
Hintless Single-Server Private Information
Retrieval

Baiyu Li[0000−0003−1088−9328]?, Daniele Micciancio[0000−0003−3323−9985]??,
Mariana Raykova? ? ?, and Mark Schultz-Wu[0000−0001−5761−9662]†

Abstract. We present two new constructions for private information
retrieval (PIR) in the classical setting where the clients do not need to
do any preprocessing or store any database dependent information, and
the server does not need to store any client-dependent information.

Our first construction HintlessPIR eliminates the client preprocessing step
from the recent LWE-based SimplePIR (Henzinger et. al., USENIX Secu-
rity 2023) by outsourcing the “hint” related computation to the server,
leveraging a new concept of homomorphic encryption with composable
preprocessing. We realize this concept on RLWE encryption schemes,
and thanks to the composibility of this technique we are able to pre-
process almost all the expensive parts of the homomorphic computa-
tion and reuse across multiple executions. As a concrete application, we
achieve very efficient matrix vector multiplication that allows us to build
HintlessPIR. For a database of size 8GB, HintlessPIR achieves throughput
about 3.7GB/s without requiring any client or server state. We addi-
tionally formalize the matrix vector multiplication protocol as LinPIR
primitive, which may be of independent interests.

In our second construction TensorPIR we reduce the communications of
HintlessPIR from square root to cubic root in the database size. We show
how to use RLWE encryption with preprocessing to outsource LWE de-
cryption for ciphertexts generated by homomorphic multiplications. This
allows the server to do more complex processing using a more compact
query under LWE.

We implement and benchmark HintlessPIR which achieves better concrete
costs than TensorPIR for a large set of databases of interest. We show
that it improves the communication of recent preprocessing constructions
when clients do not have large numbers of queries or database updates
frequently. The computation cost for removing the hint is small and
decreases as the database becomes larger, and it is always more efficient
than other constructions with client hints such as Spiral PIR (Menon and
Wu, S&P 2022). In the setting of anonymous queries we also improve on
Spiral’s communication.

? Google. Email: baiyuli@google.com
?? UCSD. Email: daniele@cs.ucsd.edu

? ? ? Google. Email: marianar@google.com
† UCSD. Email mdschultz@eng.ucsd.edu. Work performed at Google



1 Introduction

How to enable client access to a public database without revealing any informa-
tion about the query to the server hosting the database? This question comes up
in numerous applications such as anonymous messaging [47, 7, 1], contact dis-
covery [13], password breach checkup [53], safe browsing [39], privacy enhanced
advertising [10, 33] and many others, and has been the topic of study for the area
of private information retrieval (PIR) [18, 40]. Since downloading the database is
a trivial solution when the database is public, PIR constructions aim to achieve
sublinear communication. Early theoretical results [16, 29, 11] have shown fea-
sibility of constructions with communication polylogarithmic in the size of the
database, but have also given a linear computation lower bound in the basic
model of PIR 1. The pursuit of a practical PIR construction has lead to a long
line of works [43, 5, 49, 26, 20, 20, 39, 4, 1, 48, 44, 19, 42, 37, 57, 21, 56, 41]
that have drawn a much more complex picture of the possible trade-offs between
communication and computation for constructions.

One approach to obtain better efficiency has been to consider multi-server
settings where the database is held by two or more servers that are assumed to be
non-colluding. Two/multi-server PIR constructions [14, 18, 35, 41] offer better
efficiency and even information-theoretic security guarantees [18, 23, 35], but
they do come with the significant assumption that the servers are non-colluding.
While there are settings which match this security model, our focus in this paper
is on scenarios where we can rely only on a single server.

In the single server PIR setting, an emerging paradigm that has enabled
concrete reductions in the computational cost to the server (even achieving sub-
linear computation), has been the model of preprocessing. In this model, the
server and the client preprocess the database to obtain auxiliary information,
often called a “hint”, which the client needs to store and use for subsequent
queries. In many constructions the preprocessing is client specific, i.e. depends
on private input from the client, and therefore needs to be computed by the
client in an interaction with the server [49, 20, 41, 57].

The recent construction of Simple PIR [37] proposed a different preprocess-
ing solution, where the hint does not depend on any client private informa-
tion. It can therefore be computed independently by the server, and can also
be reused across clients. Simple PIR demonstrated how a database-dependent
(but client and query-independent) hint can enable significant speedups in the
server’s query processing time. Moreover, the initial high cost to transmit the
database-dependent hint may be amortized over the total number of queries each
client makes, so provided each client makes sufficiently many queries, the overall
cost may be minimized.

The same paper presents a second construction, Double PIR, which theoret-
ically reduces the hint size to be independent of the number of database records.
This hint is still dependent on the size of each record though. For example, for
records of size ≥ 256B, practically Double PIR seems to often have hints that

1 without preprocessing

2



are many times the size of the entire database [9, Figure 5.1]. A concurrent work
to ours [36] which leverages the idea of Simple PIR in the context of private web
search, introduces a technique that removes the need of a hint by outsourcing
the client computation that depends on the hint to the server.

While it has been long known that preprocessing could bypass the linear
computation bound for PIR [11], the recent Piano construction [57] showed that
constructions with sublinear server computation can also be concretely com-
petitive. This work improves the online communication and computation costs
for processing a PIR query, and also reduces the client storage requirement,
but requires increased preprocessing communication and computation. In fact,
the client needs to stream the entire database, which may come at a large cost
(though may be amortized over a large-enough number of queries).

The preprocessing paradigm has been leveraged for concrete efficiency gains,
but often comes with a high communication cost that requires an amortiza-
tion argument to make practically reasonable. On the other hand, there exist
constructions that minimize communication by having the client send a com-
pressed query, which must be expanded (using homomorphic encryption) at the
server before processing the query. Many papers [43, 5, 26, 48, 4, 44] have ex-
plored variations of this general approach, and Spiral PIR [44] is the most recent
and best performing paper in this category. This construction uses a “Packed
Regev” RLWE-based ciphertext [52], which is homomorphically expanded to a
GSW-type ciphertext [30], before proceeding with the rest of the protocol. This
homomorphic expansion is concretely expensive, and the cost of Spiral PIR ex-
ceeds that of preprocessing-based constructions like Simple PIR. Moreover, while
each Spiral PIR query is small, this is only true if one ignores the transmission of
the encrypted key material Spiral PIR requires for homomorphic computations.
Of course, similarly to Simple PIR, Spiral PIR can amortize the high cost of
the transmission of this client-dependent data to the server, provided each client
makes sufficiently many PIR queries.

In this paper we return to the classical PIR model, e.g. without database-
dependent preprocessed data transmitted to the client before queries, and with-
out client-dependent data cached on the server between queries. There are several
advantages to this model. First, it removes the database-dependent storage re-
quirement on the client, which may be prohibitive especially if a client wishes
to query multiple databases (for storage-constrained clients, this may require
clients to evict “old” hints before enough queries have been issued to a database
to amortize the high cost of the hint to something concretely reasonable). Sec-
ond, it removes the requirement to maintain the correctness of the hint across all
clients when the database updates. For highly dynamic databases, this may add
significant communication overhead to keep the hints in sync. These communica-
tions are required communications that are not associated with any client query,
and therefore work against the amortization argument for the communication
required to transfer the hint. Such dynamically-updating databases are common
in some areas, such as real-time data (e.g. a database of real-time stock prices).

3



Another example where hints may create significant additional overhead is
the “streaming setting” defined in the Spiral PIR construction [44] where the
same query is executed across several different databases. This setting is relevant
to a common technique for fitting a database with large B-bit entries into a PIR
scheme that leverages homomorphic computation on b-bit numbers. One can
shard the database into B/b databases of b-bit numbers, and issue queries to all
B/b databases simultaneously. If each database requires a hint, this increases the
storage requirement on the client by a factor B/b, which may quickly become
prohibitive in practice.

We also aim to avoid client-dependent state stored on the server. The down-
side of such state is that even though PIR completely hides the content of the
clients’ queries, it does not provide anonymity regarding which client is query-
ing the database at which time. In fact, if the server requires client-dependent
state, the server must have knowledge of this information for correct protocol
execution. This linkability can be lessened by rotating the client-dependent state
regularly, but yet again this cuts against the amortization argument. Note that
there have been several efforts to provide anonymity for user traffic, such as
Apple’s iCloud Private Relay [8], Google One VPN [31], Privacy Sandbox IP
Protection [32], Tor [54]. The classical PIR model (without client-dependent
state on the server) allows seamless composition with such solutions.

Thus, our goal is to construct a PIR scheme that requires neither database-
dependent state at the clients, nor client-dependent state at the server. At the
same time, we wish to stay as close as possible to the efficiency of recent LWE-
based constructions (namely Simple PIR), which achieve higher throughput than
recent RLWE-based constructions (namely Spiral PIR). Moreover, we aim to
reduce the communication cost per-query even in settings where amortization
arguments are unavailable, e.g. a client making a single PIR query.

Our Contributions.

We present two PIR constructions of differing asymptotic efficiency, which we
name HintlessPIR and TensorPIR. Both of them require neither client side prepro-
cessing (or database-dependent state), nor client-dependent state on the server.

HintlessPIR The starting point for our first construction is the Simple PIR
construction. This arranges the database (of size m) as a square matrix (of di-
mension

√
m×

√
m). In this format, one can execute a PIR query by homomor-

phically computing a matrix-vector multiplication between this database and a√
m-dimensional selection vector ui. This recovers the column DB·ui = DBi that

contains the desired record. One can therefore encrypt the selection vector ui,
and homomorphically multiply by the database to obtain a PIR scheme, which
is equivalent to a (heavily unoptimized) version of Simple PIR.

This simple idea has two significant issues, both related to the fact that LWE
ciphertexts [A,b] contain a

4



– pseudorandom component b, which contains an encoding of ui, and
– a public random A, which is independent of ui.

Both of these components are required to decrypt secret key s as follows

b−A · s ≈ ui.

The source of both issues is that the matrix A is large — a factor N ≈ 210 larger
than b, and ≈ 215 larger than the index i ∈ [

√
m] that is the client’s input. The

largeness of A implies significant overhead for both

– bandwidth, in the obvious way, and
– server compute, as homomorphically multiplying by DB requires computa-

tion of DB ·A, at a cost of ≈ 210 times larger than a linear database scan.

Simple PIR solves both of these issues with the following optimization. It is
well-known that one can shrink A to a short seed, which is expanded back to
a uniformly random matrix using a random oracle. This shrinks the size of the
initial encryption of ui, but does not help the server compute. It also does not
help the server send a small reply back to the client, as one cannot find a short
seed seed′ that expands to a specific target DB · A. To fix both of these issues
the server requires all client encryptions are done relative to a short seed, and
then transmits A′ = DB ·A as a database-dependent hint to clients. Then, when
a client receives a value b′ = DB · b from the server, they can compute

b′ −A′ · s = DB · (b−A · s) ≈ DB · ui.

We modify the Simple PIR construction by replacing the local computation
of A′ · s that required the hint A′ with a secure protocol to compute A′ · s. We
view this as a mild extension of standard PIR, that we call linear PIR.

Linear PIR The secure computation of (A′, s) 7→ A′ · s initially looks to the
original matrix-vector multiplication DB · ui used to compute the PIR query
response. The only difference is that the vector is no longer a selection vector,
but an LWE secret, and the databases A′,DB are of different sizes. We call this
more general functionality linear PIR, and note that it gives a way to securely
compute a multiplication A′ · s, where A′ is a public matrix, and s is a secret
vector. Similarly to standard PIR, our goal is to securely compute this product in
lower bandwidth than the trivial solution of transmitting A′ to the client. This
matrix-vector multiplication functionality appears to be independently useful
— it was recently used in the private web search construction of Henzinger et
al. [36].

In these terms, the Simple PIR protocol can be viewed as reducing a PIR
query (to the database DB) to a LinPIR query (to the hint A′ := DB ·A), which
is solved via the trivial protocol of transmitting A′ to the client. As A′ is smaller
than DB, this gives some bandwidth savings, and (after computing A′ := DB ·A,
which is expensive for large databases) yields a practically fast protocol.

5



We define a novel linear PIR protocol that we call NTTlessPIR (Section 4),
which suffices to replace the linear PIR query implicit to Simple PIR, and yield
a hintless variant of Simple PIR (HintlessPIR, Section 5). Note that NTTlessPIR
may additionally be used independently of Simple PIR as a full-fledged PIR
protocol, though we find performance benefits2 when using it solely to remove
the hint A′ from Simple PIR, so we focus on this in our work.

NTTlessPIR proceeds by using RLWE-based homomorphic encryption to se-
curely compute the aforementioned matrix-vector multiplication. This is done
using a preexisting homomorphic matrix-vector multiplication algorithm [34].
This algorithm homomorphically computes (A′,Enc(s)) 7→ Enc(A′ · s mod p) for
so-called Number-Theoretic Transform (NTT) friendly moduli p.

We show that in the setting of linear PIR, where one does not need to per-
form further computation on Enc(A′ · s), that one may extend this algorithm to
general moduli Q by computing A′ · s mod pi for enough NTT-friendly primes
pi that one may recover A′ · s over the integers using the Chinese Remainder
Theorem. We also show that one may instantiate this algorithm using an atyp-
ically small amount of encrypted key material, namely a single rotation key.
These, combined with several other non-asymptotic optimizations (summarized
in Appendix E.1), suffice to instantiate NTTlessPIR. Despite these optimizations,
the practical efficiency of scheme is still lacking. We fix this via an asymptotic
speedup of the underlying homomorphic algorithm (and many others) using a
technique we call homomorphic encryption with composable preprocessing.

Homomorphic Encryption with Composable Preprocessing The high-
level idea behind homomorphic encryption with composable preprocessing (Sec-
tion 3) is similar to Simple PIR3, albeit in the setting of RLWE-based encryption.
For Simple PIR, the server leveraged that it knew A before protocol execution to
precompute the hint A′ = DB ·A, and remove the computation and transmission
of this from the online portion of the protocol. We develop analogous optimiza-
tions for fundamental RLWE-based homomorphic operations, namely gadget
products (and things that depend on them, e.g. gadget-based key-switching).
More importantly (and differently than Simple PIR), we show that our pre-
processing is composable, e.g. we can preprocess not only single operations, but
entire complex circuits.

This is done by identifying a certain invariant that many RLWE-based homo-
morphic operations preserve. In particular, if one has an input ciphertext (a, b) =
Encv(m), and collection of encrypted key material {(ai, bi)}i = {Enc(fi(v))}i, for

2 In particular, we are able to get considerable (though non-asymptotic) speedups
in server processing time, which was a primary goal in this work. It is plausible
that in applications that prioritize minimizing other parameters, in particular server
preprocessing time, that NTTlessPIR may be independently interesting.

3 Our optimization is even compatible with a Simple PIR-type “hint” to reduce our
per-query bandwidth. As it has a smaller impact (2× reduction) in our setting than
that of Simple PIR (210× reduction), we instead omit it to achieve our goal of no
database-dependent state on our clients.

6



many operations the output ciphertext (a′′, b′′) of their homomorphic evaluation
is such that a′′ is a deterministic function of a and {ai}i. A trivial example is
that the sum of two ciphertexts (a, b) and (a′0, b

′
0) has a′′ = a + a′0. Less triv-

ially, we show in Section 3 that this invariant is also preserved by gadget-based
key-switching, and additionally circuits that compose these invariant-preserving
operations. This class of circuits includes algorithms of practical interest such
as the matrix-vector multiplication algorithm of [34], the RLWE expansion al-
gorithm of [17]. It is highly likely this list is non-exhaustive, but we focus on the
implications of this optimization to our PIR protocols in this work.

We next describe how we use the aforementioned invariant to speedup homo-
morphic computation. For gadget-based key-switching, one is input a ciphertext
ct = (a, b), and collection of encrypted key material ksk = {(a′i, b′i)}i∈[`], and
must compute a certain function F (a) of a. After this function F (a) is computed,
the rest of the homomorphic computation amounts to computing a certain lin-
ear combination of the input ciphertexts, e.g. highly efficient operations. We
have the server precompute F (a), and then replace the superlinear-time com-
putation of F (a) with a memory access, yielding a linear-time algorithm for the
homomorphic computation.

In more details, the so-called “gadget product” computes F (a) in timeO(`n log n),
via computing O(`) NTTs. This is a common sub-routine in lattice-based cryp-
tography, and often heavily contributes to the cost of protocols (to the point that
some papers summarize their protocol’s complexity by counting the number of
NTTs they require). In our protocols, we avoid having the server computing any
(online) NTTs, via precomputing them offline.

This does impose some overhead. If a client sends a new ciphertext (anew, bnew) =
Encv(mnew), the server is unable to reuse the preprocessing for the old ciphertext
(a, b) on this query. In our application to PIR, each new PIR query would require
new server preprocessing, e.g. we have not accomplished much yet.

Instead, we have our server publish a single short seed that may be expanded
via a random oracle to a specific polynomial a∗, and have all clients encrypt their
queries relative to this polynomial, e.g. produce ciphertexts (a∗, b). This requires
that clients freshly sample their RLWE secret keys4 to maintain security, but
allows our server to perform the aforementioned preprocessing once, independent
of the number of clients or queries it handles, and the number of databases it
maintains.

This technique suffices to obtain an O(log n) speedup in our homomorphic
computations. Moreover, the majority of the server’s computation is extremely
efficient operations, namely coordinate-wise sums and products of vectors (along
with occasionally permuting a vector). These facts combine to yield a practically
efficient RLWE-based protocol, with performance characteristics much closer to
Simple PIR than Spiral PIR.

We finally describe our scheme HintlessPIR, which uses Simple PIR to reduce
a PIR query to a Linear PIR query on the Simple PIR “hint” DB ·A, which we

4 Of larger impact is that clients have to resample any encrypted key material they
use. We minimize the use of such key material in our protocol to reduce this cost.

7



respond to with our Linear PIR scheme NTTlessPIR. We use homomorphic en-
cryption with composable preprocessing (and several other optimizations) within
HintlessPIR, leading to a practical scheme.

We summarize the theoretical efficiency of HintlessPIR in Figure 1, where we
compare it with Simple PIR and Spiral PIR (the two practically fastest5 preexist-
ing lattice-based single-server PIR schemes). HintlessPIR improves on Simple PIR
by requiring that clients download database-dependent state, without impacting
performance too much. We find that HintlessPIR’s performance matches that of
Simple PIR, up to lower-order terms in the size of the database, without requir-
ing clients download any database-dependent state. This is with the exception of
the size of the server response, which is (asymptotically) a constant factor larger6

than SimplePIR’s server response. This suggests that as m → ∞, the overhead
HintlessPIR (compared to Simple PIR) should approach zero on all metrics ex-
cept for the server response, all while removing the database-dependent hint
from SimplePIR.

We have implemented the scheme (Section 7), and summarize our concrete
findings regarding the scheme later in the introduction.

Scheme Off. Comm. Off. Comp. On. Comm. On. Comp. C. State S. State

Simple PIR [37] n
√
m nm

√
m m Yes No

Spiral PIR* [44] O(n) O(n(logm)2) O(logm) O(m) No Yes

HintlessPIR O(1) nm+ Õ(
√
mn) O(

√
m+ n) m+O(

√
mn) No No

TensorPIR O(1) nm+O(n2) O(m1/3 + n) m+O(nm2/3) No No

Fig. 1. Comparison of the Asymptotic (Offline and Online) Communication and
(Server) Computation of practically-efficient single-server PIR schemes, as well as
whether the schemes require client-side (database-dependent) state, or server-side
(client-dependent) state. Throughout, m is the number of records in the database,
and n the (R)LWE secret dimension, typically ∈ [210, 212]. Computational costs are
measured in Z232 operations and elements of Z232 . Costs for SpiralPIR are imprecise
estimates, as the dependence of the many parameters of SpiralPIR on m and n is not
discussed in [44].

TensorPIR So far, the PIR schemes we have constructed have bandwidthΘ(
√
m).

We next discuss a PIR scheme which enables us to get Θ( 3
√
m) bandwidth, via

5 There has been another recent practically-fast single-server PIR scheme, namely
Piano [57]. This scheme requires the entire database be streamed to a memory-
constrained client in a preprocessing step. As we are not modelling memory-
constraints on clients, in our setting this protocol is essentially equivalent to the
trivial PIR scheme that transmits the whole database to the client in a preprocess-
ing step, so we will not formally compare our work to theirs

6 In our current implementation, this constant factor is somewhat large — ≈ 33×
larger. We discuss several optimizations that would reduce this to ≈ 9× larger in
Appendix E.1, though they are not currently implemented.

8



a more complex construction. We call this scheme TensorPIR, for reasons that
will become apparent soon.

The high-level idea is to note that if we transmit two selection vectors ui0 ,vi1

of dimensions du, dv, then we can take their homomorphic tensor product to
obtain a selection vector ui0 ⊗ vi1 of dimension dudv. For du = dv = dw =
Θ( 3
√
m), this high-level sketch would suffice to achieve our claim.

The issue with this high-level idea is that the LWE-based homomorphic ten-
sor product yields massive ciphertexts. In particular, rather than containing a
component DB·A of dimension

√
m×N for N ≈ 210 (which was already problem-

atic), the homomorphic tensor product contains matrices of size 3
√
m(N2 + 2N).

Typically one would include encrypted key material called a relinearization key,
to convert these ciphertexts back to standard LWE ciphertexts, but the band-
width to transmit these vectors of Ω(N3) dimension is much too large for our
application. Instead, we show how the client can upload certain RLWE encryp-
tions, which are vectors of O(n) dimension, of their LWE secret key to have the
server homomorphically compute the values the client requires for decryption.

This is conceptually the same as our hint removal for Simple PIR, though
practically it is more complex. The client now computes the decryption equation

DB · (b0 −A0 · s)⊗ (b1 −A1 · s).

After distributing terms, there is now one term that depends on s⊗ s, and two
terms that depends on s. We show in Section 6 that homomorphic computation of
this decryption equation reduces to homomorphic computation of the quadratic
form (as well as two simpler versions of this expression)∑

i∈[du]

(〈ai, s〉) ∗ (DBi ·A1 · s),

where ai is the ith row of A0 and DBi are certain 3
√
m× 3

√
m-dimensional sub-

matrices of DB. The server can perform this computation by

– having the client pack 〈ai, s〉 for all i into a single ciphertext, and use the
RLWE expansion algorithm of [17] to expand it to encryptions of the con-
stants 〈ai, s〉, and

– using NTTlessPIR to homomorphically compute DBi ·A1 · s for each i ∈ [du].

We note that these computations are still amenable to our preprocessing opti-
mization. While this high-level sketch theoretically works, we have focused our
implementation efforts so far on HintlessPIR, as it requires smaller RLWE pa-
rameters and is more practically competitive with typical database dimensions.

Implementation. We implemented the HintlessPIR construction, which we be-
lieve offers practically more efficient parameters for the majority of databases.
Our benchmarks demonstrate that for a single initial query our HintlessPIR
achieves better communication than both Simple PIR and Spiral PIR, where
we count the hint and all parameters that need to be transmitted in order to

9



make the first query. We find that our protocol has lower bandwidth until one
is able to reuse a hint for ≈ 50 to 100 Simple PIR queries to the same database,
and our bandwidth advantage over Spiral holds for the first 3 to 5 queries. Our
computation cost is always better than Spiral PIR, and the overhead that we
incur over Simple PIR for moving the hint dependent computation to the server
is moderate: the time spent on downloading the Simple PIR hint over a 85Mbps
Internet connection to a mobile device is comparable to making 5 to 20 queries in
HintlessPIR protocol for typical databases. Moreover, we find that our additional
server computation does become small as m→∞. For example, for a database
of 230 records and total size ≈ 8.5GB, our HintlessPIR protocol is only ≈ 25%
slower than Simple PIR, and has server preprocessing that is only ≈ 1% slower
than that of Simple PIR.

We expect TensorPIR to have practical advantage for extremely large databases
to take advantage of its smaller, asymptotic Θ( 3

√
m) query and response sizes, as

its online computational overheadO(nm2/3)+mmay become closer to HintlessPIR’s
O(n
√
m) + m overhead. In addition, since TensorPIR requires slightly larger

RLWE parameters due to its deeper homomorphic computation, the concrete
computation overhead may become closer to Simple PIR for extremely large
databases. We leave to future work concretely evaluating TensorPIR. .

2 Preliminaries

2.1 Mathematical Background

For n ∈ N we write [n] := {0, 1, . . . , n− 1}.

Notation for Different Vector Spaces Throughout, we use bold-face a to
write a vector and upper-case A for a matrix. We write [a0,a1, . . . ,an] for the ma-
trix obtained by horizontal concatenation of the vectors ai, and (a0,a1, . . . ,an) :=
[at0,a

t
1, . . . ,a

t
n]t for vertical concatenation. We write diag(A) for the main diag-

onal of the (square) matrix A. We write rot◦i(a) to denote the cyclically rotated
vector, and for a matrix A we write rot◦i(A) to denote applying rot◦i to each
column of A independently. We define diagi(A) = diag(rot◦i(At)t) for the ith
generalized diagonal of A.

We will require computations involving basis vectors of different dimensions.
For clarity, we will use the notation ui,vi,wi to refer to the ith standard basis
vector in dimensions du, dv, dw, respectively. We write ‖x‖∞ = maxi |xi|.

As our work will use four different products on linear-algebraic objects, so
for clarity we will avoid leaving products implicit. We will write matrix-vector
and matrix-matrix multiplication with ·, e.g. A ·B and A ·b. We will write poly-
nomial multiplication with ∗, e.g. a ∗ b. We will write Hadamard (element-wise)
multiplication with ◦, e.g. (a ◦ b)i = aibi. Hadamard multiplication of vectors
of polynomials corresponds to element-wise (polynomial) multiplication of each
component. We will write Kronecker multiplication (or the “tensor product”) of

10



matrices/vectors as ⊗. This is defined as the block-matrix

A⊗B =

A1,1 ·B A1,2 ·B . . .
A2,1 ·B A2,2 ·B . . .

...
...

. . .

 .

Tensor product satisfies the “mixed-product property” (A ·B)⊗ (C ·D) = (A⊗
C) · (B⊗D), whenever A,B,C,D are such that all of the above matrix products
are well-defined.

Polynomial Rings We consider only power-of-two cyclotomic rings Rn :=
Z[X]/(Xn + 1), where n is a power of 2. We write Rn,q := Rn/qRn, and we
say Rn,q is NTT-friendly if q is a product of distinct primes qi such that qi ≡
1 mod 2n. We will often abuse notation and refer to this as solely a property of q
when the choice of n is unambiguous. For NTT-friendly prime modulus q, there
is a ring isomorphism between Rn,q ∼= (Znq ,+, ◦), which amounts to evaluating
the polynomial on certain roots of unity in Zp. The forward direction of this
isomorphism is denoted as NTT, and the inverse direction as iNTT. We write a
polynomial a in the coefficient domain, and â in the evaluation (or NTT) domain.

We will additionally need the Chinese Remainder Theorem, or the ismor-
phism between the rings ZP ∼=

∏
i Zpi when P =

∏
i pi is a product of coprime

integers. We refer to both parts of these isomorphisms as CRT : ZP 7→
∏
i Zpi ,

and iCRT for the inverse isomorphism. Note that this isomorphism additionally
implies an isomorphism Rn,P ∼=

∏
iRn,pi . We will abuse notation and use CRT

and iCRT to refer to these isomorphisms as well.

2.2 Probability Background

For a distribution D, we will write x ← D to denote a random sample from D.
For a set S, we will write x←$S to denote a random sample from the uniform
distribution on S. We write χσ for a centered binomial

∑
i∈[σ2]Xi −X ′i, where

Xi, X
′
i are i.i.d. uniform on {0, 1}. We write χnσ for the corresponding distribution

on Zn with independent components. We will also require standard notions of
sub-Gaussian and sub-Exponential random variables. See [55] for an introduction
to this theory, or Appendix A for a collection of facts that we will use.

2.3 Lattice-Based Hardness Assumptions

We include in Appendix B some background materials regarding the hardness of
the LWE and RLWE problems, including in the setting (important to our work)
where one reuses the public randomness (e.g. random matrix A or polynomial
a) of the (R)LWE samples.

11



2.4 LWE and RLWE-based Encryptions

We will exclusively use LWE (and RLWE)-based encryption where the ciphertext
[A,b] has A expanded from some short seed via a random oracle, so we adapt
our notation to this setting.

Definition 1 (Private-key LWE-based Encryption). Let N,Q,∆, d ∈ N.
Let σ > 0. Let RO be a random oracle. Private-key LWE Encryption is defined
to be the tuple of algorithms

– KGen(1λ) : Samples s← χNσ , and returns this value.
– Encs(m; seed) : Samples A := RO(seed) ∈ Zd×NQ and e ← χdσ, and outputs

b := A · s + e +∆m.
– Decs(C): Parses [A,b] = C, and returns

⌊
b−A·s
∆

⌉
.

When seed is omitted we mean that we are not applying this optimization,
e.g. A is freshly sampled. A LWE ciphertext C = [A,b] encrypting m under secret
key s satisfies Ct · (−s, 1) = ∆m + e. We call e the error of the ciphertext C.

Definition 2 (Private-key RLWE-based Encryption). Let k, q,∆ ∈ N. Let
n = 2k, and σ > 0. Private-key RLWE Encryption is defined to be the tuple of
algorithms

1. KGen(1λ) : Samples v ← χnσ, and returns this value.
2. Encv(m): Samples a←$Rn,q and e ← χnσ, and outputs ct = [a, a ∗ v + e +

∆m] ∈ R2
n,q.

3. Decv(ct): Parses [a, b] = ct, and returns
⌊
b−a∗v
∆

⌉
.

We define the analogous notion of error for RLWE-based ciphertexts.

Plaintext Slots The native plaintext space in RLWE-based encryption is the
ring Rn,p. When p is a NTT-friendly prime7, the plaintext ring Rn,p is isomor-
phic to a Zp-algebra (Znp ,+, ◦), usually called the “slot algebra”, where addition
and multiplication between polynomials in Rn,p correspond to component-wise
addition and multiplication over Znp . We denote using encodep the inverse iso-
morphism from Znp to Rn,p, and decodep its inverse isomorphism from Rn,p back
to Znp . Such isomorphism and its inverse can be computed using iNTT and NTT
over Rn,p. As such, we can also view Znp as the plaintext space of RLWE-based
encryption for suitable p, and we call â ∈ Znp the slots of a plaintext polynomial
a = encodep(â). We usually drop the subscript p when there is no ambiguity on
plaintext modulus.

We will need the Galois automorphism θj for j ∈ Z∗2n, which is the ring
automorphism a(X) 7→ a(Xj). For any plaintext vector â ∈ Znp , we write

rot◦j(â) =

(
âi mod n/2, . . . , â(n/2−1+j) mod n/2,

ân/2+(j mod n/2), . . . , ân/2+(n/2−1+j mod n/2)

)
,

7 In general p can be a prime power, but in our application we only use the case where
p is a prime number.

12



for cyclic rotation by j in two sub-groups of â, where index arithmetic is modulo
n/2. For power-of-two cyclotomics we have encode(rot◦1(decode(a))) = a(X5),
e.g. rotation by one and the Galois automorphism X 7→ X5 are equivalent oper-
ations. More generally, rotation by j is equivalent to the Galois automorphism
X 7→ X5j in Rn,p.

RLWE Key-Switching We will use what is known as “gadget-based” key-
switching. See [25] for a more complete reference on gadgets in lattice-based
cryptography.

Definition 3 (Gadgets). Let G be an additive group. A G-gadget g of size `
and quality γ is a pair of a vector g ∈ G` and (non-linear) mapping g−1 : Z` → G
such that for all x ∈ Zq, 〈g−1(x),g〉 = x, and

∥∥g−1(x)
∥∥
∞ ≤ λ.

Note that the equality 〈g−1(x),g〉 = x must hold in the group G, e.g. in
G = Zq it hold mod q. Typically one first builds a gadget for Zq, and then
applies it coordinate-wise to Rn,q ∼= Znq . One may use gadgets to key-switch.

Definition 4 (Key-switching Key). Let g be a Zq-gadget of size ` and qual-
ity γ. A g-based key-switching key (from key v0 to v1) is collection of ` RLWE
encryptions ksk where kski = Encv1(giv0). For a polynomial a, the �-product is

a � ksk =
∑
i∈[`]

g−1(a)i ∗ kski.

Lemma 1. For g a gadget of size ` and quality γ, let ksk be a g-based key-
switching key from v0 to v1. Let ei be the error within kski. If ct = [a, b] is an
RLWE encryption of ∆m under v0 with error e, then [0, b]− a � ksk is an RLWE
encryption of ∆m under v1 with error e+

∑
i∈[`] g

−1(a)i ∗ ei.

With certain Galois automorphism θj we can homomorphically rotate the
plaintext slots encrypted in a ciphertext ct, but the resulting ciphertext ct′ is
encrypted under the substituted secret θj(v) and cannot be used for subsequent
homomorphic computation. We can apply a key-switching key from θj(v) to v
on ct′ to convert it back to a ciphertext that can be decrypted to the rotated
slots using the secret v. Such special key-switching key is usually called a rotation
key. We will use the notation Rotate{ksk}(ct, j) for the procedure that starts with

ct := [a, b], maps this to [a(X5j ), b(X5j )], and then key-switches this from an

encryption under v(X5j ) back to v. Such operation homomorphically rotates the
slots in ct by j, and the resulting ciphertext is encrypted under the same RLWE
secret key. As discussed above, this requires a single �-product.

We will require several standard homomorphic algorithms. We summarize
these, and their noise growth, in Appendix D.

13



2.5 Linear Single-Server Private Information Retrieval

We introduce a definition that we call linear PIR (LinPIR), where rather than
querying single record DBi, a client may query an arbitrary linear combination
of records

∑
i aiDBi.

Definition 5 (Single-Server LinPIR with Preprocessing). A Single-Server
LinPIR Scheme with Preprocessing is a tuple of four algorithms that all implicitly
take as input the security parameter 1λ.

1. S.setup(DB) → (hintC, hintS): Given a database DB ∈ Zmp , output a client
hint hintC, and server hint hintS.

2. C.query(a,Chint) → (qu,Cstate): Give a linear query a ∈ Zmp , and the client
hint Chint, output a query qu, and client state Cstate

3. S.response(qu,Shint) : Given a query qu, and the server hint Shint, output a
server response rsp ∈ R

4. C.recover(Cstate, rsp) → ZmQ : Given the client hint Cstate, and a server re-
sponse rsp ∈ R, recover a linear combination of elements

∑
i aiDBi mod p.

Note that standard PIR is simply linear PIR where one queries a basis vec-
tor. In general, our goal is to minimize bandwidth costs in the above protocol,
measured by minimizing the sizes of Chint, qu, and rsp, while still producing a
concretely efficient protocol.

Definition 6 (Correctness). Let δ ∈ [0, 1]. A Single-Server LinPIR scheme
with Preprocessing Scheme is said to be (1− δ)-correct if for any database DB ∈
ZmQ , for any index i ∈ [m], we have that

Pr

C.recover(Cstate, rsp) 6=
∑
i

aiDBi :
(hintC, hintS)← S.setup(DB)

(Cstate, qu)← C.query(a,Chint)
rsp← S.response(qu,Shint)

 ≤ δ.
Definition 7 (Security). A Single-Server LinPIR scheme with Preprocessing is
said to be secure if for all (i, j) ∈ [m]2, the distributions of query(i) and query(j)
are indistinguishable.

LWEPIR: Unifying SimplePIR and FrodoPIR We will refer to the scheme of
Figure 2 as LWEPIR. As mentioned in [22, Section 7.2] and [37, Section 2], this
essentially recovers SimplePIR [37] and FrodoPIR [22], depending on whether the

database is formatted as a square matrix DB ∈ Z
√
m×
√
m

Q , or vector DB ∈ Z1×m
Q .

Note that there are additional optimizations presented in [37, 22]. In particu-
lar, [22] notices that if one institutes a per-client bound on the number of queries
made, one may precompute the products Hs used in C.recover, allowing one to
only store H (client-side) during a preprocessing step. [37] notes one may use a
second invocation of PIR to reduce the client-side hint to a database-independent
quantity (though one that is still concretely large, see [9]). As our generalization
of LWEPIRα will not feature a hint H, we do not bother with either of these
optimizations. While it was previously shown in [37, 22] that LWEPIR is solely a
PIR scheme, it is straightforward to see that it additionally is a LinPIR scheme.

14



Server Algorithms in the LWEPIR

S.setup(DB) :

seed←$ {0, 1}λ

A← RO(seed) // A ∈ Zdu×NQ

H := DB ·A // H ∈ Zdv×NQ

return ((H, seed), seed)

S.response(DB, query)

return DB · query

Client Algorithms in the LWEPIR

C.query(i,Chint) :

i0 = i mod du, i1 = (i− i0)/du

(s, e)← χNσ × χduσ
(H, seed)← Chint

A← RO(seed)

query := LWE.Encs(ui0 ; seed)

c0 := H · s
return ((c0, i1), query)

C.recover((c0, i1), rsp) :

return

⌊
〈rsp,vi1〉 − c0

∆

⌉
Fig. 2. The client and server’s algorithms in LWEPIR.

3 Linearly Homomorphic Encryption with Preprocessing

In this section, we detail the main technical tool used in our work to improve the
performance of our PIR protocols. The main idea is that RLWE-based cipher-
texts (including simple RLWE encryptions, gadget-encoded encryptions, switch-
ing keys, etc.) consists of two parts (a, b) where a is some public randomness that
does not depend on the encrypted message, and is often available in advance.
Moreover, the public randomness of the ciphertexts output by homomorphic op-
erations often depends only on the public randomness of the input. This results
in a cascading effect, where the public randomness of all intermediate cipher-
texts occurring during the execution of a protocol can be pre-computed and
pre-processed to speed up the rest of the computation.

As a matter of notation, we write α(ct) for the public randomness part of
a ciphertext ct, and β(ct) for the pseudorandom part of the ciphertext. For
example, if ct = (a(X), b(X) = a(X) · v(X) + e(X) +∆ ·m(X)) is an encryption
of message m(X) under RLWE key v(X), then α(ct) = a(X), and β(ct) = b(X).
If C = (cti,j)i,j is a vector or matrix of RLWE ciphertexts (e.g., the encryption of
a gadget-encoded message), then α(C) = (α(cti,j))i,j is the public randomness
of the individual components, and similarly for β(C).

Now, let F (m) be an operation that we want to evaluate homomorphically
on a ciphertext ct = Encv(m). In other words, there is an evaluation algorithm
EvalF (ek, ·) that, with the help of an evaluation key ek, given an encryption of
m outputs an encryption of F (m):

EvalF (ek,Encv(m)) = Encv(F (m)).

For several common operations F (e.g., as used in our PIR protocols) we show
that there is a preprocessing function PreprocF and optimized evaluation func-

15



tion ApplyF such that

EvalF (ek, ct) = ApplyF (PreprocF (α(ek), α(ct)), ek, ct) (1)

where ApplyF has a much smaller evaluation cost than EvalF . Moreover, the
public randomness component of the output

α(ApplyF (g, ek, ct)) = ApplyαF (g) (2)

depends only on the result of the preprocessing g = PreprocF (α(ek), α(ct)), and
in particular, it can be computed in advance.

This allows to combine several homomorphic evaluation together. E.g., if
we want to evaluate homomorphically the function composition F ◦ G(m) =
F (G(m)), we can do so using the preprocessing function

PreprocF◦G(ekα, ctα) = (gG, gF ) where

gG = PreprocG(ekα, ctα)

gF = PreprocF (ekα,Apply
α
G(gG)).

The optimized evaluation functions ApplyF◦G and its public randomness compo-
nent ApplyαF◦G are defined in the obvious way. Here we have assumed that EvalF
and EvalG use the same evaluation key ek and produce only one ciphertext as
output, but the composition operation is easily extended to more general setting
of functions taking multiple ciphertexts as input and using different evaluation
keys.

In summary, an evaluation algorithm with preprocessing for operation F is
given by three algorithms PreprocF ,ApplyF ,Apply

α
F satisfying properties (1) and

(2). The algorithms are used in the obvious way, precomputing g = PreprocF (α(ek), α(ct))
in advance, and then evaluating ApplyF (g, ek, ct) at protocol execution time af-
ter the (encrypted) inputs become available. The performance of an evaluation
algorithm with preprocessing is described by the following parameters:

– the pre-computation time, i.e., the running time of evaluating g = PreprocF (α(ek), α(ct)).
This value is computed off-line, so it is not as critical for the practical per-
formance of an algorithm. Still, we want this cost to be reasonable.

– The size of the preprocessed information g. This value will need to be stored,
and often kept in-between executions of the algorithm. So, we want to take
a reasonable amount of space.

– The online computation time, i.e., the running time of Apply(g, ek, ct), given
the result of the preprocessing g. This will be the most critical parameter
affecting performance, and should be minimized. As a side node, we remark
that part of the protocol input ek, ct may already be contained in the pre-
processing information g. So, in practice, there is no need to pass the whole
ek, ct to ApplyF , and it is enough to provide input-dependent portion of
ek, ct, namely β(ek), β(ct).

In the next subsection we give efficient evaluation algorithms with prepro-
cessing for the homomorphic operations used by our PIR protocol. Throughout

16



this section we will not analyze the noise growth of our algorithms, as the algo-
rithms themselves have identical noise growth to their variants that do not take
advantage of precomputation, which are all standard algorithms.

3.1 Preprocessing �-Products and Key-Switching

We first detail our preprocessing optimization for the �-product of Definition 4.
Typically, the �-product takes as input a gadget-based RLWE ciphertext ct =
[ct0, . . . , ct`−1], where cti = Enc(gi ∗m), and scalar a, and outputs∑

i∈[`]

g−1(a)i ∗ cti.

The operation ∗ is naively computable in O(n2) Zq operations, so instead this is
typically computed in the NTT domain, e.g. one takes as input a gadget-based
RLWE ciphertext in the NTT domain ĉt = [ĉt0, . . . , ĉt`−1], and a NTT-domain
scalar â, and outputs ∑

i∈[`]

NTT(g−1(iNTT(â))i) ◦ ĉti. (3)

The quadratic time operation ∗ is now computable in O(n) Zq operations, but
gadget-decomposition requires one call to iNTT and ` calls to NTT, e.g. O(`)
calls to an algorithm that takes O(n log n) Zq operations.

We next show how this may be preprocessed to be computable in (` + 1)n
Zq operations, at the cost of (`+ 1)n elements of Zq of storage.

Lemma 2 (Preprocessing �-products). There exist functions (Preproc�,Apply�,Apply
α
� )

such that for any NTT-domain polynomial â, and any NTT-domain gadget-
encoded ciphertext ĉt = [ĉt0, . . . , ĉt`−1], we have that â�ĉt = Apply�(Preproc�(α(ĉt), â), ĉt, â).

Moreover, Preproc� runs in O(`n log n) Zq operations, and produces an output
of size (`+ 1)n elements of Zq, Apply� runs in (`+ 1)n Zq operations.

Proof. Let g� = Preproc�(α(ĉ), â) be such that

(g�)i =

{
NTT(g−1(iNTT(â))i) 0 ≤ i < `,∑
j∈[`] NTT(g−1(iNTT(â))j) ◦ α(ĉ)j i = `.

Note that g� ∈ (Znq )`+1, is such that

â � ĉt = Apply�(Preproc�(α(ĉt), â), ĉt, â),

for Apply�(g�, ĉt, â) = ((g�)`,
∑
i∈[`](g�)i◦β(ĉt)i). Note that this function satisfies

α(Apply�(g�, ĉt, â)) = (g�)`,

e.g. Applyα� is solely a function of the pre-processed data. ut

17



We next show how to pre-process (gadget-based) key-switching.

Lemma 3 (Preprocessing Key-Switching). There exists functions (Preprocks,
Applyks,Apply

α
ks) such that, for any RLWE encryption ct = Encv′(m), and any

gadget-based key-switching key ksk from v′ to v, we have that

Encv(m) = Applyks(Preprocks(α(ksk), α(ct)), ksk, ct).

Moreover, Preprocks runs in O(`n log n) Zq operations, and produces an output
of size (`+ 1)n elements of Zq, and Applyks runs in (`+ 2)n Zq operations.

Proof. Recall that for gadget-based key-switching it suffices to compute

[0, β(ĉt)]− α(ĉt) � k̂sk.

So, we set gks = Preprocks(α(ĉt), α(ĉt)) = Preproc�(α(ĉt), α(ĉt)), and thus

Applyks(gks, k̂sk, ĉt) = [0, β(ĉ)]− Apply�(gks, k̂sk, ĉt) = [0, β(ĉ)]− α(ĉt) � k̂sk,

as desired. Note that

Applyαks(gks, k̂sk, ĉt) = −(gks)`,

is solely a function of the precomputed information gks, as claimed. ut

We next show that this suffices for the batch generation of the rotations

{Encv(encode(rot◦i(m)))}i∈[R],

from a single ciphertext Encv(encode(m)), as well as a rotation key, e.g. a key-
switching key from v(X5) 7→ v.

Lemma 4 (Pre-processing Rotations). Let R ∈ N. There exists functions
(Preprocrot◦R ,Applyrot◦R ,Apply

α
rot◦R) such that, for any RLWE encryption ct =

Encv(encode(m)) of m encoded in plaintext slots, and any rotation key ek, we

have that Applyrot◦R(Preprocrot◦R(α(êk), α(ĉt), êk, ĉt)) generates (for i ∈ [R]) the
rotations Encct(encode(rot

◦i(m))).
Moreover, Preprocrot◦R runs in O(`nR log n) Zq operations, and produces an

output of size (R−1)(`+1)n Zq elements, and Applyrot◦R runs in (R−1)(`+2)n
Zq operations.

Proof. Recall that, in NTT form, a single rotation may be computed via first
mapping ĉt 7→ rot(ĉt), and then key-switching from the rotated key back to the
initial key. This is to say that one may preprocess a rotation by applying n
Zq operations (e.g. the rotation itself), followed by an application of Lemma 3.
To generate encryptions of rot◦i(m) for i ∈ [R] rotations, iterate this process
R − 1 times. The complexity estimates reduce to (R − 1)-times the complexity
of Lemma 3, though computing the rotation of β(ĉt) in each iteration increases
the cost of our protocol by an additive factor n Zq operations more than the
cost of Lemma 3. ut

18



3.2 Precomputing RLWE-based Matrix-Vector Multiplication

We next show that one may combine our previous tools to precompute the
homomorphic evaluation of

({Ai}i∈[M ],Enc(encode(m))) 7→ {Enc(encode(Ai ·m))}i∈[M ],

for some (public) set of matrices {Ai}i∈[M ]. We homomorphically compute this
by first homomorphically computing rot◦i(m) for sufficiently many i, and then
computing a simple linear combination of the encryptions of {rot◦i(m)}i with
constants that depend on Aj . Note that this first step is independent of the
matrices Aj we will multiply by, e.g. we will only compute it once, independently
of the value of M .

We preprocess the (homomorphic) diagonally-dominant matrix-vector mul-
tiplication algorithm of [34]. This relies on the following linear-algebraic fact.

Lemma 5. Let n, ncols ∈ N. Let A ∈ Zn×ncols
q , and m ∈ Zncols

q . Then

A ·m mod q =
∑

i∈[ncols]

diagi(A) ◦ rot◦i(m) mod q, (4)

We can extend this to arbitrary matrices A ∈ Znrows×ncols
q by vertically par-

titioning A into M = dnrows/ne sub-matrices Ai of size n × ncols, e.g. reducing
the single matrix-vector product into M matrix-vector products of the form of
Lemma 5.

Theorem 1 (Pre-processing Eq. (4)). Let M,n, ncols ∈ N, where ncols ≤ n.
Let Ai ∈ Zn×ncols

p be a collection of M square matrices. There exists functions
(Preproc{Ai}i ,Apply{Ai}i ,Apply

α
{Ai}i) such that if ct = Encv(encode(m)), and ek

is a gadget-based rotation key associated with the RLWE secret v then

Apply{Ai}i(Preproc{Ai}i(α(êk), α(ĉt)), êk, ĉt)

outputs a collection of ciphertexts {Encv(encode(Ai ·m))}i∈[M ].
Moreover, Preproc{Ai}i runs in O(`nncols log n) Zq operations, and produces

an output of size nncols(` + 1) Zq elements, and Apply{Ai}i runs in nncols(M +
`+ 2) Zq operations.

Proof. It suffices to set Preproc{Ai}i = Preprocrot◦ncols , so we focus on the de-
scription of Apply{Ai}i . This uses Applyrot◦ncols to compute ciphertexts cti =

Encv(encode(rot
◦i(m))), then returns (for each j ∈ [M ]) the values ĉ′j =

∑
i∈[ncols]

diagi(Aj)◦
ĉi. As a consequence of Lemma 5, one can check that ĉ′j are of the form Encv(encode(Aj ·
m)), as desired.

As Preproc{Ai}i = Preprocrot◦i , it suffices to examine the complexity of Apply{Ai}i .
This calls Applyrot◦i , and post-processes the result of this with Mnncols opera-
tions in Zq, leading to the quoted complexity. ut

We note that the complexity of our scheme (nncols(M + `+2) Zq operations)
is quite close to the complexity of the underlying plaintext computation we are
performing (naively, nncolsM Zp operations), e.g. concretely our scheme has low
overhead, and should be performant. We validate this in Section 7.

19



4 NTTlessPIR: A LinPIR Scheme from RLWE

In this section we specify NTTlessPIR: a performant LinPIR scheme using RLWE-
based (linearly homomorphic) encryption. After applying our optimizations of
Section 3, we find that it inherits the benefits of LWEPIR-type schemes (imple-
mentable using simple, coordinate-wise operations on modular integers) as well
as RLWE-based encryption (compact ciphertexts).

We investigate this LinPIR scheme in isolation in this section, before showing
in next section it may be used to remove the database-dependent hint from
LWEPIR, by replacing the local computation (s, H := DB · A) 7→ H · s mod Q
in LWEPIR (that requires the hint H) with a LinPIR query s to H, viewed as a
database. Throughout, we assume the database DB ∈ Znrows×ncols

Q , where8 ncols ≤
n (and nrows is arbitrary).

Handling Arbitrary Modulus The bulk of our scheme immediately follows
from Theorem 1. We briefly describe the one step that doesn’t, namely the ex-
tension of Theorem 1 (where the plaintext modulus is NTT-friendly) to arbitrary
plaintext modulus.

Note that if the client can recover the LinPIR query DB ·m over the integers,
they can then manually reduce this mod Q, and compute the correct value. To
have the client recover the LinPIR query over the integers, we have the client
execute a LinPIR query mod pj for sufficiently many (coprime) NTT-friendly
moduli pj . The client may then CRT interpolate their results to recover DB ·
m mod

∏
j pj . Provided

∏
j pj is large enough such that no modular reduction

occurs, we are done, e.g. we may compute DB·m mod Q for an arbitrary modulus
Q by computing DB·m mod pj for sufficiently many NTT-friendly moduli, which
we do efficiently via Theorem 1.

4.1 NTTlessPIR Protocol Specification

As the security and correctness of NTTlessPIR essentially follows from the secu-
rity of the underlying homomorphic encryption and standard correctness analy-
sis, we focus on explicitly describing NTTlessPIR here and summarizing its effi-
ciency, and defer formally establishing correctness and security for Appendix E.

Lemma 6. Let DB ∈ Znrows×ncols

Q where ncols ≤ n. Let m satisfy ‖m‖∞ ≤ B.
Then the LinPIR scheme described in Figure 3 requires

– Server Preprocessing: O(k`nncols log n) operations in Zq,
– Server Long-term Storage: knncols(`+ 1) elements of Zq,
– Server Response Time: kncols(nrows + n+ (`+ 2)n) Zq operations,
– Client Upload: kn+ `n elements of Zq,
– Client Download: 2kdnrows/nen elements of Zq.

8 We reassure the reader that this restriction on ncols will be unimportant to our main
application of this scheme, namely removing the hint from LWEPIR in Section 5.

20



Server Algorithms in NTTlessPIR

S.setup({DBi}i∈[M ])

seed← {0, 1}λ

for i ∈ [`]

â′i ← RO(seed||0||i)
for j ∈ [k]

âj ← RO(seed||1||j)
gj = Preproc{DBi mod pj}i∈[M]

(â′, âj)

return (seed, {gj}j∈[k])

S.response({b̂j}j∈[k], {b̂′i}i∈[`], {gj}j∈[k])
for j ∈ [k]

ĉtj = Apply{DBi mod pj}i∈[M]
(gj , b̂

′, b̂j)

return {ĉtj}j∈[k]

Client Algorithms in NTTlessPIR.

C.query(m, seed)

v ← χnσ

for i ∈ [`]

b̂′i = Encv(girot(v); seed||0||i)
for j ∈ [k]

b̂j = Encv(encodepj (m); seed||1||j)

return (v, {b̂j}j∈[k], {b̂′i}i∈[`])
C.recover({ĉtj}j∈[k], v)

for j ∈ [k]

for i ∈ [M ]

mi,j ← decodepj (Decv((ĉtj)i))

for i ∈ [M ]

mi,P = iCRTp(mi,0, . . . ,mi,k−1)

mi,Q = mi,P mod Q

return (m0,Q, . . . ,mM−1,Q)

Fig. 3. The Algorithms of NTTlessPIR. Each ciphertext ĉtj in the S.response and
C.recover is an M -tuple of ciphertexts encrypting DBi ·m mod pj for i ∈ [M ], j ∈ [k].

Proof. Server preprocessing and server long-term storage amounts to running
the preprocessing algorithm of Theorem 1 k times, as well as sampling a λ-bit
seed (which we ignore, as its cost is dwarfed by the cost of other preprocessing).
The cost to compute the server response is similarly k-times the online cost of
Theorem 1.

5 Removing the Hint from LWEPIR

We next show how to leverage NTTlessPIR to remove the hint form LWEPIR with
low overhead. The scheme itself is straightforward extension of LWEPIR, where
the client replaces the local computation of (H := DB · A, s) 7→ H · s with a
LinPIR query s to the database H.

Similarly to NTTlessPIR, we solely describe the protocol itself (and summa-
rize its efficiency) in this section, and defer the standard analysis of correctness
and security to Appendix F. As discussed in that section, the server must period-
ically reseed every κ queries for security. This comes at no asymptotic running-
time cost provided κ = ω(log n). We give a full argument in the aforementioned
section of the appendix.

Lemma 7. Let DB ∈ Znrows×ncols
p Then HintlessPIR requires

21



– Server Preprocessing: O(k`nN log n) operations in Zq and 2mN operations
in ZQ,

– Server Long-term Storage: knN(` + 1) elements of Zq and
√
mN elements

of ZQ,
– Server Response Time: kN(

√
m + n + (` + 2)n) Zq operations, and m ZQ

operations,
– Client Upload: (k + `)n elements of Zq and

√
m elements of ZQ,

– Client Download: 2k(
√
m+ n) elements of Zq and

√
m elements of ZQ

Proof. HintlessPIR reduces to

– LWEPIR, invoked on a database DB ∈ Z
√
m×
√
m

p , and

– NTTlessPIR, invoked on a database H := DB · A ∈ Z
√
m×N

Q . Note that
N := ncols ≤ n for security, so the condition required for NTTlessPIR is
satisfied.

Server Algorithms in HintlessPIR

S.setup(DB) :

(ΠLWE.Chint, ΠLWE.Shint)← ΠLWE.setup(DB)

(H, seed)← ΠLWE.Chint

ΠLWE.Chint = (0, seed)

(ΠNTT.Chint, ΠNTT.Shint)← ΠNTT.setup(H)

return ((ΠLWE.Chint, ΠNTT.Chint),

(ΠLWE.Shint, ΠNTT.Shint))

S.response(queryLWE, queryNTT)

return (ΠLWE.response(queryNTT),

ΠNTT.response(queryNTT))

Client Algorithms in HintlessPIR

C.query(i, (ΠLWE.Chint, ΠNTT.Chint)) :

(c0, i1), quLWE = ΠLWE.query(i,ΠLWE.Chint)

v, quNTT = ΠNTT.query(s, ΠNTT.Chint)

return ((i1, v), (quLWE, quNTT))

C.recover((i1, v), (rspLWE, rspNTT)) :

c0 = ΠNTT.recover(v, rspNTT)

return ΠLWE((c0, i1), rspLWE)

Fig. 4. The algorithms in HintlessPIR. Throughout, we write ΠNTT = NTTlessPIR
and ΠLWE = LWEPIR for brevity, e.g. ΠNTT.query is Client’s query algorithm from
NTTlessPIR. In the algorithms, s is the LWE encryption key sampled during the LWEPIR
query algorithm. Note that the ΠLWE.Chint hint contains an LWEPIR hint H = 0 that is
incorrect, and hterefore the value c0 = H · s is incorrect as well. We use NTTlessPIR to
retrieve the correct value of c0 via a LinPIR query to the database H.

6 TensorPIR: Recursing a Single Time

We now describe our second PIR scheme, which we call TensorPIR. Assume the
database is a three-dimensional object DB ∈ ZduQ ×ZdvQ ×ZdwQ , for m = dudvdw.

Our goal is to retrieve the row in the dw dimension using two O( 3
√
m) size

22



selection vectors u and v in the du and dv dimensions. Let C0 = [A0,b0] and
C1 = [A1,b1] be LWE encryptions of u ∈ Zdu and v ∈ Zdv , respectively, under
the client’s LWE secret s. These LWE ciphertexts satisfy the raw decryption
relations u ≈ b0 −A0 · s mod Q and v ≈ b1 −A1 · s mod Q. Thus DB · (u⊗ v)
can be approximately computed by

DB · (u⊗ v) ≈ DB · (b0 ⊗ b1)− DB · (A0 · s⊗ b1)− DB · (b0 ⊗A1 · s)

+ DB · (A0 · s⊗A1 · s) mod Q. (5)

The right hand side is a noisy version of DB · (u⊗v). So if the client can obtain
these terms, then it can round and remove the error to get the desired records.

In TensorPIR, the client encrypts u and v under its LWE secret s as above,
and it additionally uses a RLWE-based scheme Enc for the terms involving the
LWE secret vector s. Specifically, the client samples a fresh RLWE secret key v
and sends the following ciphertexts to the server:

– ctA0s ← Encv(
∑
i∈[du]〈ai, s〉 ·X

i), and

– cts ← Encv(encode(s)),

where ai = ui
t · A0 is the ith row of A0. The client also includes a Galois

key for θ : X 7→ X5 in its query. We adopt the CRT decomposition technique
used in Section 4 to handle homomorphic computation over arbitrary modulus
Q that does not match the plaintext modulus of RLWE encryptions. Since the
homomorphic computation over each plaintext modulus is exactly the same, we
describe TensorPIR without explicitly mentioning the plaintext modulus.

Note that we can write the database as DB = [DB1, . . . ,DBdu ] =
∑
i∈[du] ui

t⊗
DBi.Given the ciphertexts in a client query, the server can then homomorphically
compute, for all i ∈ [du],

– the RLWE encryptions Encv(〈ai, s〉) of scales 〈ai, s〉, and

– the RLWE encryptions Encv(encode(DBi ·A1 · s)).

The first set of ciphertexts can be efficiently generated from ctA0s via RLWE
expansion [17] (see Lemma 14). The second set of ciphertexts are exactly the
homomorphic matrix-vector products between DBi ·A1 and Enc(encode(s)), and
we invoke NTTlessPIR to compute them. We note that the above homomorphic
computations are all compatible with our preprocessing optimization of Sec-
tion 3. Furthermore, we let the server generate all log n Galois keys required by
the RLWE expansion algorithm (via Lemma 13), which is also compatible with
the NTT preprocessing optimization.

Afterwards, the server can just encode the plaintext terms DBi · A1, ui
tb0,

and DBi · b1 accordingly for all i ∈ [du], and then homomorphically compute
the sum of products in Eq. (10). We refer to Appendix G for detailed protocol
specification and analysis.

23



7 Implementation and Evaluation

7.1 Hintless LWEPIRα Implementation

We implemented NTTlessPIR with preprocessing optimization and applied it to
SimplePIR. For SimplePIR, the main constraint is to choose the modulus Q as
a standard integer size; so we set secret key dimension9 N = 1408, ciphertext
modulus Q = 232, error standard deviation σ = 6.4, and sample the LWE secret
key from the uniform ternary distribution. We set our RLWE parameters as
n = 212, ciphertext modulus q ≈ 2108, and error standard deviation 3.2 for both
the RLWE secret key and the error terms. Both LWE and RLWE parameters
are at the 128-bit security level with up to 230 samples [2]. The l∞ norm of the
LWE decryption vector H · s can be bounded by 242, where H = DB ·A mod Q
is the hint matrix. So, we choose two NTT-friendly plaintext moduli p0, p1 of
22 bits each for CRT decomposing H and s. Note that our RLWE parameters
can also handle the alternative LWE parameters suggested in [36] with secret
dimension N = 2048, which may have different efficiency tradeoffs for very large
database dimensions. Due to space constraint we report only on the smaller LWE
parameters.

Our NTTlessPIR scheme implementation is based on the RNS variant of BFV
scheme that supports linear homomorphic operations. In particular, we imple-
mented all the preprocessing optimizations of Section 3. Our RLWE parameters
provide 4096 slots in each plaintext polynomial, so we pack two copies of s in the
query ciphertexts. Correspondingly, we pad H to H ′ = [H | 0] of 2048 columns,
and we pack two diagonals of each 1024 × 2048 block of H in each plaintext
polynomial. For each pj , this packing strategy reduces the number of rotations
to 511, and reduces the number of ciphertext-plaintext multiplications by half.

7.2 Hintless LWEPIRα Evaluation

We benchmarked several typical database dimensions, with sizes up to 8.59GB:
1) one million small records (8 bytes and 256 bytes each) as common baselines for
PIR [3, 45]; 2) up to 1 billion small records; and 3) smaller number of moderate-
size records (32KB each and 8.59GB total). We ran our experiments on a laptop
with an Intel i7-1185G CPU running at 3.00GHz and with 32GB RAM. We take
advantage of the SIMD instruction sets such as AVX-512, and compile our test
program using clang 14 and execute it using a single thread. We also bench-
marked an implementation of SimplePIR using the Eigen library [24], as well as
the public implementation of Spiral [12], using the same testing environment.

The LWE plaintext space is about 8 to 10 bits for databases up to 238 records.
For large database records, we follow the suggestion in [37] to encode each record
using d > 1 LWE plaintext elements and vertically stack them in a column of the
database matrix DB. In [37], this minimizes the hint size; and for NTTlessPIR,
this minimizes both the response size and the server online time.

9 We set N higher than the one proposed in [37] according to latest lattice attack
estimates.

24



Database (total size)
220 × 8B
(8MB)

220 × 256B
(268MB)

226 × 8B
(537MB)

230 × 1B
(1.07GB)

218 × 32KB
(8.59GB)

HintlessPIR
Query Size 399KB 453KB 480KB 518KB 518KB

Response Size 151KB 807KB 1159KB 1613KB 1610KB

SimplePIR
Hint Size 16MB 92MB 131MB 185MB 185MB

Query Size 12KB 66KB 93KB 131KB 131KB
Response Size 4KB 20KB 29KB 41KB 37KB

Spiral
Parameter Size 8MB 8MB 8MB 8MB 10MB

Query Size 16KB 16KB 16KB 16KB 16KB
Response Size 21KB 21KB 21KB 21KB 61KB

Table 1. Communication costs of HintlessPIR, SimplePIR, and Spiral, for several typi-
cal database dimensions. For HintlessPIR, a query includes two RLWE ciphertexts and
a rotation key as well as a LWEPIR query vector, and a response includes RLWE cipher-
texts encrypting DB ·A · s and the LWEPIR response vector. For Spiral, the parameter
includes key materials for expanding RLWE encryptions into RGSW ciphertexts.

For communication cost, a NTTlessPIR query is 387KB which includes two
compressed ciphertexts and a compressed rotation key, and its response size
scales roughly with

√
dN , which is asymptotically the same as in SimplePIR.

Comparing with SimplePIR, a pair of NTTlessPIR query and response is only
about 1% of SimplePIR hint for all databases we measured except the first, very
small database of dimension 220 × 8 bytes.

In terms of computation overhead, it takes 105ms to homomorphically gener-
ate all rotations of s (mod pj) for each pj , which is a one-time cost independent
of the database dimension. The homomorphic matrix-vector multiplication pro-
ceeds over each 1024×N block of H. The time for the client to recover the PIR
answer remains inexpensive in our benchmarks, taking no more than 50ms for
databases up to 1GB and 145ms for 8GB databases. We summarize the commu-
nication and computation overhead of Hintless SimplePIR in Tables 1 and 2.

Bandwidth and latency of making a few queries. One of the advantages of
HintlessPIR is the absence of offline interaction between the client and the server,
which makes it very appealing for situations where the client only makes a few
queries before the database is updated. We show in Fig. 5 the bandwidth and la-
tency of a new client making its initial query to databases using HintlessPIR, Sim-
plePIR, and Spiral. To measure latency we model the connection using median
upload and download speeds for mobile devices in the US, which are 85.32Mbps
and 8.34Mbps respectively as of August 202310. For all the database dimensions
we consider, HintlessPIR has lower cost when making the first query than the
other two protocols. Comparing with Spiral, HintlessPIR maintains this band-
width advantage for the first 3 to 5 queries, and always has smaller latency.
Comparing with SimplePIR, HintlessPIR has lower latency for making up to 10
queries except for the smallest database while the communication cost is always

10 https://www.speedtest.net/global-index/united-states

25

https://www.speedtest.net/global-index/united-states


Database (total size)
220 × 8B
(8MB)

220 × 256B
(268MB)

226 × 8B
(537MB)

230 × 1B
(1.07GB)

218 × 32KB
(8.59GB)

HintlessPIR

Server Online Time 271ms 575ms 768ms 1033ms 2309ms
Server Throughput 31MB/s 467MB/s 699MB/s 1039MB/s 3720MB/s

Server Preproc. Time 3.11s 51.57s 93.58s 199.15s 2128s
Client Recovery time 4.78ms 25.50ms 36.66ms 51.00ms 52.32ms

SimplePIR
Server Online Time 1.35ms 45.16ms 98.38ms 183.41ms 1.45s
Server Throughput 6213MB/s 5944MB/s 5457MB/s 5854MB/s 5887MB/s

Server Preproc. Time 0.96s 45.39s 85.24s 188.03s 2116s

Spiral
Server Online Time 794.47ms 794.47ms 1407ms 2576ms 12875ms
Server Throughput 11MB/s 338MB/s 381MB/s 417MB/s 667MB/s
Client Parameter
Generation Time

139ms 193ms 326ms 326ms 326ms

Table 2. Computational costs of HintlessPIR, SimplePIR, and Spiral, on several typical
database dimensions. The server throughput is computed as database size / server on-
line time. For SimplePIR, the server preprocessing time includes generating the LWEPIR
hint matrix. For HintlessPIR, the server preprocessing time additionally includes the
preprocessing time for NTTlessPIR, and the client recovery time includes decrypting
the server response and derive the PIR answer. For Spiral, we also measured the time
for the client to generate the offline parameters (i.e. key materials).

lower for up to 75 queries. We note that, in terms of latency, the trivial PIR
protocol is better than SimplePIR and Spiral for the smallest database while
worse than HintlessPIR.

Parallelization. In previous protocols based on RLWE homomorphic encryp-
tion, it is sometimes hard to fully take advantage of parallelism (e.g. speedup
a factor k using k more processors) due to memory I/O bottlenecks from con-
verting between evaluation and coefficient forms. With our NTT precomputa-
tion optimization, the server’s online algorithm consists of point-wise additions
and multiplications of vectors, which are much less memory-intensive than the
previously-described protocols, and have simple (and predictable) memory ac-
cess patterns. So, we tuned our implementation to use all four CPU cores: the
first step of NTTlessPIR online algorithm is distributed to two threads, one per
plaintext modulus, and the second step to four threads. In addition, we also par-
allelized our SimplePIR implementation in four threads. See Table 3 for latency
and throughput with multi-threading. Our benchmark results show that we were
able to take advantage of all CPU cores available in the test environment, es-
pecially for large databases. One can expect to further parallelize our protocol
on more powerful CPUs. In particular, it seems easier to accelerate our protocol
using GPUs with powerful SIMD capacity.

26



Fig. 5. The communication cost and roundtrip latency of using HintlessPIR, SimplePIR,
and Spiral to make the initial query on several databases. We assume the download
speed is 85.32Mbps and the upload speed is 8.34Mbps, which are the median mobile
device speeds in the US in August 2023. For SimplePIR, we account for the cost of
downloading the hint from the server and making a single query. For Spiral, we account
for the cost of uploading the parameters to the server and making a single query. For the
first three databases, we also include the latency of the trivial solution that downloads
the entire database. All graphs are in the log scale.

Database (total size)
220 × 8B
(8MB)

220 × 256B
(268MB)

226 × 8B
(537MB)

230 × 1B
(1.07GB)

218 × 32KB
(8.59GB)

HintlessPIR
Online Time

(Four Thread)
137ms 252ms 315ms 420ms 1057ms

Throughput 0.06GB/s 1.06GB/s 1.7GB/s 2.55GB/s 8.12GB/s

SimplePIR

Online Time
(Four Threads)

1.04ms 24.62ms 38.54ms 80.67ms 717.67ms

Throughput 8.05GB/s 10.9GB/s 13.93GB/s 13.31GB/s 11.97GB/s

Table 3. Multi-threading computational costs of HintlessPIR and SimplePIR, on several
typical database dimensions. The server throughput is computed as database size /
server online time.

8 Conclusion

We presented two new PIR schemes with neither client-dependent preprocessed
state on the server nor database-dependent preprocessed state on the client. With
the composable preprocessing optimization, we were able to achieve concretely
fast server processing time in our first construction, HintlessPIR, namely up to
60% of the throughput of Simple PIR, and up to 5.5× higher throughput than
Spiral PIR. Our communication cost is consistently small, improving on total
communication costs (compared to Simple PIR and Spiral PIR) in settings where
many clients are making few queries each.

In terms of preprocessing in homomorphic encryption, so far we have been
able to apply it to basic homomorphic operations and gadget-based key switch-
ing. It seems very interesting to extend such technique to additional homomor-
phic operations and constructions. For example, it seems nontrivial to apply this

27



technique to the GHS [28] variant of key-switching. In addition, it may be useful
to apply composable preprocessing to other protocols to improve both online
computation and communication.

28



Bibliography

[1] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and
Trinabh Gupta. Addra: Metadata-private voice communication over fully
untrusted infrastructure. In Angela Demke Brown and Jay R. Lorch, editors,
15th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2021, July 14-16, 2021, 2021.

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. J. Math. Cryptol., 9(3):169–203, 2015.

[3] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp
Schoppmann, Karn Seth, and Kevin Yeo. Communication-computation
trade-offs in PIR. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021: 30th USENIX Security Symposium, pages 1811–
1828. USENIX Association, August 11–13, 2021.

[4] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp
Schoppmann, Karn Seth, and Kevin Yeo. Communication–Computation
trade-offs in PIR. In 30th USENIX Security Symposium (USENIX Security
21), 2021.

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. Pir with com-
pressed queries and amortized query processing. In 2018 IEEE Symposium
on Security and Privacy (SP), 2018.

[6] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR
with compressed queries and amortized query processing. In 2018 IEEE
Symposium on Security and Privacy, pages 962–979, San Francisco, CA,
USA, May 21–23, 2018. IEEE Computer Society Press.

[7] Sebastian Angel and Srinath Setty. Unobservable communication over fully
untrusted infrastructure. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), 2016.

[8] Apple. icloud private relay overview, 2021. https://www.apple.com/

icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf.
[9] Sophia Artioli. How practical is single-server private information retrieval?

2023.
[10] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. Obliviad:

Provably secure and practical online behavioral advertising. In 2012 IEEE
Symposium on Security and Privacy, 2012.

[11] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers compu-
tation in private information retrieval: PIR with preprocessing. In Mihir
Bellare, editor, Advances in Cryptology – CRYPTO 2000, volume 1880 of
Lecture Notes in Computer Science, pages 55–73, Santa Barbara, CA, USA,
August 20–24, 2000. Springer, Heidelberg, Germany.

[12] blyss SDK for accessing data privately using homomorphic encryption.
https://github.com/blyssprivacy/sdk, 2023.

[13] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A private presence
service. Proc. Priv. Enhancing Technol., 2015.

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://github.com/blyssprivacy/sdk


[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improve-
ments and extensions. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, 2016.

[15] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Lever-
aging linear decryption: Rate-1 fully-homomorphic encryption and time-
lock puzzles. In Hofheinz and Rosen [38], pages 407–437.

[16] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally pri-
vate information retrieval with polylogarithmic communication. In Jacques
Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of
Lecture Notes in Computer Science, pages 402–414, Prague, Czech Repub-
lic, May 2–6, 1999. Springer, Heidelberg, Germany.

[17] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: Efficient con-
stant bandwidth oblivious RAM from (leveled) TFHE. In Lorenzo Caval-
laro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019: 26th Conference on Computer and Communications Security,
pages 345–360, London, UK, November 11–15, 2019. ACM Press.

[18] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-
vate information retrieval. In 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, 1995.

[19] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-
server private information retrieval with sublinear amortized time. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EU-
ROCRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer Sci-
ence, pages 3–33, Trondheim, Norway, May 30 – June 3, 2022. Springer,
Heidelberg, Germany.

[20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval
with sublinear online time. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 44–75, Zagreb, Croatia, May 10–
14, 2020. Springer, Heidelberg, Germany.

[21] Alex Davidson, Gonçalo Pestana, and Sof́ıa Celi. Frodopir: Simple, scalable,
single-server private information retrieval. Proc. Priv. Enhancing Technol.,
2023.

[22] Alex Davidson, Gonçalo Pestana, and Sof́ıa Celi. FrodoPIR: Simple, scal-
able, single-server private information retrieval. Cryptology ePrint Archive,
Paper 2022/981, 2022. https://eprint.iacr.org/2022/981.

[23] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally robust pri-
vate information retrieval. In Tadayoshi Kohno, editor, Proceedings of the
21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012.
USENIX Association, 2012.

[24] Eigen c library for linear algebra(release 3.4.0). https://eigen.

tuxfamily.org, 2021. Eigen library.

[25] Nicholas Genise, Daniele Micciancio, and Yuriy Polyakov. Building an effi-
cient lattice gadget toolkit: Subgaussian sampling and more. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,

30

https://eprint.iacr.org/2022/981
https://eigen.tuxfamily.org
https://eigen.tuxfamily.org


Part II, volume 11477 of Lecture Notes in Computer Science, pages 655–684,
Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[26] Craig Gentry and Shai Halevi. Compressible fhe with applications to pir. In
Theory of Cryptography: 17th International Conference, TCC 2019, 2019.

[27] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR.
In Hofheinz and Rosen [38], pages 438–464.

[28] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 850–867, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Heidelberg, Germany.

[29] Craig Gentry and Zulfikar Ramzan. Single-database private information re-
trieval with constant communication rate. In Proceedings of the 32nd Inter-
national Conference on Automata, Languages and Programming, ICALP’05,
page 803–815, 2005.

[30] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Com-
puter Science, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany.

[31] Google. VPN by Google One. https://one.google.com/about/vpn.

[32] Google. Privacy sandbox IP protection proposal, 2023. https://

developer.chrome.com/en/docs/privacy-sandbox/ip-protection/.

[33] Matthew Green, Watson Ladd, and Ian Miers. A protocol for privately
reporting ad impressions at scale. CCS ’16, 2016.

[34] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I,
volume 8616 of Lecture Notes in Computer Science, pages 554–571, Santa
Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[35] Ryan Henry. Polynomial batch codes for efficient IT-PIR. Proc. Priv.
Enhancing Technol., 2016(4):202–218, 2016.

[36] Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, and Nick-
olai Zeldovich. Private web search with tiptoe. In Proceedings of the The
29th ACM Symposium on Operating Systems Principles, 2023.

[37] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah
Meiklejohn, and Vinod Vaikuntanathan. One server for the price of two:
Simple and fast single-server private information retrieval. In Joseph A.
Calandrino and Carmela Troncoso, editors, 32nd USENIX Security Sym-
posium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023,
2023.

[38] Dennis Hofheinz and Alon Rosen, editors. TCC 2019: 17th Theory of Cryp-
tography Conference, Part II, volume 11892 of Lecture Notes in Computer
Science, Nuremberg, Germany, December 1–5, 2019. Springer, Heidelberg,
Germany.

31

https://one.google.com/about/vpn
https://developer.chrome.com/en/docs/privacy-sandbox/ip-protection/
https://developer.chrome.com/en/docs/privacy-sandbox/ip-protection/


[39] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with
checklist. In 30th USENIX Security Symposium (USENIX Security 21),
2021.

[40] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997, 1997.

[41] Arthur Lazzaretti and Charalampos Papamanthou. Treepir: Sublinear-
time and polylog-bandwidth private information retrieval from DDH. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceed-
ings, Part II, 2023.

[42] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private infor-
mation retrieval and fully homomorphic RAM computation from ring LWE.
In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th An-
nual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023.

[43] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier
Killijian. XPIR : Private information retrieval for everyone. Proc. Priv.
Enhancing Technol., 2016.

[44] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server
pir via fhe composition. In 2022 IEEE Symposium on Security and Privacy
(SP), 2022.

[45] Samir Jordan Menon and David J. Wu. SPIRAL: Fast, high-rate single-
server PIR via FHE composition. In 2022 IEEE Symposium on Security
and Privacy, pages 930–947, San Francisco, CA, USA, May 22–26, 2022.
IEEE Computer Society Press.

[46] Daniele Micciancio and Mark Schultz. Error correction and ciphertext quan-
tization in lattice cryptography. In Helena Handschuh and Anna Lysyan-
skaya, editors, Advances in Cryptology – CRYPTO 2023, pages 648–681,
Cham, 2023. Springer Nature Switzerland.

[47] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian
Goldberg. PIR-Tor: Scalable anonymous communication using private infor-
mation retrieval. In 20th USENIX Security Symposium (USENIX Security
11), 2011.

[48] Muhammad Haris Mughees, Hao Chen, and Ling Ren. Onionpir: Response
efficient single-server pir. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’21, 2021.

[49] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private stateful infor-
mation retrieval. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, 2018.

[50] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in

32



Computer Science, pages 554–571, Santa Barbara, CA, USA, August 17–21,
2008. Springer, Heidelberg, Germany.

[51] Chris Peikert and Brent Waters. Lossy trapdoor functions and their appli-
cations. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual
ACM Symposium on Theory of Computing, pages 187–196, Victoria, BC,
Canada, May 17–20, 2008. ACM Press.

[52] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 84–93, Baltimore, MA,
USA, May 22–24, 2005. ACM Press.

[53] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan,
Patrick Gage Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek,
Sarvar Patel, Dan Boneh, and Elie Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In Nadia Heninger and
Patrick Traynor, editors, 28th USENIX Security Symposium, USENIX Se-
curity 2019, Santa Clara, CA, USA, August 14-16, 2019, 2019.

[54] Tor. The tor project. https://www.torproject.org/.
[55] Roman Vershynin. High-dimensional probability: An introduction with ap-

plications in data science, volume 47. Cambridge university press, 2018.
[56] Kevin Yeo. Lower bounds for (batch) PIR with private preprocessing. In

Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EURO-
CRYPT 2023, Part I, volume 14004 of Lecture Notes in Computer Science,
pages 518–550, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Ger-
many.

[57] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. Piano: Ex-
tremely simple, single-server pir with sublinear server computation. Cryp-
tology ePrint Archive, Paper 2023/452, 2023. https://eprint.iacr.org/
2023/452.

A Sub-Gaussian Analysis

Definition 8 (Sub-Gaussian Random Variable). A random variable X is
said to be sub-Gaussian of parameter σ if for every t > 0

Pr[|X| > t] ≤ exp(−t2/2σ2). (6)

We define the minimum sub-Gaussian parameter of a random variable X to be
‖X‖ψ2

. For a random vector x, we define ‖x‖ψ2
= maxi ‖xi‖ψ2

.

Definition 9 (Sub-Exponential Random Variable). A random variable X
is said to be sub-Exponential of parameter σ if for every t > 0

Pr[|X| > t] ≤ exp(−t/2σ).

We define the minimal sub-Exponential parameter of a random variable X to be
‖X‖ψ1

. For a random vector x, we define ‖x‖ψ1
= maxi ‖xi‖ψ1

.

33

https://www.torproject.org/
https://eprint.iacr.org/2023/452
https://eprint.iacr.org/2023/452


We finally define the norm ‖x‖ψ∞ as the maximal (in the `∞ norm) value
that the random vector x takes on, e.g. the minimal parameter B such that
Pr[‖x‖∞ > B] = 0.

The quantities ‖·‖ψα are norms on the space of random variables, e.g. are
closed under scalar multiplication and addition of (possibly dependent) random
variables. When the random variables are independent, one may obtain tighter
bounds.

Lemma 8 (Pythagorean Additivity). Let X1, . . . , Xn be independent ran-
dom variables. Then ∥∥∥∥∥∑

i

Xi

∥∥∥∥∥
ψ2

≤
√∑

i

‖Xi‖2ψ2
.

We will additionally need that ‖xy‖ψα ≤ ‖x‖ψα ‖y‖ψ∞ , and ‖xy‖ψ1
≤ ‖x‖ψ2

‖y‖ψ2
.

Both are well-known, see for example [55].
We will need the following results regarding bounding f ∗ g assuming the

coefficients of f, g are of bounded ψα-norm. The following mildly extends [44,
Lemma 2.6].

Lemma 9 (ψα bounds on ∗). Let f, g be random variables such that deg f ≤
Df and deg g ≤ Dg. Let D = min(Df , Dg). Then

– If ‖f‖ψ2
, ‖g‖ψ∞ <∞, then

‖f ∗ g‖ψ2
≤ D ‖f‖ψ2

‖g‖ψ∞ ,

and if all coordinates of f and g are (mutually) independent, then

‖f ∗ g‖ψ2
≤
√
D ‖f‖ψ2

‖g‖ψ∞ .

– If ‖f‖ψ2
, ‖g‖ψ2

<∞, then

‖f ∗ g‖ψ1
≤ D ‖f‖ψ2

‖g‖ψ2
.

Proof. All of the bounds reduce to analyzing any coordinate of the product f ∗g,
which is a sum of at most D products of coordinates figi′ . Our claimed bounds
then follow immediately from the previously described properties of ‖·‖ψα .

We will use the independence heuristic, or the heuristic assumption that
intermediate values within homomorphic computations are independent, and
therefore one may apply pythagorean addivity in all situations. This means the
noise bounds we derive will be heuristic — we will validate them against our
implementation in Section 7.

We will need the following standard tail-bound on (possibly dependent) ψα-
random variables.

Lemma 10. Let u be an n-dimensional random variable of bounded ψα-norm
for α 6=∞. Then for any δ > 0

Pr[‖u‖∞ > α
√

ln(1 + nδ−1) ‖u‖ψα ] ≤ δ.

34



B The LWE and RLWE Problems

Definition 10 (LWE Distribution). Let N,m,Q ∈ N, and let σ > 0. Let
s ∈ ZNQ . Then we call the distribution

(A,A · s + e),

where A← Zm×NQ , e← χmσ the LWE distribution.

For appropriate s (sampled either uniformly, or from χNσ ), the computational
problem of distinguishing the LWE distribution from the uniform distribution is
known as the decisional LWE problem.

Definition 11 (LWE Problem). Let N,m,Q ∈ N, and let σ > 0. The LWEN,mQ,σ

problem is to distinguish samples from a distribution that is either

1. the LWE distribution relative to s← χNσ , or

2. the uniform distribution over Zm×(N+1)
Q .

We will also use the RLWE problem (restricted to power-of-two cyclotomic
rings) in this work. In the ring setting, we abuse notation and use χnσ to mean
the distribution over degree n polynomials whose coefficients are independently
sampled from χ.

Definition 12 (RLWE Distribution). Let k, q ∈ N, and let n = 2k. Let s ∈
Rn,q. Then we call the distribution

(a, a ∗ s+ e),

where a← Rn,q, e← χnσ, the RLWE distribution.

Definition 13 (RLWE Problem). Let k, q ∈ N, let σ > 0, and let n = 2k. The
RLWEnq,σ problem is to distinguish samples from a distribution that either

1. samples s← χnσ, then outputs samples from the RLWE distribution, or

2. outputs samples from the uniform distribution over R2
n,q.

In the above (standard) formulation of the LWEn,mq,σ (resp. RLWEnq,σ) problem,
one fixes s (resp. s) and freshly samples A, e (resp. a, e). One may instead fix A
(resp. a) and freshly sample s, e (resp. s, e) at a small concrete loss in hardness
of the underlying problem. In particular, fixing A (resp. a) across κ samples
increases the advantage of any candidate adversary by a multiplicative factor at
most κ by a simple hybrid argument [51, Section 6].

35



C Homomorphic Multiplications

Below, we include material regarding (unrelinearized) homomorphic LWE ⊗’s
and RLWE ∗’s, which are used in our scheme TensorPIR.

Lemma 11 (LWE Homomorphic ⊗-product). Given two LWE-based cipher-
texts Ci ∈ Zdi×nQ × Zdi×1Q encrypting mi ∈ ZdiQ with scaling factor ∆ and error
ei, one may homomorphically compute a LWE-based ciphertext

C⊗ ∈ Zd0d1×n
2

Q2 × Zd0d1×2nQ2 + Zd0d1×1Q2

such that
C⊗(s⊗ s,−s, 1) = ∆2m0 ⊗m1 + e⊗

where
e⊗ = ∆ (m0 ⊗ e1 + e0 ⊗m1) + e0 ⊗ e1.

Lemma 12 (RLWE Homomorphic ∗-product). Given two RLWE-based ci-
phertexts cti ∈ R2

n,q encrypting mi ∈ Rn,q with scaling factor ∆ and error ei,
one may homomorphically compute a RLWE-based ciphertext ct∗ ∈ R3

n,q2 that
may be linearly-decrypted to

∆2m0 ∗m1 + e∗

where
e∗ = ∆(m0 ∗ e1 + e0 ∗m1) + e0 ∗ e1.

D The Noise Growth of our Homomorphic Computations

In some applications we will require all n/2 rotation keys. One can generate
these from a single rotation key at the cost of mild noise growth.

Lemma 13. Let g be a gadget of size ` and quality γ. Let v be a RLWE secret-
key. Let ksk be a g-based key-switching key from v(X5) to v with error that has
ψ2-norm at most σ and ψ∞-norm at most B. Then one can compute all n/2
rotation keys from ksk at the cost of `(n− 1) �-products. Moreover, the error e′

of any of these rotation keys satisfies

‖e′‖ψ2
≤
√
`γσ2n.

and
‖e′‖ψ∞ ≤ `γBn

2.

Proof. We compute each rotation key iteratively from the last. Note that a single
application increases the error from e 7→ e+

∑
i∈[`] g

−1(a)i ∗ ei, where ei are the
errors in the initial rotation key. Iterating, we see that the error in the jth
component of the ith rotation key is of the form

eij = e(i−1)j +
∑
k∈[`]

g−1(a(i−1)j)k ∗ ek. (7)

36



We can solve the recurrence to see that we can instead write

eij =
∑

h∈(2,i−1]

∑
k∈[`]

g−1(ahj)k ∗ ek

=
∑
k∈[`]

ek ∗

 ∑
h∈(2,i−1]

g−1(ahj)k


Recalling that i ≤ n/2, we get that We next note that

∑
h g−1(ahj)k is of ψ2-

norm at most
√
n/2γ. Recalling ‖ek‖ψ∞ ≤ B and applying Lemma 9, it easily

follows that the overall error is of ψ2-norm at most
√
`(n/2)nBγ, e.g. the claimed

bound holds.
The bounds in the ψ∞ case proceed analogously, but are much weaker. In

particular, we can get the bound ‖e′‖ψ∞ ≤ `γBn
2 ut

We will require a frequently used technique [34, 6, 17, 27, 3] to homomorphi-
cally expand Enc(

∑
i aiX

i) 7→ {Enc(nai)}i.

Lemma 14 (RLWE Expansion [17]). Let ct be an RLWE encryption of
∑
i∈[n] aiX

i ∈
Rn,p under secret key v. Then one may homomorphically compute n ciphertexts
cti = Encv(nai) with a total of n − 1 �-products. If the error e in the input
ciphertext satisfies ‖e‖ψ2

≤ σ, and the error ei of each rotation key satisfies
‖ei‖ψ2

≤ σksk, then the error e′ of each output ciphertext cti satisfies

‖e′‖2ψ2
≤ n2σ2 +

n2 − 1

3
`γ2σ2

ksk

Note that this computes encryptions of constant polynomials mi(X) := n ·ai
rather than ai. One can fix this by instead initially encrypting

∑
i∈[n] n

−1 ·
aiX

i mod p.
We will sometimes call Expandksk on a vector of RLWE ciphertexts

−→
ct of

dimension d, e.g. Expandksk(
−→
ct). By this, we mean calling Expandksk(cti) for each

i ∈ [d], and concatenating the results.
We will need the following result regarding the correctness of LWEPIR.

Lemma 15. Let DB ∈ Znrows×ncols
p . The error in a LWEPIR server response is

sub-Gaussian of parameter at most
√
ncolspσ.

Proof. It is straightforward to verify that the error in the server response is DB·e
for fresh LWE error e ← χnrows

σ . Standard sub-Gaussian analysis then gives that

‖e‖2ψ2
≤ ncolsσ2p2.

E Analysis of NTTlessPIR

Theorem 2. Let DB ∈ Znrows×ncols

Q . Let m ∈ Zncols be such that ‖m‖∞ ≤ B.
Let σ, q, and n be such that the RLWE assumption is hard. Then, assuming the
circular security of RLWE, the LinPIR scheme specified in Figure 3 is a secure
LinPIR scheme in the random oracle model.

37



Expandksk(ct)

ct0 := ct

for i ∈ [logn]

k = n/2i + 1

for b ∈ [2i+1]

ct2b = ctb + Rotateksk(ctb, k)

ct2b+1 = (ctb − Rotateksk(ctb, k)) ∗X−k

return {cti}i∈[n]

Fig. 6. The RLWE Expansion Algorithm of [17], where ct = Enc(
∑
i aiX

i) is an RLWE
encryption of many scalars ai, and cti is an RLWE encryption of the single scalar nai.
Note that this algorithm solely computes homomorphic additions and rotations, and
is compatible with our preprocessing techniques of Section 3.

Proof. If it were not for our seed reuse optimization, the security of our LinPIR
scheme would immediately reduce to the security of the underlying FHE scheme,
e.g. to the security of RLWE with our parameter set (as well as a circular security
assumption to handle our inclusion of the rotation key Encv(rot

◦1(v))). A simple
hybrid argument (analogous to [50]) suffices to show that reusing the random pad
a of an RLWE ciphertext κ times degrades the concrete hardness of the RLWE
problem by at most a multiplicative factor κ. Provided this is polynomially
bounded in the security parameter, this concrete degredation does not impact
the asymptotic security of our scheme. As we assume the server is efficient, its
running time is at most polynomial in λ, so it responds to at most this many
queries, and the security of our scheme degrades by a factor at most polynomial
in the security parameter.

As mentioned, concretely our security does degrade with κ, though in a
controlled way, e.g. degrades by a multiplicative factor κ when processing κ
queries with the same seed. We therefore suggest setting κ to be any quantity
ω(log n). This is because rotating seeds requires

– λ-bits of additional bandwidth to transmit the new seed, and

– rerunning S.setup.

As S.setup requires O(log n) more running time than S.response, provided κ =
ω(log n), the (amortized) running time of S.response increases by a multiplicative
factor at most logn+κ

κ = 1 + o(1), e.g. by an asymptotically negligible amount.
For this reason, we will ignore this negligible cost in our analysis of the running
time of our LinPIR scheme (though we take this into account in our experiments
in Section 7).

38



Lemma 16. Let DB ∈ Znrows×ncols

Q . Let m satisfy ‖m‖∞ ≤ B. Provided the un-
derlying FHE scheme can correct errors of size up to√

ln(1 +
k(nrows + n)

δ
) max

j

√
`ncolsnσγpj ,

and
∏
i pi > ncolspB, the LinPIR scheme specified in Figure 3 is a correct LinPIR

scheme with probability at least 1− δ.

Proof. We first compute the errors in the server response. Note that the server
homomorphically

– computes (at most) ncols rotations of the client’s fresh ciphertexts b̂j , and
then

– takes a linear combination with coefficients of size at most pj of these rotated
ciphertexts.

We analyze the noise growth of each part separately. Note that each �-product
computes a sum of ` products of polynomials f, g. These polynomials are

– f : the gadget-decompositions of other polynomials, e.g. of ψ∞-norm at most
γ, and

– g: the error contained within the key-switching key, e.g. of ψ2-norm at most
σ.

By Lemma 9, each product has ψ2-norm at most
√
nγσ, and therefore the �-

product increases the ψ2-norm of the error by an additive factor at most
√
`nσγ.

It follows that each of the ncols rotations of ciphertexts has ψ2-norm at most√
`ncolsnσγ.

The server then uses these rotations to homomorphically compute Eq. (4),
e.g. to compute a sum of ncols polynomial products, where one of the polyno-
mials has ψ2-norm at most

√
`ncolsnσγ, and the other has ψ∞-norm at most

maxj pj . Under the independence heuristic, this leads to errors of size at most

maxj
√
`ncolsnσγpj . Note that if we concatenate all of our error vectors, we ob-

tain one (large) error vector e of dimension kdnrows/nen ≤ k(nrows + n). By
Lemma 10, we get that

Pr[‖e‖∞ >

√
ln(1 +

k(nrows + n)

δ
) max

j

√
`ncolsnσγpj ] ≤ δ,

e.g. there will be a ciphertext that decrypts incorrectly with probability at most
δ.

We next estimate how many NTT-friendly primes pj we will require for the
client’s CRT interpolation to succeed. We require that

∏
j pj ≥ ‖DB ·m‖∞,

where the matrix-vector multiplication is computed over Z. In the worst-case,
this requires that

∏
j pj > ncols ‖DB‖∞ ‖m‖∞, where ‖DB‖∞ is the `∞-norm of

DB viewed as a vector. Provided this condition holds, it is straightforward to see
that DB ·m mod

∏
j pj is equal to DB ·m over Z, so may be successfully reduced

mod Q to recover DB ·m mod Q.

39



Note that if we may assume that the database DB has uniformly random en-
tries, an average-case analysis can weaken the condition

∏
j pj > ncols ‖DB‖∞ ‖m‖∞

to Ω(
√
ncols ‖DB‖∞ ‖m‖∞) via a standard sub-Gaussian analysis.

E.1 Further Optimizations for NTTlessPIR

The following optimizations give non-asymptotic improvements to NTTlessPIR
without impacting security. Our implementation in Section 7 currently only uses
the first optimization. The other two could practically decrease the size of our
server response by a factor ≈ 4×, at the cost of introducing database-dependent
state (analogous to that of Simple PIR) to our clients. The state is much smaller
in our setting than that of Simple PIR (on the order of hundreds of kilobytes,
rather than megabytes), so this may be acceptable. We instead have chosen to
completely remove database-dependent state from our clients.

Packing Theorem 1 In Section 3, we presented homomorphic encryption algo-
rithms, e.g. where one ends up with an ciphertext (for example) ct = Enc(A ·m)
that decrypts to A · m For matrix-vector multiplication in particular (where
the matrix A has a number of columns ncols that is a proper divisor ncols | n
of the RLWE dimension), we may obtain a constant-factor speedup, by weaken-
ing our requirement that Dec(ct) = A ·m exactly to that it can be efficiently
post-processed to A ·m.

Recall that our matrix-vector multiplication homomorphically evaluates the
formula

A ·m =
∑

i∈[ncols]

diagi(A) ◦ rot◦i(m).

This only uses ncols of our RLWE slots. For A where ncols 6= n, we can use the
extra slots we have available to pack this single computation (of ncols summands)
into n/ncols parallel computations (of ≈ ncols/(n/ncols) ≈ n2cols/n summands). As
the complexity of our preprocessing algorithm in Lemma 4 scales linearly with
the number of summands, this gives us a constant-factor improvement to the
most expensive part of our protocol effectively for free.

We discuss concretely for n/ncols = 2 — the general case easily follows.
Assume as well that 2 | ncols for simplicity.

Note that both diagi(A) and rot◦i(m) are of length ncols. To homomorphically
compute Lemma 5 in Znp , we must replace m with m′ = (m,m). This is so that

rot◦i(m′) = (rot◦i(m), rot◦i(m)) has the first ncols as the expected value rot◦i(m).
Then, the first ncols coordinates of the result will contain A · s, as desired.

We can additionally make use of the second ncols coordinates as follows. Set
d′i = (diagi(A),diag(ncols/2)+i

(A)). One can then check that

∑
i∈[ncols/2]

d′i ◦ rot◦i(m′) =

( ∑
0≤i<ncols/2

diagi(A) ◦ rot◦i(m)∑
ncols/2≤i<ncols

diagi(A) ◦ rot◦i−ncols/2(m).

)
(8)

40



Summing the two halves of the vector then recovers Eq. (4), e.g. one can compute
that equation using a sum of half as many terms ncols/2. More generally, one can
reduce the number of summands by a factor dn/ncolse. This directly reduces
the number of rotations one must generate using Lemma 4, saving a factor in
dn/ncolse in running time in the most expensive part of our protocol, e.g. speeding
things up by a factor 2 or 4 in practice.

Reducing our Server Response’s Size by Half Our server response trans-
mits many NTT-domain ciphertexts [âi,j , b̂i,j ] to the client. These ciphertexts
are the result of homomorphically evaluating Apply{A mod pj}j . Their public ran-
domness Applyα{A mod pj}j is therefore a function of solely the precomputed value
Preproc{A mod pj}j , and therefore may be computed by the server before the pro-
tocol occurs.

It follows that the server can augment the protocol’s public parameters (as
specified, only a λ-bit seed) to additionally contain Applyα{A mod pj}j . This is
an RLWE variant of the database-dependent hint of LWEPIR, though it is much
smaller size (in particular, at most half of the size of a server response), compared
to the LWEPIR hint, which is N ≈ 210 times larger than a server response.
This is to say that removing the transmission of this quantity is not nearly as
impactful of an optimization as in LWEPIR (and consequentially, we may ignore
this optimization, if we do not wish for our public parameters to contain a
database-dependent hint).

Note that regardless of whether one sends these database-dependent param-
eters to the client ahead of time, the server can store them long-term, removing
the need to recompute them during each query. This speeds up running time of
the server response by a factor ≈ 2.

Lossily Compressing the b̂ Components of the Server Response The
server responds to the client with several NTT-domain RLWE ciphertexts, e.g.
elements of Znq (or (Znq )2 if one does not apply the previous optimization). As we
no longer need to homomorphically compute on these ciphertexts, one can use
standard techniques (modulus switching, or perhaps the compression technique
of [15], which was shown to be quasi-optimal for compressing LWE ciphertexts
in [46]) to reduce these elements of Znq to nearly Znpi , where pi is the plaintext
modulus. This ends up saving an additional factor ≈ k over solely the previous
optimization. Note that both of the mentioned compression techniques must
be computed on coefficient-domain representations of the ciphertexts, so this
technique does introduce some mild number of online iNTTs (k, at a cost of
Θ(kn log n) Zq operations) to the server response, but in practice this is negligible
compared to the Ω(kncolsnrows) complexity of the rest of the protocol.

41



F Correctness and Security Analysis of HintlessPIR

Lemma 17 (Security of HintlessPIR). Let (N,Q, σ) be such that LWE is hard.
Let (n, q, σ) be such that RLWE is hard, and moreover assume that RLWE is
circular secure. Then HintlessPIR is a secure PIR with preprocessing scheme.

Proof. When querying HintlessPIR on an index i, the adversary observes

– an LWEPIR query on i, and
– a RLWE encryption of the LWE secret key, and
– a RLWE rotation key.

It is straightforward to see that under the decisional LWE and RLWE assumptions
(and a circular security assumption) that this is not only indistinguishable from
a HintlessPIR query on index j, but is indistinguishable from uniformly random
strings on the same domain, and therefore HintlessPIR is secure.

Again, when handling multiple queries, we must handle the degredation of
the security of LWE and RLWE-based encryption with reuse of the pads A. Here,
given Simple PIR’s high cost to regenerate its hint, we want to instead reseed
after every ω(N) queries so that the amortized cost of the protocol does not
increase. This requires setting larger LWE parameters than is typically required,
which we do in Section 7

Lemma 18 (Correctness of HintlessPIR). Let DB ∈ Znrows×ncols
p . Let (N,Q, σ)

be such that LWE is hard. Let (n, q, σ) be such that RLWE is hard. Then, for any
δ > 0, provided

Q >
√
ncolsp

2σ

√
ln(1 +

nrows
δ/3

)

q >

√
ln(1 +

k(nrows + n)

δ/3
) max

j

√
`Nnσγp2j

∏
j

pj > Qσ
√
N

√
ln(1 +

kndnrows/ne
δ/3

),

then HintlessPIR is correct with probability at least 1− δ.

Proof. We parameterize each part of the protocol that may fail (the LWEPIR
query, the NTTlessPIR query’s decryption, and NTTlessPIR’s post-decryption
CRT interpolation) such that they fail with probability at most δ/3, and then
get that HintlessPIR fails with probability at most δ, as desired.

G TensorPIR: Recursing a Single Time

We adopt the same CRT decomposition technique used in Section 4 to handle
homomorphic computation over arbitrary modulus Q. Namely, we homomor-
phically compute the above terms over k NTT-friendly moduli pj such that

42



the plaintext computation never wrap around modj∈[k]
∏
j pj . Since the homo-

morphic computation over each pj is exactly the same, we describe TensorPIR
without explicitly mentioning these plaintext moduli.

The high level idea about TensorPIR is that, we can rearrange database as
DB ∈ Zdw×du×dv , and it holds that

DB = [DB1, . . . ,DBdu ] =
∑
i∈[du]

ui
t ⊗ DBi. (9)

If the client encrypts two selection vectors u ∈ {0, 1}du and v ∈ {0, 1}dv into
LWE ciphertexts C0 = [A0,b0] and C1 = [A1,b1], then one may compute DB ·
(u⊗ v) as

DB · (u⊗ v) ≈ DB · (b0 ⊗ b1)− DB · (A0 · s⊗ b1)− DB · (b0 ⊗A1 · s)

+ DB · (A0 · s⊗A1 · s) mod Q. (10)

The right hand side is a noisy version of DB · (u⊗ v); so if the client can obtain
these terms, then it can round and remove the error to get the desired records.

We now describe TensorPIR in more details. Recall that the client encrypts
u and v under its LWE secret s to obtain ciphertexts

C0 = [A0,b0 = A0s + e +∆u], C1 = [A1,b1 = A1s + e +∆v].

The client additionally uses a RLWE-based scheme Enc for the terms involving
the LWE secret vector s. Specifically, the client samples a fresh RLWE secret
key v and sends the following ciphertexts to the server:

– ctA0s ← Encv(
∑
i∈[du]〈ai, s〉 ·X

i), and

– cts ← Encv(encode(s)),

where ai = ui
t · A0 is the ith row of A0. The client also includes a Galois key

for θ : X 7→ X5 in its query.
The server’s task is to perform homomorphic computation to obtain

1. DB · (Encv(A0 · s)⊗ b1),
2. DB · (b0 ⊗A1 · Encv(s)),
3. DB · (Encv(A0 · s)⊗A1 · Encv(s)), and
4. DB · (b0 ⊗ b1).

Let us start with the term DB · (Encv(A0 · s) ⊗ A1 · Encv(s)). According to
Eq. (9), we can expand the underlying plaintext computation as DB ·(A0 ·s⊗A1 ·
s) =

∑
i∈[du](ui

t ·A0 · s)⊗ (DBi ·A1 · s). Since the ui
t ·A0 · s is one-dimensional,

we can rewrite our homomorphic computation as

Enc(A0 · s),Enc(s) 7→
∑
i∈[du]

Enc(〈ai, s〉) ∗ Enc(DBi ·A1 · s), (11)

where ai = ui
t ·A0 is the ith row of A0.

Given the ciphertexts in a client query, the server can then homomorphically
compute, for all i ∈ [du],

43



– the RLWE encryptions Encv(〈ai, s〉) of scales 〈ai, s〉, and
– the RLWE encryptions Encv(encode(DBi ·A1 · s)).

The first set of ciphertexts can be efficiently generated from a compact encryp-
tion of A0 ·s via RLWE expansion of Lemma 14. In practice, since the expansion
algorithm requires log n rotation keys which are expensive to send in each query,
we let the client send just a single rotation key corresponding to rotation by 1,
and let the server generate all log n rotation keys via Lemma 13. The second
set of ciphertexts are exactly the homomorphic matrix-vector products between
DBi ·A1 and a ciphertext encrypting s in the slots. So we invoke NTTlessPIR to
compute them.

The above ciphertexts are also useful to compute the other two terms:

– For DB · (Enc(A0 · s) ⊗ b1), the server can multiply cti by the plaintext
DBi · b1 mod pj and homomorphically sum up these ciphertexts.

– For DB · (b0⊗ (A1 ·Enc(s))), the server can simply multiply ct′i with a scalar
〈b0,ui〉, and sum up the resulting ciphertexts across all i’s.

The full server and client algorithms of TensorPIR are shown in Fig. 7.

G.1 Security and Efficiency of TensorPIR

We first briefly discuss the security of TensorPIR, which follows security proper-
ties of component schemes of the protocol and is standard.

Lemma 19 (Security of TensorPIR). Let N,Q, n, q,m ∈ N and let σ > 0.

Assume LWEN,mQ,σ is hard, and assume RLWEnq,σ is hard. Moreover, assume that
RLWEnq,σ is circular secure. Then TensorPIR is a secure PIR with preprocessing
scheme for m-dimensional databases.

We next estimate the size of the plaintext space we need for our homomorphic
computation in TensorPIR to be correct.

Lemma 20. Let N,Q, n, q,m ∈ N, and let σ > 0. Then provided one computes
the TensorPIR protocol with respect to NTT-friendly primes pi such that∏

i

pi > duNQ
3,

CRT interpolation at the end of TensorPIR will succeed.

Proof. We estimate the size of result of the plaintext computation that we are
homomorphically computing. For simplicity, we solely give a worst-case analy-
sis11. Note that we are computing∑

i

ci(DBi ·A1)c′,

11 It seems unlikely an average-case analysis would help much, as the most problematic
term, the Q3, would be unaffected by this.

44



Server Algorithms in TensorPIR

S.setup(DB) :

for i ∈ [du], j ∈ [k]

(seedi,j , S
hint
i,j )← NTTlessPIR.setup(DBiA1 mod pj)

return [seedi,j , S
hint
i,j : i ∈ [du], j ∈ [k]]

S.response(
−−−→
ctA0s, cts, ksk,b0,b1)

{kski}i∈[n/2] ← GenAllRotationKeys(ksk)

for j ∈ [k]

ctA0s⊗b1,j = 0

ctb0⊗A0s,j = 0

ctA0s⊗A1s,j = 0

for i ∈ [du], j ∈ [k]

{cti,j}i ← Expandksk(
−−−−→
ctA0s,j)

{ct′i,j} ← NTTlessPIR.response(cts,j ,DBi ·A1)

for i ∈ [du], j ∈ [k]

ctA0s⊗b1,j += cti,j ∗ encodepj (DBi · b1)

ctb0⊗A1s,j += (b0)i ∗ ct′i,j
ctA0s⊗A1s,j += cti,j ∗ ct′i,j

d = DB · (b0 ⊗ b1)

return ({ctA0s⊗b1,j , ctb0⊗A1s,j , ctA0s⊗A1s,j}j∈[k],d)

Client Algorithms in TensorPIR

C.query(u,v, {seedi,j}i∈[du],j∈[k])

s← LWE.KGen(1λ)

v ← RLWE.KGen(1λ)

ksk← RLWE.Encv(g ∗ v(X5); seed0,0||0)
−−−→
ctA0s ← [RLWE.Encv(A0s mod pj ; seedi,j ||10) : j ∈ [k]]

cts ← [RLWE.Encv(encodepj (s); seedi,j ||11) : j ∈ [k]]

[A0,b0]← LWE.Encs(u)

[A1,b1]← LWE.Encs(v)

return (
−−−→
ctA0s, cts, ksk, [A0,b0], [A1,b1])

C.recover({−−−→ctrsp,j}j∈[k],d)

for j ∈ [k]

{ctA0s⊗b1 , ctb0⊗A1s, ctA0s⊗A1s} =
−−−→
ctrsp,j

mj ← decodepj (Dec(ctA0s⊗b1))

m′j ← decodepj (Dec(ctb0⊗A1s))

m′′j ← decodepj (Dec(ctA0s⊗A1s))

m = iCRTP (m0, . . . ,mk−1)

m′ = iCRTP (m′0, . . . ,m
′
k−1)

m′′ = iCRTP (m′′0 , . . . ,m
′′
k−1)

z =

⌊
d−m−m′ + m′′

∆2

⌉
return z

Fig. 7. Algorithms of TensorPIR. Note that we slightly modify NTTlessPIR.setup to use
the same seed for the rotation key across all invocations.

45



where ci is either the ith coordinate of b0, or 〈ai, s〉, and c′ is either b1 or s.
The jth coordinate of this is of the form∑

i

ci〈a′ij , c′〉, (12)

where a′ij is the jth row of DBi · A1. Note that the server can manually reduce
this vector modQ before homomorphically computing, e.g. we may assume a′ij
is a vector with entries at most Q/2. Similarly, ci may be assumed to be bounded
by Q/2 as well. It follows that worst-case, each coordinate of our output plain-
text has size at most duNQ

3, and therefore provided
∏
i pi is greater than this

quantity, CRT interpolation will succeed. ut

Practically, this means that we need to support plaintext computations of
size up to ≈ m1/32106. Assuming we use ≈ 20-bit NTT-friendly prime plaintexts,
and that m ≤ 240, it suffices to use 6 NTT friendly primes, e.g. 3× as many as we
use for NTTlessPIR. This does represent a slight increase in the hidden constant
for the server response size, but one that is practically small compared to the
asymptotic Θ( 3

√
m) query size achievable by Tensor PIR.

We next discuss correctness of TensorPIR and its efficiency properties. Note
that, by combing the recovered decryption terms in Algorithm 7, the result is a
vector d−m−m′ + m′′ = ∆2 ·DB · (u⊗ v) + e⊗, where e⊗ is the error in the
LWE ciphertext DB · (C0 ⊗ C1).

Lemma 21 (Correctness of TensorPIR). Let N,m,Q ∈ N, and let σ > 0. As-

sume DB ∈ Zmp , where m = dudvdw. Let C0 ∈ Zdu×(N+1)
Q and C1 ∈ Zdv×(N+1)

Q

be LWE encryptions of selection vectors u ∈ {0, 1}du and v ∈ {0, 1}dv with error
sub-Gaussian parameter σ. Then, the error in the ciphertext DB·(C0⊗C1) is sub-

exponential of parameter (p/2)2dvσ
2 + (p/2)2duσ

2 + σ4 p4

4Q2 dudv. Furthermore,
provided

Q

2p
> ln(1/δ)

p

2
σ

√
du + dv + σ4dudv

p2

Q2
,

TensorPIR is (1− δ)-correct for a single query.

Lemma 22 (Efficiency of TensorPIR). Let DB ∈ Zdu×dv×dwp , where m =
dudvdw. Then TensorPIR requires

– Server Preprocessing: O(k`nN log n) operations in Zq and 2mN operations
in ZQ,

– Server Long-term Storage: knN(`+ 1) elements of Zq and dudwN elements
of ZQ,

– Server Response Time: kN(dwdv + n+ (`+ 2)n) Zq operations, and m ZQ
operations,

– Client Upload: (k + `)n elements of Zq and du + dv elements of ZQ,
– Client Download: 2k(dw + n) elements of Zq and dw elements of ZQ

46



H More Details on Evaluation

We discuss a bit more about our experiments on HintlessPIR and comparing with
SimplePIR and Spiral.

Comparing with SimplePIR. When executing in a single thread, the online
throughput of our SimplePIR implementation is very close to 6GB/s/core, which
is also close to the memory I/O throughput. Despite the extremely fast on-
line processing speed, SimplePIR requires the client to download a database-
dependent hint. For the database dimensions we benchmarked (which are typical
for PIR applications) the hint size is at least 1/6 of the entire database (for the
first four dimensions) or larger than 180MB, and it may require several seconds
to even download the hint. So, in the anonymous PIR setting, or when the client
makes only a small number of PIR queries in between database updates, our
HintlessPIR protocol requires much less communication at the cost of slightly
increased server computation. We also note that, for large databases, the cost of
homomorphically generating rotations of s is less significant, and the total server
computation cost of HintlessPIR becomes close to that of SimplePIR. For exam-
ple, for a database of dimension 218 × 32KB and total size 8.59GB, the latency
of HintlessPIR is about 2.3s while the latency of SimplePIR is 1.42s. For the
offline phase, the overhead due to NTTlessPIR preprocessing becomes cheaper
than SimplePIR preprocessing for databases larger than 60MB. For example,
for database dimension 220×256 bytes, preprocessing in NTTlessPIR takes 6.18s
while computing the hint matrix in SimplePIR takes 45s.

Comparing with Spiral. The advantage of Spiral over SimplePIR is usually the
smaller offline communication cost, which almost completely vanishes when com-
paring to HintlessPIR. In terms of the online communication cost, Spiral is more
efficient than HintlessPIR, as its query can be close to O(logm) and its response
size can be close to the size of a single record for typical database dimensions.
However, our protocol requires less total communication bandwidth in the anony-
mous PIR setting. More importantly, the online latency of our protocol is signif-
icantly smaller than Spiral. For example, for small databases such as 220 records
of 256 bytes each, our protocol runs in 575ms while Spiral runs in 794ms. For a
database of 1GB large, with 230 records, the throughput of our protocol is more
than 1GB/s while Spiral only achieves 417MB/s. Note that our implementation
does not yet take advantage of special ciphertext modulus for faster modular
arithmetic, as done in Spiral. We did not benchmark variants of Spiral that op-
timize for large records, as they require larger offline or online communication.

47


	Hintless Single-Server Private Information Retrieval

