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Abstract. Zn is one of the simplest types of lattices, but the compu-
tational problems on its rotations, such as ZSVP and ZLIP, have been
of great interest in cryptography. Recent advances have been made in
building cryptographic primitives based on these problems, as well as
in developing new algorithms for solving them. However, the theoretical
complexity of ZSVP and ZLIP are still not well understood.

In this work, we study the problems on rotations of Zn by exploiting
the symmetry property. We introduce a randomization framework that
can be roughly viewed as ‘applying random automorphisms’ to the out-
put of an oracle, without accessing the automorphism group. Using this
framework, we obtain new reduction results for rotations of Zn. First, we
present a reduction from ZLIP to ZSCVP. Here ZSCVP is the problem of
finding the shortest characteristic vectors, which is a special case of CVP
where the target vector is a deep hole of the lattice. Moreover, we prove a
reduction from ZSVP to γ-ZSVP for any constant γ = O(1) in the same
dimension, which implies that ZSVP is as hard as its approximate ver-
sion for any constant approximation factor. Second, we investigate the
problem of finding a nontrivial automorphism for a given lattice, which
is called LAP. Specifically, we use the randomization framework to show
that ZLAP is as hard as ZLIP. We note that our result can be viewed as
a Zn-analogue of Lenstra and Silverberg’s result in [JoC2017], but with
a different assumption: they assume the G-lattice structure, while we
assume the access to an oracle that outputs a nontrivial automorphism.

Keywords: Lattice automorphism · Randomized reduction · ZLIP ·
Gradient descent · Characteristic vectors of the unimodular lattice
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1 Introduction

Lattices are fundamental mathematical concept that represent discrete additive
subgroups of Rm. A lattice is usually defined by a set of n linearly independent
basis vectors b1,b2, . . . ,bn ∈ Rm, such that any point in the lattice can be
expressed as an integer linear combination of the basis vectors. Lattices offer
a rich geometric structure that can be used to define various computationally
hard problems. Two of the famous problems are the Shortest Vector Problem
(SVP), which involves finding the shortest non-zero vector in a given lattice,
and the Closest Vector Problem (CVP), which involves finding the lattice point
closest to a given target point. Both of these problems are known to be NP-hard,
and their theoretical complexity and solving algorithms have been extensively
studied [8,10,1,5]. In recent decades, lattices have played a crucial role in cryp-
tography, with numerous cryptographic schemes being constructed based on the
lattice-related computationally hard problems [45].

In addition to SVP and CVP, there are also other important lattice-related
problems that have gained considerable attention. One such problem is the Lat-
tice Isomorphism Problem (LIP). Two lattices L1 and L2 are said to be isomor-
phic if there exists an orthogonal transformation that maps L1 to L2. The LIP
is to find such an orthogonal transformation given the lattice bases of L1 and
L2. Research on the LIP dates back to the 1990s, with the development of al-
gorithms for solving low-dimensional LIP [46]. Then a subsequent work studies
the asymptotic complexity of LIP and proves that LIP is at least as hard as
the Graph Isomorphism Problem (GIP) [50]. In [28], Haviv and Regev propose
an nO(n)-time algorithm for the general LIP, which remains the fastest known
algorithm for solving LIP. There are also works that study LIP from different
perspectives. Sikirić et al. [21] demonstrate that with access to an SVP oracle,
an LIP instance can be converted to a GIP instance. Although GIP has a quasi-
polynomial time algorithm as shown in [7], the worst-case number of shortest
vectors may be exponential, which can lead to a potentially exponential-sized
graph in [21]. Recently, Ducas and Gibbons have adapted the notion of the
hull of a code and showed that it could be used to launch geometric attacks on
certain special lattices [17]. Another line of research focuses on constructing cryp-
tographic schemes based on the LIP. The proposed schemes include public-key
encryption, signature, key encapsulation mechanism, and identification [9,18,19].
Notably, the security of some of these schemes relies on a special case of the LIP,
i.e., the ZLIP.

The ZLIP involves finding an orthogonal transformation that maps Zn to L,
provided that L is isomorphic to Zn. Initially, the ZLIP is studied for crypt-
analysis purposes of GGH [26] and NTRUSign [30]. In [25], Gentry and Szydlo
extract the secret key of NTRUSign by solving an special form of the ZLIP,
i.e., solving a structured U from its Gram matrix G = U⊤U up to a signed
permutation. Then Nguyen and Regev propose an alternative method for GGH
by tackling a learning a parallelepiped problem using gradient descent [43]. Ad-
ditionally, an in-depth analysis of the algorithm proposed by Gentry and Szydlo
is provided in [32,33]. For the theoretic complexity of ZLIP, Szydlo [53] provides
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a reduction from search ZLIP to decision LIP, and results from [31] suggest that
ZLIP is in co-NP. On the other hand, solving algorithms and experiments for
ZLIP are proposed in [23,11]. Recent progress has also been made in [20], where
Ducas provides a reduction from n-dimensional ZLIP to n

2 -dimensional SVP.
Plugging in the fastest known algorithm for SVP from [2], it results in a 2n/2-
time algorithm for ZLIP. In addition, Bennett et al. [9] provide a reduction from
ZSVP to O(1)-uSVP, which leads a 2n/2 time algorithm for ZSVP. Due to the
well-known reduction from ZLIP to ZSVP, the results of [9] imply a reduction
from ZLIP to O(1)-uSVP and a 2n/2-time algorithm for ZLIP.

1.1 Our Results and Techniques

The basis observation of this work is that Zn (and its rotations) possesses a
remarkable degree of symmetry. For a lattice L isomorphic to Zn, the auto-
morphism group Aut(L) is isomorphic to the signed permutation group S±n (see
Section 2), which is known to be the largest possible for any lattice in Rn when
n > 10.1 Leveraging this powerful property of symmetry, we delve into the ZLIP
and focus on two key questions, i.e.,

Q1: Can the symmetry be used to assist in the solving or the reduction of the
computational problems associated with Zn?

Q2: Is it feasible to efficiently obtain a nontrivial automorphism for a lattice
isomorphic to Zn?
Centered on these two questions, we present the following results.

A Randomization Framework. To address the first question, we provide a
randomization framework, which can be roughly viewed as ‘applying random au-
tomorphisms’ in Aut(L) to the output of an oracle, without knowing the specific
elements in Aut(L). The framework utilizes the fact the Aut(L) is a subgroup
of the orthogonal group On(R), and the latter can be efficiently sampled uni-
formly at random.2 The following toy example illustrates how the randomization
framework operates.
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1 In fact, the signed permutation group S±
n is the largest possible automorphism group

among all lattices in Rn, with the exception of dimensions n = 2, 4, 6, 7, 8, 9, 10 [44].
2 Strictly speaking, we can efficiently generate matrices in On(R) distributed with

Haar measure. We refer to Section 3 for a detailed discussion.
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Denote the square on the left-hand side as □0, and define G = R/(2πZ).
Consider the action of G on □0 as rotations, i.e., ρ(□0) = □ρ, ∀ρ ∈ G, where
□ρ is the rotation of □0 around the origin O by ρ. In terms of rotations, the
automorphism group of □0 can be expressed as Aut(□0) = π

2Z4, which is a
subgroup of G = R/(2πZ). We assume there is an oracle O that takes as input
any □ρ and outputs an arbitrary vertex of □ρ. The oracle does not know the
specific rotation ρ and the correspondence of the vertices between □0 and □ρ.
Next, we show how the randomization framework can obtain random vertices
of □0 without accessing Aut(□0). Specifically, the randomization framework 1)
generates a ρ ∈ G uniformly at random; 2) invokes the oracle O with input
ρ(□0) = □ρ and obtains an arbitrary vertex of □ρ; 3) applies ρ−1 to the obtained
vertex and outputs a vertex of □0. Using the randomness of ρ, it can be proved
that the obtained vertex is uniformly distributed with respect to the action of
Aut(□0) (see Appendix A).

The randomization framework for lattices generalizes the above example.
Specifically, given a lattice L and an oracle defined for any rotations of L, the
framework randomizes the oracle’s output such that the resulting samples follow
a distribution that is invariant under the action of Aut(L). Another challenge
should be addressed by the randomization framework is how to ‘conceal’ the
information of the random orthogonal matrix from the oracle’s input. This is
achieved by using the method introduced in [28,9,19], which samples a basis via
a discrete Gaussian distribution.

New Reduction Results for ZLIP. The randomization framework enables
us to derive new reduction results for ZLIP or ZSVP.

Theorem 1.1 There is an efficient randomized reduction from ZLIP to ZSCVP.

In Theorem 1.1, we introduce a new problem, ZSCVP, which requires finding
the shortest characteristic vector of a given lattice L ∼= Zn. We note that the set
of characteristic vectors forms a coset w + 2L, and a characteristic vector can
be efficiently computed for a given basis (see Lemma 2.6). Thus ZSCVP can be
viewed as a CVP in the lattice 2L. Previous studies on ZLIP mainly focused
on reductions to SVP or its variants [9,18,20]. To the best of our knowledge,
Theorem 1.1 is the first direct reduction from ZLIP to CVP. Moreover, ZSCVP
is a very special case of CVP, where the target vector is a deep hole in the
lattice 2L. We believe this is a non-trivial observation that could facilitate further
research on ZLIP, as finding or verifying a deep hole for a lattice is generally
hard [27].

The proof of Theorem 1.1 relies on the fact that Aut(L) acts transitively
on the set of shortest characteristic vectors. This allows us to sample uniformly
from this set using the randomization framework. Then we can show that with
polynomial many samples, we can efficiently find the shortest vectors of L by
using the gradient descent method adopted in [43].
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Theorem 1.2 For any constant γ = O(1), there is an efficient randomized
reduction from ZSVP to γ-ZSVP in the same dimension.

Theorem 1.2 shows that ZSVP is as hard as its approximate version for any
constant approximation factor. Plugging the best known algorithm for O(1)-SVP
in [39,6] gives a 20.802n-time algorithm for ZSVP. However, γ-ZSVP is a special
case of γ-SVP, so a more efficient algorithm for ZSVP might exist if we can
exploit its special structure, which can be an open problem for future research.

The proof of Theorem 1.2 relies on an analysis of the orbits of the vectors in
L∩γBn2 under the action of Aut(L). We show that we can sample uniformly from
one orbit using the randomization framework. The shortest vectors can then be
obtained by doing pairwise subtraction on a polynomial number of vectors in
the same orbit.

The Lattice Automorphism Problem. To answer the second question, we
introduce a new problem, ZLAP, which requires finding a nontrivial automor-
phism in Aut(L). Our main result is the following reduction.

Theorem 1.3 There is an efficient randomized reduction from ZLIP to ZLAP.

According to Theorem 1.3, it has ZLIP ≤ ZLAP. On the other hand, a simple
deduction gives ZLAP ≤ ZLIP by using Lemma 2.8. Therefore, we can conclude
that ZLAP = ZLIP with respect to the randomized reduction.

The key idea to prove Theorem 1.3 is still to use the randomization framework
to sample automorphisms for a lattice L ∼= Zn, such that they are uniformly dis-
tributed with respect to the conjugate action of Aut(L). However, the number
of conjugacy classes of Aut(L) is exponential in n, which makes direct appli-
cation of the randomization framework inefficient. To overcome this, we devise
a preprocessing method and a two-level randomization technique, which effec-
tively transform the automorphisms into some specific conjugacy classes, while
maintaining the uniformity. Then our problem turns to how to use these ran-
dom automorphisms to recover the shortest vectors of L. To solve this problem,
we consider the distribution of ⟨x, ϕx⟩ for a random automorphism ϕ uniformly
distributed over a conjugacy class and a fixed x ∈ Rn. This distribution captures
the geometric information of the automorphisms, and we show that the shortest
vectors of L can be recovered from this distribution using the gradient descent
method.

Additionally, we can use the hardness of ZLAP to link ZLIP with the hidden
subgroup problem (HSP) on GLn(Z). To see this, let L be a lattice with a
basis B. Then Aut(L) is isomorphic to the stabilizer group Stab(G), where
G = B⊤B. Hence, LAP of L is equivalent to finding a nontrivial element in
Stab(G) (see Lemma 2.9). Since Stab(G) is a subgroup of GLn(Z), we can
formulate a corresponding HSP on GLn(Z). By Theorem 1.3, we eventually
obtain the following result. The only previous relation between lattice problems
and HSP that we are aware of is due to Regev [47], who shows that HSP on the
dihedral group is harder than

√
n-uSVP.
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Corollary 1.1 There exists an efficient randomized reduction from ZLIP to a
variant of HSP on GLn(Z).

1.2 Related Works

Reduction from ZSVP to Approximate SVP. In [9], Bennet et al. present
a reduction from ZSVP to γ-uSVP for any constant γ = O(1) using lattice
sparsification techniques [34,51]. They also propose a simple projection-based
reduction from ZSVP to

√
2-SVP, and suggest that this result may be extended

to a more general case. Our result in Theorem 1.2 provides a different perspective
on the reduction from ZSVP to approximate SVP, and includes the

√
2-SVP

result in [9] as a special case.

Graph Automorphism Problem (GAP). The GAP, which requires to find
a generating set of the automorphism group of a given graph,3 is a well-studied
problem that has a close connection to the GIP. It is known that GAP and GIP
are computationally equivalent [40]. Our result shows that ZLIP and ZLAP
are also equivalent in the sense of randomized reduction. For general lattices,
we further prove that LAP ≤ LIP (Corollary 4.2), while the reverse direction
remains open.

LIP for G-Lattices. In [33], Lenstra and Silverberg investigate the isomor-
phism problem between a G-lattice and Z⟨G⟩ = Z[G]/(u+1), where G is a finite
abelian group containing an element u of order 2. A G-lattice is defined as a
lattice L equipped with a homomorphism f : G→ Aut(L) such that f(u) = −1.
The authors propose a deterministic polynomial time algorithm for solving the
isomorphism problem between a G-lattice and Z⟨G⟩. Our results on LAP can
be viewed as a Zn-analogue of Lenstra and Silverberg’s result, but there are two
key differences. Firstly, Lenstra and Silverberg’s algorithm assumes the G-lattice
structure, whereas in our reduction we assume access to an oracle that returns an
arbitrary nontrivial automorphism. Secondly, they focus on deterministic algo-
rithms, where we employ a randomization framework that produces randomized
reductions.

1.3 Outline

The rest of the paper is organized as follows. Section 2 provides basic definitions
and preliminaries. In Section 3, we present the randomization framework and
use it to prove Theorem 1.1 and Theorem 1.2, along with some corollaries. In
Section 4, we show the proof of Theorem 1.3 and some corollaries. Section 5
concludes the paper.
3 This differs slightly from our definition of LAP, which only asks to find a nontrivial

automorphism. We remark that for ZLAP, finding a nontrivial automorphism and
finding a generating set of the automorphism group are equivalent by Theorem 1.3.
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2 Preliminary

2.1 Notations

– Matrices and column vectors are denoted by bold letters, such as A and a.
For a matrix A = (a1, . . . , an) we denote its Gram-Schmidt orthogonalisa-
tion by Ã = (ã1, . . . , ãn). The Euclidean norm of a ∈ Rn is denoted by ∥a∥.
The transpose of A is denoted by A⊤, and (A−1)⊤ is abbreviated as A−⊤.

– Let [n] = {1, 2, . . . , n} for a positive integer n. The size of a finite set A is
denoted by |A|. For a, b ∈ Z, a | b means that b is divisible by a.

– Let GLn(R) and GLn(Z) be the general linear group of rank n over R and
Z respectively. We use On(R) to represent the group of orthogonal matrices
O ∈ GLn(R) such that O⊤O = In, where In is the identity matrix.

– For a matrix B ∈ GLn(R), we denote L(B) as the lattice generated by B.
We denote the standard basis of Zn as {ei}i∈[n]. We use L1

∼= L2 to represent
that two lattices L1 and L2 are isomorphic.

– We denote the group of permutation matrices of size n×n as Sn, and denote
the group of signed permutation matrices of size n×n as S±n , where a signed
permutation matrix is a type of generalized permutation matrix, where the
nonzero entries are ±1. We use Pn to represent the permutation matrix(

0 1
In−1 0

)
. For two groups G and H, we use H ≤ G to represent H is a

subgroup of G.

2.2 Lattice and Related

A lattice L of rank n and dimension m is a set of points in Rm that can
be expressed as integer combinations of n linearly independent basis vectors
b1, ...,bn. Denote B = (b1, ...,bn) as the basis of the lattice L, and then
L = {Bz : z ∈ Zn}. In the rest of this paper, we will consider only full-rank
lattices, where m = n and B ∈ GLn(R). The dual lattice of L is defined as
L∗ def

= {u ∈ Rn : ⟨u,v⟩ ∈ Z for all v ∈ L}, and the dual basis of a lattice basis B
is defined as B∗ = B−⊤. Let λi(L) denote the i-th successive minimum of the
lattice L, and let bl(L) denote the minimum value of maxi∈[n] ∥bi∥ taken over
all bases of L. It is known that λn(L) ≤ bl(L) ≤

√
n
2 λn(L) [13].

For the lattice Zn, a bound on the number of integer points contained in a
ball of radius r centered at the origin is established in [48].

Lemma 2.1 ([48]) Suppose r satisfies 1 ≤ r ≤
√
n and r2 ∈ Z, then it has

(
2n/r2

)r2 ≤ |Zn ∩ rBn2 | ≤
(
2e3n/r2

)r2
, (1)

where Bn2 is the closed Euclidean unit ball. Then for r = O(1), it has |Zn ∩ rBn2 | ≤
nO(1).
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Lattice Problems. In addition to SVP and CVP, the following approximate
lattice problem is also involved in our reduction.

Definition 2.1 (γ-SVP) Given a basis B of a lattice L as input, the γ-SVP is
to find a nonzero short vector in L of length at most γλ1(L). If L ∼= Zn, we call
this problem γ-ZSVP.

γ-SVP has been extensively studied in the literature, see, e.g., [39,54,6,3,4].
The lemma below states the best-known result for γ-SVP with γ = O(1).

Lemma 2.2 ([39]) For every constant ϵ > 0, there exists a constant γ = γ(ϵ) ≥
1 depending only on ϵ such that there is a randomized algorithm that solves γ-SVP
on lattices of dimension n in 2(0.802+ϵ)npoly(n) time.

Gaussian Measure over Lattices. Let ρs(y) = exp
(
−π∥y∥2/s2

)
,y ∈ Rn, to

be the Gaussian function centered at origin with parameter s, then the discrete
Gaussian distribution with parameter s on a lattice L of rank n defined by

DL,s(y) = ρs(y)/ρs(L),y ∈ L. (2)

For a set A ⊆ L, we denote ρs(A) =
∑

x∈A ρs(x). The following results will be
used in our reduction.

Lemma 2.3 ([28]) Let L be a lattice of dimension n with det(L) ≥ 1. Then for
any s ≥ bl(L), the probability that a set of

(
n2 + n(n+ 20 log log(s

√
n)) log(s

√
n)
)

vectors chosen independently according to DL,s does not generate L is 2−Ω(n).

In [24], Gentry et al. present an efficient approach that produces a sample
distribution that is statistically close to the DL,s for sufficiently large parame-
ter s. Furthermore, Brakerski et al. provide an algorithm that samples exactly
according to DL,s [12].

Lemma 2.4 ([12]) Suppose L is a lattice of dimension n with a basis B. Then
there exists an efficient algorithm SampleD which inputs B and outputs a vector
from DL,s for any s ≥

√
ln(2n+ 4)/π ·maxi

∥∥∥b̃i∥∥∥.

Lemma 2.5 (Chernoff-Hoeffding Bound [29]) Let X1, . . . , XM ∈ [0, 1] be
independent and identically distributed random variables. Then for s > 0 it has

Pr
[∣∣∣M · E [Xi]−

∑
Xi

∣∣∣ ≥ sM]
≤ 2e−Ms2/10. (3)

2.3 Characteristic Vector of Unimodular Lattices

A lattice L is said to be unimodular if L = L∗. Equivalently, the Gram matrix
of B is unimodular, i.e., B⊤B ∈ GLn(Z), where B ∈ GLn(R) is a basis of L.
Clearly, any rotation of Zn is unimodular. However, a lattice being unimodular
does not necessarily imply that it is isomorphic to Zn, e.g., the unimodular
lattice E8 is not isomorphic to Z8.
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Definition 2.2 (Characteristic Vector) Suppose L is a unimodular lattice.
A vector w ∈ L is called a characteristic vector of L if it has ⟨w,v⟩ ≡ ⟨v,v⟩
mod 2 for all v ∈ L.

We denote the set of characteristic vectors as χ(L). For any unimodular
lattice L, the following properties hold for the characteristic vector, and their
proofs can be found in [41] and Appendix B.

Lemma 2.6 Assume B = (b1, ...,bn) is a basis of a unimodular lattice L and
B−⊤ = (d1, ...,dn), then it has:

1) w =
∑n

i=1 ∥di∥2 bi is a characteristic vector of L.
2) χ(L) = w + 2L for any characteristic vector w ∈ χ(L).
3) w ∈ L is a characteristic vector if and only if ⟨w,bi⟩ ≡ ⟨bi,bi⟩ mod 2 for

i ∈ [n].

Lemma 2.6 indicates that for a given basis B, we can efficiently compute a
characteristic vector of L, as well as efficiently verify whether a given vector is a
characteristic vector. For a lattice L that is isomorphic to Zn, the characteristic
vector has the following more particular properties.

Lemma 2.7 Suppose L ∼= Zn. Assume B = OU is a basis of L, where O ∈
On(R) and U ∈ GLn(Zn). Then it has:

1) χ(L) = {Oz : z ∈ Zn such that zi ≡ 1 mod 2, ∀i ∈ [n]}.
2) The shortest characteristic vectors are exactly {Oz : zi = ±1, ∀i ∈ [n]}.

The problem of finding the shortest characteristic vector plays a crucial role
in our reduction. We note that this problem is equivalent to the CVP in the
lattice 2L, with the target point being any characteristic vector w ∈ χ(L).

Definition 2.3 (Shortest Characteristic Vector Problem (SCVP)) Given
a basis B ∈ GLn(R) of a unimodular lattice L as input, SCVP is to find a short-
est characteristic vector w ∈ χ(L). In particular, if L ∼= Zn, we call this problem
ZSCVP.

2.4 Lattice Isomorphism and Automorphism

Two n-dimensional lattices L1 and L2 are said to be isomorphic if there exists
an orthogonal matrix O ∈ On(R) such that L2 = {Ov : v ∈ L1}. The auto-
morphism group Aut(L) of an n-dimensional lattice L consists of all orthogonal
matrices that preserve L, i.e.,

Aut(L) = {O ∈ On(R) : Ov ∈ L for all v ∈ L}. (4)

It is clear that Aut(L) contains the automorphisms ±In, which are called trivial
automorphisms of L.
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Lemma 2.8 For any two isomorphic lattices L1 and L2, it has:

1) Aut(L1) ∼= Aut(L2). For any O ∈ On(R) such that L2 = OL1, the map
ϕ defined by ϕ(O1) = OO1O

−1, ∀O1 ∈ Aut(L1), is an isomorphism from
Aut(L1) to Aut(L2).

2) There is a one-to-one correspondence between Aut(L1) and the set all iso-
morphisms between L1 and L2. For any O ∈ On(R) such that L2 = OL1,
the map ψ defined by ψ(O1) = OO1, ∀O1 ∈ Aut(L1), is a bijection between
Aut(L1) and the isomorphisms from L1 to L2.

For a lattice L with a basis B, Aut(L) is closely related to the stabilizer of
G = B⊤B. Particularly, for a positive definite n× n matrix G, the stabilizer of
G is a finite group defined by Stab(G) =

{
U ∈ GLn(Z) : U⊤GU = G

}
.

Lemma 2.9 Let L be a lattice with a basis B. Then it has Stab(B⊤B) ∼= Aut(L),
and the map ϕ defined by ϕ(U) = BUB−1, ∀U ∈ Stab(B⊤B), is an isomorphism
from Stab(B⊤B) to Aut(L).

Proof. For any U ∈ Stab(B⊤B), it has (ϕ(U))⊤(ϕ(U)) = B−⊤U⊤(B⊤B)UB−1 =
In and ϕ(U)B = BU. Thus it has ϕ(U) ∈ Aut(L). On the other hand, for
any O ∈ Aut(L), there exists a U′ ∈ GLn(Z) such that OB = BU′. Thus
B−1OB ∈ GLn(Z) and it can be easily verified that ϕ−1(O) ∈ Stab(B⊤B). Be-
sides, it is clear that ϕ defines a homomorphism, which completes the proof. ⊓⊔

A natural problem related to lattice automorphism is how to find a nontrivial
automorphism for a given lattice L, which is defined as follows.

Definition 2.4 (Lattice Automorphism Problem (LAP)) Given a basis B
of a lattice L, such that Aut(L) ̸= {±In}. The LAP is to find an automorphism
O ∈ Aut(L) such that O ̸= ±In. In particular, If L ∼= Zn, we call this problem
ZLAP.

Automorphisms of Rotations of Zn. It is known that Aut(Zn) = S±n . Then
for any L ∼= Zn, it has Aut(L) ∼= S±n . Specifically, from Lemma 2.8 it has
Aut(L) = OS±n O−1 for any isomorphism O such that L = OZn. Besides, sup-
pose w ∈ χ(L) is a shortest characteristic vector of L, then the set of shortest
characteristic vectors of L can be expressed as {Ow : O ∈ Aut(L)}.

Besides, it is worth noting that finding a shortest vector of L ∼= Zn directly
yields a non-trivial automorphism of L. Assume that we have a shortest vector
v ∈ L. Let L′ = πspan(v)⊥(L) ∼= Zn−1, then L = vZ ⊕ L′. From this, we can
easily construct an O ∈ On(R) such that Ov = −v and Ox = x for all x ∈ L′.
Thus O ∈ Aut(L) and O ̸= ±In.

3 Randomized Reduction Framework for Rotations of Zn

This section demonstrates how the randomization framework can be used to
obtain specific reductions for rotations in Zn. In Section 3.1, we explain the
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randomization framework and discuss how it can be used to get a reduction
from ZLIP to ZSCVP. Then we prove the reduction from ZSVP to γ-ZSVP in
Section 3.2. Additionally, Section 3.3 presents some other interesting results that
can be obtained using the randomization framework.

3.1 A Reduction from ZLIP to ZSCVP

Suppose that L ∼= Zn and B is a basis of L. Given a ZSCVP oracleO, which takes
a lattice basis B as input and returns a shortest characteristic vector in χ(L).
We first show that the randomization framework enables us to sample uniformly
and independently from the set of shortest characteristic vectors of L. We then
prove that, with a polynomial number of such samples, we can effectively recover
the shortest vectors in L and thus solve the ZLIP.

The Randomization Step. To begin with, we establish the following lemma,
which states we can efficiently sample a basis according to some distribution,
such that the distribution is invariant under the action of Aut(L) on the input.
The primary technique used in this lemma is to sample a basis via a discrete
Gaussian distribution over L, which has been commonly utilized in existing
lattice literature. e.g., [14,28,9,19].

Lemma 3.1 There is an efficient algorithm that takes as input a basis B for
a lattice L and outputs a basis according to a distribution A(B), such that the
distribution A(B) is identical to A(OB) for any O ∈ Aut(L).

Proof. We assume that det(L) = 1. If this is not the case, we can consider
L/det(L) 1

n instead of L. To start with, we apply LLL algorithm to B and obtain
a reduced basis B′ = [b′1, . . . ,b

′
n] of L such that ∥b′i∥ ≤ 2n/2. Then using

Lemma 2.4, we can efficiently sample p(n) vectors v1, . . . ,vp(n) according DL,s,
where s = 2n and p(n) is the number of vectors required in Lemma 2.3. We
note that the vectors v1, . . . ,vp(n) generate L with overwhelming probability by
Lemma 2.3. Finally, we run LLL algorithm on v1, . . . ,vp(n) to get a basis B1

of L and output it. Observe that applying Aut(L) to the input basis has no
effect on the distribution DL,s, and thus has no effect on the output distribution
A(B). ⊓⊔

An intuitive explanation of Lemma 3.1 is that the input basis is ‘concealed’
within the output basis. This is a crucial point in our randomization framework.

Proposition 3.1 (Randomization) Given a ZSCVP oracle O, which takes a
lattice basis B̃ as input, subject to the condition that L(B̃) ∼= Zn, and returns
a shortest characteristic vector in χ(L(B̃)). Then for a lattice L ∼= Zn, we
can sample uniformly and independently from the set of shortest characteristic
vectors of L.
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Proof. Let B be a basis of the lattice L. To start with, we sample an orthogonal
matrix O1 from On(R) uniformly at random. Here the term ”uniform” refers
to the Haar measure, which ensures that the distribution of the matrix remains
unchanged when multiplied by any orthogonal matrix [15]. Please refer to the
discussion following this proof for the sampling method. Using Lemma 3.1 we
can obtain a basis B1 ← A(O1B) of the lattice L1 = O1L. Then we call the
ZSCVP oracle O, taking B1 as input to obtain a shortest characteristic vector
w1 ∈ χ(L1). Finally, we compute O−11 w1 ∈ χ(L).

We claim that O−11 w1 is uniformly distributed in the set of shortest charac-
teristic vectors of L. In other words, the probability

PrO1←On(R);B1←A(O1B)[O
−1
1 O(B1) = w] (5)

is identical for any shortest characteristic vector w ∈ χ(L). Note that the set
of shortest characteristic vectors of L can be written as {Ow : O ∈ Aut(L)}.
Then it suffices to show that Pr[O−11 O(B1) = w] = Pr[O−11 O(B1) = Ow] for
any O ∈ Aut(L). Note that

PrO1←On(R);B1←A(O1B)[O
−1
1 O(B1) = Ow]

= PrO1←On(R);B1←A(O1B)[(O1O)−1O(B1) = w]

= Pr(O1O)←On(R);B1←A(O1B)[(O1O)−1O(B1) = w]

= Pr(O1O)←On(R);B1←A(O1OB)[(O1O)−1O(B1) = w]

= PrO1←On(R);B1←A(O1B)[O
−1
1 O(B1) = w].

The second equality follows from the property of Haar measure. The third
equality can be deduced from the fact that O1OB = (O1OO−11 )O1B and
O1OO−11 ∈ Aut(L1) using Lemma 3.1. The last equality is simply a substitu-
tion of the variable. Thus O−11 w1 is uniformly distributed in the set of shortest
characteristic vectors of L.

To establish the independence of O−11 w1 for each trial, we can consider the
joint distribution by leveraging the above method and taking into account that
the choice of O1 is independent. The detailed proof is in Appendix C. ⊓⊔

To carry out the randomization framework, it is necessary to generate a uni-
formly distributed random orthogonal matrix, i.e., with respect to the Haar mea-
sure. Random orthogonal matrices are important in various fields, such as mul-
tivariate analysis, directional statistics, and physical systems modeling. There
have been numerous studies on efficiently generating random orthogonal matri-
ces. One method is to perform a QR decomposition on a matrix whose entries
are independently drawn from a standard normal distribution, with the result-
ing orthogonal matrix distributed according to the Haar measure [42]. Another
approach involves constructing a Householder reflection from a uniformly dis-
tributed unit vector of dimension n, and then applying it to an (n− 1)× (n− 1)
uniformly distributed orthogonal matrix [16,52].

Remark 1. It appears that we need to tackle the precision issue in our approach
because matrices over R are involved. Precision is a subtle issue for LIP because
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orthogonal matrices often involve irrational numbers that cannot be represented
exactly. This issue has been explored in the literature on lattices, such as [28,9].
In our paper, we follow their approach of ignoring the precision issue and focus
on the core aspects of reduction. We note that the precision issue is not a critical
concern in our reduction. As demonstrated in the recovery step, it is possible
to efficiently reconstruct the shortest vectors from their approximations. Fur-
thermore, the connection between the automorphism group and the stabilizer
group, as described in Lemma 2.9, allows us to transform our reductions using
the Gram matrix (as adopted in [18,19,21]). For a detailed discussion, please see
Appendix D.

The Recovery Step. In this step, we demonstrate how to recover the shortest
vectors in L from a polynomial number of shortest characteristic vectors in χ(L)
obtained in the previous step. Essentially, our task is to solve the following
problem.

Problem 3.1 Given a basis B of a lattice L ∼= Zn, and w1,w2, . . . ,wpoly(n) ∈
χ(L) that are drawn uniformly and independently from the set of shortest char-
acteristic vectors of L. The goal is to find the shortest vectors of L.

Suppose that {v1, . . . ,vn} is a set of n linearly independent shortest vectors
of L, and denote O = (v1, . . . ,vn) ∈ On(R). Then by Lemma 2.7, the set of
shortest characteristic vectors of L can be expressed as {z1v1+ · · ·+ znvn : zi =
±1, ∀i ∈ [n]}. Define the function

Mk(x) = E[⟨w,x⟩k], x ∈ Rn, (6)

where k ∈ Z+, and w is uniformly distributed over the set of shortest characteris-
tic vectors of L. From Chernoff-Hoeffding bound, we can effectively approximate
Mk(x) by making use of a polynomials number of shortest characteristic vector
as provided in Problem 3.1. As the set of shortest characteristic vectors is sym-
metric around the origin, it has Mk(x) = 0 for any odd k. On the other hand, a
straightforward calculation shows that

M4(x) = 3 ∥x∥4 − 2

n∑
i=1

⟨vi,x⟩4 (7)

Next, we focus on the x that is on the unit sphere and define

f(x) = −1

2
(M4(x)− 3) =

n∑
i=1

⟨vi,x⟩4. (8)

Then the following lemma is clear.

Lemma 3.2 The global maximum of f(x) over the unit sphere is attained at
{±v1, . . . ,±vn}, which is exactly the set of shortest vectors of L.
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Lemma 3.2 allows us to convert Problem 3.1 into the problem of maximizing
f(x) over the unit sphere. One widely-used approach to solve this problem is via
gradient descent as that adopted in [43]. Taking into account the approximation
error of Mk(x), we present Algorithm 1 as a solution to Problem 3.1, as well as
an analysis of the algorithm in Proposition 3.2.

Algorithm 1: Solve Problem 3.1 via Gradient Descent.
Require: A polynomial number of samples uniformly distributed over the shortest

characteristic vectors of a lattice L ∼= Zn

Ensure: An approximation a shortest vector of L
1: Choose x uniformly at random from the unit sphere of Rn

2: Compute an approximation of the gradient ∇f(x)
3: xnew ← ∇f(x)
4: xnew ← xnew/ ∥xnew∥
5: Compute the approximations of f(xnew) and f(x)
6: if f(xnew) ≤ f(x) then
7: return x
8: else
9: Replace x by xnew and go to step 2

10: end if

In step 2 of Algorithm 1, we need to approximate the gradient ∇f(x), which
can be done via two methods. The first method involves using the equations
∇M4(x) = E[∇(⟨w,x⟩4)] = 4E[⟨w,x⟩3w], and ∇f(x) = − 1

2 (∇M4(x)−12x). Al-
ternatively, the second method involves approximating f(x+ty) =

∑n
i=1⟨vi,x+

ty⟩4 for 0 ≤ t ≤ 4, and then computing
∑n

i=1⟨vi,x⟩k⟨vi,y⟩4−k, 0 ≤ k ≤ 4, us-
ing linear algebra. Specifically, by setting k = 3, we get

∑n
i=1⟨vi,x⟩3⟨vi,y⟩ =

⟨
∑n

i=1⟨vi,x⟩3vi,y⟩, and by letting y run over the standard basis ei, i ∈ [n], we
can obtain an approximation of ∇f(x) = 4

∑n
i=1⟨vi,x⟩3vi.

Proposition 3.2 Suppose that L ∼= Zn. For any c0 > 0, there exists a constant
c1 > 0 such that Algorithm 1 inputs nc1 samples that are independently and
uniformly distributed over the shortest characteristic vectors of L, and outputs
a vector x such that ∥x − v∥ ≤ n−c0 for some shortest vector v ∈ L, with
O(log log n) descent steps and a constant probability. Moreover, O(n log n) calls
to Algorithm 1 will find all shortest vectors of L with an overwhelming probability.
Proof. We start by ignoring the approximation error and analyzing Algorithm 1.
In this proof, we use the coordinate representation of vectors under the orthog-
onal basis {vi}1≤i≤n, i.e., x = (x1, . . . , xn) ∈ Rn, where xi = ⟨x,vi⟩. Then
by

∇f(x) = 4

n∑
i=1

⟨vi,x⟩3vi, (9)

we can deduce that a single iteration transforms the the vector x = (x1, . . . , xn)
into α · (x31, . . . , x3n) for some normalization factor α. Thus after r iterations,
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a vector (x1, . . . , xn) becomes a vector α · (x3r1 , . . . , x3
r

n ) for some normalization
factor α. We note that the original vector (x1, . . . , xn) is uniformly sampled from
the unit sphere. It can be proved that with some constant probability, there exits
a k ∈ [n] such that |xk| ≥ (1 + Ω(1/ log n))|xi|, ∀i ̸= k [43]. For such a vector,
r = O(log log n) iterations are enough to increase this gap to more than nlog n,
which means that we have one coordinate very close to ±1, and all others are at
most n− log n in absolute value.

Next, we take into account the approximation error. By Chernoff-Hoeffding
bound, for any c > 0, there exits a c1 such that with overwhelming proba-
bility all gradients in r < poly(n) iterations have errors at most n−c in the
Euclidean norm. In one iteration, let x = (x1, . . . , xn) be such that |xk| ≥
(1 + Ω(1/ log n))|xi|, ∀i ̸= k. Then clearly |xk| > n−1/2 since ∥x∥ = 1. Let
(y1, . . . , yn) = ∇f(x) and hence |yk| = 4|xk|3 > n−2.

Let (ỹ1, . . . , ỹn) be an approximation of ∇f(x). By our assumption on the
approximation ∇f(x), for each i, we have |ỹi − yi| ≤ n−c. Then, for any i ̸= k,
we have

|ỹk|
|ỹi|
≥ |yk| − n

−c

|yi|+ n−c
≥ |yk| (1− n

−(c−2))

|yi|+ n−c
. (10)

Hence, if |yi| > n−(c−1), then |ỹk|
|ỹi| is at least (1 − O(1/n))(xk/xi)

3. Otherwise,
|ỹk|
|ỹi| is at least Ω(nc−3). After r = O(log log n) steps, the gap xk/xi becomes
Ω(nc−3). Therefore, for any c0 > 0, we can choose c appropriately such that the
Euclidean distance between the output vector and one of ±vi’s is less than n−c0 .

Finally, from the Coupon Collector’s problem, O(n log n) calls to Algorithm 1
will find all shortest vectors of L with overwhelming probability. ⊓⊔

Given approximations of the shortest vectors of L as in Proposition 3.1,
there is an effective way to recover the exact shortest vectors {vi}1≤i≤n from its
approximations {ṽi}1≤i≤n using a set of n linearly independent shortest char-
acteristic vectors. Specifically, let W = {w1, . . . ,wn} be a set of n linearly
independent shortest characteristic vectors, where wi = zi1v1 + . . . + zinvn

and zij = ±1, and suppose ṽi = vi + ϵi such that ∥ϵi∥ ≤ n−c. Observe that
⟨wi, ṽj⟩ = zij +

∑n
l=1 zil⟨vl, ϵj⟩, and ⟨vl, ϵj⟩ ≤ ∥vl∥ · ∥ϵj∥ ≤ n−c. It follows that

|⟨wi, ṽj⟩ − zij | ≤ n−(c−1) < 1
2 for c > 2, n > 2. Thus zij can be recovered by

just taking sign(⟨wi, ṽj⟩), and {vi}1≤i≤n can be exactly recovered consequently.

Proof of the Reduction. By combining the above two steps, we can conclude
the following reduction.

Theorem 3.1 There is an efficient randomized reduction from ZLIP to ZSCVP.

Proof. The theorem is a direct result of Proposition 3.1 and Proposition 3.2. ⊓⊔

For a unimodular lattice L, it has χ(L) = w + 2L for any characteristic
vector w ∈ χ(L) according to Lemma 2.6. Therefore, SCVP can be considered
as a CVP in the lattice 2L, with the target vector being w. Furthermore, for
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L ∼= Zn, the ZSCVP is a very special case of CVP. Lemma 2.6 tells us the target
w is completely dependent on the given basis and Lemma 2.7 tells us that the
distance between w and 2L is

√
n, and the deep holes of 2L are exactly χ(L).

Therefore, the ZSCVP can be viewed as a CVP in the lattice 2L, with a deep
hole as the target vector. We believe this is a non-trivial observation that could
aid in further study of ZLIP, as it is known that calculating or verifying a deep
hole for a lattice is a difficult problem in general [27].

3.2 A Reduction from ZSVP to γ-ZSVP

The randomization framework can be readily adapted to other oracles for rota-
tions of Zn. In this subsection, we explore the approximate ZSVP and establish
the following reduction.

Theorem 3.2 There is an efficient randomized reduction from ZSVP to γ-
ZSVP for any constant γ = O(1).

Proof. Suppose that L ∼= Zn. Denote A = L ∩ γBn2 , then by Lemma 2.1 it
has |A| = |Zn ∩ γBn2 | ≤ nc for some constant c. Consider the action of Aut(L)
on A. Write A = ∪v∈ĀAv to be the disjoint union of distinct orbits, where
Av = {Ov : O ∈ Aut(L)} and Ā is a set of representative vectors with respect
to the action of Aut(L) on A.

Using the randomization framework, we can invoke the γ-ZSVP oracle m =
poly(n) times, with m > nc, yielding a vector set X = {x1, . . . ,xm} ⊆ A. Then
through a deduction similar to Proposition 3.1, it can be shown that, if X ∩Av

is nonempty, the vectors in X ∩Av are independently and uniformly distributed
over Av. Since m > nc ≥ |Ā|, there must exist two xi and xj fall in a same orbit
Av. We claim that the probability that xi−xj is a multiple of a shortest vector
of L, (i.e., xi−xj

∥xi−xj∥ is a shortest vector), is at least 1/|Av| ≥ 1/nc. To prove
the claim, suppose that v1, . . . ,vn are n linearly independent shortest vectors
of L, and write xi = xi,1v1+ · · ·+xi,nvn. Without loss of generality, we assume
xi,1 ̸= 0. It is evident that xi,1(−v1)+xi,2v2+ · · ·+xi,nvn ∈ Av. Moreover, with
probability 1/|Av|, it has xj = xi,1(−v1) + xi,2v2 + · · ·+ xi,nvn for a randomly
chosen xj from Av. Thus xi − xj = 2xi,1v1, which is a multiple of the shortest
vector v1.

Then we compute xi − xj for all i, j ∈ [m], and check if it is a multiple
of a shortest vector. This step requires at most m2 checks. Finally, repeating
the whole process O(nc+1) times, we can get a shortest vector in L with an
overwhelming probability. ⊓⊔

Using the fastest known algorithm for O(1)-SVP as stated in Lemma 2.2,
we can obtain a 20.802n-time algorithm for the ZSVP. It is worth noting that
γ-ZSVP is a special case of γ-SVP, so there is potential for a better algorithm for
the ZSVP problem if we can develop a more specialized algorithm for γ-ZSVP.
However, further research is needed to establish such an algorithm.

The approach used in Theorem 3.2 can be extended to handle general values
of γ, but the resulting reduction may not have a guaranteed polynomial-time
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complexity. Specifically, denote ℓ(γ, n) = |Ā| and ξ(γ, n) = maxv∈Ā |Av|. Let
TZSVP(γ, n) be the run time of an algorithm for γ-ZSVP on lattices of dimension
n.

Corollary 3.1 There is a randomized algorithm that solves ZSVP on lattices of
dimension n in ξ(γ, n) · (ℓ(γ, n) · TZSVP(γ, n) + ℓ(γ, n)

2
) · poly(n) time.

3.3 Other Corollaries from the Randomization Framework

Another advantage of the randomization framework is the suitability for using
fixed-dimensional oracles, which makes it useful for fixed-dimensional reduction.
As a simple example, we demonstrate how to use the randomization framework
to establish a reduction from ZLIP to ZSVP for a fixed dimension in the fol-
lowing corollary. Note that without the fixed dimension restriction, a reduction
from ZLIP to ZSVP can be established by employing the projecting method [9].
Specifically, suppose that L ∼= Zn. We call an n-dimensional ZSVP oracle to
obtain a shortest vector v1 ∈ L, from which we can efficiently obtain a basis for
the (n−1)-dimensional sublattice L1 ⊆ L that is orthogonal to v1. Then we call
an (n− 1)-dimensional ZSVP oracle to obtain a shortest vector in L1, and then
we recursively find n linearly independent shortest vectors of L.

Corollary 3.2 There is an efficient randomized reduction from ZLIP to ZSVP
in the same dimension.

Proof. Suppose that L ∼= Zn. Note that Aut(L) acts transitively on the set
of shortest vectors of L. By invoking the ZSVP oracle with the randomiza-
tion framework, we can obtain vectors that are independently and uniformly
distributed over the set of shortest vectors of L. Then we just need to sam-
ple O(n log n) shortest vectors to get a set of linearly independent ones, e.g.,
{v1, . . . ,vn}. This gives the matrix O = (v1, . . . ,vn) ∈ On(R) which is an iso-
morphism from L to Zn. ⊓⊔

It is worth noting that, like Corollary 3.1, the reductions in Theorem 3.1 and
Theorem 3.2 can also be modified to fixed-dimensional reductions. Another sim-
ple application of the randomization framework is demonstrated by the following
result.

Corollary 3.3 In the sense of randomized reduction, the (n − 1)-dimensional
ZSVP is easier than the n-dimensional ZSVP.

Proof. Suppose that L ∼= Zn−1. We first embed L into an n-dimensional lattice
L1
∼= Zn by adding en to the basis of L. Then we invoke the n-dimensional

ZSVP oracle using the randomization framework to obtain vectors that are in-
dependently and uniformly distributed over the set of shortest vectors of L1. The
probability of such a vector falling into L is 1− 1

n . By invoking the n-dimensional
ZSVP oracle O(log n) times, we can obtain a shortest vector in L(B) with an
overwhelming probability. ⊓⊔
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4 A Reduction from ZLIP to ZLAP

This section focuses on the ZLAP, which involves finding a nontrivial automor-
phism in Aut(L) for a given lattice L ∼= Zn (Definition 2.4). Although the effect
of ‘applying random automorphisms’ to the output of an oracle can be achieved
via the randomization framework, the ZLAP still seems difficult. In fact, we
can prove that the ZLAP is as hard as ZLIP. Note that ZLAP ≤ ZLIP follows
directly from Lemma 2.8. Therefore, in this section, we focus on the reduction
from ZLIP to ZLAP, which is achieved in two steps. The first step shows how
to efficiently sample automorphisms independently and uniformly from a special
conjugacy class by invoking the ZLAP oracle using the randomization framework
(Section 4.1). The second step demonstrates how to use these automorphisms to
recover the shortest vectors (Section 4.2). Besides, in Section 4.3 we introduce
other results related to ZLAP.

4.1 Random Sample from a Conjugacy Class

To begin with, we give a brief introduction to the conjugation of the automor-
phism group Aut(L) for any lattice L ∼= Zn. For convenience, lowercase Greek
letters such as ϕ are used to represent automorphisms in Aut(L) throughout
this section. In Aut(L), two automorphisms ϕ1 and ϕ2 are conjugate if there
exists an automorphism ϕ ∈ Aut(L) such that ϕ1 = ϕϕ2ϕ

−1, which is denoted
by ϕ1 ∼ ϕ2. Conjugation is an equivalence relation that divides Aut(L) into
disjoint conjugacy classes, which are denoted by Cϕ = {ϕ1 ∈ Aut(L) : ϕ1 ∼ ϕ}.
For two lattices L1

∼= L2, from Lemma 2.8 it has Aut(L1) ∼= Aut(L2). This
implies that the isomorphisms between L1 and L2 induce a canonical bijection
between the conjugacy classes of L1 and those of L2, i.e., τ : Cϕ → COϕO−1 for
any ϕ ∈ Aut(L1) and any O ∈ On(R) such that L2 = OL1. Thus by an abuse of
notation, we also use ϕ1 ∼ ϕ2 to represent τ(Cϕ1

) = Cϕ2
for any ϕ1 ∈ Aut(L1)

and ϕ2 ∈ Aut(L2).
For the lattice Zn, it has Aut(Zn) = S±n and we are particularly interested

in the conjugacy classes defined by the following types of matrices in S±n .

– Ti,j,k = diag{( 0 1
1 0 ) , . . . , (

0 1
1 0 ) ,−Ii, Ij}, where there are k ( 0 1

1 0 )’s on the
diagonal such that 2k + i+ j = n and i, j < n.

– Tp,k = diag{Pp, . . . ,Pp, In−pk}, where there are k Pp’s on the diagonal and
p > 2 is an odd prime number. We remind that Pp =

(
0 1

Ip−1 0

)
.

– Tn = diag{
(
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)
}, where n is even.

The aim of this subsection is to prove the following statement, which claims
that we can efficiently sample automorphisms from one conjugacy class.

Proposition 4.1 Assume that n is odd and the lattice L ∼= Zn. Given a ZLAP
oracle O for dimension n. Then there exists i, j, k such that we efficiently ob-
tain poly(n) samples ϕ1, ϕ2, . . . , ϕpoly(n) ∈ Aut(L) that are independently and
uniformly distributed over the conjugacy class {ϕ ∈ Aut(L)|ϕ ∼ Ti,j,k}.
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The main approach for proving the proposition is still utilizing the random-
ization framework to generate samples uniformly distributed over each conjugacy
class. However, due to the total number of conjugacy classes being exponential
in n, we can not effectively sample from one class as that in Theorem 3.2. To
address this, we modify the randomization procedure by preprocessing the out-
puts of the oracle to ensure that the resulting automorphisms belong to one of
the conjugacy classes corresponding to Ti,j,k, Tp,k or Tn. The number of these
types of conjugacy classes is a polynomial of n, allowing for efficient sampling
from one conjugacy class.

Preprocessing and Randomization. Firstly, we give an efficient preprocess-
ing algorithm that transforms the output of the oracle into specific conjugacy
classes.

Lemma 4.1 (Preprocessing) Suppose that L ∼= Zn. Then there exists an ef-
ficient algorithm P that takes a nontrivial automorphism ϕ ∈ Aut(L) as input
and returns an automorphism P(ϕ) ∈ Aut(L) falling into one of the conjugacy
classes corresponding to Ti,j,k, Tp,k, or Tn. Additionally, it can be efficiently
identified which conjugacy class P(ϕ) belongs to.

Proof. The algorithm begins by computing ord(ϕ) := min{i ∈ Z+ : ϕi = In}. It
is clear that ord(ϕ) | |S±n |. We note that ord(ϕ) can be computed in a polynomial
time of n, which is proved in Lemma 4.2. In the following, the algorithm processes
ϕ according to its order.

(1) ord(ϕ) is odd. Let p be the smallest odd prime factor of ord(ϕ).4 Then
the algorithm outputs P(ϕ) = ϕord(ϕ)/p. It can be deduced that P(ϕ) ∼ Tp,k,
where k = (n − d)/(p − 1) and d is the dimension of the eigenspace associated
with the eigenvalue 1 of P(ϕ). The proof is given in Lemma 4.3.

(2) ord(ϕ) is even and ϕord(ϕ)/2 = −In. If 4 ∤ ord(ϕ), it can be deduced that
ord(−ϕ) = ord(ϕ)/2 is odd. Thus, we can preprocess ϕ by multiplying it with
−In, which transforms it into the case of (1). If 4 | ord(ϕ), then the algorithm
outputs P(ϕ) = ϕord(ϕ)/4, and it can be deduced that P(ϕ) ∼ Tn. The proof is
given in Lemma 4.3.

(3) ord(ϕ) is even and ϕord(ϕ)/2 ̸= −In. The algorithm outputs P(ϕ) =
ϕord(ϕ)/2. Let V1 be the eigenspace associated with the eigenvalue 1 of P(ϕ), and
let d be the dimension of V1. Define L1 = V1∩L. It can be deduced that P(ϕ) ∼
Tn−d−k,d−k,k, where k = log2(det(L1)

2
). The proof is given in Lemma 4.3. ⊓⊔

Lemma 4.2 Suppose that L ∼= Zn. Then there is an efficient algorithm that
takes any ϕ ∈ Aut(L) as input and computes ord(ϕ).

Proof. Suppose that λϕ(x) ∈ Z[x] is the characteristic polynomial of ϕ. Then
λϕ(x) can be factorized into the product of integer irreducible polynomials using
4 Note that ord(ϕ) | |S±

n |, then each prime divisor of ord(ϕ) is no more than n.
Therefore p can be computed efficiently.
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LLL algorithm [38]. Since the eigenvalues of ϕ are roots of unity, it follows that
these irreducible polynomials are cyclotomic polynomials of degrees no more
than n. Next, we turn to determine the order of these cyclotomic polynomials.
For a cyclotomic polynomial Φm(x) of order m, its degree is the Euler’s totient
function φ(m). It is known that φ(m) ≥

√
m/2, then the orders of these cyclo-

tomic polynomials are no more than 2n2, and thus can be efficiently determined.
Finally, ord(ϕ) is computed by just taking the least common multiple of the or-
ders of these cyclotomic polynomials. ⊓⊔

Lemma 4.3 Suppose that ψ ∈ S±n . Let V1 be the eigenspace associated with the
eigenvalue 1 of ψ, d = dim(V1), and let L1 = V1 ∩ Zn. Then

– If ord(ψ) = p for a odd prime p, it has ψ ∼ Tp,k, where k = (n− d)/(p− 1).
– If ord(ψ) = 4 and ψ2 = −In, it has ψ ∼ Tn.
– If ord(ψ) = 2 and ψ ̸= −In, it has ψ ∼ Tn−d−k,d−k,k for det(L1) > 1, where
k = log2(det(L1)

2
).

Proof. As ψ is a signed permutation, we focus on the action of ψ on the set of
vectors E = {±e1, . . . ,±en}.

If ord(ψ) = p for a odd prime p. For any ei ∈ E, it has either ψei = ei or
the vectors ei, ψei, . . . , ψ

p−1ei ∈ E are linearly independent. Thus ψ ∼ Tp,k. It
follows that d = dim(V1) = k + (n− pk), i.e., k = (n− d)/(p− 1).

If ord(ψ) = 4 and ψ2 = −In. For any ei ∈ E, there is a v ∈ E such that
v ̸= ±ei and ψei = v, ψv = −ei. It follows that ψ ∼ Tn.

If ord(ψ) = 2 and ψ ̸= −In. Then the vectors in E can be divided into three
categories. The first catergry consists of the v ∈ E such that ψv = v, and the
second catergry consists of the v ∈ E such that ψv = −v. The third catergry
contains all u,v ∈ E such that u ̸= v, ψu = v and ψv = u. It follows that
ψ ∼ Ti,j,k. Since ψ ̸= ±In, it has i, j < n. Moreover, observe that for Ti,j,k, a
basis of V1 is {e1+e2, e3+e4, . . . , e2k−1+e2k}∪{en−j+1, . . . , en}. Thus d = k+j

and det(L1) = 2
k
2 , which implies that k = log2(det(L1)

2
), i = n − d − k and

j = d− k. ⊓⊔

Next, we integrate the randomization framework (Proposition 3.1) and the
preprocessing technique (Lemma 4.1) to establish the following proposition.

Lemma 4.4 (Randomization) Given a ZLAP oracle O, which takes a lattice
basis B̃ as input, subject to the condition that L(B̃) ∼= Zn, and returns a nontriv-
ial automorphism in Aut(L(B̃)). Then for a lattice L ∼= Zn, we can efficiently
sample automorphisms in Aut(L) such that they are uniformly and independently
distributed in each of the conjugacy classes corresponding to Ti,j,k, Tp,k, or Tn.

Proof. Let B be a basis of L. Similar to Proposition 3.1, we sample an orthogonal
matrix O1 from On(R) uniformly at random, and obtain a basis B1 ← A(O1B)
of the lattice L1 = O1L. Then we call the ZLAP oracle, taking B1 as input
to obtain a nontrivial automorphism ϕ1 ∈ Aut(L1). Applying the preprocessing
technique in Lemma 4.1 to ϕ1, we obtain an automorphism ψ1 ∈ Aut(L1) in
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one of the conjugacy classes corresponding to Ti,j,k, Tp,k, or Tn. Finally, we
compute O−11 ψ1O1 ∈ Aut(L).

Next we prove that for any conjugacy class Cϕ0 , ϕ0 ∈ Aut(L), the probability

PrO1←On(R);B1←A(O1B)[O
−1
1 ψ1O1 = ϕ] (11)

is identical for each ϕ ∈ Cϕ0
. Note that for each ϕ′ ∈ Aut(L), it has

PrO1←On(R);B1←A(O1B)[O
−1
1 ψ1O1 = ϕ′ϕϕ′−1]

= Pr(O1ϕ′)←On(R);B1←A(O1B)[(O1ϕ
′)−1ψ1(O1ϕ

′) = ϕ]

= PrO1←On(R);B1←A(O1B)[O
−1
1 ψ1O1 = ϕ].

Moreover, it is clear that O−11 ψ1O1 is in one of the conjugacy classes corre-
sponding to Ti,j,k, Tp,k, or Tn, which proves the uniformity. The independence
of each trial follows from the same reason as in Proposition 3.1. ⊓⊔

Conversion to a Special Conjugacy Class. Observe that the total number
of conjugacy classes corresponding to Ti,j,k, Tp,k and Tn is O(n2). Then by
Lemma 4.1 and Lemma 4.4, we can efficiently sample poly(n) automorphisms
in Aut(L) such that they are independently and uniformly distributed in a con-
jugacy class corresponding to one of the Ti,j,k, Tp,k and Tn. In order to ease
the analysis of the shortest vector recovery, we further introduce a technique
that transforms the automorphisms into a conjugacy class that corresponds to
Ti,j,k. For the sake of simplicity, we will focus on the case where n is odd, which
excludes Tn. To begin with, we establish the following lemma.

Lemma 4.5 Assume that n is odd and L ∼= Zn. Let ϕ ∈ Aut(L) be an auto-
morphism such that ϕ ∼ Tp,k, and let ϕ1 be an automorphism that is uniformly
distributed over Cϕ. Then the probability that 2 | ord(ϕ1ϕ) and (ϕ1ϕ)

ord(ϕ1ϕ)/2 ̸=
−In is at least 1/n4.

Proof. Suppose O ∈ On(R) is an isomorphism from Zn to L such that ϕ =
OTp,kO

−1. Then we can express ϕ1 as OSTp,kS
−1O−1, where S is uniformly

distributed over S±n . Therefore ϕ1ϕ = OSTp,kS
−1Tp,kO

−1. In the following, we
analyze the probability that STp,kS

−1Tp,k contains a 2-cycle. There are two
cases.

(1) p > 3 or k ≥ 2. In this case there exist four distinct integers i1, i2, i3, i4 ∈
[n] such that Tp,kei1 = ei2 and Tp,kei3 = ei4 . We are interested in the proba-
bility that STp,kS

−1Tp,kei1 = ei3 and STp,kS
−1Tp,kei3 = ei1 , i.e., (i1, i3) is a

2-cycle with respect to the action of STp,kS
−1Tp,k. Note that the above con-

ditions can be written as Tp,k(S
−1ei2) = S−1ei3 and Tp,k(S

−1ei4) = S−1ei1 .
Since S is uniformly distributed over S±n , it can be deduced that the probability
is as least 1

4 ·
kp(kp−3)

n4 ≥ 1
n4 .

(2) p = 3, k = 1. In this case we are interested on the probability that (1, 2) is
a 2-cycle with respect to the action of STp,kS

−1Tp,k, i.e., STp,kS
−1Tp,ke1 = e2

and STp,kS
−1Tp,ke2 = e1. The conditions can be written as Tp,k(S

−1e2) =
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S−1e2 and Tp,k(S
−1e3) = S−1e1. It can be deduced that the probability is at

least n−pk
n · 12 ·

pk
n2 >

1
n4 .

Observe that STp,kS
−1Tp,k contains a 2-cycle implies that 2 | ord(ϕ1ϕ) and

(ϕ1ϕ)
ord(ϕ1ϕ)/2 ̸= −In. Therefore we can conclude the lemma. ⊓⊔

In the rest of this subsection, we give the proof of Proposition 4.1. Partic-
ularly, we present a two-level randomization technique for generating automor-
phisms that are uniformly and independently distributed over a conjugacy class
associated with Ti,j,k.

Proof of Proposition 4.1. To begin with, we randomly select O1 ∈ On(R) and
create the lattice L1 = O1L (first-level randomization). Using Lemma 4.4, we
can efficiently obtain poly(n) samples in ϕ1, . . . , ϕpoly(n) ∈ Aut(L1) that are
uniformly and independently distributed in one of the conjugacy classes corre-
sponding to Ti,j,k or Tp,k (second-level randomization). Note that we exclude
Tn since n is odd. There are two cases.

(1) These poly(n) samples are in a conjugacy class corresponding to Ti,j,k.
We just apply O−11 ϕiO1 and obtain poly(n) samples in Aut(L).

(2) These poly(n) samples are in a conjugacy class corresponding to Tp,k.
Using Lemma 4.5, we can show that, with a probability of at least 1/n4, the
automorphisms ϕ2ϕ1, ϕ3ϕ1 . . . , ϕpoly(n)ϕ1 ∈ Aut(L1) satisfy the conditions 2 |
ord(ϕiϕ) and (ϕ1ϕ)

ord(ϕiϕ)/2 ̸= −In. By properly defining poly(n), we can ob-
tain such an automorphism ϕiϕ with overwhelming probability. We can then
apply the preprocessing procedure (Lemma 4.1) to ϕiϕ to get an automorphism
in a conjugacy class corresponding to Ti,j,k, resulting in a desired random au-
tomorphism in Aut(L).

Then Proposition 4.1 can be proved by repeating the above procedure poly-
nomial times. ⊓⊔

4.2 Recover the Shortest Vectors

Using Proposition 4.1, a reduction from ZLIP to ZLAP can be established by
solving the following problem, which can be viewed as an analogue of Prob-
lem 3.1.

Problem 4.1 Given a basis B of a lattice L ∼= Zn, and a set of automorphisms
ϕ1, ϕ2, . . . , ϕpoly(n) ∈ Aut(L) that are drawn uniformly and independently from
a conjugacy class Cϕ0 , where ϕ0 ∼ Tk1,k2,l and k1, k2, l are fixed. The goal is to
find the shortest vectors of L.

Define the function

gk(x) = E[⟨ϕx,x⟩k],x ∈ Rn, (12)

where k ∈ Z+ and ϕ is uniformly distributed over Cϕ0
. Similar to the deduction

in Section 3, for any x ∈ Rn, gk(x) can be effectively approximated by using
the given samples in Cϕ0 due to Chernoff bound. Suppose {v1, . . . ,vn} is a set
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of independent shortest vectors of L. Then any x ∈ Rn can be expressed as a
linear combination x = x1v1 + · · ·+ xnvn, i.e., xi = ⟨x,vi⟩ for 1 ≤ i ≤ n. Then
the following lemma can be derived.

Lemma 4.6 For k = 1, 2, it has

g1(x) =
k2 − k1
n

n∑
i=1

xi
2 =

k2 − k1
n

∥x∥2

g2(x) =
n2 − 2nl − (k1 − k2)2 − 4l

n(n− 1)

n∑
i=1

xi
4 +

6l + (k1 − k2)2 − n
n(n− 1)

(

n∑
i=1

xi
2)2

Proof. We refer the proof to Appendix E. ⊓⊔

On the other hand, note that

∇E[⟨ϕx,x⟩2] = E[∇⟨ϕx,x⟩2] = 2E[⟨ϕx,x⟩ · (ϕ+ ϕ⊤)x]. (13)

Thus the gradient

∇g2(x) = 4

n∑
i=1

(
n2 − 2nl − (k1 − k2)2 − 4l

n(n− 1)
x3i +

6l + (k1 − k2)2 − n
n(n− 1)

xi∥x∥2)vi

can be effectively approximated by using the given samples in Cϕ0
.

Observe that n is odd and n = k1 + k2 + 2l, it follows that the coefficient
n2 − 2nl − (k1 − k2)2 − 4l = 4k1k2 + 2l(k1 + k2 − 2) ̸= 0. Again we can use the
gradient descent to solve Problem 4.1. Specifically, we assume that x is on the
unit sphere, and define

f2(x) = (g2(x)−
6l + (k1 − k2)2 − n

n(n− 1)
)/
n2 − 2nl − (k1 − k2)2 − 4l

n(n− 1)
=

n∑
i=1

⟨vi,x⟩4.

Then ∇f2(x) = 4
∑n

i=1 ⟨vi,x⟩3vi can be computed from ∇g2(x)5, and clearly
the global maximum of f2(x) over the unit sphere is attained at {±v1, . . . ,±vn}.
Taking into account the approximation error, we present Algorithm 2 as a solu-
tion to Problem 4.1, and an analysis of the algorithm in Proposition 4.2.

Proposition 4.2 Suppose that n is odd and L ∼= Zn. For any c0 > 0, there exists
a constant c1 > 0 such that Algorithm 2 inputs nc1 samples that are independently
and uniformly distributed over a conjugacy class Cϕ0

, where k1, k2, l are fixed and
ϕ0 ∼ Tk1,k2,l. And Algorithm 2 outputs a vector x such that ∥x − v∥ ≤ n−c0

for some shortest vector v ∈ L, with O(log log n) descent steps and a constant
probability. Moreover, O(n log n) calls to Algorithm 2 will find all shortest vectors
of L with an overwhelming probability.
5 The second method described in Section 3 can also be used to approximate the

gradient ∇g2(x).
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Algorithm 2: Solve Problem 4.1 via Gradient Descent
Require: A polynomial number of samples in Aut(L) that are uniformly and

independently distributed over the conjugacy class Cϕ0 , where k1, k2, l are fixed
and ϕ0 ∼ Tk1,k2,l

Ensure: An approximation a shortest vector of L
1: Choose x uniformly at random from the unit sphere of Rn

2: Compute an approximation of the gradient ∇f2(x)
3: xnew ← ∇f2(x)
4: xnew ← xnew/ ∥xnew∥
5: Compute the approximations of f2(xnew) and f2(x)
6: if f2(xnew) ≤ f2(x) then
7: return x
8: else
9: Replace x by xnew and go to step 2

10: end if

Proof. The proof is similar to that of Proposition 3.2 and is omitted here. ⊓⊔

Similar to Proposition 3.2, we can also recover the exact shortest vectors through
good enough approximations of the shortest vectors of L by using a set of random
automorphisms. The details can be found in Appendix F.

Combining Proposition 4.1 and Proposition 4.2, we can prove our main result
in this section.

Theorem 4.1 There is an efficient randomized reduction from ZLIP to ZLAP.

Proof. If the dimension n is odd, then the theorem follows directly from Propo-
sition 4.1 and Proposition 4.2. For even n, we utilize Corollary 3.3 to convert
the ZLIP into an n+1 dimensional problem, which we can then solve using the
same approach. ⊓⊔

Remark 2. It is worth mentioning that all reductions in this paper are dimension-
preserving, except for Theorem 4.1. In Theorem 4.1, the condition that n is odd
(required in Proposition 4.1 and Proposition 4.2) is primarily for ease of analysis
and is not a fundamental requirement. We believe that for even n, similar results
can be obtained through a more complex deduction process. However, we do not
provide a detailed analysis in this paper and leave it as future work.

4.3 Related Corollaries of Lattice Automorphisms

To begin with, we show that the lattice automorphisms can be linked with the
hidden subgroup problem (HSP) on GLn(Z). HSP is a fundamental problem in
quantum computation that encompasses a variety of problems, including fac-
toring, discrete logarithm [49], principal ideal [22], graph isomorphism [35], and
unique shortest vector problem [47]. It is of great importance in the theory of
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quantum computing as virtually all known quantum algorithms that run super-
polynomially faster than classical algorithms solve special cases of the HSP on
abelian groups such as those presented in [49] and [22], while the other problems
correspond to non-abelian groups. As far as we know, prior to this paper, there
were no known applications of the HSP on GLn(Z).

Definition 4.1 (HSP) Given a group G, a subgroup H ≤ G, and a set X. Let
f : G→ X be a function that hides H, i.e., ∀g1, g2 ∈ G, f(g1) = f(g2)⇔ g1H =
g2H. The HSP is to find a generating set of H given the function f as an oracle.

Typically G and X are required to be finite, allowing for a well-defined prob-
lem size and efficient solution strategies. Nevertheless, for certain special infinite
groups G and sets X, well-defined problems can still be formulated and solved
efficiently [36,37]. Additionally, the case where G is a continuous group is also
addressed in [22].

Corollary 4.1 There is an efficient randomized reduction from ZLIP to a vari-
ant of HSP on GLn(Z).

Proof. Given a basis B of lattice L ∼= Zn. Let G = X = GLn(Z) and H =
Stab(B⊤B) ≤ G. Define f : G → X such that f(U) = U⊤B⊤BU, ∀U ∈
GLn(Z). Then clearly f can be computed efficiently, and f hidesH. By Lemma 2.9
there is a direct connection between H = Stab(B⊤B) and Aut(L), and thus the
statement follows directly from Theorem 4.1. ⊓⊔

Another natural question is whether the randomization framework can be
applied in the reduction of general lattices. The following conclusions demon-
strate that it is still applicable to specific problems. However, we believe that
the randomization framework is better suited to lattices with high symmetry,
i.e., those with a large automorphism group.

Corollary 4.2 There is an efficient randomized reduction from LAP to LIP in
the same dimension.

Proof. Let L be an n dimensional lattice with a basis B. To begin with, we choose
a random O1 ∈ On(R). Using Lemma 3.1, we can obtain a basis B1 ← A(O1B).
Then we call the LIP oracle O with input B and B1, and get an isomorphism
O = O(B,B1) from L to L1. For any ϕ, ϕ0 ∈ Aut(L), it can be deduced that

PrO1←On(R);B1←A(O1B)[O
−1
1 O(B,B1) = ϕϕ0]

= PrO1ϕ←On(R);B1←A(O1ϕB)[(O1ϕ)
−1O(B,B1) = ϕ0]

= PrO1←On(R);B1←A(O1B)[O
−1
1 O(B,B1) = ϕ0],

which implies that O−11 O(B,B1) is uniformly distributed in Aut(L). Thus if
Aut(L) ̸= {±In}, we can efficiently obtain a nontrivial automorphism from
Aut(L) with an overwhelming probability by repeating the above process O(n)
times. ⊓⊔
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5 Conclusion

We present a randomization framework for lattices that randomizes the output
of an oracle in such a way that the resulting samples conform to a distribution
that is invariant under the action of the automorphism group. Using this frame-
work, we derive three randomized reductions related to the rotation of Zn: ZLIP
to ZSCVP, ZSVP to O(1)-ZSVP, and ZLIP to ZLAP. These results offer new
insights into the study of rotations of Zn, and we believe they will pave the way
for further research into ZLIP and ZSVP.
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Appendix A Proof of the Toy Example

With respect to the oracle O, the rotated square is determined by the angle θ
between the line connecting its vertex on the first quadrant to the origin O and
the positive direction of the x-axis. Denoted the rotated square by □θ, θ ∈ [0, π2 ).
Note we can regard θ as functional of ρ, and write θ[ρ] = θ[ρ + π

2 ]. We’ll show
that,

Prρ←G[ρ
−1O(□θ[ρ]) = i] =

1

4
, ∀i ∈ Z/4Z.

Proof. For any i ∈ Z/4Z, Prρ←G[ρ
−1O(□θ[ρ]) = i] is a functional about ρ which

is a distribution on G = R/2πZ. Then we have

Prρ←G[ρ
−1O(□θ[ρ]) = i] = Prρ←G[O(□θ[ρ]) = ρ(i)]

= Pr
ρ+π

2
←G

[O(□θ[ρ+π
2 ]) = (ρ+

π

2
)(i)]

= Pr
ρ+π

2
←G

[O(□θ[ρ]) = ρ(i+ 1)]

= Pr
ρ←G

[O(□θ[ρ]) = ρ(i+ 1)].

This means ∀i ∈ Z/4Z, Prρ←G[ρ
−1O(□θ[ρ]) = i] = 1

4 . ⊓⊔

Appendix B Proof of the Property of the Characteristic
Vectors

Lemma 2.6 Assume B = (b1, ...,bn) is a basis of L and B−⊤ = (d1, ...,dn), then
it has:
1) w =

∑n
i=1 ∥di∥2 bi is a characteristic vector of L.

2) χ(L) = w + 2L for any characteristic vector w ∈ χ(L).
3) w is a characteristic vector if and only if ⟨w,bi⟩ ≡ ⟨bi,bi⟩ mod 2 for

i ∈ [n].

Proof. 1) Let v =
∑n

i=1 vidi ∈ L(B), then ⟨w,v⟩ = ⟨
∑n

i=1 ∥di∥2 bi,
∑n

i=1 vidi⟩
=

∑n
i=1 vi ∥di∥2 ≡

∑n
i=1 v

2
i ∥di∥2 ≡ ⟨v,v⟩ mod 2, we used vi ≡ v2i mod 2.

Thus w is a characteristic vector.
2) Assume w is a characteristic vector of L, then for any x ∈ L, w+2x is also a

characteristic vector of L, because ⟨w+2x,v⟩ = ⟨w,v⟩+2⟨x,v⟩ ≡ ⟨w,v⟩ ≡
⟨v,v⟩ mod 2. On the other hand, if w′ =

∑n
i=1 aibi ∈ χ(L), then ai =

⟨w′,di⟩ ≡ ⟨di,di⟩ = ∥di∥2 mod 2, thus for any i ∈ [n], ai ≡ ∥di∥2 mod 2

and we know w =
∑n

i=1 ∥di∥2 bi ∈ χ(L), thus w′ = w+2L. Thus χ(L) is a
coset of w + 2L, where w is any element in χ(L).

3) Obviously, if w ∈ χ(L), ∀ i ∈ [n], ⟨w,bi⟩ ≡ ⟨bi,bi⟩ mod 2. On the other
hand, if w ∈ L satisfying ∀ i ∈ [n], ⟨w,bi⟩ ≡ ⟨bi,bi⟩ mod 2. Then for any
v =

∑n
i=1 vibi ∈ L, without loss of generality, assume vi ≡ 1 mod 2 for

1 ≤ i ≤ k, and vi ≡ 0 mod 2 for k + 1 ≤ i ≤ n. Thus we have ⟨w,v⟩ ≡
⟨w,b1 + . . .+ bk⟩ ≡

∑k
i=1⟨w,bi⟩ ≡

∑k
i=1⟨bi,bi⟩ ≡ ⟨v,v⟩ mod 2.

⊓⊔
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Lemma 2.7 Suppose L ∼= Zn. Assume B = OU is a basis of L, where
O ∈ On(R) and U ∈ GLn(Zn). Then it has:

1) χ(L) = {Oz : z ∈ Zn such that zi ≡ 1 mod 2, ∀i ∈ [n]}.
2) The shortest characteristic vectors are exactly {Oz : zi = ±1, ∀i ∈ [n]}.

Proof. 1) Let O = (v1, . . . ,vn) and w = B(U−1z) = Oz, where z ∈ Zn

is the vector that ∀i ∈ [n], zi = 1. Note that L = O · Zn. Thus assume
v =

∑n
i=1 aivi, then ⟨w,v⟩ =

∑n
i=1 aizi ≡

∑n
i=1 a

2
i = ⟨v,v⟩ mod 2, where

we used a2i ≡ ai mod 2 and zi ≡ 1 mod 2. Thus w ∈ χ(L), so χ(L) = {Oz :
z ∈ Zn such that zi ≡ 1 mod 2, ∀i ∈ [n]}.

2) Note that O is an orthogonal matrix, thus the shortest characteristic vectors
are {Oz : zi = ±1, ∀ i ∈ [n]} by 1).

⊓⊔

Appendix C Proof of the Independence of Proposition 3.1

Proof. We demonstrate the proof of independence by considering the case where
the number of trials is two. The general case follows in a similar approach.
Specifically, our goal is to demonstrate that for any shortest characteristic vectors
w1,w2 ∈ χ(L), it holds

PrO1←On(R),B1←A(O1B)
O2←On(R),B2←A(O2B)

[O−11 O(B1) = w1,O
−1
2 O(B2) = w2]

= Pr O1←On(R)
B1←A(O1B)

[O−11 O(B1) = w1] · Pr O2←On(R)
B2←A(O2B)

[O−12 O(B2) = w2]

= (
1

2n
)2,

where the second equality follows from the uniformity as shown in Proposi-
tion 3.1. For any M1,M2 ∈ Aut(L), it has

PrO1←On(R),B1←A(O1B)
O2←On(R),B2←A(O2B)

[O−11 O(B1) = M1w1,O
−1
2 O(B2) = M2w2]

= PrO1←On(R),B1←A(O1B)
O2←On(R),B2←A(O2B)

[(O1M1)
−1O(B1) = w1, (O2M2)

−1O(B2) = w2]

= PrO1M1←On(R),B1←A(O1B)
O2M2←On(R),B2←A(O2B)

[(O1M1)
−1O(B1) = w1, (O2M2)

−1O(B2) = w2]

= PrO1M1←On(R),B1←A(O1M1B)
O2M2←On(R),B2←A(O2M2B)

[(O1M1)
−1O(B1) = w1, (O2M2)

−1O(B2) = w2]

= PrO1←On(R),B1←A(O1B)
O2←On(R),B2←A(O2B)

[O−11 O(B1) = w1,O
−1
2 O(B2) = w2],

Where the second equality is derived from the property of Haar measure and
the independence of O1 and O2, the third equality follows from Lemma 3.1 and
the independence of randomness used by A in each trial, and the last equality
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is simply a substitution of the variable. Thus, for any shortest characteristic
vectors w1,w2 ∈ χ(L),

PrO1←On(R),B1←A(O1B)
O2←On(R),B2←A(O2B)

[O−11 O(B1) = w1,O
−1
2 O(B2) = w2] = (

1

2n
)2,

which completes the proof. ⊓⊔

Appendix D Reductions in the Gram Matrix Form

We demonstrate how the reductions in this paper can be expressed in the Gram
matrix form (i.e., in a quadratic form setting as in [18,19,21]). In this appendix,
we use the notation G1

∼= G2 to indicate that two positive definite matrices
(quadratic forms) G1,G2 ∈ Zn×n are equivalent, i.e., there exists a unimodular
matrix U such that U⊤G1U = G2. Recall that a lattice L(B) is unimodular
if and only if its Gram matrix G = B⊤B is a unimodular matrix. Then the
characteristic vectors can be defined using the Gram matrix. Specifically, define
χ(G) = {z ∈ Zn : z⊤Gei ≡ e⊤i Gei mod 2, i ∈ [n]} to be the set of characteristic
vectors of G. Then z ∈ χ(G) if and only if Bz ∈ χ(L(B)). The lattice problems
involved in this paper can be reformulated using the Gram matrix as follows.

– LIP (ZLIP): Given two matrices G1
∼= G2 (= In), find a unimodular matrix

U such that U⊤G2U = G1.
– ZSVP: Given a matrix G ∼= In, find a z ∈ Zn such that z⊤Gz = 1. We call

such z a shortest vector of G.
– γ-ZSVP: Given a matrix G ∼= In, find a z ∈ Zn such that z⊤Gz ≤ γ.
– ZSCVP: Given a matrix G ∼= In, find a z ∈ χ(G) such that z⊤Gz = n.
– LAP (ZLAP): Given a matrix G (∼= In), find a unimodular matrix U ∈

Stab(G) such that U ̸= ±In.

D.1 A Reduction from ZLIP to ZSCVP

To begin with, we provide a Gram matrix version of Lemma 3.1. Analogous
results have also appeared in [9,14,28,19].

Lemma D.1 There is an efficient algorithm that takes as input a Gram matrix
G of a lattice L and outputs two matrices (G1,U1) such that G1 = U⊤1 GU1

according to a distribution B(G), satisfying that

Pr[(G1,U1)← B(G)] = Pr[(G1,VU1)← B(G)] (14)

for any V ∈ Stab(G).

Proof. To obtain (G1,U1), we first apply the Cholesky decomposition to decom-
pose G into B⊤B. Then, using Lemma 3.1, we obtain a basis B1 ← A(B) of the
lattice L(B). Next, we compute a unimodular matrix U1 such that B1 = BU1.
Finally, we output the matrices (G1 = B⊤1 B1,U1).
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It is clear that G1 = U⊤1 GU1. On the other hand, from Lemma 3.1, we
know that Pr[B1 ← A(B)] = Pr[OB1 ← A(B)] for any O ∈ Aut(L). According
to Lemma 2.9, for any O ∈ Aut(L), there exists a unique V ∈ Stab(G) such
that OB = BV. Therefore, we have Pr[B1 ← A(B)] = Pr[B1V ← A(B)], i.e.
Pr[(G1,U1)← B(G)] = Pr[(G1,VU1)← B(G)] for any V ∈ Stab(G). ⊓⊔

Remark 3. We note that the decomposition and basis operations are only per-
formed to simplify the presentation of the above proof. A more effective approach
to obtaining (G1,U1) is to perform Gaussian sampling and LLL algorithms di-
rectly on the Gram matrix (as demonstrated in [19]), without decomposing G.
This method avoids any potential precision issues that may arise in Lemma D.1.

The proposition below can be viewed as a Gram matrix version of Proposi-
tion 3.1.

Proposition D.1 Given a ZSCVP oracle O, which takes a Gram matrix G as
input, subject to the condition that G ∼= In, and returns a shortest vector in
χ(G). Then we can sample uniformly and independently from the set of shortest
characteristic vectors in χ(G).

Proof. Given the Gram matrix G, we first obtain (G1,U1) ← B(G) according
to Lemma D.1. We then call the ZSCVP oracle O, taking G1 as input to obtain
a shortest characteristic vector z1 ∈ χ(G1) satisfying z⊤1 G1z1 = n. Finally, we
compute U1z1, which can be easily verified to be a shortest characteristic vector
of G.

We claim that U1z1 is uniformly distributed in the set of shortest character-
istic vectors of G. In other words, the probability

Pr(G1,U1)←B(G)[U1O(G1) = z] (15)

is identical for any shortest characteristic vector z ∈ χ(G). Since the set of
shortest characteristic vector of G can be written as {Vz : V ∈ Stab(G)}, it
suffices to show that Pr[U1O(G1) = z] = Pr[U1O(G1) = Vz] for any V−1 ∈
Stab(G). Note that

Pr(G1,U1)←B(G)[U1O(G1) = z]

= Pr(G1,V−1U1)←B(G)[V
−1U1O(G1) = z]

= Pr(G1,U1)←B(G)[V
−1U1O(G1) = z]

= Pr(G1,U1)←B(G)[U1O(G1) = Vz].

The first equality results from a simple substitution of the variable, while the
second equality is derived from Lemma D.1. As a result, the uniformity holds.

To demonstrate the independence of U1z1 for each trial, we can examine the
joint distribution by utilizing the above method and taking into account that
the randomness used in B(G) are independent. The proof is analogous to that
of Proposition 3.1. ⊓⊔
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Theorem D.1 There is an efficient randomized reduction from ZLIP to ZSCVP
in the same dimension.

Proof. Given a matrix G ∼= In and suppose that we have access to a ZSCVP
oracle O as described in Proposition D.1. Our goal is to obtain a unimodular
matrix U such that G = U⊤U.

First, we apply the Cholesky decomposition to decompose G = B⊤B, where
L(B) ∼= Zn. Note that z ∈ χ(G) if and only if Bz ∈ χ(L(B)). Using Propo-
sition D.1, we can uniformly and independently sample shortest characteristic
vectors in χ(G) and transform them into χ(L(B)). Finally, by Proposition 3.2,
we can obtain an O such that L(B) = OZn and then compute U = O−1B. It
can be easily verified that U is unimodular and G = U⊤U. ⊓⊔

Remark 4. In the proof, we transform the characteristic vectors into the basis
form. We note that the precision issue in this step can be disregarded for two
reasons: 1) An arbitrarily accurate approximation of a basis can be extracted
from a Gram matrix using the Cholesky decomposition. 2) Given a sufficiently
accurate approximation of a purported orthogonal transformation, it is possible
to verify if it corresponds to a true lattice isomorphism by extracting the cor-
responding unimodular matrix U and checking the equality G = U⊤U, which
only involves exact arithmetic.

D.2 A Reduction from ZLIP to ZSVP

Theorem D.2 There is an efficient randomized reduction from ZLIP to ZSVP
in the same dimension.

Proof. Given a matrix G ∼= In and suppose that we have access to a ZSVP
oracle O, which takes a Gram matrix G′ as input, subject to the condition that
G′ ∼= In, and returns a shortest vector z ∈ Zn such that z⊤G′z = 1.

From Lemma 2.9, we can deduce that Stab(G) acts transitively on the set
of shortest vectors of G, i.e., {z ∈ Zn : z⊤Gz = 1}. By invoking the ZSVP
oracle with the randomization framework in the Gram matrix version, we can
obtain vectors that are independently and uniformly distributed over the set of
shortest vectors of G. Then we can sample O(nlogn) shortest vectors to get a set
of linearly independent ones, e.g., {z1, . . . , zn}. Define V = (z1, . . . , zn). For any
B ∈ Rn×n such that G = B⊤B, it has {Bz1, . . . ,Bzn} is a set of independent
shortest vectors in L(B). It follows that V⊤GV = V⊤B⊤BV = In, which
completes the proof. ⊓⊔

D.3 A Reduction from ZSVP to γ-ZSVP

Theorem D.3 There is an efficient randomized reduction from ZLIP to γ-
ZSVP for any constant γ = O(1) in the same dimension.
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Proof. Given a matrix G ∼= In and suppose that we have access to a γ-ZSVP
oracle O, which takes a Gram matrix G′ as input, subject to the condition that
G′ ∼= In, and returns a vector z ∈ Zn such that z⊤G′z ≤ γ.

Let Xγ = {z ∈ Zn : z⊤Gz ≤ γ}. By Lemma 2.1, we have |Xγ | ≤ nc for some
constant c. Also, it can be deduced from Lemma 2.9 that Stab(G) acts on Xγ

by (U ∈ Stab(G),v ∈ Xγ) → Uv ∈ Xγ . Using the randomization framework,
we can invoke the γ-ZSVP oracle m = poly(n) times, where m > nc, to obtain
a vector set {z1, . . . , zm}. We then compute zi − zj for all i, j ∈ [m] and check
if it is a multiple of a shortest vector. As shown in Theorem 3.2, the probability
that zi− zj is a multiple of a shortest vector of G is at least 1/nc. By repeating
the whole process O(nc+1) times, we can obtain a shortest vector in G with an
overwhelming probability. ⊓⊔

D.4 A Reduction from ZLIP to ZLAP

Theorem D.4 There is an efficient randomized reduction from ZLIP to ZLAP.

Proof. Given a matrix G ∼= In and suppose that we have access to a ZLAP
oracle O, which takes a Gram matrix G′ as input, subject to the condition that
G′ ∼= In, and returns a unimodular matrix V′ ∈ Stab(G′) and V′ ̸= ±In.

To begin with, we show how to obtain random matrices in Stab(G) by invok-
ing the ZLAP oracleO. As in Proposition D.1, we first generate (G′,U′)← B(G)
according to Lemma D.1. Then by invoking the ZLAP oracle O and taking G′

as input, we obtain a V′ ∈ Stab(G′) such that V′ ̸= ±In. This allows us to
obtain a U′V′U′−1 ∈ Stab(G′).

Next, we use the Cholesky decomposition to decompose G = B⊤B. Since
Stab(G) ∼= Aut(L(B)), the operations in Section 4.1 can be transformed into
the Gram matrix form. Specifically, finding the eigenspace X1 of BVB−1 ∈
Aut(L(B)) is equivalent to finding the eigenspace X2 of V ∈ Stab(G) for the
same eigenvalue such that X1 = BX2, where V acts on Rn by (V,x ∈ Rn) →
Vx ∈ Rn. Moreover, the corresponding induced sub-lattices are V1 ∩ L(B) and
V2∩Zn respectively. Other operations in Section 4.1 can be directly converted to
the Gram matrix form. Then, we can efficiently sample from a conjugacy class
CV = {WVW−1 : W ∈ Stab(G)} of Stab(G), where V ∈ Stab(G) corresponds
to an automorphism ϕ ∈ Aut(L(B)) with ϕ ∼ Ti,j,k. Next, we use Lemma 2.9
to transform these samples in CV into automorphisms in Aut(L(B)). Finally,
we employ Proposition 4.2 to obtain an O such that L(B) = OZn and compute
U = O−1B. It can be easily verified that U is unimodular and G = U⊤U. ⊓⊔

D.5 A Reduction from LAP to LIP

Theorem D.5 There is an efficient randomized reduction from LAP to LIP in
the same dimension.

Proof. Given a Gram matrix G and suppose that we have access to an LIP oracle
O, which takes two Gram matrices G1,G2 as input, and returns a unimodular
matrix U such that U⊤G2U = G1.
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To begin with, we obtain (G1,U1)← B(G) according to Lemma D.1. Then
we call the LIP oracle O with input G,G1, and get a unimodular matrix U such
that U⊤GU = G1. For any V,V0 ∈ Stab(G), it can be deduced that

Pr(G1,U1)←B(G)[O(G1)U
−1
1 = V]

= Pr(G1,V0U1)←B(G)[O(G1)(V0U1)
−1 = V]

= Pr(G1,U1)←B(G)[O(G1)(V0U1)
−1 = V]

= Pr(G1,U1)←B(G)[O(G1)U
−1
1 = VV0].

Thus O(G,G1)U
−1
1 is uniformly distributed in Stab(G). Thus if Stab(G) ̸=

{±In}, we can efficiently obtain a nontrivial elements from Stab(G) with an
overwhelming probability by repeating the above process O(n) times. ⊓⊔

Appendix E Proof of Lemma 4.6

Proof. Let D be the set of n×n diagonal matrices whose diagonal entries are ±1.
Then D forms a subgroup of S±n , and S±n is the semidirect product of D and Sn.6
For ϕ0 ∈ Aut(L) and ϕ0 ∼ Tk1,k2,l, let O ∈ On(R) such that L = OZn, then it
has Cϕ0

= {OTTk1,k2,lT
−1O−1 : T ∈ S±n }. Denote y = O−1x = (x1, · · · , xn).7

For k = 1, it has

g1(x) = E[⟨ϕx,x⟩] = 1

|S±n |
∑

T∈S±n

⟨OTTk1,k2,lT
−1O−1x,x⟩

=
1

|S±n |
∑
P∈Sn

∑
D∈D

⟨OPDTk1,k2,lD
−1P−1O−1x,x⟩

=
1

|S±n |
∑
P∈Sn

∑
D∈D

⟨DTk1,k2,lD
−1P−1O−1x,P−1O−1x⟩

=
1

|S±n |
∑
P∈Sn

∑
D∈D

⟨DTk1,k2,lD
−1P−1y,P−1y⟩.

Denote Wk1,k2,l = diag{02l,−Ik1
, Ik2
}, where 02l is the 2l×2l zero matrix. Then

it has
∑

D∈DDTk1,k2,lD
−1 = |D| ·Wk1,k2,l, and thus

g1(x) =
|D|
|S±n |

∑
P∈Sn

⟨Wk1,k2,lP
−1y,P−1y⟩

=
1

|Sn|
∑
P∈Sn

(−(x2P(2l+1) + · · ·+ x2P(2l+k1)
) + (x2P(2l+k1+1) + · · ·+ x2P(n)))

=
−k1 + k2

n
(x21 + · · ·+ x2n) =

k2 − k1
n

∥x∥2 ,

6 ‘Semidirect product’ means that S±
n = DSn, D ∩ Sn = {In} and D is a normal

subgroup of S±
n . This implies that for any T ∈ S±

n , there exist unique D ∈ D and
P ∈ Sn such that T = PD.

7 This is consistent with the notation xi = ⟨x,vi⟩ in Section 4.2.
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where P(i) represents the row number of the ‘1’ in P’s i-th column.
For k = 2, it has

g2(x) =
1

|S±n |
∑

T∈S±n

⟨OTTk1,k2,lT
−1O−1x,x⟩2

=
1

|S±n |
∑
P∈Sn

∑
D∈D

⟨DTk1,k2,lD
−1P−1O−1x,P−1O−1x⟩2

=
1

|S±n |
∑
P∈Sn

∑
D∈D

⟨DTk1,k2,lD
−1P−1y,P−1y⟩2.

For fixed P ∈ Sn and D ∈ D, denote z = P−1y = (z1, · · · , zn) and D = D−1 =
diag{d1, · · · , dn}, where di = ±1. Then it has

DTk1,k2,lD
−1z = (d1d2z2, d1d2z1, . . . , d2l−1d2lz2l, d2l−1d2lz2l−1,

− z2l+1, . . . ,−z2l+k1
, z2l+k1+1, . . . , zn),

and ⟨DTk1,k2,lD
−1z, z⟩ =

∑l
i=1 2d2i−1d2iz2i−1z2i−

∑2l+k1

i=2l+1 z
2
i +

∑n
i=2l+k1+1 z

2
i .

It follows that∑
D∈D

⟨DTk1,k2,lD
−1z, z⟩2 = |D|

4

l∑
i=1

z22i−1z
2
2i +

n∑
i=2l+1

z4i +
∑

2l+1≤i,j≤2l+k1

z2i z
2
j

−2
∑

2l+1≤i≤2l+k1
2l+k1+1≤j≤n

z2i z
2
j +

∑
2l+k1+1≤i,j≤n

z2i z
2
j

 .

Observe that zi = xP(i) for 1 ≤ i ≤ n, then it can be deduced that

g2(x) =
1

|S±n |
∑
P∈Sn

∑
D∈D

⟨DTk1,k2,lD
−1z, z⟩2

=
4l + k1(k1 − 1)− 2k1k2 + k2(k2 − 1)

n(n− 1)

∑
1≤i,j≤n

x2ix
2
j +

(n− 2l)

n

∑
1≤i≤n

x4i

=
6l + (k1 − k2)2 − n

n(n− 1)

∑
1≤i,j≤n

x2ix
2
j +

(n− 2l)

n

∑
1≤i≤n

x4i

=
n2 − 2nl − (k1 − k2)2 − 4l

n(n− 1)

n∑
i=1

xi
4 +

6l + (k1 − k2)2 − n
n(n− 1)

(

n∑
i=1

xi
2)2.

⊓⊔

Appendix F Recover the Exact Shortest Vectors in
Proposition 4.2

In this appendix, we demonstrate how to recover the exact shortest vectors by us-
ing good enough approximations of the shortest vectors of L and automorphisms
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of Aut(L), thereby completing Proposition 4.2. In fact, this can be reduced to
the following problem.

Problem F.1 Suppose n is odd. Given a basis B of a lattice L ∼= Zn, a poly-
nomial number of automorphisms ϕ1, ϕ2, . . . , ϕp(n) ∈ Aut(L) that are drawn
uniformly and independently from a conjugacy class Cϕ0 , where ϕ0 ∼ Tk1,k2,l

and k1, k2, l are fixed, and an approximation of a set of independent shortest
vectors vi, i.e., {ṽ1, . . . , ṽn} such that ṽi = vi + ϵi and ∥ϵi∥ ≤ n−c. The goal is
to find the shortest vectors of L, i.e., V = {v1, . . . ,vn}.

Note that for any ϕ ∈ Cϕ0
, it has ϕ = VSV−1, where S ∈ S±n and S ∼ Tk1,k2,l

(i.e., ∃T ∈ S±n such that S = TTk1,k2,lT
−1), and ϕ acts on the set of shortest

vectors {±v1, . . . ,±vn}. Then for 1 ≤ i, j ≤ n, it has ∥ϕvi ± vj∥ = 0 or 2 and

|∥ϕṽi ± ṽj∥ − ∥ϕvi ± vj∥| ≤ ∥ϕϵi ± ϵj∥ ≤ 2n−c. (16)

Thus, for any given ϕ ∈ Cϕ0 , we can decide whether ∥ϕvi ± vj∥ = 0, and thus
exactly recover the corresponding matrix S ∈ S±n .

Next, we demonstrate that, for the given automorphisms ϕ1, ϕ2, . . . , ϕp(n) ∈
Cϕ0

and the corresponding matrices Si ∈ S±n , 1 ≤ i ≤ p(n), such that ϕi =
VSiV

−1, we can efficiently recover V. For ϕ,S ∈ Rn×n, define K(ϕ,S) :=
{X ∈ Rn×n : XSX−1 = ϕ}. Then clearly, K(ϕ,S) is an R-linear space, and
V ∈ K(ϕi,Si). Moreover,

K(ϕi,Si) = {X : XSiX−1 = VSiV
−1}

= {X : (V−1X)Si(V−1X)−1 = Si}
= {VX : XSiX−1 = Si}
= V · {X : XSiX−1 = Si}
= V ·K(Si,Si).

Therefore, V ∈ V ·
⋂p(n)

i=1 K(Si,Si). Note that K(Si,Si) is a subgroup of S±n .
Let Ti ∈ S±n such that Si = TiTk1,k2,lT

−1
i . Then it has

K(Si,Si) = {X : XSiX−1 = Si}
= {X : XTiTk1,k2,lT

−1
i X−1 = TiTk1,k2,lT

−1
i }

= {X : (T−1i XTi)Tk1,k2,l(T
−1
i XTi)

−1 = Tk1,k2,l}
= TiK(Tk1,k2,l,Tk1,k2,l)T

−1
i .

Since ϕi is drawn uniformly from the conjugacy class Cϕ0 , then Si is distributed
uniformly in the conjugacy class CTk1,k2,l

. Then from the group action perspec-
tive, the coset TiK(Tk1,k2,l,Tk1,k2,l) is distributed uniformly in the left cosets
of Tk1,k2,l in S±n . Equivalently, K(Si,Si) = TiK(Tk1,k2,l,Tk1,k2,l)T

−1
i can be

viewed as a random subgroup of S±n such that Ti is drawn uniformly at random
from S±n . There are two cases for Tk1,k2,l.
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Case 1. l = 0. In this case, it has k1, k2 > 0, and thus there exists 1 ≤
a ̸= b ≤ n such that Tk1,k2,lea = ea and Tk1,k2,leb = −eb (we recall that
{ea}a∈[n] is the standard basis). Thus, for an X ∈ K(Tk1,k2,l,Tk1,k2,l), we have
e⊤a Xeb = −e⊤a XTk1,k2,leb = −e⊤a Tk1,k2,lXeb = −e⊤a Xeb, i.e., e⊤a Xeb = 0.
Similarly, it can be deduced that e⊤b Xea = 0.

Therefore, for any Y ∈ K(Si,Si), we have T⊤i YTi ∈ K(Tk1,k2,l,Tk1,k2,l).
It follows that (Tiea)

⊤Y(Tieb) = (Tieb)
⊤Y(Tiea) = 0. Note that Ti can

be viewed as drawn uniformly at random from S±n , and S±n acts transitively
on all the pairs {(±ea,±eb) : 1 ≤ a ̸= b ≤ n}. Thus, for a sufficiently large
polynomial p(n), it has e⊤a Yeb = e⊤b Yea = 0 for all 1 ≤ a ̸= b ≤ n and Y ∈⋂p(n)

i=1 K(Si,Si). In other words,
⋂p(n)

i=1 K(Si,Si) consists of all diagonal matrices
in Rn×n, i.e.,

⋂p(n)
i=1 K(ϕi,Si) = {V · diag{d1, . . . , dn} : di ∈ R}. Then V can be

reconstructed by first computing an R-linear basis of the space
⋂p(n)

i=1 K(ϕi,Si)
and then recovering each ±vi via vector normalization.

Case 2: l ̸= 0. In this case, it has k1 ̸= 0 (or k2 ̸= 0). Thus we have
Tk1,k2,le1 = e2, Tk1,k2,le2 = e1, and there exists 3 ≤ j ≤ n such that Tk1,k2,lej =
−ej (or Tk1,k2,lej = ej if k2 ̸= 0). Then, by a similar deduction as in Case 1,
we have e⊤1 Xe1 = e⊤2 Xe2, e⊤1 Xe2 = e⊤2 Xe1, and e⊤1 Xej = −e⊤2 Xej (or
e⊤1 Xej = e⊤2 Xej if k2 ̸= 0) for all j ∈ [n] and X ∈ K(Tk1,k2,l,Tk1,k2,l).

Again, due to the transitivity of the action of S±n on {(±ea,±eb,±ec)}, we
can deduce that for a large enough polynomial p(n), it has e⊤a Yea = e⊤b Yeb,
e⊤a Yeb = e⊤b Yea, and e⊤a Yec = −e⊤b Yec, e⊤a Yec = e⊤b Yec for all 1 ≤ a ̸=
b ̸= c ≤ n and Y ∈

⋂p(n)
i=1 K(Si,Si). In other words,

⋂p(n)
i=1 K(Si,Si) = {hIn :

h ∈ R}. Then V can be reconstructed by first computing a nonzero matrix in⋂p(n)
i=1 K(ϕi,Si) and then performing normalization.
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