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Abstract. Masking is a well-known and provably secure countermeasure
against side-channel attacks. However, due to additional redundant compu-
tations, integrating masking schemes is expensive in terms of performance.
The performance overhead of integrating masking countermeasures is heavily
influenced by the design choices of a cryptographic algorithm and is often
not considered during the design phase.

In this work, we deliberate on the effect of design choices on integrating mask-
ing techniques into lattice-based cryptography. We select Scabbard, a suite
of three lattice-based post-quantum key-encapsulation mechanisms (KEM),
namely Florete, Espada, and Sable. We provide arbitrary-order masked imple-
mentations of all the constituent KEMs of the Scabbard suite by exploiting
their specific design elements. We show that the masked implementations of
Florete, Espada, and Sable outperform the masked implementations of Kyber
in terms of speed for any order masking. Masked Florete exhibits a 73%, 71%,
and 70% performance improvement over masked Kyber corresponding to the
first-, second-, and third-order. Similarly, Espada exhibits 56%, 59%, and
60% and Sable exhibits 75%, 74%, and 73% enhanced performance for first-,
second-, and third-order masking compared to Kyber respectively. Our results
show that the design decisions have a significant impact on the efficiency of
integrating masking countermeasures into lattice-based cryptography.

Keywords: Post-quantum cryptography · Key-encapsulation mechanism · Side-
channel attacks · Scabbard · Higher-order masking

1 Introduction

Physical attacks such as fault injection and side-channel attacks are potent threats
to any cryptosystem deployed in the public domain. Classical cryptographic schemes
such as elliptic-curve cryptography [25] and RSA [27] went through decades of testing,
analysis, and invention of different physical attacks and their countermeasures to
generate enough confidence to be successfully deployed in the real world. In compar-
ison, post-quantum cryptography (PQC), or specifically lattice-based cryptography
(LBC) has gone through significantly less amount of investigation in the context of
physical attacks. Therefore, although the United States government’s National Insti-
tute of Standards and Technology (NIST) has recently proposed some standard PQC



schemes [1], for a successful transition to PQC, it is imperative that we concentrate
our research efforts in this direction.

Masking [11] is an interesting countermeasure against passive physical attacks or side-
channel attacks (SCA) such as power analysis, electromagnetic radiation analysis, etc.
On a fundamental level, masking works by splitting the secret into multiple random
shares and performing the same computation as the unmasked version on each share.
Thus, the security of masking is based on the same information-theoretic principles,
such as Shamir’s secret sharing [29] or multi-party computation [30]. Masking can
provide provably secure countermeasures against side-channel attacks. Nevertheless,
due to the duplication of computations, the runtime of a masked implementation
theoretically grows significantly with the increase in the order of masking. For example,
in the case of Kyber, a post-quantum key-encapsulation mechanism (KEM) scheme
that has been selected as standard in the NIST’s procedure, the runtime of the first,
second, and third order of masked implementation is 12, 20, and 30 times of the
unmasked implementation on ARM Cortex-M4 platform [10].

Our primary motivation in this work is to assess how the design decisions of a
lattice-based KEM scheme, such as the choice of quotient polynomial, distribution of
secrets and errors, underlying hard problems, modulus, etc., influence their masking
performance. We also want to test how close we can get to the theoretical upper bound
of efficiency in masking. For our experiments, we have chosen the post-quantum KEM
suite Scabbard [5] with 3 different lattice-based schemes. First, a ring-learning with
rounding (RLWR) based scheme Florete with ring size comparable to NewHope [2],
second a module-learning with rounding (MLWR) based scheme Sable with ring size
similar to Saber [15] and Kyber [8], and finally an MLWR-based scheme Espada
with unique smaller ring size. The choice of Scabbard helps us to demonstrate our
methods on diverse KEM schemes with many variations in the design. Scabbard
was proposed to improve the NIST PQC finalist KEM Saber [15]. The designers of
Scabbard argued that all the design decisions of Scabbard had been propelled by
the experience gained in the research and developments in the field of lattice-based
cryptography of previous years. Therefore, it inherits all the advantages of Saber i.e.
less randomness due to rounding, power-of-two modulus for efficient masking, simple
algorithms for efficiency and faster deployment on diverse platforms, etc. Further,
the design of Scabbard improves in areas like suitability for parallel implementation,
flexibility, efficiency, and adaptation of faster masking schemes. We will discuss the
schemes of Scabbard in Sec. 2.1. In the original publication [5], the authors have
provided different implementations on hardware and software platforms to prove their
claims on efficiency. It was shown before that the design of Saber is highly conducive
to masking [4]. Due to these reasons, Scabbard is an ideal choice to demonstrate the
interplay between design choices and masking performance in lattice-based KEMs.

In this work, we propose arbitrary-order masked implementations of all the KEMs
in the suite Scabbard. We implement and benchmark them on an ARM Cortex-M4
microcontroller platform using the PQM4 [21] library to prove the masking friend-
liness of its design. The ring size of the polynomial length matches the number of
message bits, which is 256 for Saber or Kyber as well as Sable. So, the encoding of
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message bits to the ciphertext polynomial is trivial in these cases. However, this is
not the case for Florete and Espada, and these schemes use original msg function
for message decoding and arrange msg function for message encoding. This work
introduces a higher-order masked version of original msg and arrange msg function.
These functions can be applied to all LWR-based KEMs with different ring sizes than
256 and even learning with errors (LWE) based KEMs with some modifications. The
schemes of Scabbard use different centered binomial distributions compared to Saber
or Kyber. For this purpose, we modified the masked centered binomial distribution
(CBD) algorithms proposed by Schneider et al. [28] for each scheme of Scabbard and
optimized it for them. Public and re-encrypted ciphertext comparison is an important
part of the Fujisaki-Okamoto transformation used in LWE-/LWR-based KEM. It is
faster for unmasked or first-order masking but becomes computationally expensive
for higher-order maskings. Here, we modified the ciphertext comparator of [23] for
each scheme of Scabbard to obtain better performance. These masked components
are faster in Scabbard than Kyber, thanks to the choice of RLWR/ MLWR hard
problem, power-of-two moduli and slightly reduced parameter sets.

As performance results, the overhead factor we obtained for masked Florete for the
first-, second-, and third-order are approximately 2.7x, 5x, and 7.7x, compared to the
unmasked implementation. For Espada, the overhead cost of the first-, second-, and
third-order masked versions are roughly 1.8x, 2.8x, and 4x than the unmasked one. The
performance cost of masked Sable for the first-, second-, and third-order are around
2.4x, 4.3x, and 6.3x over the unmasked version. We compare the masked implementa-
tions of Florete, Espada, and Sable with the state-of-the-art masked implementation
of Kyber and Saber. We show that the masked implementations of all the schemes
of Scabbard surpass the masked implementations of Kyber in terms of performance
for any order masking, and masked implementations of Florete and Sable outperform
masked implementations of Saber for arbitrary order. More specifically, masked
Florete performs 73%, 71%, and 70% better than masked Kyber, corresponding to
the first-, second-, and third-order. Espada shows 56%, 59%, and 60% performance
improvement for first-, second- and third-order masked implementations compared
to Kyber. Masked Sable exceeds the execution time of masked Kyber by 75%, 74%,
and 73% for the first-, second-, and third-order. Our masked implementations are
available at https://github.com/Suparna-Kundu/Masked_Scabbard.git.

To conclude this section, we want to draw attention to the fact that although the NIST
standardization procedure for PKE/KEM has been finalized with Kyber, we firmly
believe that further investigations and innovations are required to improve side-channel
secure PQC schemes. The NIST procedure opened the possibility of exploring different
possibilities to improve various aspects of PQC schemes. We have witnessed this
throughout the course and even after the NIST procedure. For example, Mitaka [16]
has been proposed, which is a masking-friendly version of Falcon [17], a NIST standard
for digital signatures. Kyber-90s version of Kyber was proposed to use the advanced
encryption standard (AES) as a pseudo-random number generator instead of the slower
Keccak extended output function. Similarly, Saber-90s and uSaber were proposed as
alternate versions of the NIST PQC standardization finalist scheme Saber to improve
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efficiency and ease of masking. As discussed earlier, Scabbard [5] was an improvement
of Saber. The design of Scabbard has further influenced the design of PQC KEM
Smaug [12], which is a candidate scheme from ongoing Korean PQC standardization
[22]. Therefore, exploring various design choices and their effect on different aspects
of the performance of existing PQC schemes is an interesting research direction.

2 Preliminaries

For a positive integer q, the set of integers modulo q is denoted by Zq. The quotient
ring Zq[x]/f(x) is denoted by Rn

q , where f(x) is a n degree cyclotomic polynomial
over Zq[x]. We use lowercase letters to denote an element of this ring, which is a
polynomial. We indicate the ring of l length vectors over the ringRn

q as (Rn
q )

l and use
bold lowercase letters to denote an element of this ring which is a vector of polynomials.
The ring of l×l length matrices over the ringRn

q as (Rn
q )

l×l. The elements of this ring
are l×l matrices of polynomials and are represented by uppercase letters. x←χ(S)
represents that x is sampled from the set S and follows the distribution χ. When x is
generated using a pseudo-random number generator expanding a seed seedx over the
set S, we denote it as x←χ(S;seedx). We use U to denote the uniform distribution
and the CBD whose standard deviation

√
µ/2 is presented by βµ. We denote the

rounding operator with ⌊·⌉, which returns the closest integer and is rounded upwards
during ties. These operations can be extended over the polynomials by applying them
coefficient-wise. The polynomial multiplication between two polynomials of length
n is represented using n×n multiplication. We use {xi}0≤i≤t to represent the set
{x0, x1, ..., xt} which contains t+1 elements of the ring R.

2.1 Scabbard: a Post-Quantum KEM Suite

Scabbard is a suite of post-quantum KEMs proposed by Mera et al. [5] that improved
state-of-the-art LBC schemes by incorporating different design choices and newer
developments in the field. The security of the schemes in the Scabbard depends on
some variants of learning with rounding (LWR) problems, more specifically, module-
LWR (MLWR) and ring-LWR (RLWR) problems. Banerjee et al. [3] introduced the
LWR problem and also showed that the LWR problem is as hard as the LWE problem.
If A←U((Zq)

l×l), secret s←βµ((Zq)
l), error e←βµe

((Zq)
l), and b←U((Zq)

l) then
distinguishing between (A, As+e) and (A, b) is hard and this problem is known as
the decision version of LWE problem. The decision version of the LWR problem states
that if A←U((Zq)

l×l), secret s←βµ((Zq)
l), and for some p<q, b←U((Zp)

l) then
distinguishing between (A, ⌊(q/p)As⌉) and (A, b) is hard [3]. In the LWR problem,
the explicit sampling of error e in the LWE is replaced by the rounding operation.
In case of the MLWR problem, A←U((Rn

q )
l×l), s←βµ((Rn

q )
l), b←U((Rn

p)
l) and

the MLWR problem states that (A, ⌊(q/p)As⌉) and (A, b) are computationally
indistinguishable [24]. In standard LWR-based and RLWR-based constructions, the
ranks of underlying matrices are respectively l and n, with very high probability.
On the other hand, MLWR-based constructions are proposed as a trade-off between
standard LWR-based and RLWR-based structures. The rank of underlying matrices in
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MLWR-based schemes is l×n. It makes the structures of MLWR-based constructions
more generic, as we can convert the MLWR-based scheme to a standard LWR-based
one by fixing n=1 and an RLWR-based one by setting l=1. Therefore, we use MLWR
notations to describe the schemes in Scabbard below. A KEM needs to be secure
against chosen ciphertext attacks (IND-CCA/IND-CCA2: indistinguishable against
a-posteriori chosen-ciphertext attacks). In LWR-based KEM, it is accomplished by
applying Jiang et al.’s version [20] of Fujisaki-Okamoto (FO) transformation [18] over
the generic LWR-based public-key encryption (PKE), where the PKE needs to be
secure against chosen plaintext attacks (IND-CPA: indistinguishable against chosen
plaintext attack). We denote generic LWR-based PKE as LWR.PKE and generic LWR-
based KEM as LWR.KEM, which are shown respectively in Figure 1 and Figure 2. In
LWR.KEM,H, G, and KDF three hash functions are required as part of FO transformation.
This suite of KEMs consists of three schemes: (i) Florete, (ii) Espada, and (iii) Sable.
We briefly describe these three schemes with their specific features below.

LWR.PKE.KeyGen()

1. seedAAA←U({0,1}256)
2. AAA←U((Rn

q )
l×l; seedAAA)

3. r←U({0, 1}256)
4. sss←βµ((Rn

q )
l; r)

5. bbb=((AAATsss+hhh) mod q)≫(ϵq−ϵp)∈(Rn
p)

l

6. return (pk=(seedAAA, bbb), sk=(sss))

LWR.PKE.Enc(pk=(seedAAA,bbb),m∈R2;r)

1. AAA←U((Rn
q )

l×l; seedAAA)
2. if: r is not specified:
3. r←U({0, 1}256)
4. s′s′s′←βµ((Rn

q )
l; r)

5. uuu=((AAAsss′+hhh) mod q)≫(ϵq−ϵp)∈(Rn
p)

l

6. cm=bbbT (sss′ mod p)∈Rn
p

7. v=(cm+h1−2ϵp−Bm mod p)≫
(ϵp−ϵt−B)∈Rn

2Bt

8. return c=(uuu, v)

LWR.PKE.Dec(sk=sss,c=(uuu,v))

1. u′′=uuuT (sss mod p)∈Rn
p

2. m′′=(u′′−2ϵp−ϵt−Bv+h2) mod p
3. m′=m′′≫(ϵp−B)∈Rn

2Bt

4. return m′

Fig. 1: Generic LWR.PKE [5]

2.1.1 Florete: This scheme is based on the RLWR problem i.e. l=1 in Figure.1 and
designed for faster running time. Here, the cyclotomic polynomial used to construct the
quotient rings Rn

q , Rn
p , and Rn

t is (x768−x384+1). In Florete, one message bit is en-
coded in three coefficients of the polynomial v in line 7 of LWR.PKE.Enc algorithm of
Figure 1. So, during the encapsulation process, as shown in line 2 of LWR.KEM.Encaps

algorithm of Figure 2, a conversion from 256 bits of message to a polynomial of
length 768 is performed with the help of arrange msg function and it is defined
as: arrange msg(m′)=m′||m′||m′. The inverse of arrange msg function is used in
the LWR.KEM.Decaps algorithm named as original msg, and the original msg :
Z768
2 −→Z256

2 is defined as if original msg(m′′)=m′ and b∈{0, 1, ..., 255} then

m′[b]=

{
0 if m′′[b]+m′′[b+256]+m′′[b+512]≤1
1 otherwise

. In Florete, 768×768 polynomial

multiplication is used, and it is performed using the combination of Toom-Cook 3-way,
Toom-Cook 4-way, 2 levels of Karatsuba, and 16×16 schoolbook multiplication.
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LWR.KEM.KeyGen()

1. (seedAAA,bbb,sss)=LWR.PKE.KeyGen()
2. pk=(seedAAA,bbb)
3. pkh=H(pk)
4. z←U({0, 1}256)
5.

return (pk=(seedAAA, bbb), sk=(sss, z, pkh))

LWR.KEM.Encaps(pk=(seedAAA, bbb))

1. m′←U({0,1}256)
2. m=arrange msg(m′)
3. m=H(m)
4. (K̂,r)=G(H(pk),m)
5. c=LWR.PKE.Enc(pk,m;r)
6. K=KDF(K̂,H(c))
7. return (c,K)

LWR.KEM.Decaps(sk=(sss, z, pkh),pk=(seedAAA, bbb), c)

1. m′′=LWR.PKE.Dec(sss,c)
2. m′=original msg(m′′)
3. (K̂′,r′)=G(pkh,m′)
4. c∗=LWR.PKE.Enc(pk,m′;r′)
5. if: c=c∗
6. return K=KDF(K̂′,H(c))
7. else:
8. return K=KDF(z,H(c))

Fig. 2: Generic LWR.KEM [5]

2.1.2 Espada: This scheme is designed to reduce the memory footprint on software
platforms. It is based on the MLWR problem, and the cyclotomic polynomial is
used to construct the underlying quotient ring of the lattice problem Rn

q is (x64+1).
The polynomial length here is 64, so the dimension of vectors of polynomial l is
taken equal to 12 to maintain security. In Espada, the 256 bit message is encoded
inside the 64 length polynomial v, so four message bits are encoded in a coefficient
of the polynomial v. The arrange msg :Z256

2 −→Z64
4 and the function is defined as:

arrange msg(m′)=m′′, where for b∈{0, 1, ..., 63}

m′′[b]=m′[4∗b+3]||m′[4∗b+2]||m′[4∗b+1]||m′[4∗b]. (1)

The original msg :Z64
4 −→Z256

2 function is defined as: original msg(m′′)=m′ and
follows Equation 1. Lastly, the 64×64 polynomial multiplication is performed using
2 levels of Karatsuba and 16×16 schoolbook multiplication.

2.1.3 Sable: This scheme can be interpreted as an alternate version of Saber and
is designed to improve performance with less memory footprint. It is also based on
the MLWR problem, and similar to Saber, the cyclotomic polynomial used here
in the quotient rings is (x256+1). The arrange msg function and original msg

function are described as: arrange msg(m′)=m′ and original msg(m′′)=m′′=m′,
respectively. The polynomial multiplication used in Sable is identical to Saber. The
256×256 polynomial multiplication is realized by the combination of Toom-Cook
4-way, 2 levels of Karatsuba, and 16×16 schoolbook multiplication.

The concrete security of these schemes depends on the parameter set, which includes
the three power-of-two ring moduli t < p < q, the length of a polynomial n, the
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dimension of the vector of polynomial l, the CBD parameter µ, and the number of
message-bit encoded in a coefficient of the polynomial is represented by B. Table 1
presents the parameter sets for all three schemes that achieve the NIST security level
3. We humbly refer to the original Scabbard paper [5] for more insightful details.

Table 1: Parameters of Scabbard suite

Scheme Name
Ring/Module
Parameters

PQ
Security

Failure
probability

Moduli
CBD
(βη)

Encoding
Key sizes for
KEM (Bytes)

n: 768 ϵq: 10 Public key: 896

Florete 2157 2−131 ϵp: 9 η=1 B=1 Secret key: 1152
l: 1 ϵt: 3 Ciphertext: 1248
n: 64 ϵq: 15 Public key: 1280

Espada 2128 2−167 ϵp: 13 η=3 B=4 Secret key: 1728
l: 12 ϵt: 3 Ciphertext: 1304
n: 256 ϵq: 11 Public key: 896

Sable 2169 2−143 ϵp: 9 η=1 B=1 Secret key: 1152
l: 3 ϵt: 4 Ciphertext: 1024

2.2 Masking

The effectiveness of masking against SCA has been well demonstrated for symmetric-
key block ciphers [26,13] and recently extended for LBC [4,23,9]. In n-th order masking,
we split the sensitive data x into (n+1) shares and perform all the operations on each
share separately. So, an adversary with a limited number of probes, such as at most
n probes, does not receive any advantages compared to another adversary who does
not have access to those probes. The nth order masking technique can prevent up to
nth order differential power attacks. However, the integration of masking techniques
in LBC schemes affects the performance of the algorithm significantly with the
increment of the masking order. The design decision of cryptographic schemes affects
the performance of masked versions of the lattice-based schemes. This is why even
though the unmasked performance of NIST finalist Saber is almost the same as Kyber,
the masked version of Saber is way faster than masked Kyber for any masking order.
Masked version Saber gains this advantage thanks to the choice of LWR problem
and power-of-two moduli. The KEMs in the suite Scabbard also use power-of-two
moduli and further improve the efficiency of the LWR-based schemes. In this work,
we investigate whether the efficiency of Scabbard will translate to the masked domain.

3 Masking Scabbard

The CCA-secure KEM schemes are used to share secrets among communicating
parties. Here, the secret key is non-ephemeral i.e. the key generation is run once to
generate a long-term secret key that can be used for multiple sessions and commu-
nicating with multiple entities. Therefore, in a KEM scheme, only the decapsulation
is executed multiple times to retrieve the secret data from multiple entities through
multiple sessions. However, this is also advantageous for an adversary. The adversary
can run the decapsulation operation multiple times to improve the precision of its fault
injection or take multiple side-channel traces to reduce noise in its measurements, thus
improving its success probability. Mounting attacks on other operations, such as key
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generation and encapsulation, are relatively harder. Once an adversary compromises
the secret key, it can use it to expose the secret keys of multiple sessions. Therefore,
protecting the decapsulation operation from side-channel attacks is critical for the
side-channel security of a KEM. We display the flow of the decapsulation algorithm
of generic LWR-based KEM in Figure 3 and denoted vulnerable operations in the
color gray. Here original msg and arrange msg functions are shown by OMsg and
AMsg. In this section, we will describe the masking methods of all the components
susceptible to SCA in the decapsulation operation of the Scabbard schemes.

Xuuu

sss

+

hhh2

v ≪ − ≫ OMsg G

pkh

K̂′

XOF βµ X

U

seedAAA

X

bbb

+

hhh

+

h1
AMsg

+ ≫

≫ uuu∗

v∗

=

return H(K̂′,c)

yes

return H(z,c)

no

Fig. 3: Decapsulation of LWR-based KEM. The operations in color gray are involved
with the long-term secret sss and are susceptible to side-channel attacks

Here, we have used two masking techniques: (i) arithmetic masking and (ii) Boolean
masking to mask the Scabbard suite’s schemes because these schemes consist of some
operations that are cheaper to mask using arithmetic masking and some are easy
to mask using Boolean masking. In both the t-order arithmetic and Boolean masking
techniques, first we split the sensitive operand x∈Zq=Z2ϵq =Zϵq

2 into (t+1) shares,
such as x0, x1, ..., xt∈Zq. However, for arithmetic masking the relation between x
and (t+1) shares of x is x=(x0+x1+···+xt) mod q, and in Boolean masking the
relation between x and (t+1) shares of x is x=(x0⊕x1⊕···⊕xt).

3.1 Arithmetic Operations

It can be seen from Figure 3 that the decapsulation algorithm of each KEM of the
suite Scabbard consists of mostly arithmetic operations, such as polynomial multi-
plications, polynomial addition, and polynomial subtractions. These operations can
be masked efficiently utilizing arithmetic masking. Here, we need to duplicate these
operations for each arithmetic share and perform them separately. The performance
cost of these operations grows linearly with the increase of arithmetic shares.

Although this part is more or less similar for all the LWE/LWR-based KEMs (for
example, Kyber and Saber), the parameter set impacts the performance of unmasked
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and masked versions of these operations. This also helps the schemes of Scabbard to
achieve better performance compared to other LBC-based KEMs in some scenarios.
The performance cost of the masked arithmetic operations in Sable is less than Saber
or Kyber because the total cost of arithmetic operations of Sable is less than Saber
or Kyber in the unmasked domain. It happens because Sable uses a slightly reduced
parameter set than Saber. However, the performance cost of arithmetic operations in
Florete or Espada is more than Saber or Kyber, as is the case in the unmasked domain.

3.2 Compression

Compression operation is the final step of the LWR.PKE.Dec algorithm, and in this
step, encoded message bits are retrieved from the polynomial m′′ after performing the
reconciliation. For Florete and Sable, only the most significant bit is extracted, and
for Espada, the four most significant bits are extracted from each coefficient of the
polynomial m′′. After that, these message bits are used as input in SHA3-512 hash
function for computing the seed s′ for the re-encryption procedure. These message bits
are also needed to construct the session key. The extraction of the most significant bits
is performed by using a logical shift operation in LWR-based KEM. This operation
is easy to protect with Boolean masking. However, in the masked setting, the input
of the compression operation is arithmetically masked, as its previous steps consisted
of arithmetic operations. So, in the masked compression operation, first, we apply
arithmetic to Boolean (A2B) conversion, and then we perform coefficient-wise ϵp−B
bit right shift operation [23].

This compress operation in Sable is very similar to the one used in Saber, except for
the value of ϵp. The value of the parameter ϵp is smaller in Sable than in Saber. So, the
performance of A2B conversion is relatively better in Sable compared to Saber. Hence,
the overall performance of the masked compress operation is better in Sable than
in Saber. The compress operation of Florete is also similar to the compress operation
used in Saber. The value of parameters ϵp in Florete is the same as Sable and so a
little smaller than in Saber. However, the degree of the message containing part of
the ciphertext polynomial is 768 in Florete, while it is 256 in Saber. So, the number
of coefficients in Florete is three times compared to Saber. The performance cost
of A2B conversion and ϵp−1 right shift operation in Florete is approximately three
times the performance cost of these operations in Saber. Therefore, the performance
of the masked compress operation in Florete takes approximately three times the
cycles compared to the masked compress operation in Saber. The scheme Espada
encodes four message bits in a single coefficient of ciphertext, and the polynomial
size in Espada is 64, which is 1/4th of the polynomial size in Saber. The value of ϵp
in Espada is slightly bigger than in Saber. However, the A2B conversion component
is faster in Espada than in Saber due to the small polynomial size. Also, for the same
reason, the coefficient-wise ϵp−4 bit right shift operation in Espada is faster than the
coefficient-wise ϵp−1 bit right shift operation of Saber. Overall, the performance of
the masked compress operation of Espada is roughly four times faster compared to
the masked compress operation in Saber. As Kyber uses prime moduli, the masked
compress operation of Kyber is far more complicated and has some extra steps. These
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extra steps includes conversion of arithmetic shares from Zq to power-of-two modulus
Z2kq , where log q<2kq . These are computationally quite expensive operations. Due to
the power-of-two moduli, schemes in Scabbard and Saber do not need these additional
steps. This results in more efficient masked compress operation for these schemes.

3.3 Message Decoding and Encoding

For Florete and Espada, the bit length of the message i.e 256 is not equal to the sizes of
the polynomial ring, which are 768 and 64, respectively. Authors of Scabbard proposed
techniques to encode and decode the message into the polynomial named arrange msg

and original msg respectively. The encoding and decoding operation where the poly-
nomial ring length is the same as the message length is very straightforward, and we
do not need any special masking gadget for original msg and arrange msg functions.
However, we need to use a special masking component to mask the original msg

function when polynomial length equals r times message bits, where r>1, e.g., Florete,
NewHope [2]. We use r coefficients to hide one message bit in this case. We also have
to use a special masking gadget to mask the arrange msg function if the number of
message bits equals B times a polynomial length, where B>1, e.g., Espada. In these
schemes, B message bits are hidden in a coefficient. We discuss these gadgets below.

Message Decoding: In Florete, 3 coefficients had been used to hide one message
bit. The original msg :Z768

2 −→Z256
2 is defined here as if original msg(m′′)=m′

and b∈{0, 1, ..., 255} then m′[b]=

{
0 if m′′[b]+m′′[b+256]+m′′[b+512]≤1
1 otherwise

. First,

we perform secure additions (SecAdd) over Boolean shared data to mask this function,
and the possible output must be one of {0, 1, 2, 3}. Notice that it is always a two-bit
number for any bit b. The output of the original msg is equal to the most significant
bit, which is the 2nd bit. So, after performing the masked addition, we extract the
most significant bit of the masked output shares (2nd bit). At last, we return the
most significant bit as output original msg for each bit b ∈ {0, 1, ..., 255}. We
present this masked function in Algorithm 1.

Algorithm 1: Masked original msg function for Florete

Input : {m′′
i }1≤i≤n where m′′

i ∈Z768
2 such that

⊕n
i=1m

′′
i =m′′

Output : {m′
i}1≤i≤n where m′

i∈Z256
2 ,

⊕n
i=1m

′
i=m′ and original msg(m′′)=m′

1 for j=0 to 255 do
2 {xi[j]}1≤i≤n←m′′

i [j]; {yi[j]}1≤i≤n←m′′
i [256+j]; {zi[j]}1≤i≤n←m′′

i [512+j]

3 {wi}1≤i≤n←SecAdd({xi}1≤i≤n,{yi}1≤i≤n)
4 {w′

i}1≤i≤n←SecAdd({wi}1≤i≤n,{zi}1≤i≤n)
5 {m′

i}1≤i≤n←{w′
i}1≤i≤n≫1

6 return {m′
i}1≤i≤n
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Message Encoding: In Florete and Sable, a co-efficient of the message polynomial
carries a single message bit. Here, arrange msg is defined by arrange msg :Z256

2 −→
Z768
2 and arrange msg :Z256

2 −→Z256
2 for Florete and Sable respectively. The Boolean

masked output of this function then takes part in the modular addition in the next
step of the re-encryption stage as the message polynomial. As the shares of each
coefficient of the message polynomial are in Z2, the Boolean shares are equivalent
to the arithmetic shares. Hence, we can skip the Boolean to arithmetic conversion
here. However, for Espada, we encode four message bits in a single co-efficient of
the message polynomial, and arrange msg is defined by arrange msg :Z256

2 −→Z64
4 .

So, we need to convert Boolean shares of each coefficient of message polynomial
to arithmetic shares using the B2A algorithm. After that, we perform the modular
addition with two arithmetically masked inputs.

3.4 Hash Functions

Decapsulation algorithm uses one hash functions G (SHA3-512) and one pseudo-
random number generator XOF (SHAKE-128). These functions are different instances
of the sponge function Keccak-f[1600] [6]. It consists of five steps: (i) θ, (ii) ρ, (iii) π, (iv)
χ, and (v) ι. Among the five steps, θ, ρ, and π are linear diffusion steps and ι is a simple
addition. As all these four steps are linear operations over Boolean shares, in masked
settings, we repeat all these operations on each share separately. Only χ is a degree 2
non-linear mapping and thus requires extra attention to mask. Overall, Keccak-f[1600]
is less expensive to mask by using Boolean masking. Here, we use the higher-order
masked Keccak proposed by Gross et al. [19]. Due to the compact parameter choices,
Scabbard schemes require fewer pseudo-random numbers than Saber. Eventually, this
leads to fewer invocations of the sponge function Keccak in Florete and Sable than
in Espada. Moreover, the output length of SHAKE-128 is the same for Florete and
Sable, which is even smaller than Espada. To sum up, the performance cost of the
masked XOF SHAKE-128 is lower in Florete, Sable, and Espada compared to Saber.

3.5 Centered Binomial Sampler

The re-encryption part of the decapsulation algorithm contains a centered binomial
sampler for sampling the vector s′. This sampler outputs HW(x)−HW(y), where x
and y are pseudo-random numbers and HW represents hamming weight. The bit size
of pseudo-random numbers x and y depends on the scheme. These pseudo-random
numbers are produced employing SHAKE-128. As mentioned in the previous section,
these function is efficient if we mask with the help of Boolean masking. Hence, the
shares generated from SHAKE-128 are Boolean. However, upon constructing the s′,
we need to perform modular multiplication with inputs s′ and public-key b. This
is efficient if we use arithmetic masking. Therefore, we need to perform Boolean to
arithmetic conversion in the masked-centered binomial sampler. Schneider et al. [28]
proposed two centered binomial samplers, Sampler1 and Sampler2. Sampler1 first
converts Boolean shares of x and y to arithmetic shares then computes HW(x)−HW(y)
by using arithmetic masking technique. Sampler2 first computes z=HW(x)−HW(y)+k,
where k≥µ/2 using Boolean masking. After that, it converts Boolean shares of z
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to arithmetic shares and then performs z−k using the arithmetic masking technique
to remain with arithmetic shares of HW(x)−HW(y). Sampler1 uses a bit-wise masking
procedure, while sampler2 uses the bitslicing technique on some parts of the algorithm
for receiving better throughput. We have adopted these two samplers and optimized
them to mask the CBD function of each KEM of the Scabbard suite. We could not
directly use the optimized CBD used in Saber [23], as that one is optimized for β8, and
schemes of Scabbard use smaller CBD to sample the vector s′. Schemes like Kyber
and NewHope [2,28] use prime modulus. So, a few components there are different,
for example, the B2A conversion and extra modular addition. As Scabbard uses
power-of-two moduli, these components can be implemented in a much cheaper way
for them. We describe the optimized masked CBD samplers for these schemes below.

3.5.1 Florete and Sable: In these two schemes, we take advantage of the centered
binomial sampler with a small standard deviation, β2. For β2, x and y are 1-bit
pseudo-random numbers. We have adopted Sampler1 and Sampler2, with these spec-
ification. As Sampler2 is designed to provide a better performance, we started with
the adaptation of Sampler2 for β2 named MaskCBDSamplerA as shown in Algorithm 2.
In this algorithm, first, we perform SecBitSub on Boolean shares of x and y to
calculate Boolean shares of HW(x)−HW(y). Second, we add constant 1 with the output
shares of SecBitSub to avoid negative numbers. Third, we convert the output from
Boolean shares to arithmetic shares with the help of the B2A conversion algorithm
proposed in [7]. In the last step, we subtract the added constant in step-2, which
converts secret shares from {0,1,2} to {−1,0,1}.

Algorithm 2: MaskCBDSamplerA ([28], using sampler2)

Input : {xi}0≤i≤n,{yi}0≤i≤n where xi,yi∈R2 such that
⊕n

i=0xi=x,
⊕n

i=0yi=y
Output : {Ai}0≤i≤n where Ai∈Rq and

∑n
i=0Ai=(HW(x)−HW(y)) mod q

1 {zi}0≤i≤n← SecBitSub({xi}0≤i≤n,{yi}0≤i≤n)
2 z0[0]←z0[0]⊕1
3 {Ai}0≤i≤n← B2A({zi}0≤i≤n) [7]
4 A1←(A1−1) mod q
5 return {Ai}0≤i≤n

As the bit size of x and y is small for β2, the bitslice technique for addition and
subtraction does not improve the throughput much. So, for comparison purposes,
we have adopted the technique of the sampler1 for β2. We name this algorithm
MaskCBDSamplerA, and present in Algorithm 3. In this algorithm, we conduct B2A

conversions over x and y and then perform share-wise subtraction between arithmetic
shares of x and y.

3.5.2 Espada: We use the centered binomial sampler, β6, in this scheme. For β6, x
and y are 3-bit pseudo-random numbers. We have adopted a bitsliced implementation
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Algorithm 3: MaskCBDSamplerB ([28], using sampler1)

Input : {xi}0≤i≤n,{yi}0≤i≤n where xi,yi∈R2 such that
⊕n

i=0xi=x,
⊕n

i=0yi=y
Output : {Ai}0≤i≤n where Ai∈Rq and

∑n
i=0Ai=(HW(x)−HW(y)) mod q

1 {T1i}0≤i≤n← B2A({xi}0≤i≤n) [7]; {T2i}0≤i≤n← B2A({yi}0≤i≤n) [7]
2 for i=0 to n do
3 Ai←(T1i−T2i)
4 return {Ai}0≤i≤n

Algorithm 4: MaskCBDSamplerC ([28], using sampler2)

Input : {xi}0≤i≤n,{yi}0≤i≤n where xi,yi∈R3
2 such that

⊕n
i=0xi=x,

⊕n
i=0yi=y

Output : {Ai}0≤i≤n where Ai∈Rq and
∑n

i=0Ai=(HW(x)−HW(y)) mod q

1 {zi}0≤i≤n← SecBitAdd({xi}0≤i≤n) [4]
2 {zi}0≤i≤n← SecBitSub({zi}0≤i≤n,{yi}0≤i≤n) [28]
3 for i=0 to n do
4 zi[2]←(zi[2]⊕zi[1])
5 z0[2]←z0[2]⊕1
6 {Ai}0≤i≤n← B2A({zi}0≤i≤n) [7]
7 A1←(A1−4) mod q
8 return {Ai}0≤i≤n

of Sampler2 from [28] for β6 to achieve better efficiency as the standard deviation
of the CBD is large. We name this masked sampler as MaskCBDSamplerC, and it is
shown in Algorithm 4. Similar to MaskCBDSamplerB, MaskCBDSamplerC begins with
the SecBitAdd operation, which is performed on Boolean shares of x and generates
Boolean shares of HW(x). Then SecBitSub is conducted over the Boolean output
shares and Boolean shares of y and outputs Boolean shares of HW(x)−HW(y). After
that, the constant 4 is added with the output shares of SecBitSub to avoid negative
numbers. In the next step, we convert the output from Boolean shares to arithmetic
shares with the help of B2A conversion algorithm proposed in [7]. Finally, we subtract
the added constant in step-7 and transform secret shares from {1,2,3,4,5,6,7} to
{−3,−2,−1,0,1,2,3}.

The masked CBD sampler (β8) used in Saber is faster than the masked CBD of Ky-
ber because of the power-of-two moduli. MaskCBDSamplerA and MaskCBDSamplerB
are optimized implementation of β2, which has been used in Florete and Sable.
MaskCBDSamplerC is designed for Espada, which is optimized implementation of β6.
For β2 and β6, the B2A conversion is much faster than β8 thanks to the smaller
coefficients size in the input polynomial. Therefore, the performance cost of the
masked CBD is less for all the schemes in Scabbard compared to Saber or Kyber.
A more detailed performance cost analysis of masked CBD implementations for
Scabbard is presented in Section 4.1.
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3.6 Ciphertext Comparison

It is one of the costliest components for masked implementations of lattice-based KEMs,
which is a part of the FO transformation. Previously, many methods have been pro-
posed to perform this component efficiently [23,14,9]. For the masked ciphertext com-
parison part of each KEM of Scabbard, we have adopted the improved simple masked
comparison method used in the higher-order masked implementation of Saber [23]. To
the best of our knowledge, this is currently the most efficient masked ciphertext com-
parison implementation available. Through this process, we compare the arithmetically
masked output of the re-encryption component before the right shift operation (ũ, ṽ)
with the unmasked public ciphertext, (u, v). Additionally, note that u′=ũ≫(ϵq−ϵp)
and v′= ṽ≫(ϵp−ϵt−B). At first, we perform A2B conversion step over the arithmeti-
cally masked shares of the output and transform these to Boolean shares, and then we
follow the right shift operation. After that, we subtract the unmasked public ciphertext
(u, v) from a share of the Boolean masked output of the A2B operation with the
help of the XOR operation. Finally, we proceed with checking that all the returned
bits of the subtract operation are zero with the BooleanAllBitsOneTest algorithm.
This algorithm returns 1 only if it receives all the bits encoded in each coefficient of
the polynomials is 1; else it returns 0. All these aforementioned steps are presented in
Algorithm 5. For further details, we refer to the higher-order masked Saber paper [23].

Algorithm 5: Simple masked comparison algorithm [23]

Input :Arithmetic masked re-encrypted ciphertext ({ũi}0≤i≤n, {ṽi}0≤i≤n)
and public ciphertext (u and v) where each ũi∈Rl

2ϵq and ṽi∈R2ϵp

and
∑n

i=0ũi mod q=ũ
∑n

i=0ṽi mod q= ṽ.
Output : {bit}0≤i≤n, where with each biti∈Z2 and

⊕n
i=0biti=1 iff

u=u′≫(ϵq−ϵp) and v=v′≫(ϵp−ϵt−B), otherwise 0.

1 {yi}0≤i≤n← A2B({ũi}0≤i≤n); {xi}0≤i≤n← A2B({ṽi}0≤i≤n)
2 {yi}0≤i≤n←({yi}0≤i≤n≫(ϵq−ϵp)); {xi}0≤i≤n←({xi}0≤i≤n≫(ϵp−ϵt−B))
3 y1←y1⊕u; x1←x1⊕v
/* Boolean circuit to test all bits of (y,x) are 0 */

4 y0←¬y0; x0←¬x0

5 {biti}0≤i≤n← BooleanAllBitsOneTest ({yi}0≤i≤n,{xi}0≤i≤n,ϵp,ϵt)

6 return {biti}0≤i≤n

Table 2: Size of inputs of the A2B and BooleanAllBitsOneTest functions situated
in Algorithm 5 for Scabbard’s schemes and Saber

Function Input Bytes
Florete Sable Espada Saber

A2B 1824 1344 1544 1568

BooleanAllBitsOneTest 1248 1024 1304 1088
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The parameter settings are different for each KEM of the Scabbard suite. Due to this,
byte sizes of the masked inputs of the functions A2B and BooleanAllBitsOneTest

are different for each KEM of the suite, and we show these numbers in Table 2. For ref-
erence, we also provide the byte sizes of the masked inputs of A2B and BooleanAll-

BitsOneTest for Saber in this table. These differences in the input bytes also affect
the performances of corresponding masked implementations. The masked input sizes of
both the functions A2B and BooleanAllBitsOneTest for Sable are less than Saber.
On account of this, the performance cost of masked ciphertext comparison is cheaper
for Sable than Saber. The masked input sizes of both functions A2B and BooleanAll-

BitsOneTest for Florete are greater than Saber. So, the masked ciphertext compar-
ison component of Florete needs more cycles than Saber. The masked input size of
the function A2B of Espada is less than Saber, but the input size of BooleanAll-

BitsOneTest for Espada is bigger than Saber. So, the first-order masked comparison
component is faster for Espada compared to Saber, but the second and third-order
masked comparison component is slower in Espada than in Saber. However, the
performance of each scheme’s masked ciphertext comparison component in the suite
Scabbard is better than Kyber because of the prepossessing steps needed in Kyber [14].

4 Performance Evaluation

We implemented all our algorithms on a 32-bit ARM Cortex-M4 microcontroller,
STM32F407-DISCOVERY development board. We used the popular post-quantum
cryptographic library and benchmarking framework PQM4 [21] for all measurements.
The system we used to measure the performance of the masked implementations
includes the compiler arm-none-eabi-gcc version 9.2.1. The PQM4 library uses
the system clock to measure the clock cycle, and the frequency of this clock is 24MHz.
We employ random numbers to ensure the independence of the shares of the masked
variable in masking algorithms. For this purpose, we use the on-chip TRNG (true
random number generator) of the ARM Cortex-M4 device. This TRNG has a different
clock frequency than the main system clock, which is 48MHz. It generates a 32-bit
random number in 40 clock cycles, equivalent to 20 clock cycles for the main system
clock. Our implementations can be used for any order of masking. In this section,
we provide the performance details of first-, second-, and third-order masking.

Table 3: Performance of MaskCBDSamplerA and MaskCBDSamplerB
x1000 clock cycles

Order 1st 2nd 3rd

MaskCBDSamplerA 178,591 504,101 1,226,224
MaskCBDSamplerB 182,714 499,732 909,452
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4.1 Analyzing the Performance of Masked CBD Samplers

As discussed in Section 3.5, MaskCBDSamplerA and MaskCBDSamplerB can be used
for both Florete and Sable. Performance comparisons between MaskCBDSamplerA
and MaskCBDSamplerB for different shares are provided in Table 3. Overall, we ob-
serve from the table that MaskCBDSamplerB performs better than MaskCBDSamplerA
for higher-order masking. As a result, we use MaskCBDSamplerB in the masked
implementations of Florete and Sable.

4.2 Performance Measurement of Masked Scabbard Suite

Table 4, 5, and 6 provide the clock cycles required to execute the masked decapsulation
algorithm of Florete, Espada, and Sable, respectively. The overhead factors for the
first-, second-, and third-order masked decapsulation operation of Florete are 2.74x,
5.07x, and 7.75x compared to the unmasked version. For Espada, the overhead factors
for the first-, second-, and third-order decapsulation algorithm compared to the
unmasked decapsulation are 1.78x, 2.82x, and 4.07, respectively. Similarly, for Sable,
the overhead factors for the first-, second-, and third-order decapsulation algorithm
are 2.38x, 4.26x, and 6.35x than the unmasked one. As mentioned earlier, the masked
algorithm needs fresh random numbers to maintain security. Generating random
numbers is a costly procedure. So, for a better understanding of the improvements, we
also present the requirement of random bytes for Florete, Espada, and Sable in Table 7.

Table 4: Performance of Florete
x1000 clock cycles

Order Unmask 1st 2nd 3rd

Florete CCA-KEM-Decapsulation 954 2,621 (2.74x) 4,844 (5.07x) 7,395 (7.75x)
CPA-PKE-Decryption 248 615 (2.47x) 1,107 (4.46x) 1,651 (6.65x)
Polynomial arithmetic 241 461 (1.91x) 690 (2.86x) 917 (3.80x)
Compression
original msg

6 153 (25.50x) 416 (69.33x) 734 (122.33x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 554 1,744 (3.14x) 3,354 (6.05x) 5,225 (9.43x)
Secret generation 29 427 (14.72x) 982 (33.86x) 1,663 (57.34x)
XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)
CBD (β2) 4 182 (45.50x) 497 (124.25x) 907 (226.75x)

Polynomial arithmetic
arrange msg

943 1,357 1,783

Polynomial Comparison
524

373
(2.51x)

1,014
(4.52x)

1,778
(6.79x)

Other operations 138 139 (1.00x) 140 (1.01x) 140 (1.01x)

4.3 Performance Comparison of Masked Scabbard Suite with the
State-of-the-Art

We analyze the performance and random number requirements for masked decapsu-
lation algorithms of Scabbard’s schemes in comparison to the state-of-the-art masked
implementations of LBC. We compare our masked Scabbard implementation with
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Table 5: Performance of Espada
x1000 clock cycles

Order Unmask 1st 2nd 3rd

Espada CCA-KEM-Decapsulation 2,422 4,335 (1.78x) 6,838 (2.82x) 9,861 (4.07x)
CPA-PKE-Decryption 70 137 (1.95x) 230 (3.28x) 324 (4.62x)
Polynomial arithmetic 69 116 (1.68x) 170 (2.46x) 225 (3.26x)
Compression
original msg

0.4 20 (50.00x) 60 (150.00x) 99 (247.50x)

Hash G (SHA3-512) 13 123 (9.46x) 243 (18.69x) 379 (29.15x)
CPA-PKE-Encryption 2,215 3,950 (1.78x) 6,240 (2.81x) 9,031 (4.07x)
Secret generation 57 748 (13.12x) 1,650 (28.94x) 3,009 (52.78x)
XOF (SHAKE-128) 51 489 (9.58x) 968 (18.98x) 1,510 (29.60x)
CBD (β6) 6 259 (43.16x) 681 (113.50x) 1,498 (249.66x)

Polynomial arithmetic
arrange msg

2,865 3,593 4,354

Polynomial Comparison
2,157

259
(1.44x)

996
(2.12x)

1,667
(2.79x)

Other operations 124 124 (1.00x) 124 (1.00x) 126 (1.01x)

Table 6: Performance of Sable
x1000 clock cycles

Order Unmask 1st 2nd 3rd

Sable CCA-KEM-Decapsulation 1,020 2,431 (2.38x) 4,348 (4.26x) 6,480 (6.35x)
CPA-PKE-Decryption 130 291 (2.23x) 510 (3.92x) 745 (5.73x)
Polynomial arithmetic 128 238 (1.85x) 350 (2.73x) 465 (3.63x)
Compression
original msg

2 52 (26.00x) 160 (80.00x) 280 (140.00x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 764 1,903 (2.49x) 3,482 (4.55x) 5,241 (6.85x)
Secret generation 29 427 (14.72x) 984 (33.93x) 1,666 (57.44x)
XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)
CBD (β2) 4 182 (45.50x) 499 (124.75x) 909 (227.25x)

Polynomial arithmetic
arrange msg

1,187 1,640 2,086

Polynomial Comparison
734

287
(2.00x)

856
(3.40x)

1,488
(4.86x)

Other operations 112 113 (1.00x) 113 (1.00x) 113 (1.00x)

Bronchain et al.’s [10] and Bos et al.’s [9] masked implementations of Kyber and
Kundu et al.’s [23] masked implementations of Saber in Table 8.

First-, second- and third-order masked decapsulation implementations of Florete are
respectively 73%, 71%, and 70% faster than Bronchain et al.’s [10] masked implementa-
tion of Kyber. Bos et al. optimized their algorithm specifically for the first-order mask-
ing of Kyber. Even though it is 15% slower than the first-order masked decapsulation
of Florete. Bos et al.’s [9] second- and third-order masked implementations of Kyber
are respectively 89% and 93% slower than Florete. The random byte requirements in
the masked version of Florete compared to Kyber are 94% less for the second order and
95% less for the third order. Florete also performs better than Saber. Florete needs 13%,
12%, and 14% fewer clock cycles than Saber for first-, second-, and third-order masking.

Masked decapsulation implementation of Espada performs 56%, 59%, and 60% better
than Bronchain et al.’s [10] masked implementation of Kyber for first-, second-,
and third-order, respectively. Second-, and third-order masked implementations of
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Table 7: Random number requirement for all the masked schemes of Scabbard
# Random bytes

Florete Espada Sable
Order 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

CCA-KEM-Decapsulation 15,824 52,176 101,280 11,496 39,320 85,296 12,496 39,152 75,232
CPA-PKE-Decryption 2,560 10,176 20,352 304 1,216 2,432 832 3,328 6,656
Polynomial arithmetic 0 0 0 0 0 0 0 0 0
Compression 2,496 9,984 19,968 304 1,216 2,432 832 3,328 1,152
original msg 64 192 384 0 0 0 0 0 0

Hash G (SHA3-512) 192 576 1,152 192 576 1,152 192 576 67,424
CPA-PKE-Encryption 13,072 41,424 79,776 11,000 37,528 81,712 11,472 35,248 6,656
Secret generation 6,528 16,512 29,952 4,896 14,688 35,520 6,528 16,512 29,952
XOF (SHAKE-128) 384 1,152 2,304 768 2,304 4,608 384 1,152 2,304
CBD (Binomial Sampler) 6,144 15,360 27,648 4,128 12,384 30,912 6,144 15,360 27,648

Polynomial arithmetic 0 0 0 0 0 0 0 0 0
arrange msg 0 0 0 256 768 2,048 0 0 0
Polynomial Comparison 6,544 24,912 49,824 5,848 22,072 44,144 4,944 18,736 37,472

Other operations 0 0 0 0 0 0 0 0 0

Table 8: Performance comparison of masked Scabbard implementations with the
state-of-the-art

Performance # Randm numbers
(x1000 clock cycles) (bytes)Scheme
1st 2nd 3rd 1st 2nd 3rd

Florete (this work) 2,621 4,844 7,395 15,824 52,176 101,280
Espada (this work) 4,335 6,838 9,861 11,496 39,320 85,296
Sable (this work) 2,431 4,348 6,480 12,496 39,152 75,232
Saber [23] 3,022 5,567 8,649 12,752 43,760 93,664
uSaber [23] 2,473 4,452 6,947 10,544 36,848 79,840
Kyber [10] 10,018 16,747 24,709 - - -
Kyber [9] 3,116∗ 44,347 115,481 12,072∗ 902,126 2,434,170

*: optimized specially for the first-order masking

Espada are faster than Bos et al.’s [9] masked Kyber by 84% and 91%, respectively.
The random bytes requirements in Espada compared to Kyber are 95% less for
the second-order and 96% less for the third-order masking. Espada also uses fewer
random numbers than Saber. Espada requires 9% fewer random bytes in first-order
masking, 10% fewer random bytes in second-order masking, and 8% fewer random
bytes in third-order masking than Saber.

We show that the masked implementation of Sable performs better than masked
Kyber and Saber for first-, second-, and third-order (like Florete). Sable performs
75%, 74%, and 73% better than Bronchain et al.’s [10] masked implementation of
Kyber and 21%, 90%, and 94% better than Bos et al.’s [9] masked implementation
of Kyber first-, second-, and third-order, respectively. Compared to Kyber, Sable
requires 95% and 96% less random bytes for second- and third-order masking. The
performance of masked Sable is better than masked Saber by 19% for first-order, 21%
for second-order, and 25% for third-order masking. Masked Sable uses 2%, 10%, and
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19% less number of random bytes for first-, second-, and third-order than masked
Saber, respectively. uSaber is a masking-friendly variant of Saber proposed during
the third round of NIST submission. We notice that masked Sable is also faster
than masked uSaber for arbitrary order. Masked Sable is 1% faster for first-order,
2% for second-order, and 6% for third-order than masked uSaber. Although first-
and second-order masked Sable needs more random bytes than uSaber, third-order
masked Sable requires 5% less random bytes than uSaber.

Implementations of masked Scabbard schemes achieve better performance and use
fewer random bytes than masked Kyber because the schemes of Scabbard use the
RLWR/ MLWR problem as an underlying hard problem and Kyber uses the MLWE
problem as the hard problem. The decapsulation operation of RLWR/ MLWR-based
KEM has fewer components compared to the decapsulation operation of RLWE/
MLWE-based KEM due to the requirement of sampling error vectors and polyno-
mials generations in the re-encryption step of RLWE/ MLWE-based KEMs. RLWR/
MLWR-based KEMs also benefit due to the use of power-of-two moduli. Computation-
ally expensive components, such as A2B or B2A conversions, are cheaper when using
power-of-two moduli. The schemes of Scabbard also use slightly smaller parameters
than Kyber, which also contributes to achieving better performance and requirements
of fewer random bytes for masked implementation of Scabbard’s KEMs compared
to Kyber.

5 Conclusions

In this work, we presented the impact of different design decisions of LBC on masking.
We analyzed each component where masking is needed and discussed each design
decision’s positive and negative impact on performance. As we mentioned at the
beginning of the paper, it is possible to improve different practical aspects, such as
masking overheads, by modifying the existing designs of PQC. This highlights the
necessity of further research efforts to improve existing PQC designs.

Acknowledgements. This work was partially supported by Horizon 2020 ERC
Advanced Grant (101020005 Belfort), CyberSecurity Research Flanders with reference
number VR20192203, BE QCI: Belgian-QCI (3E230370) (see beqci.eu), and Intel
Corporation. Angshuman Karmakar is funded by FWO (Research Foundation –
Flanders) as a junior post-doctoral fellow (contract number 203056 / 1241722N LV).

References

1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Liu, Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone,
D.: Status Report on the Third Round of the NIST Post-Quantum Cryptography
Standardization Process. Online. Accessed 26th June, 2023 (2022)
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