output S

(((
(Qj ,ansj ,mj)

)
j≤i

))
.

It is clear that S samples valid randomness if S does, and the running time of S is O(tS).

Step 2: ARG-RCS enables a security reduction. We can use an ARG-RCS S for the Finale protocol to
construct an efficient reductorR for the Finale protocol. Indeed, we can use S to randomly sample the next
query set and verifier message in the transcript.

RP̃(auxi,·)((cmj)j≤i, ((Qj ,ansj ,pf j ,mj))j<i, ϵ):
1. Initialize an IOP string with an arbitrary symbol σ ∈ Σ: set Π̃i := (σ)li .
2. Initialize an empty set Q̃i to store filled locations of Π̃i.
3. Compute N := N(ϵ).
4. Repeat the following N times: For i ≤ j ≤ k:

(a) If j ̸= i, compute the j-th commitment: (cmj , auxj)← P̃(auxj−1,Qj−1,mj−1).
(b) Sample the j-th IOP query set: Qj ← S

(((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ)

)
ℓ<j

))
.

(c) Get the j-th answer and VC openings from P̃: (ansj ,pf j , auxj)← P̃(auxj ,Qj).
(d) Sample the j-th IOP verifier message: mj ← S

(((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ)

)
ℓ<j

, (cmj ,Qj ,ansj ,pf j)
))

.

(e) If VC.Check(cmi,Qj,i, ansj,i, pfj,i) = 1, set Π̃i[Qj,i] := ansj,i and update Q̃i := Q̃ ∪ Qj,i.
5. Output (Q̃, Π̃i).

If the ARG-RCS S is efficient then the reductor R is efficient. We can then prove security by adapting
Lemma 2 to this setting; we sketch how the proof changes to account for public queries.

As before (Sections 2.1.5 and 2.2.3), the security reduction claim can be split into two parts.

• Valid openings with disagreeing answers. We construct an adversary AVC for VC with R and P̃ as in
Section 2.1.5. The construction is similar, except that the verifier’s messages are now denoted by m rather
than ρ and the running time of AVC needs to take into account the running time of the ARG-RCS S (inR).

• Missing query in Π̃i. For every i-round partial transcript tri, we can define the weight of a position q ∈ [li]
with respect to tri analogously as in Section 2.2.3, and the same analysis follows:

Pr
[
∃ q ∈ [li] : (∃ j ∈ [i, k] : q ∈ Qj,i) ∧ q /∈ Q̃i

]
≤ li

N
.
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Using a union bound over the rounds, we upper bound the target probability of this case as before by

k∑
i=1

li
N

=
l

N
.

We conclude that when the Finale protocol (based on a public-query IOP) has an efficient random continuation
sampler, we can show (knowledge) soundness via a similar strategy to Sections 2.1.3 and 2.1.4.

2.3.4 ARG-RCS implies IOP-RCS

We show that IOP has an efficient IOP-RCS if Finale[IOP,VC] admits an efficient ARG-RCS. Combining
this with the discussion from Section 2.3.3, we conclude that the existence of an efficient ARG-RCS for the
Finale protocol is equivalent to the existence of an efficient IOP-RCS for the underlying public-query IOP.

Let S be an ARG-RCS for Finale[IOP,VC] with running time tS . We wish to construct an IOP-RCS S for
IOP. Let tri be a partial interaction transcript for the IOP. To invoke S , the IOP sampler S needs to augment
the IOP transcript to an argument transcript that includes commitments to each IOP string and openings to
the commitments. For example, in order for S to output the i-th query set, the argument transcript given as
input should include cmj for every j ≤ i. However, S has no information about the i-th IOP string.

We circumvent this issue by observing that the (honest) verifier in the Finale protocol ignores the VC
commitments and openings until the interaction ends. Therefore, the IOP-RCS S can construct from tri an
argument transcript to pass to S by providing dummy values for the commitments and openings, as follows:

S(tri):
1. If tri =

((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)
, output S

(((
(⊥,Qj ,ansj ,⊥,mj)

)
j<i

, (⊥,Qi,ansi,⊥)
))

.
2. If tri =

((
(Qj ,ansj ,mj)

)
j≤i

)
and i < k, output S

(((
(⊥,Qj ,ansj ,⊥,mj)

)
j≤i

))
.

The correctness of S follows straightforwardly from the correctness of S , and the running time of S is O(tS).

2.4 Succinct interactive arguments with adaptive security

For simplicity, all results and discussions in Sections 1 and 2 are in the plain model, where there are no public
parameters available to all parties (so the argument verifier is responsible to sample and send VC’s public
parameters to the argument prover). However, in the technical sections (Sections 4 to 6) we show stronger
versions of Theorems 1 to 3 that hold with adaptive security in the common reference string (CRS) model.

An interactive argument in the CRS model includes an additional algorithm: a trusted generator algorithm
that samples public parameters pp for the argument prover and argument verifier (which can be used any
number of times across different interactions). After that, based on pp, a malicious argument prover can
choose the instance on which to interact with the argument verifier. This setting necessitates appropriate
definitions of adaptive soundness and knowledge soundness (see Section 3.1), which require error bounds
to hold for any instance x chosen by the malicious argument prover up to an instance size bound n.16 In
particular, the (soundness and knowledge soundness) error bounds depend on n rather than x.

Our security analyses to achieve adaptive security in the CRS model follow the same structure as the
discussions in the sections above, with only syntactic modifications due to the different target definitions.

16We also rely on formulations of soundness and knowledge soundness for PCPs and IOPs in which the malicious prover chooses
the instance (see Sections 3.3 and 3.4). This is only for convenience, because, due to the information-theoretic setting, these
definitions are straightforwardly implied by (standard) definitions for fixed instances.
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(E.g., modifying the experiments to replace a fixed instance x with an instance size bound n, and letting the
malicious argument prover choose the instance.)

Overall, the (formal) statements provided in the technical sections (Sections 4 to 6) are stronger than the
(informal) statements in Theorems 1 to 3 because we achieve adaptive security in the CRS model.17

17Adaptive security in the CRS model directly implies security in the plain model. Since no CRS is allowed, the argument verifier
can begin the interaction by running itself the generator algorithm and sending the public parameters for the argument system to the
argument prover. See Remark 3.6.
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3 Preliminaries

Definition 3.1. A relation R is a set of pairs (x,w) where x is an instance and w a witness. The corre-
sponding language L(R) is the set of instances x for which there exists a witness w such that (x,w) ∈ R.

3.1 Interactive arguments

An interactive argument (in the common reference string model) for a relation R is a tuple of polynomial-time
algorithms ARG = (G,P,V) that satisfies the following properties.

Definition 3.2 (Perfect completeness). ARG = (G,P,V) for a relation R has perfect completeness if
for every security parameter λ ∈ N, instance size bound n ∈ N, public parameter pp ∈ G(1λ, n), and
instance-witness pair (x,w) ∈ R with |x| ≤ n,

Pr
[〈
P(pp,x,w),V(pp,x)

〉
= 1
]
= 1 .

Definition 3.3 (Adaptive soundness). ARG = (G,P,V) for a relation R has (adaptive) soundness error
ϵARG if for every security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input distribution D, circuit
size bound tARG ∈ N, and tARG-size circuit P̃ ,

Pr

 |x| ≤ n
∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b←

〈
P̃(aux),V(pp,x)

〉
 ≤ ϵARG(λ, n, tARG) .

Definition 3.4 (Adaptive knowledge soundness). ARG = (G,P,V) for a relation R has (adaptive) knowl-
edge soundness error κARG with extraction time tE if there exists a probabilistic algorithm E such that for
every security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input distribution D, circuit size bound
tARG ∈ N, and tARG-size circuit P̃ ,

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b

tr←−
〈
P̃(aux),V(pp,x)

〉
w← E P̃(aux)(pp,x, tr)

 ≤ κARG(λ, n, tARG) ;

moreover, E runs in time tE(λ, n, tARG).

Above, b tr←− ⟨P̃(aux),V(pp,x)⟩ denotes the fact that tr is the transcript of the interaction (i.e., public
parameters and messages exchanged between P̃ and V). Moreover, E P̃ means that E has black-box access to
(each next-message function of) P̃ ; in particular E can send verifier messages to P̃ in order to obtain the next
message of P̃ (for a partial interaction where V sent those messages).

Moreover, we can assume, without loss of generality, that P̃ is deterministic relative to auxiliary input ai
(as the internal coin flips of a probabilistic P̃ can be incorporated into the auxiliary input distribution D).

Remark 3.5. The argument generator G receives two inputs: the security parameter λ and an instance size
bound n. This means that the public parameter sampled by G may work only for instances of size at most n.
However, one could consider the stronger notion where the sampled public parameter works for all instance
sizes; in this case G receives only λ as input. Our analysis works for both cases; see Remark 4.4.
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Remark 3.6 (plain model variant). The above definitions consider interactive arguments in the common
reference string model, where a generator samples a public parameter used by the argument prover and
the argument verifier. One could also consider interactive arguments in the plain model, where there is no
generator. This latter notion is implied, at the cost of an additional verifier message, as we now explain.

Suppose that (G,P,V) is an interactive argument in the common reference string model. We describe an
interactive argument (P ′,V ′) in the plain model with an additional verifier message. The argument prover P ′

receives as input an instance x and witness w, and the argument verifier V ′ receives as input the instance x;
both also receive as input the security parameter λ (in unary). They interact as follows:
• V ′ samples a public parameter pp← G(1λ, |x|) and sends pp to P ′;
• P ′ and V ′ simulate an interaction of P(pp,x,w) and V(pp,x).
It is straightforward to see that (P ′,V ′) satisfies the standard definitions of completeness, soundness, and
knowledge soundness for interactive arguments in the plain model.18 In fact, it would suffice for (G,P,V) to
satisfy the non-adaptive relaxations of soundness and knowledge soundness.

3.2 Vector commitments

A (static) vector commitment scheme [CF13] over alphabet Σ is a tuple of algorithms

VC = (Gen,Commit,Open,Check)

with the following syntax.

• VC.Gen(1λ, ℓ) → pp: On input a security parameter λ ∈ N and message size bound ℓ ∈ N, VC.Gen
samples public parameter pp.

• VC.Commit(pp,m) → (cm, aux): On input a public parameter pp and a message m ∈ Σℓ, VC.Commit
produces a commitment cm and the corresponding auxiliary state aux.

• VC.Open(pp, aux,Q) → pf: On input a public parameter pp, an auxiliary state aux, and a query set
Q ⊆ [ℓ], VC.Open outputs an opening proof string pf attesting that m[Q] is a restriction of m to Q.

• VC.Check(pp, cm,Q, ans, pf)→ {0, 1}: On input a public parameter pp, a commitment cm, a query set
Q ⊆ [ℓ], an answer string ans ∈ ΣQ, and an opening proof string pf, VC.Check determines if pf is a valid
proof for ans ∈ ΣQ being a restriction of the message committed in cm to Q.

The vector commitment scheme VC must satisfy perfect completeness and position binding.

Definition 3.7 (Completeness). VC = (Gen,Commit,Open,Check) has perfect completeness if for every
security parameter λ ∈ N, message length ℓ ∈ N, message m ∈ Σℓ, and query set Q ⊆ [ℓ],

Pr

VC.Check(pp, cm,Q,m[Q], pf) = 1

∣∣∣∣∣∣
pp← VC.Gen(1λ, ℓ)
(cm, aux)← VC.Commit(pp,m)
pf ← VC.Open(pp, aux,Q)

 = 1 .

Definition 3.8 (Position binding). VC = (Gen,Commit,Open,Check) has position binding error ϵVC if for
every security parameter λ ∈ N, message length ℓ ∈ N, query set size s ∈ N with s ≤ ℓ, auxiliary input
distribution D, adversary size bound tVC ∈ N, and tVC-size circuit AVC,

Pr


|Q| = |Q′| = s
∧ ∃ i ∈ Q ∩Q′ : ans[i] ̸= ans′[i]
∧ VC.Check(pp, cm,Q, ans, pf) = 1
∧ VC.Check(pp, cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣∣∣
pp← VC.Gen(1λ, ℓ)
ai← D(
cm, ans, ans′,
Q,Q′, pf, pf ′

)
← AVC(pp, ai)

 ≤ ϵVC(λ, ℓ, s, tVC) .

18These standard definitions can be derived from Definitions 3.2 to 3.4 by setting pp to be empty.
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Remark 3.9 (Monotonicity of ϵVC). We assume hereafter that the position binding error ϵVC is monotone in
each coordinate in the natural direction:

• ϵVC(·, ℓ, s, tVC) is non-increasing (larger security parameters decrease an adversary’s success);
• ϵVC(λ, ·, s, tVC) is non-decreasing (opening some set in a string is easier than opening in a substring);
• ϵVC(λ, ℓ, ·, tVC) is non-decreasing (finding a collision in a set is easier than finding one in a subset); and
• ϵVC(λ, ℓ, s, ·) is non-decreasing (the success of an adversary increases with its computational power).

The last condition is trivially satisfied, while the first should also hold in any reasonable commitment scheme.
The remaining two are natural (and satisfied in the case of Merkle trees); in any case, otherwise one may
replace, in our computations, expressions of the type ϵVC(λ, ℓmax, smax, tVC), when ℓmax = maxi {ℓi} and
smax = maxj {sj}, with

max
i,j
{ϵVC(λ, ℓi, sj , tVC)} .

3.3 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) is an information-theoretic proof system where a probabilistic
verifier has oracle access to a proof string.

Definition 3.10 (Completeness). PCP = (P,V) for a relation R has perfect completeness if, for every
instance-witness pair (x,w) ∈ R,

Pr
[
VΠ(x) = 1

∣∣ Π← P(x,w)
]
= 1 .

Definition 3.11 (Soundness). PCP = (P,V) for a relation R has soundness error ϵPCP if, for every
(unbounded) circuit P̃ and auxiliary input distribution D,

Pr

 |x| ≤ n
∧x ̸∈ L(R)

∧VΠ̃(x) = 1

∣∣∣∣∣∣ ai← D

(x, Π̃)← P̃(ai)

 ≤ ϵPCP(n) .

Definition 3.12 (Knowledge soundness). PCP = (P,V) for a relation R has knowledge soundness error
κPCP with extraction time tE if there exists a probabilistic algorithm E such that, for every circuit P̃ and
auxiliary input distribution D,

Pr

 |x| ≤ n
∧ (x,w) ̸∈ R

∧VΠ̃(x) = 1

∣∣∣∣∣∣
ai← D

(x, Π̃)← P̃(ai)

w← E(x, Π̃)

 ≤ κPCP(n) ;

moreover, E runs in time tE(n).

We consider several efficiency measures for a PCP:

• the proof alphabet Σ is the alphabet over which a PCP string is written;
• the proof length l is the number of alphabet symbols in the PCP string;
• the query complexity q ∈ [l] is the number of queries that the PCP verifier makes to the PCP string (each

query is an index in [l] and is answered by the corresponding symbol in Σ in the PCP string);
• the randomness complexity r is the number of random bits used by the PCP verifier.

An efficiency measure may be a function of the instance x (e.g., of its size |x|).
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3.4 Interactive oracle proofs

An interactive oracle proof (IOP) system [BCS16; RRR16] is a generalization of PCPs to multiple rounds.
An IOP system for a relation R is formally defined as follows.

Definition 3.13 (Completeness). IOP = (P,V) for a relation R has perfect completeness if for every
instance-witness pair (x,w) ∈ R,

Pr [⟨P(x,w),V(x)⟩ = 1] = 1 .

Definition 3.14 (Soundness). IOP = (P,V) for a relation R has soundness error ϵIOP if for every circuit P̃,

Pr

 |x| ≤ n
∧x ̸∈ L(R)
∧ b = 1

∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

b←
〈
P̃(aux),V(x)

〉
 ≤ ϵIOP(n) .

Definition 3.15 (Knowledge soundness). IOP = (P,V) for a relation R has knowledge soundness error
κIOP with extraction time tE if there exists a probabilistic algorithm E such that, for every circuit P̃,

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

b
tr←−
〈
P̃(aux),V(x)

〉
w← EP̃(aux)(x, tr)

 ≤ κIOP(n) ;

moreover, E runs in time tE(n).

We consider several efficiency measures for an IOP:

• the proof alphabet Σ is the alphabet over which each IOP string is written;
• the proof length l is the total number of alphabet symbols across all IOP strings sent by the IOP prover;

moreover, li is the length of the proof sent by P in round i and lmax := maxi {li};
• the query complexity q ∈ [l] is the total number of queries that the IOP verifier makes to any IOP string

(each query specifies a round a location in the IOP string of that round and is answered by the corresponding
symbol in the IOP string);

• the randomness complexity r is the number of random bits used by the IOP verifier;
• the round complexity k is the number of interaction rounds (back-and-forth interactions) between the IOP

prover and IOP verifier.

Any efficiency measure may be a function of the instance x (e.g., of the instance size |x|).
Public-coin IOPs. We focus on IOPs that are public-coin, which informally means that the IOP verifier is a
public-coin interactive algorithm.

In other words, in every round, the verifier sends a uniformly random message, independent of other
messages they send, to the prover. We provide the formal definition below.

Definition 3.16. IOP = (P,V) for a relation R is public-coin if, for every i ∈ [k], the i-th message of the
IOP verifier V is a freshly-sampled uniform random string ρi of a prescribed length ri (which may depend on
the instance). In particular, during an interaction, the IOP prover knows all the randomness sampled by the
IOP verifier so far (as the messages received by the IOP prover are all that randomness so far).
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Queries in a public-coin IOP can be postponed until after the interaction. (This is without loss of
generality as, during the interaction, the IOP verifier simply sends a fresh random message in each round.)
Hence the IOP can be viewed in two parts: an interaction phase (the prover sends oracles and the verifier
sends random messages) and then a query phase (the verifier queries the oracles and outputs a decision).
We denote by b = V(Πi)i∈[k](x; (ρi)i∈[k]) the IOP verifier’s decision in the query phase, where k is the IOP’s
round complexity; then the two-step experiment (x,aux)← P̃ followed by b←

〈
P̃(aux),V(x)

〉
can be

written as 

ai← D

(x,aux0)← P̃(ai)

(Π̃1,aux1)← P̃(aux0)
ρ1 ← {0, 1}r1
For i ∈ [k− 1] \ {1} :
(Π̃i,auxi)← P̃(auxi−1, ρi−1)
ρi ← {0, 1}ri

Π̃k ← P̃(auxk−1, ρk−1)

b := V(Πi)i∈[k](x; (ρi)i∈[k])


=



ai← D

(x,aux0)← P̃(ai)
ρ0 := ⊥
For i ∈ [k] :

(Π̃i,auxi)← P̃(auxi−1, ρi−1)
ρi ← {0, 1}ri

b := V(Πi)i∈[k](x; (ρi)i∈[k])


. (1)

Remark 3.17. We often make use of simplifications as in Experiment 1, where the right-hand side sets ρ0 to
the empty string ⊥. (And does so, implicitly, for auxk as well.)

We shall additionally make use of notation for partial (or full) executions of an interactive algorithm:
for example, an execution of P̃ until its second message is denoted

(
x, Π̃1, (Π̃2,aux2)

)
← P̃

(
ai, ρ1

)
(we

omit auxiliary outputs that are not used in the remainder of the experiment). Therefore, Experiment 1 is also
equivalent to 

ai← D
(ρi)i∈[k] ← {0, 1}r1+···+rk

(x, Π̃1, . . . , Π̃k)← P̃
(
ai, ρ1, . . . , ρk−1

)
b := V(Πi)i∈[k](x; (ρi)i∈[k])

 .

Public-query IOPs. In Section 6 we discuss IOPs that are public-query, which informally means that
security (soundness or knowledge soundness) holds even if the IOP prover can “see” the queries that the IOP
verifier makes. In contrast, the general definition of an IOP implicitly assumes that an (honest or malicious)
IOP prover has no information about the queries that the IOP verifier makes during the interaction.

Definition 3.18. IOP = (P,V) for a relation R is public-query if the soundness (and knowledge soundness)
condition holds even if the malicious IOP prover P̃ receives, during the interaction, the index of each location
queried by the IOP verifier V (the moment it happens). In particular, for each i ∈ [k], the IOP string Π̃i sent
by P̃ in the i-th round may depend on every query made by the IOP verifier in prior rounds (to prior IOP
strings), in addition to depending on messages sent by the IOP verifier so far.

Note that a public-coin IOP is a public-query IOP, but the converse need not hold.
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4 Interactive arguments based on PCPs

Theorem 4.1. Consider these two ingredients:

• PCP = (P,V), a PCP system for a relation R with alphabet Σ, proof length l, and query complexity q;
and

• VC = (Gen,Commit,Open,Check), a vector commitment scheme over alphabet Σ.

Then ARG = (G,P,V) := Kilian[PCP,VC] (Construction 4.3) is a three-message public-coin interactive
argument system for R, whose soundness error ϵARG and knowledge soundness error κARG satisfy the following
for every ϵ > 0 and tARG ≥ tV + tVC.Check + log|Σ|+ log l:

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + ϵVC(λ, l, q, tVC) + ϵ and

κARG(λ, n, tARG) ≤ κPCP(n) + ϵVC(λ, l, q, tVC) + ϵ .

Above, ϵPCP and κPCP are the soundness and knowledge soundness errors of PCP, and tVC = O
(
l
ϵ · tARG

)
.

Moreover, the knowledge extractor runs in time tE = O(tE + tVC).

Corollary 4.2. Let ARG be as in Theorem 4.1. Assume that for any n ∈ N, ϵVC(·, ·, ·, tVC) = negl(n) if
tVC = poly(n). Then, given that tARG = poly(n), we have

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + negl(n) and

κARG(λ, n, tARG) ≤ κPCP(n) + negl(n) .

Proof. Let p(n) be an arbitrary polynomial. We set ϵ to be 1
2p(n) > 0. Hence, tVC = O

(
l
ϵ · tARG

)
= poly(n),

which implies that ϵVC(λ, l, q, tVC) = negl(n). Therefore,

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + negl(n) +
1

2p(n)
< ϵPCP(n) + negl(n) +

1

p(n)
.

Since p is an arbitrary polynomial, we conclude that

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + negl(n) .

An analogous argument holds for κARG.

4.1 Construction

The construction of (G,P,V) := Kilian[PCP,VC] is specified below.

Construction 4.3. The argument generator G receives as input a security parameter λ ∈ N and an instance
size bound n ∈ N, and works as follows.

G(λ, n):
1. Sample public parameter for the VC scheme: ppVC ← VC.Gen(1λ, l(n)).
2. Set public parameter for the interactive argument: pp := ppVC.
3. Output pp.

The argument prover P receives as input the public parameter pp, an instance x and a witness w, and the
argument verifier V receives as input the public parameter pp and the instance x. Then P and V interact as
follows.
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1. P’s commitment.
(a) Compute a PCP string: Π← P(x,w).
(b) Compute a vector commitment to the PCP string: (cm, aux)← VC.Commit(pp,Π).
(c) Send cm to V .

2. V’s challenge.
(a) Sample PCP verifier randomness: ρ← {0, 1}r.
(b) Send ρ to P .

3. P’s response.
(a) Run the PCP verifier VΠ(x; ρ) to deduce its query set Q ⊆ [l].
(b) Compute a VC opening proof: pf ← VC.Open(pp, aux,Q).
(c) Set ans := Π[Q].
(d) Send (Q, ans, pf) to V .

4. V’s decision: check that V[Q,ans](x; ρ) = 1 and VC.Check(pp, cm,Q, ans, pf) = 1.

The interactive argument consists of three messages: a prover message; a verifier message; and a prover
message. The interactive argument is public-coin since the verifier’s (only) message is a uniform random
string. The efficiency measures of interactive arguments are as follows:

• the generator outputs public parameter of size |ppVC| bits;
• the prover-to-verifier communication consists of |cm|+ q · (log l+ log|Σ|) + |pf| bits;
• the verifier-to-prover communication consists of r bits;
• the time complexity of the argument generator is tVC.Gen.
• the time complexity of the argument prover is tP + tVC.Commit + tV + tVC.Open;
• the time complexity of the argument verifier is tV + tVC.Check.

Remark 4.4. There are vector commitments for which VC.Gen needs only the security parameter λ as input
(i.e., VC.Gen works for every message size); for example, vector commitments based on Merkle trees have
this property, because the public parameter consist of (the description of) a hash function, which suffices for
every message size. In this case, the argument generator G in Construction 4.3 also requires only λ as input
and works for every instance size. This leads the notion of an interactive argument discussed in Remark 3.5.

Remark 4.5. In the plain-model variant of Construction 4.3 (see Remark 3.6), the public parameters
pp := ppVC are sampled and sent by the argument verifier (resulting in a four-message protocol). Hence the
plain-model variant is public-coin if (and only if) VC.Gen is a public-coin algorithm (its output includes all
of its randomness).

4.2 Security reduction

To analyze the soundness and knowledge soundness for the argument system of Construction 4.3, it is
important to understand how the argument system is related to the PCP system. The core of the security
analysis is the construction of a PCP prover P̃ from an argument prover P̃ (which may or may not be
malicious). More precisely, given a convincing argument prover P̃ , we want to obtain a convincing PCP
prover P̃, which we achieve via the reductor algorithmR in Construction 4.8.

Recall that if V accepts if and only if both V and VC.Check accept. Hence, Lemma 4.6 shows that
PCP strings generated by the reductorR are, up to small errors, as convincing to the PCP verifier V as the
argument prover P is to the argument verifier V; in other words,R transforms an argument prover P̃ into a
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PCP prover P̃.19 We later use this lemma to prove (adaptive) soundness and knowledge soundness of ARG in
Sections 4.3 and 4.4, respectively.

Lemma 4.6. There exists a probabilistic algorithmR which, for every ϵ > 0, auxiliary input distribution D,
size bound tARG ≥ tV + tVC.Check + 2q · (log|Σ|+ log l), and tARG-size circuit P̃ , satisfies

Pr


V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D(
x, (cm, aux)

)
← P̃

(
pp, ai

)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


≤ ϵVC (λ, l, q, tVC) + ϵ ,

where tVC = O
(
l
ϵ · tARG

)
. Moreover,R makes l/ϵ queries to P̃ and runs in O(tVC) time.

We stress that in the experiment above the reductor R is independent of ρ, since it does not receive
the verifier randomness as input. (Otherwise, the lemma would be satisfied trivially with Q̃ := Q and
Π̃[Q̃] := ans.)

We now construct R, which will be convenient to separate into two parts: a sampling subroutine S
followed by a post-processing layer Rpost that deterministically pieces together a PCP string Π̃ from the
samples obtained by S (and outputs the set Q̃ of “filled-in” coordinates along with Π̃).

Construction 4.7. We construct the sampler S as follows.

SP̃(aux,·)(pp, cm,N):
1. Initialize K := ∅.
2. Repeat the following N times:

(a) Sample PCP verifier randomness: ρ′ ← {0, 1}r.
(b) Obtain (Q′, ans′, pf ′)← P̃(aux, ρ′).
(c) If VC.Check(pp, cm,Q′, ans′, pf ′) = 1, add (Q′, ans′, pf ′) to K.

3. Output K.

The algorithm S makes N queries to P̃ , and runs in time20

tS ≤ N · (tARG + tV + tVC.Check) ≤ 3N · tARG .

Construction 4.8. The reductor R is defined as follows. (Below, σ is an arbitrary symbol in the alphabet Σ.)

RP̃(aux,·)(pp, cm, ϵ):21

1. Set N := l
ϵ and run K ← SP̃(aux,·)(pp, cm,N).

2. Run (Q̃, Π̃)← Rpost(K, l).
19Moreover, R preserves uniformity: if P̃ is a uniform algorithm, then so is P̃.
20Note that the 2q(log|Σ|+ log l) overhead incurred by copying (Q′, ans′, pf′) into K is accounted for in the difference between

tARG and the other terms.
21We also denote by RP̃(aux,·)(pp, cm, ϵ;ρ

)
, where ρ = (ρ(ℓ))ℓ∈[N] (and similarly for S) the deterministic algorithm that uses

ρ(ℓ) as the randomness for S’s ℓ-th sample. This allows the PCP and IOP provers of Constructions 4.10 and 5.8 to be deterministic.
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3. Output (Q̃, Π̃).

The reductor’s second step is an execution of the following (deterministic) post-processing algorithm.

Rpost(K, l):
1. Initialize Π̃ := σl and Q̃ := ∅.
2. For every (Q′, ans′, pf ′) ∈ K:

(a) Set Q̃ := Q̃ ∪ Q′.
(b) For every q ∈ Q′, set Π̃[q] := ans′[q].

3. Output (Q̃, Π̃).

Note thatR makes N = l/ϵ queries to P̃ by construction, whose total N · tARG time dominates that ofR.

Proof. Throughout this proof, probabilistic expressions are with respect to the following experiment unless
explicitly denoted otherwise:

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
(cm, aux1)← P̃(aux0)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux1, ρ)


=



pp← G(1λ, n)
ai← D(
x, (cm, aux)

)
← P̃

(
pp, ai

)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃
(
aux, ρ

)


. (2)

Our goal is to upper bound the probability of the following expression: V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 . (3)

Observe that Eq. 3 implies that either (i) Π̃ and ans disagree at a position q ∈ Q∩ Q̃; or (ii) there is a query q
in Q \ Q̃. We analyze the two cases separately.

Valid openings with disagreeing answers. Our goal is to prove the following bound:

Pr

[
∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ ϵVC(λ, l, q, tVC) ,

where tVC ≤ 4N · tARG.
Consider the following adversary AVC against the vector commitment scheme, which follows Experiment

2 (without executingRpost) and attempts to find a collision using the output K of the sampler S.

AVC(pp, ai):
1. Run

(
x, (cm, aux)

)
← P̃

(
pp, ai

)
.

2. Sample ρ← {0, 1}r.
3. Run (Q, ans, pf)← P̃(aux, ρ).
4. Run K ← SP̃(aux,·)(pp, cm,N), with N = l

ϵ (as in Construction 4.8).
5. If there are (Q′, ans′, pf ′) ∈ K and q ∈ Q′∩Qwith ans′[q] ̸= ans[q], output (cm, ans, ans′,Q,Q′, pf, pf ′).
6. Otherwise, output (the “dummy” tuple) (cm, ans, ans,Q,Q, pf, pf).
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The time complexity of the sampler S is at most 3N · tARG and the collision-finding check (Step 5) runs in
time N · 2q(log|Σ|+ log l) ≤ N · tARG,22 so the time complexity of AVC is tVC ≤ 4N · tARG.

Therefore, according to Definition 3.8,

Pr

[
∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]

= Pr


|Q| = |Q′| = q
∧ ∃ q ∈ Q ∩Q′ : ans[q] ̸= ans′[q]
∧ VC.Check(pp, cm,Q, ans, pf) = 1
∧ VC.Check(pp, cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣∣∣
pp← VC.Gen(1λ, l)
ai← D(
cm, ans, ans′,
Q,Q′, pf, pf ′

)
← AVC(pp, ai)


≤ ϵVC(λ, l, q, tVC) .

Missing positions in Π̃. We now upper bound the probability that there is a missing position in Π̃; we
claim that

Pr

[
Q \ Q̃ ≠ ∅
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ ϵ .

Fix a public parameter-auxiliary input pair (pp, ai) (recall that these are obtained in the first steps of
Experiment 2), and define the weight of a coordinate q ∈ [l] with respect to (pp, ai) as

δpp,ai(q) := Pr

 q ∈ Q
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣
(x, cm, aux)← P̃(pp, ai)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

Then, by a union bound over q ∈ [l],

Pr

[
Q \ Q̃ ≠ ∅
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
= Pr

[
∃ q ∈ [l] : q ∈ Q ∧ q /∈ Q̃
∧VC.Check(pp, cm,Q, ans, pf) = 1

]

≤ max
(pp,ai)

Pr

 ∃ q ∈ [l] : q ∈ Q ∧ q /∈ Q̃
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣
(x, cm, aux)← P̃(pp, ai)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


= max

(pp,ai)

∑
q∈[l]

δpp,ai(q) ·
(
1− δpp,ai(q)

)N
≤ l

N
,

where the last inequality follows from δ · (1− δ)N ≤ 1/N for any δ ∈ [0, 1].23 Finally, plugging in N = l
ϵ

bounds Eq. 3 as desired, concluding the proof:

Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


22Searching for an intersection between Q′ and Q takes 2q log l time, while each check for a symbol mismatch takes 2 log|Σ|.

We omit the time required to produce the output (which can be accounted for in the runtime of S).
23A simple derivation of the inequality is the following: with f(x) = x · (1− x)N, we have d

dx
f(δ) = 0 ⇐⇒ δ = 1

N+1
. As

f(0) = f(1) = 0 and δ is the only critical point in [0, 1], it achieves the maximum f(δ) ≤ 1/N.
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≤ Pr

[
∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
+ Pr

[
Q \ Q̃ ≠ ∅
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ ϵVC(λ, l, q, tVC) + ϵ .

4.3 Adaptive soundness

Lemma 4.9. For every ϵ > 0, security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input
distribution D, circuit size bound tARG ≥ tV + tVC.Check + 2q · (log|Σ| + log l) and tARG-size circuit P̃ , the
soundness error of the argument system in Construction 4.3 satisfies

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + ϵVC(λ, l, q, tVC) + ϵ ,

where tVC = O
(
l
ϵ · tARG

)
.

Proof. Recall, from Definition 3.3 and Construction 4.3, that our goal is to upper bound

Pr

 |x| ≤ n
∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b←

〈
P̃(aux),V(pp,x)

〉


= Pr


|x| ≤ n
∧x /∈ L(R)

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D(
x, (cm, aux)

)
← P̃

(
pp, ai

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

(Since P̃ sends cm as the first message in Construction 4.3, the former experiment is equivalent to the latter,
where we omit the auxiliary state of the choice of instance and aux denotes that of the first message.)

As in Lemma 4.6, we consider the following experiment (a restatement of Experiment 2), which augments
the above by executingR, and thus leaves the probability unchanged.

pp← G(1λ, n)
ai← D(
x, (cm, aux)

)
← P̃

(
pp, ai

)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


.

By total probability,

Pr


|x| ≤ n
∧x ̸∈ L(R)

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


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= Pr


|x| ≤ n
∧x ̸∈ L(R)

∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

+ Pr


|x| ≤ n
∧x ̸∈ L(R)

∧V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 .

We first bound the probability of the leftmost term by the PCP system’s soundness error (i.e., Defini-
tion 3.11 with respect to PCP).

Construction 4.10. We define the auxiliary input distribution D of the PCP prover P̃ as follows:

D:
1. Sample pp← G(1λ, n) followed by ai← D and ρ := (ρ(ℓ))ℓ∈[N] ← ({0, 1}r)N.
2. Output ai :=

(
pp, ai,ρ

)
.

The PCP prover is then given by the following next message functions.

P̃(ai):

1. Parse ai as
(
pp, ai,ρ

)
.

2. Run (x, aux)← P̃(pp, ai).
3. Set aux :=

(
pp, aux0,ρ

)
.

4. Output (x,aux).

P̃(aux):

1. Parse aux as
(
pp, aux0,ρ

)
.

2. Run (cm, aux1)← P̃(aux0).
3. Run (Q̃, Π̃)← RP̃(aux1,·)

(
pp, cm, ϵ;ρ

)
.

4. Output Π̃.

Using Definition 3.11,24

Pr


|x| ≤ n
∧x ̸∈ L(R)

∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 |x| ≤ n
∧x ̸∈ L(R)

∧V[Q̃,Π̃](x; ρ) = 1



≤ Pr

 |x| ≤ n
∧x ̸∈ L(R)

∧VΠ̃(x) = 1

∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

Π̃← P̃(aux)


≤ ϵPCP(n) .

Lastly, an application of Lemma 4.6 yields

Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


24Note that the prover in Definition 3.11 corresponds to the sequential execution of both steps in Construction 4.10.
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≤ ϵVC(λ, l, q, tVC) + ϵ ,

where tVC ≤ 4l
ϵ · tARG, which concludes the proof.

4.4 Adaptive knowledge soundness

Lemma 4.11. For every ϵ > 0, security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input
distribution D, circuit size bound tARG ≥ tV + tVC.Check + 2q · (log|Σ| + log l) and tARG-size circuit P̃ , the
knowledge soundness error of the argument system obtained by Construction 4.3 satisfies

κARG(λ, n, tARG) ≤ κPCP(n) + ϵVC(λ, l, q, tVC) + ϵ ,

where tVC = O
(
l
ϵ · tARG

)
. If the PCP extractor’s runtime is tE, the argument system’s extractor is tE =

tE +O(tVC).

Construction 4.12. Let E be the extractor for PCP. We use P̃ (Construction 4.10) and E to construct the
knowledge extractor E for ARG as follows.

E P̃(aux)(pp,x, tr):
1. Sample ρ← ({0, 1}r)N.
2. Set aux :=

(
pp, aux,ρ

)
and run Π̃← P̃(aux).25

3. Run w← E(x, Π̃).
4. Output w.

Note that E executes E once and P̃ for l/ϵ times (as P̃ runs the reductorR, which in turn sets N = l/ϵ
and repeats N executions of P̃). Therefore, tE = tE +O(tVC).

Proof. From Definition 3.4 and Construction 4.3, our goal is to upper bound

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b

tr←−
〈
P̃(aux),V(pp,x)

〉
w← E P̃(aux)(pp,x, tr)



= Pr



|x| ≤ n
∧ (x,w) ̸∈ R

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
(cm, aux1)← P̃(aux0)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux1, ρ)
tr := (cm, ρ,Q, ans, pf)
w← E P̃(aux0)(pp,x, tr)


.

Now, note that by Constructions 4.10 and 4.12, the experiment above is equivalent to the following.

25Note that, by Construction 4.10, P̃ only executes P̃(aux) (calls to P̃(aux′, ρ) are continuations of executions of P̃(aux)).
Therefore, an equivalent construction gives P̃ oracle access to P̃(aux) (rather than to P̃), excluding aux from aux.
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

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
(cm, aux1)← P̃(aux0)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux1, ρ)
ρ← ({0, 1}r)N
aux :=

(
pp, aux0,ρ

)
Π̃← P̃(aux)

w← E(x, Π̃)


=



pp← G(1λ, n)
ai← D(
x, (cm, aux)

)
← P̃

(
pp, ai

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)

w← E(x, Π̃)


.

We thus consider the above experiment, which augments that of Lemma 4.6 by appending an execution of
E, for the rest of the proof. Note that, as in Lemma 4.9, the experiment consisting of (x, aux0)← P̃(pp, ai)
followed by (cm, aux1)← P̃(aux0) can be replaced by

(
x, (cm, aux)

)
← P̃

(
pp, ai

)
: sinceR only uses the

second auxiliary state (which is obtained deterministically from the first), the former can be omitted. Note,
moreover, that the explicit randomness for P̃ on the left-hand side is replaced with sampling by R on the
right-hand side.

By total probability,

Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1



= Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

+ Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 .

With the PCP prover P̃ in Construction 4.10 and using Definition 3.12, we have

Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 |x| ≤ n
∧ (x,w) ̸∈ R

∧VΠ̃(x) = 1

∣∣∣∣∣∣
ai← D

(x, Π̃)← P̃

w← E(x, Π̃)

 ≤ κPCP(n) .

Finally, Lemma 4.6 implies

Pr


|x| ≤ n

∧V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


≤ ϵVC(λ, l, q, tVC) + ϵ ,

where tVC ≤ 4l
ϵ · tARG, which concludes the proof.
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5 Interactive arguments based on public-coin IOPs

Theorem 5.1. Consider these two ingredients:

• IOP = (P,V), a public-coin IOP system for a relation R with round complexity k, alphabet Σ, proof
length l, and query complexity q; and

• VC = (Gen,Commit,Open,Check), a vector commitment scheme over alphabet Σ.

Then ARG = (G,P,V) := IBCS[IOP,VC] (Construction 5.3) is a (2k+ 1)-message public-coin interactive
argument system for R whose soundness error ϵARG and knowledge soundness error κARG satisfy the following
for every ϵ > 0 and tARG ≥ tV + tVC.Check + log|Σ|+ log lmax:

ϵARG(λ, n, tARG) ≤ ϵIOP(n) + ϵVC (λ, lmax, qmax, tVC) + ϵ and

κARG(λ, n, tARG) ≤ κIOP(n) + ϵVC (λ, lmax, qmax, tVC) + ϵ ,

where tVC = O
(
k·l
ϵ · tARG

)
. Moreover, the knowledge extractor runs in time tE = tE +O(tVC).

Corollary 5.2. Let ARG be as in Theorem 5.1. Assume that for any n ∈ N, ϵVC(·, ·, ·, tVC) = negl(n) if
tVC = poly(n). Then, given that tARG = poly(n), we have

ϵARG(λ, n, tARG) ≤ ϵIOP(n) + negl(n) and

κARG(λ, n, tARG) ≤ κIOP(n) + negl(n) .

5.1 Construction

We describe below the construction of the interactive argument, which we denote (P,V) := IBCS[IOP,VC].

Construction 5.3. The argument generator G receives as input a security parameter λ ∈ N and an instance
size bound n ∈ N, and works as follows.

G(λ, n):
1. Sample public parameters for the VC scheme: ppVC ← VC.Gen

(
1λ, lmax(n)

)
.26

2. Set public parameters for the interactive argument: pp := ppVC.
3. Output pp.

The argument prover P receives as input the public parameter pp, an instance x and a witness w, and the
argument verifier V receives as input the public parameter pp and the instance x. Then P and V interact as
follows.

1. P’s commitments.
For i ∈ [k]:
(a) P’s i-th commitment.

i. Compute the i-th IOP string Πi ∈ Σli and auxiliary state:27

(Πi,auxi)←

{
P(x,w) if i = 1

P(auxi−1, ρi−1) if i > 1
.

26Alternatively, VC.Gen could sample one set of public parameters ppVC,i per proof length li and set pp := (ppVC,i)i∈[k]. For
simplicity, we consider a single one and assume P̃ pads proofs where li < lmax with a fixed symbol σ ∈ Σ where appropriate.

27Note the implicit setting of auxk := ⊥, since P only outputs the last proof string Πk at the end of the interaction.

40



ii. Compute a VC commitment to the IOP string: (cmi, auxi)← VC.Commit(pp,Πi).
iii. Send cmi to V .

(b) V’s i-th challenge.
i. Sample the i-th IOP verifier randomness ρi ← {0, 1}ri .

ii. Send ρi to P .
2. P’s response.

(a) Run the IOP verifier VΠ1,...,Πk(x; ρ1, . . . , ρk) to deduce Q1, . . . ,Qk, where Qi ⊆ [li] is the query
set of V to Πi.

(b) For every i ∈ [k], compute an opening proof pfi ← VC.Open(pp, auxi,Qi) and set ansi := Πi[Qi].
(c) Send

(
(Qi, ansi, pfi)

)
i∈[k] to V .

3. V’s decision.
Check that V([Qi,ansi])i∈[k](x; ρ1, . . . , ρk) = 1 and VC.Check(pp, cmi,Qi, ansi, pfi) = 1 for all i ∈ [k].28

The protocol has k + 1 rounds: the first k simulate the IOP, and in the last P̃ sends the query set
assignments along with their opening proofs. Moreover, the protocol is public coin because the verifier’s
messages consist of random strings. We comment on the protocol’s efficiency measures:

• the generator communication to prover and verifier consists of |ppVC| bits;
• the prover-to-verifier communication consists of

∑
i∈[k](|cmi|+ q · (log li + log|Σ|) + |pfi|) bits;

• the verifier-to-prover communication consists of r =
∑

i∈[k] ri bits;
• the time complexity of the argument generator is tVC.Gen.
• the time complexity of the argument prover is tP + k · (tVC.Commit + tVC.Open) + tV;
• the time complexity of the argument verifier is tV + k · tVC.Check.

5.2 Security reduction

As in Section 4.2, our analysis relies on the following security reduction lemma that relates the acceptance
probability of ARG := IBCS[IOP,VC] with that of IOP.

Lemma 5.4. There exists a probabilistic algorithm R which, for every size bound tARG ≥ tV + tVC.Check +
log|Σ|+ log lmax, circuit P̃ of size tARG and ϵ > 0, satisfies

Pr



V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ0 := ⊥
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
pp, (cmj)j∈[i], (ρj)j<i, ϵ

)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)


≤ ϵVC (λ, lmax, qmax, tVC) + ϵ ,

where tVC and the total runtime of all executions ofR are O
(
k·l
ϵ · tARG

)
.

28V also implicitly checks for appropriate padding, i.e., that ansi[q] = σ for every q ∈ Qi \ [li].
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We first construct the reductorR, which, similarly to Construction 4.8, will include a sampling subroutine
S and a post-processing subroutineRpost.

Construction 5.5. Given a number of iterations N ∈ N, we construct the sampler S as follows.

SP̃(auxi,·)
(
pp, (cmj)j∈[i], (ρj)j<i,N

)
:

1. Initialize K := ∅.
2. Repeat the following N times:

(a) Sample IOP verifier randomness: (ρ′i, . . . , ρ
′
k)← {0, 1}ri × · · · × {0, 1}rk .

(b) Obtain
(
(Q′

i, ans
′
i, pf

′
i),
(
(cm′

j ,Q′
j , ans

′
j , pf

′
j)
)
i<j≤k

)
← P̃(auxi, ρ1, . . . , ρi−1, ρ

′
i, . . . , ρ

′
k).

(c) If VC.Check
(
pp, cmi,Q′

i, ans
′
i, pf

′
i

)
= 1, add (Q′

i, ans
′
i, pf

′
i) to K.

3. Output K.

Construction 5.6. The reductorR is defined below.

RP̃(auxi,·)
(
pp, (cmj)j∈[i], (ρj)j<i, ϵ

)
:

1. Set N := l/ϵ.
2. Run K ← SP̃(auxi,·)

(
pp, (cmj)j∈[i], (ρj)j<i,N

)
.

3. Run (Q̃, Π̃)← Rpost(K, li).29

4. Output (Q̃, Π̃).

Note that in each of its N iterations, S runs VC.Check (once) and makes at most k queries to P̃ . Since
tARG ≥ tVC.Check (and the executions of P̃ dominate the remaining steps ofR), the total runtime ofR across all
k rounds is O

(
k·l
ϵ · tARG

)
.

Proof. Throughout this proof, probabilistic expressions are with respect to the following experiment:

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ0 := ⊥
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
pp, (cmj)j∈[i], (ρj)j<i, ϵ

)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)


,

29Recall that Rpost pieces together a proof string Π̃ from a set of samples K (see Construction 4.8).
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which by Construction 5.6 is equivalent to

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ0 := ⊥
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)

Ki ← SP̃(auxi,·)
(
pp, (cmj)j∈[i], (ρj)j<i,N

)
(Q̃i, Π̃i)← Rpost(Ki, li)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)


. (4)

The argument is analogous to Lemma 4.6. We first note that V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1


implies, likewise, the existence of valid openings with disagreeing answers or a missing query in one of the
IOP strings. We analyze the two cases separately.

Valid openings with disagreeing answers. We aim to show that

Pr

[
∃ i ∈ [k], q ∈ Qi ∩ Q̃i : ansi[q] ̸= Π̃i[q]

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

]
≤ ϵVC(λ, lmax, qmax, tVC)

where tVC = O
(
k·l
ϵ · tARG

)
.

We consider the following adversary AVC against the vector commitment scheme, which (essentially)
follows Experiment 4:

AVC(pp, ai):
1. Run (x, aux0)← P̃(pp, ai).
2. Set N := l

ϵ , ρ0 := ⊥ and sample (ρi)i∈[k] ← {0, 1}r1+···+rk .
3. For i ∈ [k]:

(a) Run (cmi, auxi)← P̃(auxi−1, ρi−1).
(b) Run Ki ← SP̃(auxi,·)

(
pp, (cmj)j∈[i], (ρj)j<i,N

)
.

4. Run
(
(Qi, ansi, pfi)

)
i∈[k] ← P̃(auxk, ρk).

5. If there exist i ∈ [k] and (Q′
i, ans

′
i, pf

′
i) ∈ Ki with q ∈ Qi ∩ Q′

i and ansi[q] ̸= ans′i[q], output
(cmi, ansi, ans

′
i,Qi,Q′

i, pfi, pf
′
i).

6. Otherwise, output (the “dummy” tuple) (cm1, ans1, ans1,Q1,Q1, pf1, pf1).

The time complexity of k executions of the sampler S is O(kN · tARG) and the collision-finding check
(Step 5) runs in time O

(
kN · (log|Σ| + log li)

)
= O(kN · tARG), so the total time complexity of AVC is

tVC = O(kN · tARG) = O
(
k·l
ϵ · tARG

)
.
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Therefore, according to Definition 3.8,30

Pr

[
∃ i ∈ [k], q ∈ Qi ∩ Q̃i : ansi[q] ̸= Π̃i[q]

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

]

≤ Pr

[
∃ i ∈ [k] :

(
∃ q ∈ Qi ∩ Q̃i : ansi[q] ̸= Π̃i[q]
∧VC.Check

(
pp, cmi,Qi, ansi, pfi

)
= 1

)]

≤ Pr


|Q| = |Q′| ≤ qmax

∧ ∃ q ∈ Q ∩Q′ : ans[q] ̸= ans′[q]
∧ VC.Check(pp, cm,Q, ans, pf) = 1
∧ VC.Check(pp, cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣∣∣
pp← VC.Gen(1λ, lmax)(
cm, ans, ans′,
Q,Q′, pf, pf ′

)
← AVC(pp)


≤ ϵVC(λ, lmax, qmax, tVC) .

Missing positions in Π̃i. We are left to show

Pr

 (∃ i ∈ [k] : Qi \ Q̃i ̸= ∅
)

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

 ≤ ϵ .

To this end, fix a partial sequence of prover inputs (pp, ai, (ρj)j<i) of Eq. 4 and define the weight of a
coordinate q ∈ [li] with respect to (pp, ai, (ρj)j<i) as

δ(pp,ai,(ρj)j<i)(q)

:= Pr

 q ∈ Qi

∧
(∧

j∈[k] VC.Check

(
pp, cmj ,
Qj , ansj , pfj

))
= 1

∣∣∣∣∣∣∣
(ρj)i≤j≤k ← {0, 1}ri+···+rk(

x, cm1, . . . , cmk,(
(Qj , ansj , pfj)

)
j∈[k]

)
← P̃

(
pp, ai,

(ρ1, . . . , ρk)

)  .

(We perform a partial execution of P̃ as in Lemma 4.6, omiting intermediate auxiliary states.) A union
bound over all q ∈ [li] yields

Pr
[
Qi \ Q̃i ̸= ∅

]
= Pr

[
∃ q ∈ [li] : q ∈ Qi ∧ q /∈ Q̃i

]
≤ max

(pp,ai,(ρj)j<i)

Pr

 ∃ q ∈ [li] : q ∈ Qi

∧ q /∈ Q̃i

∣∣∣∣∣∣∣
(ρj)i≤j≤k ← {0, 1}ri+···+rk(

x, cm1, . . . , cmk,(
(Qj , ansj , pfj)

)
j∈[k]

)
← P̃

(
pp, ai,

(ρ1, . . . , ρk)

) 


≤ max
(pp,ai,(ρj)j<i)

∑
q∈[li]

δ(pp,ai,(ρj)j<i)(q) ·
(
1− δ(pp,ai,(ρj)j<i)(q)

)N
≤ li

N
,

30Note that AVC, if successful, outputs a tuple in one of the Ki. Denoting by Ei the event that it is found in Ki, the right-hand
side of the second inequality may be replaced by

∑
i Pr [Ei] · ϵVC(λ, li, qi, tVC), and the last follows from monotonicity of ϵVC (see

Remark 3.9).
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and another union bound over i ∈ [k] gives

Pr

 (∃ i ∈ [k] : Qi \ Q̃i ̸= ∅
)

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

 ≤∑
i∈[k]

li
N

=
l

N
.

Since N = l/ϵ, we have

Pr

 V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1


≤ Pr

[
∃ i ∈ [k], q ∈ Qi ∩ Q̃i : ansi[q] ̸= Π̃i[q]

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

]

+ Pr

[
∃ i ∈ [k], q ∈ Qi : q ̸∈ Q̃i

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

]
≤ ϵVC (λ, lmax, qmax, tVC) + ϵ ,

which concludes the proof.

5.3 Adaptive soundness

Lemma 5.7. For every security parameter λ ∈ N, circuit size bound tARG ≥ tV + tVC.Check + log|Σ|+ log lmax,
circuit P̃ of size tARG, instance size bound n ∈ N and ϵ > 0, the soundness error of the argument system in
Construction 5.3 satisfies

ϵARG(λ, n, tARG) ≤ ϵIOP(n) + ϵVC (λ, lmax, qmax, tVC) + ϵ ,

where tVC = O(k·lϵ · tARG).

Proof. From Definition 3.3 and Construction 5.3, our goal is to upper bound

Pr

 |x| ≤ n
∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b←

〈
P̃(aux),V(pp,x)

〉


= Pr



|x| ≤ n
∧x /∈ L(R)

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ0 := ⊥
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)


.
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As in Lemma 5.4, we consider the following experiment, which augments the above by executing R
(multiple times) and leaves the probability unchanged.

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ0 := ⊥
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
pp, (cmj)j∈[i], (ρj)j<i, ϵ

)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)


.

By total probability,

Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Qi,ansi])i∈[k](x; ρ) = 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1



= Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) = 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1



+ Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

 .

We first bound the probability on the left-hand side by using the soundness error definition of IOP in
Definition 3.14.

Construction 5.8. We will construct an IOP prover P̃, and first define its auxiliary input distribution D as
follows:

D:
1. Sample pp← G(1λ, n) followed by ai← D.
2. Sample ρ := (ρi)i∈[k] ←

(
{0, 1}r1+···+rk

)N × ({0, 1}r2+···+rk
)N × · · · × ({0, 1}rk)N.

3. Output ai :=
(
pp, ai,ρ

)
.

The IOP prover is then defined as follows.

• P̃(ai):

1. Parse ai as
(
pp, ai,ρ

)
.
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2. Run (x, aux0)← P̃(pp, ai).
3. Set aux :=

(
pp, aux0,ρ

)
.

4. Output (x,aux).

• P̃(aux, ρ):

1. Parse aux as
(
pp, auxi−1, (cmj)j<i,ρ

)
.31

2. Set ρi−1 := ρ and run (cmi, auxi)← P̃(auxi−1, ρi−1)

3. Run (Q̃i, Π̃i)← RP̃(auxi,·)
(
pp, (cmj)j∈[i], (ρj)j<i, ϵ;ρi

)
.

4. Set auxi :=
(
pp, auxi, (cmj)j∈[i], (ρj)j<i,ρ

)
.32

5. Output (Π̃i,auxi).

Using Definition 3.14 (with Experiment 1, the explicit public-coin IOP), we obtain

Pr


|x| ≤ n
∧x ̸∈ L(R)

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) = 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1



≤ Pr


|x| ≤ n
∧x ̸∈ L(R)

∧V(Π̃i)i∈[k]
(
x; (ρi)i∈[k]) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ai← D

(x,aux0)← P̃(ai)
ρ0 := ⊥
For i ∈ [k] :

(Π̃i,auxi)← P̃(auxi−1, ρi−1)
ρi ← {0, 1}ri


≤ ϵIOP(n) .

Lastly, an application of Lemma 5.4 yields

Pr


|x| ≤ n
∧x ̸∈ L(R)

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1



≤ Pr

 V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) = 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1


≤ ϵVC (λ, lmax, qmax, tVC) + ϵ ,

which concludes the proof.
31Note that the round i < k is determined by the contents of aux.
32We may assume aux = ⊥ in the case i = k, and the following step outputs (Π̃k,auxk) = Π̃k.
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5.4 Adaptive knowledge soundness

Lemma 5.9. For every security parameter λ ∈ N, circuit size bound tARG ≥ tV + tVC.Check + log|Σ|+ log lmax,
circuit P̃ of size tARG, instance size bound n ∈ N and ϵ > 0, the knowledge soundness error of the argument
system obtained by Construction 5.3 satisfies

κARG(λ, n, tARG) ≤ κIOP(n) + ϵIOP(n) + ϵVC (λ, lmax, qmax, tVC) + ϵ ,

where tVC = O
(
k·l
ϵ · tARG

)
. If the IOP extractor’s runtime is tE, the argument system’s extractor is tE =

tE +O(tVC).

Construction 5.10. Let E be the extractor for IOP. We use P̃ (Construction 5.8) and E to construct the
knowledge extractor E for ARG:

E P̃(aux)(pp,x, tr):
1. Parse tr as

(
(cmi, ρi,Qi, ansi, pfi)

)
i∈[k].

2. Sample ρ := (ρi)i∈[k] ←
(
{0, 1}r1+···+rk

)N × ({0, 1}r2+···+rk
)N × · · · × ({0, 1}rk)N.

3. Set aux :=
(
pp, aux,ρ

)
.

4. Run (Π̃i)i∈[k] ← P̃(aux) and set tr :=
(
(Π̃i, ρi)i<k, Π̃k

)
.

5. Run w← EP̃(aux)(x, tr).
6. Output w.

Proof. From Definition 3.4 and Construction 5.3, out goal is to upper bound

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b

tr←−
〈
P̃(aux),V(pp,x)

〉
w← E P̃(aux)(pp,x, tr)



= Pr



|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ0 := ⊥
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)

tr :=
(
(cmi, ρi, (Qi, ansi, pfi))

)
i∈[k]

w← E P̃(aux)(pp,x, tr)


We consider the following experiment, which is equivalent to the above and augments that of Lemma 5.4

by appending an execution of E, for the rest of the proof.
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

pp← G(1λ, n)
ai← D
ρ0 := ⊥
(ρi)i∈k ←

(
{0, 1}

∑k
i=i rj

)N × · · · × ({0, 1}rk)N
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1, ρi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
pp, (cmℓ)ℓ∈[i], (ρℓ)ℓ<i, ϵ;ρi

)
ρi ← {0, 1}ri(

(Qi, ansi, pfi)
)
i∈[k] ← P̃(auxk, ρk)

aux :=
(
pp, aux,ρ

)
tr :=

(
(Π̃i, ρi)i∈[k−1], Π̃k

)
w← EP̃(aux)(x, tr)



.

By total probability,

Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧VC.Check(pp, cm,Q, ans, pf) = 1



= Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) = 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1



+ Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1

 .

By the construction of P̃ (Construction 5.8) and Definition 3.15, we have

Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) = 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1



≤ Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

b
tr←−
〈
P̃(aux),V(x)

〉
w← EP̃(aux)(x, tr)


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≤ κIOP(n) .

Finally, Lemma 5.4 implies

Pr


|x| ≤ n
∧ (x,w) ̸∈ R

∧V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1



≤ Pr

 V([Q̃i,Π̃i])i∈[k](x; (ρi)i∈[k]) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; (ρi)i∈[k]

)
= 1

∧
(∧

i∈[k] VC.Check
(
pp, cmi,Qi, ansi, pfi

))
= 1


≤ ϵVC (λ, lmax, qmax, tVC) + ϵ ,

which concludes the proof.
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6 Interactive arguments based on public-query IOPs

We argue that the security analysis for interactive arguments based on public-coin IOPs generalizes to
interactive arguments based on public-query IOPs with an additional property: the existence of a random
continuation sampler (RCS). More precisely, we show that the existence of an RCS for Finale[IOP,VC] is
equivalent to its existence for the underlying IOP; and that having an RCS for Finale[IOP,VC] is a sufficient
condition for the (natural extension of the) public-coin security reduction to hold.

Theorem 6.1. Consider these three ingredients:

• IOP = (P,V), a public-query IOP system for a relation R with round complexity k, alphabet Σ, proof
length l, and query complexity q; moreover, IOP has an IOP random continuation sampler S with error α
and running time tS; and

• VC = (Gen,Commit,Open,Check), a vector commitment scheme over alphabet Σ.

The ARG = (G,P,V) := Finale[IOP,VC] (Construction 6.2) is a 4k-message interactive argument system
for R which, for every ϵ > 0 and tARG ≥ tV + tVC.Check + log|Σ| + log lmax, has soundness error ϵARG and
knowledge soundness error κARG satisfying the following:

ϵARG(λ, n, tARG) ≤ ϵIOP(n) + ϵVC (λ, lmax, qmax, tVC) + ϵ+
l · α
ϵ

and

κARG(λ, n, tARG) ≤ κIOP(n) + ϵVC (λ, lmax, qmax, tVC) + ϵ+
l · α
ϵ

,

where tVC = O
(
k·l
ϵ · (tARG + tS)

)
. Moreover, the knowledge extractor runs in time tE = tE +O(tVC).

Observe that if IOP admits an IOP random continuation sampler with error α = 0, we obtain the same
security bounds as in Theorem 5.1; conversely, if α > 0, then setting ϵ =

√
α · l achieves the minimum

additional error of 2ϵ. Note, moreover, that ARG is public-coin if IOP is public-coin.

6.1 Construction

Below, we describe the construction of the interactive argument we denote (P,V) := Finale[IOP,VC].

Construction 6.2 (Arguments from public-query IOPs). The argument generator G receives as input a
security parameter λ ∈ N and an instance size bound n ∈ N, and works as follows.

G(λ, n):
1. Sample public parameter for the VC scheme: ppVC ← VC.Gen

(
1λ, lmax(n)

)
.

2. Set public parameter for the interactive argument: pp := ppVC.
3. Output pp.

The argument prover P receives as input an instance x and a witness w, and the argument verifier V receives
as input the instance x. Then P and V interact as follows.

1. V’s randomness: Sample ρ← {0, 1}r.
2. P’s commitments.

For i ∈ [k]:
(a) P’s i-th commitment.
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i. Compute the i-th IOP string and auxiliary state:

(Πi,auxi)←

{
P(x,w) if i = 1

P(auxi−1,mi−1) if i > 1
.

ii. Compute a VC commitment to the IOP string: (cmi, auxi)← VC.Commit(pp,Πi).
iii. Send (cmi, auxi) to V .

(b) V’s i-th query.
i. Compute the i-th IOP verifier query set Qi := Vq

(
x, ρ, (ansj)j<i

)
.

ii. Send Qi to P .
(c) P’s i-th response.

i. Parse Qi as (Qi,1, . . . ,Qi,i), where Qi ⊆ [li] is the query set of V to Πi.
ii. For every j ∈ [i], compute pfi,j ← VC.Open(pp, auxj ,Qi,j) and set ansi,j := Πj [Qi,j ].

iii. Set ansi := (ansi,j)j∈[i] and pf i := (pfi,j)j∈[i].
iv. Send (ansi,pf i) to V .

(d) V’s i-th message.
i. Compute the i-th IOP verifier message mi := Vm

(
x, ρ, (ansj)j∈[i]

)
.

ii. Send mi to P .
3. V’s decision: Check if the following hold:

(a) Vd

(
x, ρ, (ansi)i∈[k]

)
= 1.

(b) For every i ∈ [k],
∧

j≤i VC.Check(pp, cmj ,Qi,j , ansi,j , pfi,j).

Above, we use Vq,Vm and Vd to denote the query, message and decision algorithms, respectively, for
the IOP verifier V.

The protocol has 2k rounds: Each round of the IOP needs two rounds to simulate because V’s message
in the i-th round depends on the answers to the queries in the i-th round. We comment on the protocol’s
efficiency measures:

• the generator communication to prover and verifier consists of |ppVC| bits;
• the prover-to-verifier communication consists of

∑
i∈[k](|cmi|+ q · (log li + log|Σ|) +

∑
j≤i|pfi,j |) bits;

• the verifier-to-prover communication consists of
∑

i∈[k]|mi|+ q · log li bits;
• the time complexity of the argument generator is tVC.Gen.
• the time complexity of the argument prover is tP + k · tVC.Commit +

k·(k+1)
2 · tVC.Open;

• the time complexity of the argument verifier is tV + k·(k+1)
2 · tVC.Check.

6.2 Random continuation samplers

Definition 6.3 (IOP transcript and partial execution). An IOP (interaction) transcript tr for a public-query
IOP has the following form:

tr :=
(
(Qi,ansi,mi)

)
i∈[k] .

For every i ∈ [k], a partial IOP transcript tri for a public-query IOP has one of the following forms:

• tri :=
((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)
;

• tri :=
((
(Qj ,ansj ,mj)

)
j≤i

)
for i < k.
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For every IOP prover P̃, auxiliary input ai, verifier randomness ρ ∈ {0, 1}r, and integer i ∈ [k], the
i-round partial execution of the IOP with respect to (P̃(ai), ρ), denoted by

〈
P̃(ai),V(ρ)

〉
i
, is〈

P̃(ai),V(ρ)
〉
i
:= (x, tri) ,

where x and the partial IOP transcript tri =
((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)

are obtained via the
experiment 

(x,aux0)← P̃(ai)
(Q0,m0) := (⊥,⊥)
For 1 ≤ j < i :

(Π̃j ,auxj)← P̃(auxj−1,Qj−1,mj−1)
Qj ← V

(
x, ρ, (ansℓ)ℓ<j

)
ansj := GetAnswers

(
(Π̃ℓ)ℓ≤j ,Qj

)
mj ← V

(
x, ρ, (ansℓ)ℓ≤j

)
(Π̃i,auxi)← P̃(auxi−1,Qi−1,mi−1)
Qi ← V

(
x, ρ, (ansj)j<i

)
ansi := GetAnswers

(
(Π̃j)j≤i,Qi

)


,

and GetAnswers
(
(Πj)j∈[i],Qi

)
denotes

(
(Πj [Qi,j ])

)
j∈[i] where

(
(Qi,j)

)
j∈[i] = Qi.

Definition 6.4 (ARG transcript and partial execution). An ARG (interaction) transcript tr for a public-
query IOP based argument system has the following form:

tr :=
(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] .

Similarly, for every i ∈ [k], a partial ARG transcript tri has one of the following forms:

• tri :=
((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, (cmi,Qi,ansi,pf i)
)
;

• tri :=
((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j≤i

)
for i < k.

For all public parameters pp, argument prover P̃ , auxiliary input ai, verifier randomness ρ ∈ {0, 1}r,
and integer i ∈ [k], the i-round partial execution of ARG with respect to (pp, P̃(ai), ρ), denoted by〈
P̃(ai),V(ρ)

〉
i
, is 〈

P̃(ai),V(ρ)
〉
i
:= (x, tri) ,

where x and the partial ARG transcript tri =
((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, (cmi,Qi,ansi,pf i)
)

are
obtained via the experiment

(x, aux0)← P̃(pp, aux)
(Q0,m0) := (⊥,⊥)
For 1 ≤ j < i :

(cmj , auxj)← P̃(auxj−1,Qj−1,mj−1)
Qj ← V(x, ρ, (ansℓ)ℓ<j)

(ansj ,pf j , auxj)← P̃(auxj ,Qj)

mj ← V(x, ρ, (ansℓ)ℓ∈[j])
(cmi, auxi)← P̃(auxi−1,Qi−1,mi−1)
Qi ← V(x, ρ, (ansj)j<i)

(ansi,pf i, auxi)← P̃(aux,Qi)


.
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Definition 6.5. For every IOP prover P̃ and IOP prover auxiliary input ai, a partial IOP execution (x, tri)
has non-zero measure with respect to P̃(ai) if

Pr
[
(x, tri) =

〈
P̃(ai),V(ρ)

〉
i

∣∣∣ ρ← {0, 1}r] > 0 .

A partial execution for ARG with non-zero measure is defined similarly.

Definition 6.6. Consider IOP = (P,V) with randomness complexity r. For any partial IOP execution
(x, tri), we define R(x,tri), the set of random strings consistent with (x, tr), as follows:

R(x,tri) :=
{
ρ ∈ {0, 1}r :

〈
P̃(ai),V(ρ)

〉
i
= tri

}
.

For a partial argument execution tri, we define R(x,tri) analogously.

For simplicity, we often drop the instance x (which is fixed by P̃(aux)) and refer to a partial transcript
tri with non-zero measure, or a set Rtri of random strings consistent with tri.

Definition 6.7 (IOP random continuation sampler). Let IOP be a public-query IOP with round complexity k,
and let S be a probabilistic algorithm with the following syntax:

• On input (x, tri) where tri =
((
(Qj ,ansj ,mj)

)
j<i

)
for i ∈ [k], S outputs a query set Qi;

• On input (x, tri) where tri =
((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)
, S outputs a message mi.

Given α ≥ 0 and tS ∈ N, we say S is an IOP random continuation sampler (IOP-RCS) with error α and
running time tS if it satisfies the following guarantee: for every size bound tIOP, tIOP-size circuit P̃, IOP
prover auxiliary input ai, i ∈ [k], and partial IOP execution (x, tri) that has non-zero measure with respect
to (P̃,ai), we have

∆
(
D
[
P̃(ai),S(x, tri)

]
,U
[
P̃(ai),R(x,tri)

])
= α ,

where

• ∆(·, ·) is the statistical (total variation) distance between two distributions;

• D
[
P̃(ai),S(x, tri)

]
is the distribution of IOP transcripts produced by S:

D
[
P̃(ai),S(x, tri)

]
:=



(
(Qj ,ansj ,mj)

)
j∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x,aux0)← P̃(ai)
(Q0,m0) := (⊥,⊥)
For 1 ≤ j ≤ i :

(Π̃j ,auxj)← P̃(auxj−1,Qj−1,mj−1)
mi ← S(x, tri)
For i < j ≤ k :

(Π̃j ,auxj)← P̃(auxj−1,Qj−1,mj−1)
Qj ← S

(
x,
((
(Qℓ,ansℓ,mℓ)

)
ℓ<j

))
ansj := GetAnswers

(
(Π̃ℓ)ℓ≤j ,Qj

)
mj ← S

(
x,
((
(Qℓ,ansℓ,mℓ)

)
ℓ<j

, (Qj ,ansj)
))


;
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• U
[
P̃(ai),R(x,tri)

]
is the uniform distribution over all complete IOP transcripts consistent with (x, tri):33

U
[
P̃(ai),R(x,tri)

]
:=


(
(Qj ,ansj ,mj)

)
j∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x,aux0)← P̃(ai)
ρ← R(x,tri)

(Q0,m0) := (⊥,⊥)
For j ∈ [k] :

(Π̃j ,auxj)← P̃(auxj−1,Qj−1,mj−1)
Qj ← Vq

(
x, ρ, (ansℓ)ℓ<j

)
ansj := GetAnswers

(
(Π̃ℓ)ℓ∈[j],Qj

)
mj ← Vm

(
x, ρ, (ansℓ)ℓ∈[j]

)


.

Definition 6.8 (ARG random continuation sampler). Let ARG be an argument system with round complexity
2k that follows the same message structure as defined in Construction 6.2, and let S be a probabilistic
algorithm with the following syntax.

• On input (pp,x, tri) where tri =
((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, cmi

)
for i ∈ [k], S outputs Qi+1;

• On input (pp,x, tri) where tri :=
((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, (cmi,Qi,ansi,pf i)
)
, S outputs mi.

Given α ≥ 0 and tS ∈ N, S is an ARG random continuation sampler (ARG-RCS) with error α and
running time tS for ARG if it satisfies the following guarantee: for every size bound tARG, tARG-size circuit
P̃ , ARG prover auxiliary input ai, public parameter pp, i ∈ [k], and partial ARG execution (x, tri) that has
non-zero measure with respect to P̃(ai), we have

∆
(
D
[
P̃(ai),S(pp,x, tri)

]
,U
[
P̃(ai),R(x,tri)

])
= α ,

where

• D
[
P̃(ai),S(pp,x, tri)

]
is a distribution of ARG transcripts produced by S:

D
[
P̃(ai),S(pp,x, tri)

]

:=



(
(cmj ,Qj ,ansj ,pf j ,mj)

)
j∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x, aux0)← P̃(pp, aux)
(Q0,m0) := (⊥,⊥)
For 1 ≤ j ≤ i :

(cmj , auxj)← P̃(auxj−1,Qj−1,mj−1)
mi ← S(pp,x, tri)
For i < j ≤ k :

(cmj , auxj)← P̃(auxj−1,Qj−1,mj−1)
Qj ← S(pp,x,

((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ))ℓ<j

))
(ansj ,pf j , auxj)← P̃(auxj ,Qj)

mj ← S(pp,
((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ))ℓ<j , (Qj ,ansj ,pf j)

))


;

33Note that we run the malicious IOP prover and the IOP verifier from scratch in the experiment. Alternatively, one may break it
into two parts as in D

[
P̃(ai),S(x, tri)

]
: rounds 1 ≤ j ≤ i and i+ 1 ≤ j ≤ k. We opt for the more concise notation.

55



• U
[
P̃(ai),R(x,tri)

]
is the uniform distribution over all complete ARG transcripts consistent with tri:

U
[
P̃(ai),R(x,tri)

]
:=


(
(cmj ,Qj ,ansj ,pf j ,mj)

)
j∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x, aux0)← P̃(pp, aux)
ρ← R(x,tri)

(Q0,m0) := (⊥,⊥)
For j ∈ [k] :

(cmj , auxj)← P̃(auxj−1,Qj−1,mj−1)
Qj ← V(x, ρ, (ansℓ)ℓ<j)

(ansj ,pf j , auxj)← P̃(auxj ,Qj)

mj ← V(x, ρ, (ansℓ)ℓ∈[j])


.

6.3 Equivalence of IOP-RCS and ARG-RCS

We now show that an IOP-RCS exists if and only if a corresponding ARG-RCS exists.

Lemma 6.9 (IOP sampler to ARG sampler). For every α ≥ 0 and tS ∈ N, if IOP has an IOP-RCS with
error α and running time tS, then Finale[IOP,VC] admits an ARG-RCS S with error α and running time
tS = O(tS).

Proof. We first define the ARG random continuation sampler S from its IOP analogue S the natural way:

S(pp,x, tri):
1. Set tri :=

((
(Qj ,ansj ,mj)

)
j<i

)
if tri =

((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, cmi

)
.

2. Set tri :=
((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)

if tri =
((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, (cmi,Qi,ansi,pf i)
)
.

3. Output S(x, tri).

It is clear from construction that S has running time O(tS). Moreover, since the argument verifier’s
messages in Construction 6.2 only depend on the query sets and IOP prover answers (V replies with the
messages of V; an invalid opening interferes with the decision, but not the communication), the error of S is
exactly α, the error of S.

We now show that given an ARG random continuation sampler, we can construct an IOP random
continuation sampler.

Lemma 6.10 (ARG sampler to IOP sampler). For every α ≥ 0 and tS ∈ N, if Finale[IOP,VC] has an
ARG-RCS with error α and running time tS , then IOP admits an IOP-RCS S with error α and running time
tS = O(tS).

Proof. Note that the apparent difficulty is caused by the fact that IOP transcripts do not contain vector
commitments nor VC openings, but to run the ARG-RCS, one needs to supply the commitments and openings
as inputs.

However, we observe (as we did above) that the argument verifier’s messages in Construction 6.2 are
independent of the commitments and VC openings. Therefore, these are only syntactic requirements that an
arbitrary sequence of strings can fulfil; in particular, it suffices for the ARG-RCS to receive empty strings as
commitments and VC openings:

S(x, tri):
1. Set tri :=

((
(⊥,Qj ,ansj ,⊥,mj)

)
j<i

,⊥
)

if tri =
((
(Qj ,ansj ,mj)

)
j<i

)
.
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2. Set tri :=
((
(⊥,Qj ,ansj ,⊥,mj)

)
j<i

, (⊥,Qi,ansi,⊥)
)

if tri =
((
(Qj ,ansj ,mj)

)
j<i

, (Qi,ansi)
)
.

3. Output S(⊥,x, tri).

It is again clear from construction and definition of S that S has running time O(tS) and error α.

6.4 Security reduction

We show that given a random continuation sampler for IOP (or, equivalently, a random continuation sampler
for ARG), a security reduction claim similar to Lemma 5.4 can be shown.

Lemma 6.11. Assume there is an ARG-RCS S with error α and running time tS . There exist a probabilistic
algorithmsR which, for every ϵ > 0, size bound tARG ≥ tV + tVC.Check + log|Σ|+ log lmax, and tARG-size circuit
P̃ , satisfy

Pr

 V([Q̃i,Π̃i])i∈[k](x; ρ) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; ρ

)
= 1

∧
(∧

i∈[k]

(∧
j≤i VC.Check(pp, cmj ,Qi,j , ansi,j , pfi,j)

))


≤ ϵVC (λ, lmax, qmax, tVC) + ϵ+
l · α
ϵ

,

with respect to

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] ←

〈
P̃(aux0),V(x; ρ)

〉
For i ∈ [k] :

(cmi, auxi)← P̃(x, auxi−1,Qi−1,mi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,pf j ,mj)

)
j<i

, ϵ
)


(5)

where tVC = O
(
k·l
ϵ · (tARG + tS)

)
.

The reductor is defined as follows:

• Rpost(K, l):
1. Initialize Π̃ := (σ)l, where σ is an arbitrary symbol in Σ.
2. For all (Q, ans, pf) ∈ K and q ∈ Q: Set Π̃[q] := ans[q].
3. Set Q̃ :=

⋃
(Q,ans)∈KQ.

4. Output (Q̃, Π̃).
• RP̃(auxi,·)

(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,pf j ,mj)

)
j<i

, ϵ
)
:34

1. Initialize K = ∅.
2. Set N := l

ϵ and cm′
i := cmi.

34Note that, when i = 1 (i.e., when the second argument is ⊥) the reductor simply samples ρ and applies the functions Vq and
Vm as appropriate; there is no need for a sampler in this case. Equivalently, we assume S performs this trivial sampling when i = 1
and is only nontrivial when i > 1.

57



3. Repeat the following N times:
(a) Run Q′

i ← S
(
pp,x,

((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ)

)
ℓ<i

, cmi

))
.

(b) Run (ans′i,pf
′
i, aux

′
i)← P̃(auxi,Qi).

(c) Run m′
i ← S

(
pp,x,

((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ)

)
ℓ<i

, (Q′
i,ans

′
i,pf

′
i)
))

.
(d) For i < j ≤ k:

i. Run (cm′
j , aux

′
j)← P̃(aux′j−1,Q

′
j−1,m

′
j−1).

ii. Run Q′
j ← S

(
pp,x,

((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ)

)
ℓ<i

,
(
(cm′

ℓ,Q
′
ℓ,ans

′
ℓ,pf

′
ℓ,m

′
ℓ)
)
i≤ℓ<j

))
.

iii. Run (ans′j ,pf
′
j , aux

′
j)← P̃(aux′j ,Q′

j).
iv. Run m′

j ← S
(
pp,x,

((
(cmℓ,Qℓ,ansℓ,pf ℓ,mℓ)

)
ℓ<i

,
(
(cm′

ℓ,Q
′
ℓ,ans

′
ℓ,pf

′
ℓ,m

′
ℓ)
)
i≤ℓ<j

, (Q′
j , ans

′
j ,pf

′
j)
))

.
v. If VC.Check(cmi,Q′

j,i, ans
′
j,i, pf

′
j,i) = 1, add (Q′

j,i, ans
′
j,i, pf

′
j,i) to K.35

4. Output (Q̃i, Π̃i)← Rpost(K, li).

Proof. Throughout the proof, probabilistic expressions are with respect to the experiment in Eq. 5.
Our goal is to upper bound the following expression:

Pr

 V([Q̃i,Π̃i])i∈[k](x; ρ) ̸= 1

∧V([Qi,ansi])i∈[k]
(
x; ρ

)
= 1

∧
(∧

i∈[k]

(∧
j≤i VC.Check(pp, cmj ,Qi,j , ansi,j , pfi,j)

))
 .

Similar to the proof of Lemma 5.9, the above even implies either there are valid openings with disagreeing
answers or there is a missing query in one of the IOP strings. We analyze them separately.

Valid openings with disagreeing answers. We show that

Pr

 ∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i ∩ Q̃i

∧ Π̃i[q] ̸= ansj,i[q]
∧VC.Check(pp, cmi,Qj,i, ansj,i, pfj,i) = 1

 ≤ ϵVC(λ, lmax, qmax, tVC)

where tVC = O
(
k·l
ϵ · (tS + tARG)

)
.

We define a VC adversary AVC as before:

AVC(pp, ai):
1. Run (x, aux0)← P̃(pp, ai).
2. Sample ρ← {0, 1}r.
3. Run ((cmi,Qi,ansi,pf i,mi))i∈[k] ←

〈
P̃(aux0),V(pp,x, ρ)

〉
.

4. For every i ∈ [k]:
(a) Run (cmi, auxi)← P̃(auxi−1,Qi−1,ansi−1).
(b) Run Ki ← RP̃(auxi,·)

(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,mj)

)
j<i

, ϵ
)
.

5. If there exists i ∈ [k], j ∈ [i, k], and (Q, ans, pf) ∈ Ki with q ∈ Qj,i ∩Q and ansj,i[q] ̸= ans[q], output
(cmi, ansj,i, ans,Qj,i,Q, pfj,i, pf).

6. Otherwise, output (the “dummy” tuple) (cm1, ans1, ans1,Q1,Q1, pf1, pf1).

Note that in AVC, we output K when invokingR. This is a notational overload where we partially execute
R without calling Rpost. The time complexity of AVC is O

(
k·l
ϵ · (tS + tARG)

)
. Therefore, according to

35Note the order of indices: in order to fill in the i-th IOP proof, the reductor uses the i-th query sets and answers of all rounds
j > i (i.e., all Qj,i and ansj,i).
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Definition 3.8,

Pr

 ∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i ∩ Q̃i

∧ Π̃i[q] ̸= ansj,i[q]
∧VC.Check(pp, cmi,Qj,i, ansj,i, pfj,i) = 1



≤ Pr


|Q| = |Q′| ≤ q
∧ ∃ q ∈ Q ∩Q′ : ans[q] ̸= ans′[q]
∧ VC.Check(pp, cm,Q, ans, pf) = 1
∧ VC.Check(pp, cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣∣∣
pp← VC.Gen(1λ, lmax)
ai← D(
cm, ans, ans′,
Q,Q′, pf, pf ′

)
← AVC(pp)


≤ ϵVC(λ, lmax, qmax, tVC) .

Missing positions in Π̃i. We show that

Pr
[
∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i \ Q̃i

]
≤ ϵ+ 2l · α

ϵ
.

For this case, we rely on the property of ARG-RCS. In particular, according to Definition 6.8, the ARG
verifier’s next message in tri sampled by S is statistically close to the “ideal” distribution of ARG verifier’s
next message, namely the ARG execution with respect to verifier randomness in R(x,tri).

We first define the following ideal reductor R̂ with respect to U
[
P̃(ai),R(x,tri)

]
. In particular, R̂ works

as if there were a perfect ARG-RCS as in the public-coin case:

R̂P̃(auxi,·)
(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,pf j ,mj)

)
j<i

, ϵ
)
:

1. Initialize K := ∅ and set N := l
ϵ .

2. Repeat the following N times:
(a) Sample ρ← R((cmj ,Qj ,ansj ,pf j ,mj))j<i

.
(b) Run Qi ← V(x, ρ, (ansj)j<i).
(c) Run (ansi,pf i, auxi)← P̃(auxi,Qi).
(d) Run mi ← V(x, ρ, (ansj)j∈[i]).
(e) For i < j ≤ k:

i. Run (cm, aux′j)← P̃(auxj−1,mj−1).
ii. Run Qj ← V(x, ρ, (ansℓ)ℓ<j).

iii. Run (ansj ,pf j , auxj)← P̃(aux′j ,Qj).
iv. Run mj ← V(x, ρ, (ansℓ)ℓ∈[j]).

(f) If VC.Check(cmi,Qj,i, ansj,i, pfj,i) = 1, add (Qj,i, ansj,i, pfj,i) to K.
3. Output (Q̂i, Π̂i)← Rpost(K, li).

We can adapt the proof of Lemma 5.4 to bound the following probability:

Pr


∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i \ Q̂i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r

((cmj ,Qj ,ansj ,pf j ,mj))j∈[k] ←
〈
P̃(aux0),V(pp,x, ρ)

〉
For i ∈ [k] :

(cmi, auxi)← P̃(auxi−1,Qi−1,mi−1)

(Q̂i, Π̂i)← R̂P̃(auxi,·)
(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,pf j ,mj)

)
j<i

, ϵ
)


.

(6)

59



Fix prover auxiliary input ai, public parameters pp and a partial transcript tri =
(
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

that has non-zero measure with respect to P̃(ai), we define the weight of a coordinate q ∈ [li] with respect to
(pp, ai, tri) as

δ(pp,ai,tri)(q) := Pr

 ∃ j ∈ [i, k] : q ∈ Qj,i

∧
∧

j∈[k]

(∧
ℓ∈[j] VC.Check(pp, cmℓ,Qj,ℓ, ansj,ℓ, pfj,ℓ)

) ∣∣∣∣∣∣∣
ρ← R(x,tri)

b
tr←−
〈
P̃(pp, ai),V(pp,x, ρ)

〉(
(cmj ,ansj ,pf j ,mj)

)
j∈[k] := tr

 .

A union bound over all q ∈ [li] yields

Pr


∃ j ∈ [i, k], q ∈ Qj,i : q /∈ Q̂i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r

((cmj ,Qj ,ansj ,pf j ,mj))j∈[k] ←
〈
P̃(aux0),V(pp,x, ρ)

〉
For j ∈ [k] :

(cmj , auxj)← P̃(auxj−1,Qj−1,mj−1)

(Q̂j , Π̂j)← R̂P̃(auxj ,·)
(
pp,x, (cmℓ)ℓ≤j ,

(
(Qℓ,ansℓ,pf ℓ,mℓ)

)
ℓ<j

, ϵ
)



≤ max
(pp,ai,tri)

Pr

∃ q ∈ [li], j ∈ [i, k] : q ∈ Qj,i ∧ q /∈ Q̃i

∣∣∣∣∣∣∣
ρ← R(x,tri)

b
tr←− ⟨P̃(pp, ai),V(pp, ρ)⟩(

(cmj ,ansj ,pf j ,mj)
)
j∈[k] := tr




≤ max
(pp,ai,tri)

∑
q∈[li]

δ(pp,ai,tri)(q) · (1− δ(pp,ai,tri)(q))
N


≤ li

N
,

and another union bound over i ∈ [k] gives

Pr


∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i : q /∈ Q̂i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r

((cmi,Qi,ansi,pf i,mi))i∈[k] ← ⟨P̃(aux0),V(pp,x; ρ)⟩
For i ∈ [k] :

(cmi, auxi)← P̃(x, auxi−1,Qi−1,mi−1)

(Q̂i, Π̂i)← R̂P̃(auxi,·)
(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,pf j ,mj)

)
j<i

, ϵ
)


≤
∑
i∈[k]

li
N

=
l

N
.

It remains to show the connection between Eq. 6 and Pr
[
∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i : q /∈ Q̃i

]
. Accord-

ing to Definition 6.8,

∆
(
D
[
P̃(ai),S(pp,x, tri)

]
,U
[
P̃(ai),R(x,tri)

])
= α .
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Therefore, for any N ∈ N,

∆

((
D
[
P̃(ai),S(pp,x, tri)

])N
,
(
U
[
P̃(ai),R(x,tri)

])N)
= N · α .

Consider the following distribution:
(
(Qi, Q̂i, Π̂i)

)
i∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] ←

〈
P̃(aux0),V(pp,x, ρ)

〉
For i ∈ [k] :

(cmi, auxi)← P̃(x, auxi−1,Qi−1,mi−1)

(Q̂i, Π̂i)← R̂P̃(auxi,·)
(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,pf j ,mj)

)
j<i

, ϵ
)


.

We can rewrite it equivalently in terms of
(
U
[
P̃(ai),R(x,·)

])N
:



(
(Qi, Q̂i, Π̂i)

)
i∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] ←

〈
P̃(aux0),V(pp,x, ρ)

〉
For i ∈ [k] :

For j ∈ [N] :

((cmj,ℓ,Qj,ℓ,ansj,ℓ,pf j,ℓ,mj,ℓ))ℓ∈[k] ← U
[
P̃(ai),R(((cmℓ,Qℓ,ansℓ,pf ℓ,mℓ))ℓ<i,cmi)

]
Ki :=

{
(Qj,ℓ,i, ansj,ℓ,i, pfj,ℓ,i) : j ∈ [N], i ≤ ℓ ≤ k,
VC.Check(pp, cmj,i,Qj,ℓ,i, ansj,ℓ,i, pfj,ℓ,i) = 1

}
(Q̂i, Π̂i)← Rpost(Ki, li)



=



((Qi, Q̂i, Π̂i))i∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] ←

〈
P̃(aux0),V(pp,x, ρ)

〉
For i ∈ [k] :

((cmj,ℓ,Qj,ℓ,ansj,ℓ,pf j,ℓ,mj,ℓ))j∈[N],ℓ∈[k]

←
(
U
[
P̃(ai),R(((cmj ,Qj ,ansj ,pf j ,mj))j<i,cmi)

])N
Ki :=

{
(Qj,ℓ,i, ansj,ℓ,i, pfj,ℓ,i) : j ∈ [N], i ≤ ℓ ≤ k,
VC.Check(pp, cmj,i,Qj,ℓ,i, ansj,ℓ,i, pfj,ℓ,i) = 1

}
(Q̂i, Π̂i)← Rpost(Ki, li)



.
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Similarly, we can write
((Qi, Q̃i, Π̃i))i∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] ←

〈
P̃(aux0),V(pp,x, ρ)

〉
For i ∈ [k] :

(cmi, auxi)← P̃(x, auxi−1,Qi−1,mi−1)

(Q̃i, Π̃i)← RP̃(auxi,·)
(
pp,x, (cmj)j≤i,

(
(Qj ,ansj ,pf j ,mj)

)
j<i

, ϵ
)


in terms of

(
D
[
P̃(ai),S(pp,x, ·)

])N
:

((Qi, Q̃i, Π̃i))i∈[k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux0)← P̃(pp, ai)
ρ← {0, 1}r(
(cmi,Qi,ansi,pf i,mi)

)
i∈[k] ←

〈
P̃(aux0),V(pp,x, ρ)

〉
((cmi,j ,Qi,j ,ansi,j ,mi,j))i∈[N],j∈[k] ←

(
U
[
P̃(ai),Rcm1

])N
K1 :=

{
(Qi,j,1, ansi,j,1, pfi,j,1) : i ∈ [N], 1 ≤ j ≤ k,
VC.Check(pp, cmi,1,Qi,j,1, ansi,j,1, pfi,j,1) = 1

}
(Q̃1, Π̃1)← Rpost(K1, l1)
For 1 < i ≤ k :
((cmj,ℓ,Qj,ℓ,ansj,ℓ,pf j,ℓ,mj,ℓ))j∈[N],ℓ∈[k]

←
(
D
[
P̃(ai),S(pp,x,

((
(cmj ,Qj ,ansj ,pf j ,mj)

)
j<i

, cmi)
)])N

Ki :=

{
(Qj,ℓ,i, ansj,ℓ,i, pfj,ℓ,i) : j ∈ [N], i ≤ ℓ ≤ k,
VC.Check(pp, cmj,i,Qj,ℓ,i, ansj,ℓ,i, pfj,ℓ,i) = 1

}
(Q̃i, Π̃i)← Rpost(Ki, li)



.

Therefore, we conclude that

Pr
[
∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i \ Q̃i

]
≤ Pr

[
∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i \ Q̂i

]
+ N · α

≤ l

N
+ N · α ,

where Pr
[
∃ i ∈ [k], j ∈ [i, k], q ∈ Qj,i \ Q̂i

]
is with respect to the same experiment as in Eq. 6.
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