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Abstract

We show an explicit construction of an efficiently decodable family of n-
dimensional lattices whose minimum distances achieve Ω(

√
n/(logn)ε+o(1))

for ε > 0. It improves upon the state-of-the-art construction due to Mook-
Peikert (IEEE Trans. Inf. Theory, no. 68(2), 2022) that provides lattices with
minimum distances Ω(

√
n/ logn). These lattices are construction-D lattices

built from a sequence of BCH codes. We show that replacing BCH codes with
subfield subcodes of Garcia-Stichtenoth tower codes leads to a better minimum
distance. To argue on decodability of the construction, we adapt soft-decision
decoding techniques of Koetter-Vardy (IEEE Trans. Inf. Theory, no. 49(11), 2003)
to algebraic-geometric codes.

Keywords: construction-D lattice, algebraic-geometric code, Garcia-Stichtenoth tower

1 Introduction

A (full-rank) lattice Λ ⊂ Rn is a discrete additive subgroup whose linear span is Rn.
Its minimum distance λ1(Λ) is the minimum Euclidean norm of its nonzero vectors,
and its determinant det(Λ) = vol(Rn/Λ) is the covolume of Λ.
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Lattices can be used for error correction, where the main decoding ‘quality’ of the
lattice is its normalized minimum distance

√
γ(Λ) = λ1(Λ)/det(Λ)

1/n. Minkowski’s

theorem bounds this quantity as
√
γ(Λ) <

√
n for any n-dimensional lattice. The

main question that we address in this work is how to explicitly construct an efficiently
decodable family of lattices with quality close to Minkowski’s bound.

Prior work

Barnes-Wall lattices ΛBW Barnes and Wall (1959) with efficient decoding procedure
given in Grigorescu and Peikert (2017) achieve moderately good quality

√
γ(ΛBW) =

O(n1/4). Another family of efficiently decodable lattices due to Ducas and Pier-
rot (2019) is the discrete-logarithm lattices ΛDP that achieve normalized distance√
γ(ΛDP) = Θ(

√
n/ log n). The work of Mook and Peikert (2022) presents an effi-

cient algorithm to decode the family of Barnes and Sloane (1983) lattices ΛBS with√
γ(ΛBS) = Ω(

√
n/ log n). In the recent work Bennett and Peikert (2022) build

another family of efficiently decodable lattices achieving the same normalized distance
Ω(

√
n/ log n). This line of works gets closer to the best asymptotically possible

√
γ(Λ),

with the resent results being only by a factor
√
log n away from Minkowski’s bound.

This work

We give an explicit construction of n-dimensional family of lattices Λ that achieve√
γ(Λ) = Ω(

√
n/(log n)ε+o(1)) for a constant ε > 0. Since we allow ε to be any constant

and, in particular, smaller than 1/2, we improve upon the existing constructions.
Our lattices are the so-called construction-D lattices Barnes and Sloane (1983)

applied to a certain tower of linear p-ary codes for a prime p. Different to the original
work of Barnes and Sloane that builds a lattice from a tower of binary BCH codes,
we use a more general construction of subfield subcodes. In particular, we build a
tower of algebraic-geometry (AG) codes using the Garcia-Stichtenoth function field.
These codes have good minimal distance and high rates. In particular, they were used
in Vlăduţ (2019) to construct a sequence of lattices with exponentially large kissing
numbers.

As AG codes we consider in this work are defined over a prime-field extension
Fq = Fph for some h > 1, they cannot be directly applied to lattice constructions.
We show that restricting these codes to the subfield Fp gives a tower of p-ary codes.
Such p-ary codes inherit good properties from AG-codes allowing us to argue on their
dimensions and minimal distances. Applying construction-D to these codes gives a
family of lattices that achieves the claimed quality. In particular, out result can be
informally stated as

Theorem 1. For ε > 0 and ε′ > 0, there is a family of lattices Λ ⊂ Rn with nor-
malized minimum distance λ1(Λ)/(det(Λ)

1/n) = Ω(
√
n/(log n)ε+o(1)) for n such that

log log n > 1/ε. These lattices are list decodable to within distance λ1(Λ)
√

(1− ε′)/2
in poly(n, 1/ε′) time.

The decodability of the constructed family is our second result. To instantiate an
efficient decoder for our lattice, we build upon the following three results: first, we use
the work of Guruswami and Sudan (1998) that show how to list-decode any AG-code
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for which we know explicitly a basis for the Riemann-Roch space. For the AG-code
associated to a Garcia-Stichtenoth tower it is indeed the case thanks to the work of
Shum et al. (Shum et al, 2001, Theorem 7). Second, we show how to adapt soft-decision
decoder of Koetter and Vardy (2003) to AG-codes. Third, we use the ideas from Mook
and Peikert (2022) to adapt the soft-decision decoder in a way that allows to decode
subfield subcodes of Garcia-Stichtenoth tower codes.

Roadmap

In Section 2 we give necessary background on AG-codes and construction-D lattices.
In Section 3 we show how to efficiently construct a family of lattices that achieve the
claimed normalized minimal distance. Finally, in Section 4 we show how to efficiently
decode the constructed lattices.

2 Preliminaries

2.1 Subfield Subcodes

Let p be prime and for h ≥ 1, let q = ph and Fq be a finite field with q elements.
Then Fp is a subfield of Fq. For a linear q-ary code C of dimension k and length n, its
subfield subcode C|Fp

is defined by

C|Fp
= C ∩ Fn

p .

We shall be interested in the parameters of C|Fp
. The length of C|Fp

is n, and since
C|Fp

⊆ C, the minimal distance of the subfield subcode, denoted d(C|Fp
), is no smaller

than d(C), i.e.,

d(C|Fp
) ≥ d(C).

A bound on the dimension of C|Fp follows from the relation between subfield subcodes
and trace codes from Delsarte (1975). We do not introduce trace codes here, so we give
a weaker statement, which suffices for our result. A proof (of a stronger statement)
can be found in (Stichtenoth, 2008, Corollary 9.1.5.)
Lemma 1 (Adapted from (Stichtenoth, 2008, Corollary 9.1.5.)). Let C be a code of
length n and dimension k defined over Fq = Fph for h ≥ 1. Then it holds that

dimFp
(C|Fp

) ≥ n− h(n− k).

2.2 Algebraic-Geometry codes

For a comprehensive study of Algebraic-Geometry (AG) codes we refer the reader
to Stichtenoth (2008). A more compact, but sufficient for our purposes, introduction
to AG-codes is given in (Guruswami and Xing, 2022, Section 4).

Let Fq be a finite field and F/Fq be an algebraic function field, that is F is a finite
extension of the field that contains rational functions, i.e., fractions of polynomials
with coefficients from Fq.
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Valuation

A place P of F/Fq is, by definition, the maximal ideal of some valuation ring O
in F/Fq. For every place P there exists a unique discrete valuation νP : F/Fq →
Z∪{∞}. It is a surjective map that satisfies certain properties, see (Stichtenoth, 2008,
Definition 1.1.9). In particular, the valuation νP defines a valuation ring O = {f ∈
F/Fq : νP (f) ≥ 0} and P is its maximal ideal P = {f ∈ F/Fq : νP (f) > 0}. The
extension degree [O/P : Fq], denoted degP , is called the degree of P . We shall consider
only places of degree 1, called rational places. In this case there is a residue class map
at P acting from F to OP /P ∪ {∞} as f 7→ f(P ) for f ∈ OP . It is worth mentioning
that OP /P is isomorphic to Fq giving a way to evaluate functions at places.

As an example, consider P = tO to be a principal ideal in O generated by t (in
fact, O is a principal ideal domain (Stichtenoth, 2008, Theorem 1.1.6)). Then any
z ∈ F/Fq can be written uniquely as z = tnu for n ∈ Z and u ∈ O⋆, where O⋆ is the
group of units of O. Then νP , defined by νP (z) = n for z ̸= 0 and νP (0) = ∞, is a
discrete valuation associated to P .

Divisors

Denote by PF the set of all places of the function field F/Fq. A divisor D is a formal
sum D =

∑
P∈PF

nPP for nP ∈ Z and almost all nP = 0. Often one writes νP (D) for
the coefficient nP , thus

D =
∑

P∈PF

νP (D)P.

The set supp(D) = {P ∈ PF | nP ̸= 0} is called the support of D and degD =∑
P∈supp(D) nP · degP is called the degree of D. The set of divisors forms an additive

Abelian group, where for D =
∑

P∈PF
nPP and D′ =

∑
P∈PF

n′PP , we have D+D′ =∑
P∈PF

(nP + n′P )P , see (Stichtenoth, 2008, Definition 1.4.1).
Let P be a place of F/Fq and f ∈ F/Fq be non-zero element. The place P is called

a zero of f if νP (f) > 0 and a pole of f if νP (f) < 0. The zero divisor of f is then
defined as

(f)0 =
∑

P is a zero of f

νP (f)P,

and the pole divisor as

(f)∞ =
∑

P is a pole of f

νP (f)P.

Then the principal divisor of f , denoted div(f), is the following formal sum div(f) =
(f)0 − (f)∞. All principal divisors have degree 0. For example, for F = Fq(x), i.e., x
is transcendental over Fq, the point at infinity, denoted P∞, is the unique pole of the
function x. It is a place of degree one, and hence, the divisor of the form D = nP∞
has degree n.

Riemann-Roch space

The concept of divisors gives rise to Fq-linear spaces. Concretely, for a divisor G, the
set

L(G) = {f ∈ F \ {0} : div(f) +G ≥ 0} ∪ {0}
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is called the Riemann-Roch space associated to G. Let

G =
∑
Pi

νPi(G)Pi −
∑
Qi

νQi(G)Qi,

where νPi
(G), νQi

(G) > 0. Then L(G) consists of all f ∈ F/Fq such that (1) f has
zeros of order νQi

(f) ≥ νQi
(G) for all Qi, and (2) f may have poles only at the places

Pi of orders bounded from above by νPi
(G). In other words, f ∈ L(G) if and only of

νP (f) ≥ −νP (G) for all P ∈ PF .
Associated to a function field is the notion of genus. The genus g of F/Fq is

max{degG− dimL(G) + 1}, where the maximum is taken over all divisors G.
The nice feature of L(G) is that it is a finite dimensional space over Fq of dimension

dimL(G) ≥ deg(G) + 1 − g, and the equality holds if deg(G) ≥ 2g − 1 (Stichtenoth,
2008, Theorem 1.5.17).

In order to define an AG-code, fix P = {P1, . . . , Pn} – a set of n distinct rational
places of a function field F/Fq. Let further G be a divisor of F such that supp(G)∩P =
∅. Then the set

C(P, G) = {f(P1), . . . , f(Pn) : f ∈ L(G)}. (1)

defines an n-dimensional Fq-linear code. There exist efficient algorithms to construct
a basis of this code, for instance Shum et al (2001) describes an algorithm that out-
puts a basis in time O((n logq n)

3) for some classes divisors G. The following lemma
summarizes the parameters of C(P, G).
Lemma 2 ((Stichtenoth, 2008, Corollary 2.2.3)). For a divisor G defined over a
function field of genus g such that 2g−2 < deg(G) < n, the code C(P, G) defined above
is a linear code over Fq of length n, dimension k and minimal Hamming distance d,
where

k = dim(L(G)) = deg(G)− g+ 1, d ≥ n− deg(G).

Garcia-Stichtenoth tower

A concrete example of a tower of function fields is given in Garcia and Stichtenoth
(1996). In particular, let h in q = ph be even, hence we can write q = ph = r2 for
r = ph/2. For an integer e ≥ 2, define the following recursive relations

xri+1 + xi+1 =
xri

xr−1
i + 1

, i = 1, . . . , e− 1. (2)

Then Ke = Fq(x1, . . . , xe) is a function field, and the sequence K1,K2, . . . is known as
the Garcia-Stichtenoth tower of function fields. An attractive feature of such function
fields is that we know a lower bound on the number of their rational places (hence,
the maximal possible length of AG codes constructed from them) and we known
exactly the genus of Ke. We formulate these two facts in the following lemma. The
lower bound on the number of rational places is given in (Guruswami and Xing, 2022,
Paragraph 4.4.1) (the exact number of rational places can be found in (Shum et al,
2001, Section II), but a lower bound suffices for our purposes). The genus of Ke is
computed in (Garcia and Stichtenoth, 1996, Remark 3.8).
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Lemma 3 ((Guruswami and Xing, 2022, Paragraph 4.4.1) and (Garcia and
Stichtenoth, 1996, Remark 3.8) ] ). Let Ke = Fq(x1, . . . , xe) be the Garcia-Stichtenoth
function field defined by Equation (2) for e ≥ 2 and q = r2. Then Ke has at least
re(r − 1) + 1 rational places and its genus g satisfies

g =

{
(re/2 − 1)2, if e is even

(r(e−1)/2 − 1)(r(e+1)/2 − 1), if e is odd.

What will turn out to be important for our construction is that the genus g is
below re, while the number of rational places, which will translate into the length of
a code, is of order re+1.

From the lower bound on the number of rational places ofKe follows another useful
property of Garcia-Stichtenoth function fields: they enable us to construct codes with
many codewords by increasing e rather than increasing the base field, i.e., one obtains
dense codes while keeping r relatively small.

2.3 Lattices

We give only necessary notions related to Euclidean lattices and refer the reader
to Peikert (2016) for a broader introduction to the topic.

An n-dimensional integral lattice Λ is a full-rank subgroup of Zn. A full-rank
integral lattice is usually represented by the columns of a rank-n matrix B ∈ Zn×n.
The two important invariants associated to a lattice are its determinant and the first
minimum.

The determinant of Λ, det(Λ), is the absolute value of the determinant of B:

det(Λ) = |detB|.

The first successive minimum or the minimum distance of a lattice Λ, denoted
λ1(Λ), is the Euclidean length of a shortest nonzero lattice vector:

λ1(Λ) = min
v∈Λ\{0}

∥v∥.

2.4 Construction D lattices

Construction-D, introduced in Barnes and Sloane (1983), is a name of a method to
construct lattices from codes. The original construction uses a nested family of binary
codes of lengths n to construct a lattice in Qn. It is not difficult to generalize the
construction to a nested family of p-ary linear codes. We follow the description of this
method presented in Mook and Peikert (2022) that scales the lattice in such a way
that it becomes integral.
Definition 1. For an integer L ≥ 0, let CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn

p be a
tower of p-ary codes of length n, where Ci has dimension ki. Let b1, . . . ,bn be a basis
of Fn

p such that
1. b1, . . . ,bki is a basis of Ci for all i = 0, . . . , L, and
2. some permutation of the row vectors b1, . . . ,bn forms an upper-triangular matrix.
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Define a set of distinguished Zn representatives of Ci as follows: for any ci ∈ Ci

express it as ci =
∑ki

j=1 ajbj for some unique aj ∈ Fp, and define its representative

c̄i =
∑ki

j=1 ājb̄j ∈ Zn, that is we consider the set of representatives {0, . . . , p − 1} as
elements from Z.

Let Λ0 = Zn, and for each i = 1, . . . , L define

Λi = C̄i + pΛi−1,

where C̄i = {c̄i : ci ∈ Ci}. The construction-D for the tower {Ci} is Λ = ΛL.
A basis b1, . . . ,bn from Definition 1 can be efficiently constructed from the bases

of Ci’s, see (Mook and Peikert, 2022, Footnote 4).
From the above definition, it follows that a vector in Λ is of the form

pLz+

L∑
i=1

ki∑
j=1

pL−iā
(i)
j b̄j , (3)

where z ∈ Zn, ā
(i)
j ∈ Fp.

The following lemma is borrowed from (Mook and Peikert, 2022, Theorem 5.1),
which is itself an adaptation of (Barnes and Sloane, 1983, Theorem 1). The difference
between prior work and this statement is the generalization from binary codes to p-ary
for any prime p. For completeness, we give a proof.
Lemma 4. Let CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn

p be a tower of p-ary codes of
length n, where Ci has dimension ki and minimal Hamming distance d(Ci) satisfying
d(Ci) ≥ p2i for i = 0, . . . , L (in particular, k0 = n). The construction-D lattice Λ = ΛL

for the tower {Ci} has Euclidean minimum distance λ1(Λ) = pL and determinant

det(Λ) ≤ (p− 1)n−kLp
∑L

i=1(n−ki). (4)

Proof. We start with the statement on the minimum distance. From Equation (3),

we can represent any Λ-vector as b = pLz +
∑L

i=1 p
L−ic̄i ∈ Λ, where c̄i ∈ C̄i and

z ∈ Zn. By the definition of construction-D, every c̄i =
∑ki

j=1 ājb̄j , and, if we choose

the representatives b̄j to have coordinates in Fp = {0, . . . , p−1} (hence the coefficients
satisfy āj ≥ 0), then ⟨c̄j , c̄i⟩ ≥ 0 for all i, j.

Assume on the contrary that ∥b∥2 < p2L. Then we necessarily have z = 0 in the
representation of b. Hence,

∥b∥2 =

L∑
i=1

p2L−2i∥c̄i∥2 + 2
∑
i<j

⟨c̄j , c̄i⟩ ≥
L∑

i=1

p2L−2i∥c̄i∥2.

From the lower bound on d(Ci), we have ∥b∥2 ≥ maxi{p2L−2id(Ci)} = p2L. This
contradicts the assumption on ∥b∥. Therefore, λ1(Λ) ≥ pL. The equality (rather than
the inequality) comes from the fact that Λ contains pLI, where I is the identity matrix.

From Definition 1, a basis of Λ forms an upper-triangular matrix whose first k0−k1
rows are scaled by pL, next k1−k2 rows are scaled by pL−1, next k2−k3 rows are scaled
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by pL−2, and so on, until the last kL rows are scaled by 1. On the main diagonal we
have integers bounded by p (again, choosing the representatives such that ∥b̄i∥∞ < p).
We thus have

det(Λ) ≤
L∏

i=0

((p− 1) · pL−i)ki−ki+1 = (p− 1)n−kL · pLn−
∑L

i=1 ki ,

where we set kL+1 = 0.

Remark 1. For p = 2, Inequality 4 becomes the equality det(Λ) = 2
∑L

i=1(n−ki) since
the only option we have for the main diagonal elements of the upper-triangular basis
matrix that we consider in the proof, are 2L for the first k0 − k1 rows, 2L−1, for the
next k1 − k2 rows, etc.

3 Construction

In this section we state our main result. To build a construction-D lattice, we need a
tower of p-ary codes. The following theorem gives a specific construction of a tower
of codes from AG-codes by fixing a function field F/Fq for Fq = Fph , the place at
infinity P∞, and considering q-ary codes associated to the divisors of the form Di =
ℓiP∞ for ℓi ≥ ℓi+1. Further, restricting these codes to Fp preserves the inclusion, and
in Corollary 1 we state the properties of the resulting p-ary codes, which are subfield
subcodes of Garcia-Stichtenoth tower codes. These properties then translate into the
quality of the resulting conctruction-D lattice as we show in Theorem 3.
Theorem 2. Fix an integer e, a function field Ke of genus g defined by recursive
relations from Equation (2). Let P = {P1, . . . , Pn} be n distinct rational places of Ke,
all different from P∞. Let L ≥ 1 be an integer and {ℓi}i be a sequence of positive
integers satisfying ℓi ≥ ℓi+1 for i = 1, . . . , L − 1. Then the Fq-linear codes Ci =
C(P, ℓiP∞) defined in Equation (1) build the tower of codes CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆
C0 = Fn

q .
If, moreover, ℓL > 2g−2, then dim(Ci) = ℓi−g+1 and d(Ci) ≥ n−ℓi for 0 < i ≤ L.

Proof. The inclusion of Ci = C(P, ℓiP∞)’s immediately follows from the inclusion
of the corresponding Riemann-Roch spaces L(ℓiP∞), see Equation (1). Consider f ∈
L(ℓi+1P∞) for any i = 0, . . . , L−1. By definition of the Riemann-Roch space associated
to ℓi+1P∞, it follows that f ∈ L(ℓi+1P∞) ⇐⇒ νP∞(f) ≥ −ℓi+1. As −ℓi+1 ≥ −ℓi, we
have f ∈ L(ℓiP∞).

The second part of the statement follows immediately from Lemma 2.

The following corollary follows by combining Theorem 2 with Lemma 1. As
the result, we have an explicit construction of a tower of p-ary codes with known
dimensions and minimal distances.
Corollary 1. Consider the tower of codes CL ⊆ CL−1 ⊆ . . . ⊆ C1 ⊆ C0 = Fn

q defined

as in Theorem 2 over a function field of genus g with q = ph for a prime p using
the divisors ℓiP∞. Then C̃i = C|Fp

= C ∩ Fn
p is a p-ary code of length n, dimension
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k̃i ≥ n− h(n− ℓi + g− 1), and minimal Hamming distance d(C̃i) ≥ n− ℓi. Moreover,

these p-ary codes construct the tower C̃L ⊆ C̃L−1 ⊆ . . . ⊆ C̃1 ⊆ C̃0 = Fn
p .

Proof. It is clear that the restriction of the tower of codes over Fq to Fp preserves
the inclusion. It also preserves the length of the codes. Minimal distance does not
decrease after the restriction, hence d(C̃i) ≥ d(Ci) ≥ n − ℓi. Finally from Lemma 2
and Theorem 2, we have k̃i ≥ n− h(n− dim(Ci)) = n− h(n− ℓi + g− 1).

The next theorem formulates our main result. It shows that for certain choices of
function fields, i.e., for some p, h, and e, and when the degree of the divisors ℓiP∞ are
chosen to be ℓi = n− p2i, the tower of codes from Corollary 1 leads to a construction-
D lattice Λ ⊂ Zn that achieves λ1(Λ)/ det(Λ)

1/n = Ω(
√
n/(log log n(log n)ε)) for some

constant ε > 0.
Theorem 3. Fix a prime p. Let ε > 0 be an arbitrarily small constant and κ be a

sufficiently large parameter such that κ > pp
p
ε . Let further c be a constant such that c >

2 logp(logp κ)

ε logp(logp κ)−1 and ⌈c logp κ⌉ is a power of p. Set r = ⌈c logp κ⌉ and e = ⌈logr κ⌉−1 ≥ 2

to be integers. Let q = r2 = ph for h = 2 logp r and let Ke = Fq(x1, . . . , xe) be the e-th

function field in Garcia-Stichtenoth tower of function fields, of genus g.
Let further C̃L ⊆ C̃L−1 ⊆ . . . ⊆ C̃1 ⊆ C̃0 = Fn

p be a tower of p-ary linear codes
from Corollary 1 that are subfield subcodes of the tower {Ci}0≤i≤L of q-ary linear n-
dimensional AG-codes defined in Theorem 2, where Ci = C(P, ℓiP∞) for ℓi = n− p2i,
0 < i ≤ L.

Then for n = re(r− 1) and L = ⌊ 1
2 logp(n/h− g)⌋, the construction-D lattice built

upon {C̃i}0≤i≤L, yields an n-dimensional lattice Λ, such that

λ1(Λ) = pL = Ω

(√
n

log log n

)
,

and
det(Λ)1/n ≤ pε logp(logp n) = (logp n)

ε.

Proof. First, note that choosing, for example, c = pu and κ = pp
v

for some integers
u, v > 1 makes the expression c logp κ to be a power of p. Other choices of κ and c are,
of course, also possible. Second, the lower bound on κ ensures that c > 0. Third, note
that the choice of n in the theorem’s statement is legitimate, since Ke has at least
re(r − 1) rational places different from P∞, see Lemma 3. Further, from the choices

for r and e, we have n = r⌈logr κ⌉(r−1)
r ≥ κ(r−1)

r . On the other hand, it holds that

n ≤ rlogr κ+1(r−1)
r = κ(r − 1). These two bounds relate n to κ and allow us to use the

former in O-notations.
The lower bound on λ1(Λ) follows from Lemma 4. Indeed, as pL > p

1
2 logp(n

h−g)−1,
we have λ1(Λ) >

1
p

√
n/h− g. Further, as g < re = o(n/h), h = Θ(logp logp(n)), and

p is fixed, we have pL = Ω(
√
n/ log log n).

Now let us obtain an upper bound on det(Λ). From our choice of ℓi = n− p2i for
0 ≤ i ≤ L, L, and g < n−n/h, we have that deg(ℓiP∞) ≥ deg(ℓLP∞) ≥ n−n/h+g >
2g for all 0 ≤ i ≤ L. Hence, by Theorem 2, dim(Ci) = ℓi − g + 1. From Corollary 1
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we thus have that k̃i = dim(C̃i) = dim(Ci ∩ Fn
p ) > n − hp2i − hg. Furthermore, our

choice of L ensures that k̃L > 0.
Consider now the right-hand side of Inequality 4:

L∑
i=1

(n− k̃i) <

L∑
i=1

h(p2i + g) =
hp2(p2L − 1)

p2 − 1
+ hgL

< hp2L+1 + hgL < np+
1

2
hg logp(n/h).

Dividing the right-hand side of the above inequality by n and using the facts that
g < re and n = re(r − 1), we obtain

1

n

L∑
i=1

(n− ki) < p+
1

2

h logp(n/h)

r − 1
< p+

2 logp(r)

c
< ε logp(logp κ) +O(1),

where for the second inequality we use the facts that
√
n/h < κ and r = ⌈c logp κ⌉.

For the third inequality, we use the lower bound on c.

Comparison with Mook and Peikert (2022)

Let us compare our construction with the one from Mook and Peikert (2022) based on
the sequence of BCH codes. The latter achieves λ1(Λ) >

√
n/ log n and det(Λ)1/n =

Θ(1) using a sequence of codes of length L = 1
2 log2(n/ log n). The choice of L deter-

mines the bound on λ1(Λ). In contrast, using AG-codes we are able to choose a
longer sequence, e.g. L ≈ 1

2 log2(n/(log n log n)), which makes our lower bound on

λ1(Λ) larger: λ1(Λ) >
√
n/(log log n). However, we pay the price in the determi-

nant: while in Mook and Peikert (2022) it holds that n − ki ≈ 4i log n ≤ O(n) (and
hence, det(Λ)1/n = Θ(1)), for us, n− ki ≤ O(n · h) (e.g., the summond 1

2hg logp(n/h)

dominates np in the computations from the proof), making det(Λ)1/n = (logp n)
ε.

4 Decoding Garcia-Stichtenoth subfield subcodes

In this section we present an algorithm to list decode subfield subcodes C̃i of Garcia-
Stichtenoth codes as defined in the previous section. Being able to efficiently decode
a tower of codes C̃L ⊆ . . . ⊆ C̃0 = Fn

p enables us to decode the corresponding
construction-D lattices. More specifically, the following result is proved in Mook and
Peikert (2022).
Theorem 4 ((Mook and Peikert, 2022, Theorem 4.6 and Theorem 4.7)). Let L ≤ 0 be

an integer and let Λi be a sequence of lattices built from a tower C̃L ⊆ C̃L−1 ⊆ . . . ⊆
C̃1 ⊆ C̃0 = Fn

p . Further, let Di be a list decoder for C̃i that decodes up to Euclidean

distance ei = pie0 for some 0 < e0 < p/2 for all 0 ≤ i ≤ L in time less than Ti and
returns a list of size less than Si. Then there exists an algorithm that given on input
y ∈ Rn and access to Di, outputs a list of vectors v ∈ Λi s.t. ∥y − v∥ ≤ ei in time

R < L · (T + poly(n, log p,S)) · SL,
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where T = maxi Ti and S = maxi Si.
In this section we give an efficient decoder for subfield subcodes C̃i’s. We start

with a short description of hard decision decoding, then continue with the definition
of the soft decision decoding, following Koetter and Vardy (2003). To build a decoder
in this regime, we show how to “soften” the hard-decision decoder for AG-codes
from Guruswami and Sudan (1998) and analyse this new soft version. Finally, analo-
gously to Mook and Peikert (2022) we show that our soft decision decoder can be used

to decode C̃i’s, and hence, due to the above theorem, to decode our construction-D
lattices.

4.1 Hard decision decoding for AG-codes

Recall that we have a code C(P, G) defined as in Equation (1), where P = {P1, . . . , Pn}
is a set of n distinct rational places of a function field K/Fq of genus g, and G = αP∞
for some α > 2g− 2, and hence the dimension of the code is k = α− g+ 1.

In the usual list-decoding problem (also known as hard decision decoding), we are
given on input a word y ∈ Fn

q , and we need to find a list of codewords that are close
to y.

Briefly, the decoding proceeds in two steps. The first one is called the interpola-
tion step. The goal here is to find a polynomial Q(y) ∈ K[y] (e.g., a polynomial whose
coefficients are functions from the function field K) that satisfies two properties:
1. Q(yi)[Pi] is zero of certain “multiplicity” r for all i ≤ n;
2. for any function f ∈ L(ℓP∞), we have Q(f) ∈ L(ℓP∞) for some integer parameter
ℓ.

In our setting, K is Garcia-Stichtenot function field Ke defined in Equation (2). The
notation Q(yi)[Pi] should be interpreted as follows: we first substitute yi ∈ Fq for
the y-variable in Q(y) and obtain a function from K. Then we evaluate this function
in the rational point Pi. For the correct polynomial Q(y), the result should be 0,
and this gives constraints on the coefficients of Q. For the appropriate choices of r
and ℓ, (Guruswami and Sudan, 1998, Section 4) show that such Q exists and can
be efficiently found via solving a system of linear equations over Fq. Concretely, the
complexity of finding such Q is bounded from above by a polynomial in n and ℓ (ℓ is
itself bounded from above by a small polynomial in n), see (Guruswami and Sudan,
1998, Proposition 22).

The second step of the decoder is the factorisation step that consists of fac-
toring Q(y) over K to obtain factors of the form (y − fi)

r, where fi’s form a list of
potential encoded messages. Shoklorahi-Wasserman demonstrate in (Shokrollahi and
Wasserman, 1998, Appendix B) an algorithm that factors Q(y) in time polynomial in
n, k, degQ. Alternatively, a root-finding algorithm from Gao and Shokrollahi (2000)
can be used. This factorisation step will remain unchanged in the soft-decision decod-
ing, which we describe next. The reader can refer to (Guruswami and Sudan, 1998,
Section 4) for the details on hard list-decoding for AG-codes.

The algorithm of Guruswami and Sudan (1998) is not immediately applicable to
subfield subcodes of an AG-code. In fact, we do not know how to force Q(y) to have
coefficients only from K/Fp, not from K/Fq, using hard-decision decoding techniques.
A way to go around this issue is to resort to soft decision decoding, which we describe

11



next. We leave as an open question a hard decision decoding algorithm that directly
works on subfield subcodes of AG-codes.

4.2 Soft decision decoding for AG-codes

For a code of length n defined over Fq, in soft decision decoding instead of y, we are
given a reliability matrix Π ∈ R|Fq|×n, where Πi,j describes the probability that the
transmitted codeword has a symbol αi ∈ Fq in the jth position. Here we assume a
fixed ordering on Fq, i.e., Fq = [α1, . . . , αq].

Upon receiving the reliability matrix Π, the KV-decoder from Koetter and Vardy
(2003) decoder first converts it into a multiplicity matrix M ∈ Z|Fq|×n with non-
negative entries. In particular, they show that for a list-decoding with an output list
bounded by S, the matrix M is a scaling of Π, namely
Lemma 5 ((Koetter and Vardy, 2003, Lemma 16)). For a reliability matrix Π, and
S – an upper bound on the decoder’s output list, we have

M = ⌊λΠ⌋,

where λ is a real number that can be efficiently computed from Π and S.
We shall make use of the following notion of the matrix cost.

Definition 2. For a matrix M ∈ Z|Fq|×n with non-negative entries, its cost C(M) is
defined as

C(M) =
1

2

q∑
i=1

n∑
j=1

Mi,j(Mi,j + 1).

We now can formulate the interpolation step of the soft decision decoding process
for AG-codes. In the definition below the integer parameter ℓ has the same meaning
as in the hard decision decoding, and we discuss this value later in the analysis.
Definition 3 (Soft interpolation step). Given a matrix M ∈ Z|Fq|×n and an integer
ℓ > 0, find Q ∈ K[y] such that
1. Q(αi)[Pj ] is zero of multiplicity Mi,j for all Mi,j > 0.
2. Q(f) ∈ L(ℓP∞) for any f ∈ L(ℓP∞).
Note the difference between hard and soft decoding in condition 1.: while hard

decoding imposes the same multiplicity for all pairs (αi, Pi), soft decoding allows
these multiplicities to vary. We also remark that condition 2. is equivalent to saying
that νP∞(Q(f)) ≥ −ℓ. It has the same meaning as imposing an upper-bound on the
so-called weighted degree of Q as it is done in Koetter and Vardy (2003) for Reed-
Solomon code. For AG-codes it is more natural to talk about valuations, rather than
weighted-degrees. 1

Below we give Algorithm 4.1 that describes the soft-decision interpolation step. It
is almost the same as in (Guruswami and Sudan, 1998, Section 4), the difference is
in the number of constraints coming from varying ‘multiplicities’ for Q(αi)[Pj ], e.g.
Step 6 in the algorithm. However this minor change influences the choice of ℓ, and
then leads to modifications in the analysis of the soft-decision decoding.

1 Guruswami and Sudan (1998) instead of valuations νP (f) consider orders ord(f, P ). These two notions
are equivalent as νP (f) = −ord(f, P ).
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Algorithm 4.1 Soft-decision interpolation for AG-codes (adapted
from Guruswami and Sudan (1998))

Input: multiplicity matrix M ∈ Z|Fq|×n,
function field Ke of genus g,
a code C = (P = {P1, . . . , Pn}, αP∞).

Output: Q ∈ Ke[y] that satisfies conditions in Definition 3.

Precomputations

1: Let ℓ = ⌈g+
√

2C(M)α⌉
2: Let s = ⌊ ℓ−g

α ⌋
3: Compute ϕ1, . . . , ϕℓ−g+1 – basis functions of L(ℓP∞) s.t.

(1) νP∞(ϕi) ≥ −(i+ g− 1) for all i,
(2) ϕ1, . . . , ϕα−g+1 – basis functions of L(αP∞).

4: For each Pi ∈ P, compute ψ
(i)
1 , . . . , ψ

(i)
ℓ−g+1 – basis of zeros s.t. for 1 ≤ j1 ≤ ℓ−g+1,

ϕj1 =
∑ℓ−g+1

j3=1 αPi,j1,j3ψ
(i)
j3
.

Solving linear system

5: Express Q ∈ Ke[y] as

Q(y) =

s∑
j2=0

ℓ−g+1−αj2∑
j1=1

qj1,j2ϕj1y
j2 (5)

6: For each Pj ∈ P and αi ∈ Fq s.t. Mi,j > 0, obtain 1
2Mi,j(Mi,j + 1) equations in

qj1,j2 of the form

qj3,j4 :=

s∑
j2=j4

ℓ−g+1−αj2∑
j1=1

(
j2
j4

)
αj2−j4
i αPj ,j1,j3qj1,j2 = 0, (6)

for all j3 ≥ 1, j4 ≥ 0 s.t. j3 + j4 − 1 < Mi,j .
7: Solve the system of C(M) equations in variables {qj1,j2}.
8: Return Q.

Next we discuss the above algorithm, show its correctness (following Guruswami
and Sudan (1998)) and the decoding quality (adapting Koetter and Vardy (2003) to
AG-codes).

Precomputations

The main steps in the precomputations are computing a basis of the Rieman-Roch
space L(ℓP∞). Thanks to Shum et al. (Shum et al, 2001, Theorem 7), we can con-
struct in poly(n, log q) time a basis for L(ℓP∞). These are ℓ− g+1 rational functions
ϕ1, . . . , ϕℓ−g+1. By a proper ordering of these functions, one can guarantee that they
satisfy both conditions of Step 3. Guruswami-Sudan show in (Guruswami and Sudan,
1998, Lemma 16) that the ψ functions from Step 4 can also be efficiently found. Finally,
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we note that our choice of ℓ ensures that ℓ > α for the parameters from Theorem 3:
the inequality holds as 2C(M) >

∑
i,j Mi,j >

∑
i,j Πi,j = n and α < n. The latter

bound is deduced by observing the values ℓi from Theorem 3.

Correctness

Let us first show that the polynomial Q exists under our choice of parameters. The
next lemma can be compared with (Shum et al, 2001, Lemma 19). As we choose ℓ in
Step 1 of Algorithm 4.1 that satisfies the lower bound from the lemma, a Q will be
found. The shape of Equation (6) comes from the definition of the so-called shifts of
Q(y) given in Guruswami and Sudan (1998). We refer the reader to (Guruswami and
Sudan, 1998, Section 4) for a deduction of these equations.
Lemma 6. For ℓ > g+

√
2C(M)α, a polynomial Q exists and can be found in poly(ℓ)

time.

Proof. The system of equations from Step 4 of Algorithm 4.1 will have a solution as
soon as the number of equations is smaller than the number of unknowns {qj1,j2}. We

have
∑s

j2=0(ℓ− g+ 1− αj2) >
(ℓ−g)(ℓ−g+2)

α . The total number of equations is C(M).

For our choice of ℓ, it holds that (ℓ−g)(ℓ−g+2)
2α > C(M).

As the number of unknowns is bounded from above by ℓ2, we can find {qj1,j2}
using Gaussian elimination in poly(ℓ) time.

Now let us verify that the found Q satisfies the two properties from Definition 3.
We refer the reader to (Guruswami and Sudan, 1998, Section 4) for a discussion
on why Equations (6) in the unknowns {qj1,j2} guarantee that Q(αi)[Pj ] is zero of
multiplicity Mi,j . The second property, Q(f) ∈ L(ℓP∞),∀f ∈ L(αP∞), is guaranteed
by Equation (5). Indeed, from the properties of ν(·), νP∞(ϕi) and νP∞(f), we have

νP∞(Q(f)) ≥ min
j1,j2

{νP∞(ψj1) + j2νP∞(f)} ≥ min
j1,j2

{−j1 − g+ 1− αj2} ≥ −ℓ.

Decoding quality

The next definitions from Koetter and Vardy (2003) help to describe the codewords
that will be found by factoring Q – the output of Algorithm 4.1.
Definition 4. Let c ∈ Fn

q be a codeword. Then [c] ∈ Z|Fq|×n is the matrix s.t. [c]i,j = 1
iff ci = αj, and otherwise [c]i,j = 0.
Definition 5 (Matrix inner product). For two q × n matrices A,B defined over the
same domain, let their inner product be

⟨A,B⟩ =
q∑

i=1

n∑
j=1

Ai,j ·Bi,j .

Definition 6 (Vector’s score). For a vector v ∈ Fn
q , its score with respect to the

multiplicity matrix M is
SM (v) = ⟨M, [v]⟩.

The following lemma describes the codewords that will be found by factoring Q
relative to their score (cf. (Koetter and Vardy, 2003, Theorem 3)).

14



Lemma 7. For Q(y) found by Algorithm 4.1, we have that Q(y) has a factor y−f(x)
where c = (f(P1), . . . , f(Pn)) is a codeword, if

SM (c) > ℓ.

Proof. The goal of the proof is to show that Q(f) is identical to 0.
Notice that due to the fact that [c] has only one non-zero entry per column,

SM (c) = ⟨M, [c]⟩ =M1+M2+. . .Mn, whereMi =Mi,j for i s.t. cj = αi. By construc-
tion, Q(y) passes through the point (Pj , αi) = (Pj , cj) with multiplicity Mi,j = Mi.
We can show the following:

Claim 1. For f s.t. c = (f(P1), . . . , f(Pn)), it holds that νPj (Q(f)) ≥ Mj for all
1 ≤ j ≤ n.

Proof of the claim. As in Guruswami and Sudan (1998), define Q(j) := Q(x, y + αj).
Then Q(f) = Q(j)(f − αj) = Q(j)(f − cj) = Q(j)(f − f(Pj)). Further, Guruswami-
Sudan show that Q(f) can be expressed as

Q(f) =

s∑
j4=0

ℓ−g+1∑
j3=1

qj3,j4ψ
(j)
j3

(f − f(Pj)
j4 ,

for qj3,j4 defined in Equation (6). As is guaranteed by the output of Algorithm 4.1,

we have qj3,j4 = 0 for j3 + j4 ≤ Mj . Additionally, we have that νPj (ψ
(j)
j3

) ≥
j3 − 1 (see Guruswami and Sudan (1998)), and νPj

((f − f(Pj)
j4) ≥ j4. Therefore,

νPj
(Q(f)) ≥ minj3,j4{νPj

(ψ
(j)
j3

)+νPj
((f−f(Pj)

j4)} = minj3,j4{j3−1+j4} =Mj .

From the claim it follows that
∑

Pj
νPj

(Q(f)) ≥
∑n

j=1Mj = SM (c). On the other

hand, since Q(f) ∈ L(ℓP∞), νP∞(Q(f)) ≥ −ℓ. Consider the principal divisor (Q(f))
and its degree. It holds that

deg(Q(f)) ≥
∑
Pi

νPi(Q(f)) + νP∞(Q(f)) = SM (c)− ℓ > 0.

As the divisor is principal with a positive degree, we conclude that the function Q(f)
is zero.

From the above theorem and by our choice of ℓ, the condition on a codeword c to be
decoded can be formulated as SM (c) > ⌈g+

√
2C(M)α⌉ = ⌈g+

√
2C(M)(k + g− 1)⌉.

Let us compare this result for AG-codes with the one from (Koetter and Vardy, 2003,
Corollary 5) for Reed-Solomon codes. The latter states that a codeword c will be
found by the soft-decision decoder if SM (c) >

√
2C(M)(k − 1). Indeed, as Reed-

Solomon codes are codes of genus 0, plugging in g = 0 into our bound gives the result
from Koetter and Vardy (2003).

Now we have a sufficient condition for a codeword to be found by the soft decision
decoder from Algorithm 4.1 relative to the multiplicity matrix M . However, the soft
decision decoder receives on input a reliability matrix Π rather thanM . Koetter-Vardy
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also give a sufficient condition on when a codeword will be found relative Π rather
than to the multiplicity matrix M .

We make a similar statement in the case of AG-codes. The following theorem is
analogous to (Koetter and Vardy, 2003, Theorem 17). Its statement involves an upper
bound on the size of the list output by the soft decision algorithm. One can indeed force
the algorithm to output a list of bounded size by simply terminating the factorization
process of Q once the required number of factors are found.
Theorem 5 (Adapted from (Koetter and Vardy, 2003, Theorem 17)). Given on input
a list-size bound S, and a reliability matrix Π, algebraic soft decision decoding that
uses Algorithm 4.1 for the interpolation step, gives a list that contains a codeword c if

⟨Π, [c]⟩
⟨Π,Π⟩

≥
√
k + g− 1

1− 1
S

(
1
R +

√
|Fq|

2
√
R

) ,
where R = k

n is the code-rate.

Proof. The proof follows that of (Koetter and Vardy, 2003, Theorem 17) with the
following modifications:
1. From the shape of Q given in Equation (5), it follows that factoring Q cannot

produce more than s factors, hence S ≤ s.
By the choice of s given in Algorithm 4.1, we have

s <
ℓ− g

α
<

√
2C(M)α

α
=

√
2C(M)√
k + g− 1

=

√
⟨M,M⟩+ ⟨M,1⟩√

k + g− 1
=: Lk(M).

In the above, we used the fact that 2C(M) = ⟨M,M⟩ + ⟨M,1⟩, where 1 is the
all-one matrix. So Lk(M) is an upper bound on S.
This is essentially a restatement of (Koetter and Vardy, 2003, Theorem 15),

where again, setting g = 0, we get the Reed-Solomon case.
2. From the above, it is possible to express λ from Lemma 5. In particular, look-

ing at the expression given in (Koetter and Vardy, 2003, Eq.(37)), we change
(k−1)Lk(M)2

⟨Π,Π⟩ to (k+g−1)Lk(M)2

⟨Π,Π⟩ .

3. The condition from Lemma 7, SM (C) > ℓ, can be then translated to

⟨M, [c]⟩ > ℓ > g+
√

2C(M)α = g+ Lk(M)(k + g− 1) > Lk(M)(k + g− 1).

4. In all remaining expressions for F1, F2, F3 in the proof of (Koetter and Vardy,
2003, Theorem 17)we replace (k − 1) by (k + g − 1), which gives the statement
of the theorem.

Again, as with Lemma 7, the result of Theorem 5 can be seen as a generalization

of the bound ⟨Π,[c]⟩
⟨Π,Π⟩ >

√
k−1

1− 1
L

(
1
R+

√
|Fq|

2
√

R

) from (Koetter and Vardy, 2003, Theorem 17)

for g different from 0.
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4.3 Subfield subcodes decoding

Mook-Peikert in Mook and Peikert (2022) suggest to use Koetter-Vardy soft-decision
decoder for decoding BCH codes, which are subfield subcodes of Reed-Solomon codes.
In particular, they propose a way to construct a reliability matrix Π for a received
word y, such that Koetter-Vardy’s decoder outputs only codewords from the subfiled
subcode. The method is generic and works for any subfield subcodes, including those of
our interest. We do not give the details here and refer the reader to (Mook and Peikert,
2022, Section 3). Instead we state their result (Mook and Peikert, 2022, Theorem 3.4)
adapted to our setting. The bound on the list S comes directly from the proofs in Mook
and Peikert (2022) and our bound from Theorem 5. In order to distinguish from ε
used in Theorem 3, in what follows we use ε′ to denote an arbitrary small constant.
Theorem 6 (Adapted from (Mook and Peikert, 2022, Theorem 3.4)). For ε′ > 0,
R – code rate, and d – minimal distance of Garcia-Stichtenoth codes defined over Fq,
there exists an algorithm for decoding subfield subcodes of Garcia-Stichtenoth codes
that, upon receiving on input y ∈ Rn

p , calls Koetter-Vardy soft-decision decoder with
the bound on the list size

S =
1/R+ 1/

√
2R

1−
√

R+g/n
ε′+(1−ε′)(R+g/n)

, (7)

and outputs codewords c ∈ Fn
p from the subfield subcode that satisfy ∥y−c∥ < (1−ε′)d2 ,

in time polynomial in n, log q, and 1/ε′.
In the above expression for S, note that g/n ≈ 1/r = o(1). Moreover, for our

choice of parameters in constructions of the Garcia-Stichtenoth codes Ci’s, we have

R = k
n = ℓi−g+1

n = 1− p2i+g−1
n , for i ≤ L. From our choice of L from Theorem 3, we

conclude that 1/R is at most a constant, and S = O(1).
Moreover, for the minimal distances of Garcia-Stichtenoth codes, we have di ≥

n− ℓi = p2i (see Theorem 2). Therefore, Theorem 6 gives a decoder that decodes C̃i

up to distance ≤ pi
√

(1− ε′)/2. It means that we can apply Theorem 4 and obtain
an efficient decoder for our lattices as described in the theorem below (cf. (Mook and
Peikert, 2022, Theorem 5.6)). Combined with Theorem 3 the above theorem gives
our Theorem 1.
Theorem 7. There exists an efficient algorithm that receiving on input y ∈ Rn,
ε′ > 0, and running a decoder from Theorem 6 on list-sizes S = O(1), outputs a list
of v ∈ Λ such that ∥y − v∥ ≤ λ1(Λ)

√
(1− ε′)/2 in time SL = poly(n).
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Vlăduţ S (2019) Lattices with exponentially large kissing numbers. Moscow Journal
of combinatorics and number theory 8(2):163–177

18

https://arxiv.org/abs/2202.07736

	Introduction
	Prior work
	This work
	Roadmap



	Preliminaries
	Subfield Subcodes
	Algebraic-Geometry codes
	Valuation
	Divisors
	Riemann-Roch space
	Garcia-Stichtenoth tower


	Lattices
	Construction D lattices

	Construction
	Comparison with MP22

	Decoding Garcia-Stichtenoth subfield subcodes
	Hard decision decoding for AG-codes
	Soft decision decoding for AG-codes
	Precomputations
	Correctness
	Decoding quality


	Subfield subcodes decoding


