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Abstract. In the recent work of (Cheon & Lee, Eurocrypt’22), the
concept of a degree-D packing method was formally introduced, which
captures the idea of embedding multiple elements of a smaller ring into a
larger ring, so that element-wise multiplication in the former is somewhat
“compatible” with the product in the latter. Then, several optimal bounds
and results are presented, and furthermore, the concept is generalized from
one multiplication to degrees larger than two. These packing methods
encompass several constructions seen in the literature in contexts like
secure multiparty computation and fully homomorphic encryption.
One such construction is the concept of reverse multiplication-friendly
embeddings (RMFEs), which are essentially degree-2 packing methods. In
this work we generalize the notion of RMFEs to degree-D RMFEs which,
in spite of being “more algebraic” than packing methods, turn out to be
essentially equivalent. Then, we present a general construction of degree-D
RMFEs by generalizing the ideas on algebraic geometry used to construct
traditional degree-2 RMFEs which, by the aforementioned equivalence,
leads to explicit constructions of packing methods. Furthermore, our
theory is given in a unified manner for general Galois rings, which include
both rings of the form Zpk and fields like Fpk , which have been treated
separately in prior works. We present multiple concrete sets of parameters
for degree-D RMFEs (including D = 2), which can be useful for future
works.
Finally, we discuss interesting applications of our RMFEs, focusing in
particular on the case of non-interactively generating high degree corre-
lations for secure multiparty computation protocols. This requires the
use of Shamir secret sharing for a large number of parties, which requires
large-degree Galois ring extensions. Our RMFE enables the generation of
such preprocessing data over small rings, without paying for the multi-
plicative overhead incurred by using Galois ring extensions of large degree.
For our application we also construct along the way, as a side contribu-
tion of potential independent interest, a pseudo-random secret-sharing
solution for non-interactive generation of packed Shamir-sharings over
Galois rings with structured secrets, inspired by the PRSS solutions from
(Benhamouda et al, TCC 2021).



1 Introduction

Several cryptographic constructions are designed to work over finite discrete
structures. For example, encryption schemes, digital signatures, or message
authentication codes, all widely used in day-to-day digital systems, are designed
to manipulate bit strings of certain length. The same holds for cryptographic
hash functions, or key exchange protocols. However, there is a large body of
cryptographic constructions that, on top of working over a finite discrete structure,
require certain minimal algebraic properties, either for the definition of the
primitive itself or for their construction. For example, Diffie-Hellman key exchange
[18] makes use of a finite group where the discrete logarithm problem is hard.
Similarly, encryption schemes such as Paillier [28] or RSA [30] make use of group
of invertible integers modulo N2 and N respectively, where N is the product of
two large primes.

On the other hand, other cryptographic primitives not only make use of alge-
braic structures underneath, but their security definition is actually tied to some
algebraic structure. For example, in fully homomorphic encryption two messages
over some finite ring can be encrypted, and the two corresponding ciphertexts can
be added/multiplied together to obtain encryptions of the sum/product of the
two underlying plaintexts. Also, functional encryption for dot products (cf. [1])
is a primitive that enables the encryption of a message under some public key so
that, having certain special secret key, only the dot product between the plaintext
and the secret key can be recovered. Again, such definition is tied to a specific
algebraic structure in order for the notion of a “dot product” to be well defined.
Finally, another good example is secure multiparty computation, where different
parties compute a given function securely without leaking their inputs. Such
function is typically defined as an arithmetic circuit over some finite algebraic
structure.

Typically, the most general algebraic structure that underpins many cryp-
tographic primitives, including the ones exemplified above, is that of a finite
ring. This is a finite set where a product and addition operation are defined,
and these satisfy certain basic properties such as commutativity of addition,
associativity, or distributivity. Unfortunately, not all cryptographic primitives can
be instantiated under any arbitrary finite ring. For example, most homomorphic
encryption techniques work over rings of the form ZN for very specific integers
N , lattice-based construction typically makes use of polynomial rings extensions
of a very structured form [27], and most secure multiparty computation protocols
are designed to work over finite fields, which are a subset of finite rings where
every non-zero element has a multiplicative inverse, and in some cases this finite
field cannot be small. Only recently the case of MPC over rings of the form
ZN for more general N was considered (cf. [13]), and in [20] the case of MPC
over a (possibly non-commutative) arbitrary finite ring was studied. In addition,
zero-knowledge proofs are typically designed for arithmetic circuits over finite
fields, with the case of more general rings only being explored recently [33].
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The use of ring extensions. As we mentioned above, ring extensions—which
are rings of polynomials reduced modulo some fixed polynomials—appear natu-
rally in the context of lattice-based cryptography. However, that is not the only
context where this type of extension rings are used. An interesting and relevant
algebraic structure is the ring of integers Zpk modulo a prime power pk. The
relevance of this structure is two-fold. On the one hand, it contains as a particular
case the integers modulo powers of two, like 264 or 2128, which are good for many
applications since they are closer to hardware implementations and they are more
“compatible” with binary circuits [16]. On the other hand, having constructions
that work over Zpk for any arbitrary prime power pk typically lead, with the
help of the Chinese remainder theorem, to constructions that work over ZN for
any positive integer N . It has been identified in many different works (e.g. [20])
that the main property required by the underlying ring Zpk in order for certain
cryptographic primitive (e.g. MPC or ZKP) to be instantiable over Zpk is that
the Lenstra constant of the ring, which is the size of the largest subset where
every non-zero pairwise difference is invertible, has to be large enough. Since the
Lenstra constant of Zpk is p, this means that p cannot be very small, which rules
out important cases such as Z2k .

To address the complication above, multiple works such as [7,8,5,2,21] have
made use of ring extensions of Zpk to ensure the Lenstra constant of the resulting
ring is large enough, hence enabling the construction of the specific cryptographic
primitive at hand. Such ring extensions are known as Galois rings, and they
have the form Zpk [X]/(f(X)), where f(X) is some polynomial of degree d over Zpk
that is irreducible when taken modulo p. This ring is denoted by GR(pk, d), and
it is known to have a Lenstra constant of pd, which increases exponentially as
the extension degree d grows. Because of this, works in the context of secure
multiparty computation (cf. [2]) and more recently zero-knowledge proofs [26,10]
have made use of such extensions in order to instantiate these cryptographic
primitives over Zpk .

Packing methods. As we have mentioned above, ring extensions are required
in contexts such as fully homomorphic encryption, which is typically based on
lattices, or secure multiparty computation and zero-knowledge proofs over rings
of the form Zpk . However, most applications do not make use of these ring
extensions directly, but rather they are better suited for the underlying base
ring. In the context of lattice-based FHE, this has been addressed by making use
of ring extensions that are ring-isomorphic to multiple copies of the underlying
base ring via CRT. These extensions require the quotient polynomial to split
completely into linear factors, and in particular it cannot be invertible.

For MPC and ZKPs, the quotient polynomial has to be irreducible in order
to guarantee a large-enough Lenstra constant, so in particular packing elements
using CRT-based techniques is not possible. To address this complication, a
tool named reverse multiplication-friendly embeddings, or RMFEs for short, was
introduced in [9]. At a high level, an RMFE is a pair of additive homomorphisms
from/to a Galois ring to/from Zrpk that map polynomial product in the Galois
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ring to element-wise product in Zrpk . More precisely, an RMFE is a pair of
Zpk -linear homomorphisms (ϕ : Zrpk → GR(pk, d), ψ : GR(pk, d) → Zrpk) such
that ψ(ϕ(x) · ϕ(y)) = x ⋆ y for every x,y ∈ Zrpk , where · denotes product in
GR(pk, d) and ⋆ denotes component-wise product in Zrpk . This is less ideal than
the CRT-based packing techniques used in lattice-based cryptography since it
does not hold that the product of any two ring extension elements x · y somehow
“encodes” multiple products over Zpk , but rather, if x = ϕ(x) and y = ϕ(y),
then x · y can be “decoded” to the products x ⋆ y by mapping this value with ψ.
Furthermore, very importantly, unlike CRT-based techniques it is not possible to
multiply more than two values before “decoding” with ψ, since it is not necessarily
the case that ψ(ϕ(x) · ϕ(y) · ϕ(z)) = x ⋆ y ⋆ z. As a result, for multiple products
all existing cryptographic constructions making use of RMFEs must follow a
pattern that somewhat resembles “encode → multiply → decode → repeat”. In
contrast, CRT-based packing can follow the pattern “encode → multiply → · · · →
multiply → decode”.

RMFEs have played a major role in enabling multiple recent results in the
literature. In the work where they were introduced [9], they were used in order
to achieve honest majority MPC without the log n overhead stemming from the
use of field extensions. This only works for SIMD circuits, a restriction that was
later removed in [29] again by using RMFEs. The work of [11] uses RMFEs to
improve the state-of-the-art in dishonest majority MPC over Z2, and [21] uses
again RMFEs, this time over more general Galois rings—which are constructed in
[15]—to improve the communication of SPDZ2k [13], the state-of-the-art protocol
for dishonest majority MPC over Z2k . RMFEs have also found applications in the
zero-knowledge domain: [10] improves the Aurora and Ligero proof systems by
using RMFEs; and in [26] a concretely efficient post-quantum signature scheme
based on MPC-in-the-Head is proposed, Helium, which makes use of RMFEs in
order to increase the field size, which improves the soundness of the proof and
hence reduces signature size), while reducing the penalty of using a larger field.

Finally, in the recent work of [12], the concept of a packing method was
introduced, with the aim of unifying and generalizing the notion of RMFEs and
CRT-based packings, already used in the literature. A packing method is similar
to an RMFE in that it is comprised of packing (“encoding”, ϕ) and unpacking
(“decoding”, ψ) methods, but: (1) their additive homomorphism property is more
relaxed, (2) they can be randomized, (3) unpacking/decoding can lead to an error
and, crucially, (4) they allow for more than one multiplication to be carried out
before decoding (and in fact there could be different packing/unpacking methods
depending on the degree of the multiplication being decoded). In [12], the authors
show how packing methods generalize existing approaches in the literature, and
they show lower and upper bounds on the parameters of these constructions. We
discuss in much more detail the work of [12] in Section 1.2.
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1.1 Our Contribution

The packing methods defined in [12] allow for several multiplications to be carried
out before decoding, while as we discussed above, RMFEs only allow for one single
multiplication. On the other hand, RMFEs have better properties than packing
methods in that they are Zpk -homomorphisms that do not output errors and
are not randomized. This is important for their applications to MPC and ZKPs.
This is the motivation of our work, which includes the following contributions.

Degree-D RMFEs. In this work, we extend the important notion of RMFEs by
introducing the concept of Degree-D Reverse Multiplication-Friendly Embeddings,
which is a generalization of RMFEs that enable D − 1 multiplications to be
carried out before “decoding”. In more detail, a degree-D RMFE is a pair of
Zpk -linear homomorphisms (ϕ : Zrpk → GR(pk, d), ψ : GR(pk, d) → Zrpk) such that
ψ(ϕ(x1) · ϕ(x2) · · ·ϕ(xD)) = x1 ⋆ x2 ⋆ · · · ⋆ xD for every x1, . . . ,xD ∈ Zrpk .4 We
call rd the ratio of RMFE. Fix p to be a constant, we call a RMFE asymptotically
good if this ratio is a constant for growing r and d. In our work we put forward
the study of these objects and make substantial progress in this direction by
presenting a construction of an asymptotically good degree-D RMFE for Galois
rings over Zpk for any r, D, p and k, where the rate is roughly 3

D(2D+1) , which
is constant in the length r.

To illustrate how such objects may be constructed, let us first present a
simple example of degree-D RMFE which is not asymptotically good. Given
a vector x = (x1, . . . , xr) ∈ Zrpk with p > r, we define the map ϕ as ϕ(x) =

f(x) ∈ GR(pk, (r− 1)D+ 1) ∼= Zpk/(g(x)) with f(i) = xi and degree-((r− 1)D+
1) irreducible polynomial g(x) over Zpk . The map ψ is defined as ψ(f(x)) =
(f(1), . . . , f(r)). The multiplication relation holds as the product of any D degree-
(r − 1) polynomials is a polynomial of degree at most D(r − 1). Since the degree
of this polynomial is less than deg(g(x)) = D(r − 1) + 1, we can recover r
evaluations of this polynomial. The construction of this degree-D RMFE is
simple and effective, and its ratio is r

(r−1)D+1 , which is optimal. However, the
length r of the vector x is upper bounded by p, while instead, we would like
a single RMFE construction that works for any choice of r.5 Inspired by the
approach taken in the original work on (degree-2) RMFEs [9], in order to obtain
an asymptotically good degree-D RMFEs we resort to the theory of function
fields. By applying certain “concatenation” method to the asymptotically good
RMFEs derived from these mathematical objects, we are then able to obtain our
asymptotically good degree-D RMFEs over Z2k .

Our results on degree-D RMFEs generalize these in [9] from D = 2 to D > 2,
showing that the techniques in that work are a particular case of a more general
4 In our actual definition, as in the definition of traditional (degree-2) RMFEs, the

domain of ϕ/codomain of ψ can be a Galois ring as well instead of Zpk .
5 It is possible to improve this basic construction via certain concatenation techniques.

However, any construction based on this polynomial evaluation cannot achieve
constant ratio, which can be seen as an analogue of the concatenation of Reed-
Solomon codes in the classic coding theory.
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framework. This improves our understanding on these important tools, and
furthermore, we believe our work opens an interesting direction of study in
terms of constructing even better degree-D RMFEs, and expanding the set of
applications that can benefit from them.

Relations to the packing methods from [12]. We show that degree-D RMFEs
are particular cases of packing methods, but in the general case the converse
direction does not hold, that is, not every degree-D packing method is a degree-D
RMFE. In fact, we are able to prove that packing methods that satisfy certain
additional linearity properties can be turned into degree-D RMFEs. Crucially,
degree-D RMFEs satisfy the following highly relevant properties not held by
packing methods:

– Degree-D RMFEs are actual Zpk -homomorphisms, so unlike the packing
methods from [12], they are not randomized, they are fully linear and they
do not output errors.

– A degree-D packing method consists of different packing/unpacking methods,
one for every “level” ℓ ∈ {1, . . . , D}. In contrast, degree-D RMFEs consist of
only one “packing/unpacking” pair (ϕ, ψ), which works for all levels.

The relations between packing methods and our degree-D RMFEs are explored
in detail in Section 3. We show that a degree-D RMFE is actually a degree-D
packing method. This means the lower bound on the ratio in [12] can be applied
to degree-D RMFE. We provide several constructions of degree-D RMFE which
can be directly transformed to degree-D packing method. Unlike the construction
in [12], our packing methods obtained from RMFEs are Zpk -homomorphism.
Our construction of RMFE implies that there exists degree-D packing method
of density roughly 3

D(1+2D) over Z2ℓ for any D and ℓ, which is constant in the
length. On the other hand, if we add an extra requirement on the packing method
that the packing algorithm in the packing method is deterministic and linear,
then a degree-D packing method is a degree-D RMFE as well.

Applications of degree-D RMFEs. As discussed previously, RMFEs have found
multiple theoretical and practical applications across different domains such as
MPC and zero-knowledge proofs. From this, our degree-D RMFEs can be used
as a drop-in replacement in settings that currently use traditional (degree-2)
RMFEs, but require large degree evaluation. For example, it can be used to
amortize the communication of securely computing the product of, say, three
secrets, or proving in zero-knowledge the correctness of a, say, product of three
witnesses. Unfortunately, some of these applications do not benefit directly from
products of more than two terms, essentially because of the fact that single
multiplication is “complete” to represent a more general computation, and aspects
such as interaction enable weaker notions such as traditional degree-2 RMFEs to
be sufficient. In Section 5 we add a thorough discussion on potential applications
of this type, where existing RMFE-based solutions are “enhanced” by enabling
larger degree.
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In this work we identify a concrete application that benefits extensively by the
use of degree-D RMFEs for D > 2. This corresponds to delegating the generation
of preprocessing material for certain secure computation (e.g. authenticated
multiplication triples) to a large committee, which is in charge of generating
said correlations in order to later re-share them for the target MPC execution.
Since the larger the committee the better the ratio of honest parties, it is good if
such a protocol for correlation generation scales well as the number of parties
grows. We model this by requiring no interaction among the parties in the large
committee, which can be enabled by means of pseudo-random Shamir secret-
sharing techniques and local multiplications with low-enough threshold. However,
when the target ring structure has a small Lenstra constant, such techniques do
not work, and hence require a large ring extension.

This is precisely where our degree-D RMFEs prove themselves useful: they
enable the use of ring extensions while non-interactively multiplying several
secrets in order to generate the desired correlations, but without paying the
“penalty” of using said large degree extensions. As a result, we obtain efficient
delegation of correlations of degree ≥ 2, while avoiding communication among
the generating committee (which enables larger and hence more trustworthy
quorums). This application, however, is not a simple “plug-and-play” of our
degree-D RMFEs, and we introduce several techniques of potential independent
interest to tackle this. The main challenge lies in ensuring that pseudo-random
secret-sharing techniques can be adapted to generate the concrete type of sharings
we need in our context, given that the underlying secrets will have to belong to a
particular submodule. In Section 5, where we describe this application in detail,
we show how such PRSS constructions can be instantiated, drawing inspiration
from the techniques in [3] in order to improve the storage complexity by exploiting
a small corruption threshold.

We fully prove the security of our PRSS construction, and then we use it in
conjunction with our degree-D RMFEs to efficiently instantiate the application
above. We refer to the full version[19] for a more detailed overview on this
application.

1.2 Related Work

The first constructions of (degree-2) RMFEs appeared in [9], although some ideas
were already present in [4]. After these works, there is a large body of research that
has applied RMFEs for different settings such as secure multiparty computation
or zero-knowledge proofs, with a non-exhaustive list including [21,2,26,10].

Given the traction achieved by the concept of RMFEs, and also given the use of
other forms of packing in domains such as lattice-based homomorphic encryption
[32], the work of [12] aimed at presenting a unified framework that captures these
different packing notions. The resulting concept, packing methods, constitutes
a generalization of both (degree-2) RMFEs and the CRT-based packing used
in lattice-based cryptography. The authors then present a survey of existing
techniques that fit their framework, and present bounds and impossibility result
on the existence and the efficiency of their packing methods. Our degree-D
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RMFEs constitute a generalization of degree-2 RMFEs, and, as we show in
Section 3, they turn out to be particular instances of the packing methods from
[12]. Furthermore, with a minor extra condition, packing methods turn out to be
equivalent to our degree-D RMFEs. The relation between these two notions is
explored in detail in Section 3.

Regarding delegation of correlation generation for MPC, the work of [24],
which introduces an MPC protocol based on packed secret-sharing that is particu-
larly suitable for parallel computation, presents an application where this protocol
is used by a committee P to generate multiplication triples to another committee
Q. We note that their protocol requires communication among the parties in
committee P , whereas our solution is fully non-interactive. Even more—and very
importantly for our application of degree-D RMFEs—our techniques are used
to generate arbitrary degree-D correlations, while in [24] only multiplication
triples, a particular case of degree-2 correlations, is considered. However, the
non-interactivity aspect of our solution is achieved at the expense of using pseudo-
random secret-sharing (which requires exponential storage for some parameter
choices), and the high degree aspect requires tolerating a smaller threshold. Fur-
thermore, the techniques in [24] support an active adversary, while our solution
in Section 5 is only passively secure.

Finally, in terms of pseudo-random secret-sharing, earlier techniques [14,23]
required an exponential amount of seeds to be held by each party, and they were
only suitable for Shamir secret-sharing over fields where the underlying secret is
uniformly random in the field. In the recent work of [3] this was generalized by
making use of covering designs, and instantiations of PRSS solutions for sharings
of higher-degree with more structured underlying secrets were proposed. These
techniques serve as the basis for our PRSS from Section 5.2, but we cannot use
it directly since (1) they are designed for use over finite fields while in our case
we have a Galois ring, and most importantly, (2) the type of correlations we
need to generate are not included in the ones proposed in [3]. The first issue is
easily addressed by making use of the fact that Galois rings have a large enough
Lenstra constant. On the other hand, the second complication requires us to
propose from scratch a new PRSS solution for our correlations at hand, based on
the covering design approach from [3].

2 Preliminaries

Notation. We let p be a prime, and d, k,m, n be positive integers. Generally,
pk will be the characteristic of the rings we consider, d,m will be the degree of
certain ring extensions, and n will be the dimension of the vectors that will be
packed. Vectors are denoted with bold characters, and, following the notation
in [12], element-wise multiplication of vectors is denoted by a ⋆ b.

Galois Rings. Let Irr(X) be a polynomial over Zpk of degree d, such that reducing
its coefficients modulo p leads to an irreducible polynomial over the field Zp.
Consider the quotient ring Zpk [X]/(Irr(X)). This is a Galois ring of degree d and
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characteristic pk, and we denote it by GR(pk, d). As particular cases, we have
that GR(pk, 1) equals Zpk , the ring of integers modulo pk, and GR(p, d) equals
Fpd , the finite field with pd elements.

A crucial fact of Galois rings is that their non-invertible elements are exactly
the elements that are multiples of p. From this, it can be proven that one can do
polynomial interpolation over Galois rings in essentially the same way similarly
as in the finite field case, as the following proposition shows.

Proposition 1 ([35,2]). Assume that pd ≥ n. There exists n elements α1, . . . , αn
in GR(pk, d) such that given any x1, . . . , xn ∈ GR(pk, d), there is a unique poly-
nomial of degree n − 1, f(X) ∈ GR(pk, d)[X], with f(αi) = xi. We call such
{α1, . . . , αn} an exceptional set.

Using Proposition 1, all of the results from finite fields regarding interpolation
and polynomial evaluation carry over to the Galois ring setting. For example,
Schwartz-Zippel lemma holds, and also Shamir secret-sharing can be constructed.

Function Fields. Let us briefly recall some background on algebraic function
fields, which will play a crucial role in our constructions. The reader may refer to
[34] for the details.

A function field F over Fq is a field extension over Fq in which there exists
an element z of F that is transcendental over Fq such that F/Fq(z) is a finite
extension. Fq is called the full constant field of F if the algebraic closure of Fq in
F is Fq itself. In this paper, we always assume that Fq is the full constant field
of F , denoted by F/Fq.

Each discrete valuation ν from F to Z∪{∞} defines a local ring O = {f ∈ F :
ν(f) ≥ 0}. The maximal ideal P of O is called a place. We denote the valuation ν
and the local ring O corresponding to P by νP and OP , respectively. The residue
class field OP /P , denoted by FP , is a finite extension of Fq. The extension degree
[FP : Fq] is called degree of P , denoted by deg(P ). For a place P and a function
f ∈ OP , we denote by f(P ) the evaluation of f at place P if f ∈ OP . We note
that f(P ) ∈ Fp.

A divisor G is a formal sum of places, G =
∑
cPP , such that cP ∈ Z and

cP = 0 except for a finite number of P .6 We call this set of places where cP ̸= 0 the
support of G, denoted by supp(G). The degree of G is degG :=

∑
cP degP ∈ Z.

The Riemann-Roch space L(G) is the set of all functions in F with certain
prescribed poles and zeros depending on G (together with the zero function).
More precisely if G =

∑
cPP , every function f ∈ L(G) must have a zero of order

at least |cP | in the places P with cP < 0, and f can have a pole of order at most cP
in the places with cP > 0. The space L(G) is a vector space over Fq. Its dimension
is governed by certain laws (given by the so-called Riemann-Roch theorem). A
weaker version of that theorem called Riemann’s theorem states that if degG ≥
6 cP is only used for expressing divisor G explicitly so as to present the basic property

of the function field. The explicit construction of G is not the focus of this paper.
Thus, cp will not appear in our construction.
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2g− 1 then dimL(G) = deg(G)− g+ 1. On the other hand, if degG < 0, then
dimL(G) = 0. Let P1, . . . , Pn be n > deg(G) rational places of F that is disjoint
from the support of divisor G. Then, (f(P1), . . . , f(Pn)) has at most deg(G)’s
0 components as f ∈ L(G−

∑
f(Pi)=0 Pi) implying dimL(G−

∑
f(Pi)=0 Pi) > 0.

Moreover, if f, g ∈ L(G), then fg ∈ L(2G) as fg has the pole of order at most 2cP
in the place P with G =

∑
cPP . This property can be seen as the generalization

of the polynomials in the function field.

Packing Methods. Now we present the notion of packing methods, as in-
troduced in [12, Definition 3.1], together with some results given in that work.
The definition in [12], however, considers arbitrary rings, while we adapt it here
to focus only on Galois rings. This is not restrictive: as we have mentioned,
important rings such as Zpk or Fpd are particular cases, and these are the only
types of structures considered in [12] ultimately.

Definition 1 (Packing methods). Consider two Galois rings GR(pk, d) and
GR(pk,m). We call a pair of algorithms (Pack,Unpack) a packing method for n
GR(pk, d)-messages into GR(pk,m), if it satisfies the following.

– Pack is an algorithm (possibly probabilistic) which, given a ∈ GR(pk, d)n as
an input, outputs an element of GR(pk,m).

– Unpack is a deterministic algorithm which, given a ∈ GR(pk,m) as an input,
outputs an element of GR(pk, d)n or ⊥ denoting a failure.

– Unpack(Pack(a)) = a holds for all a ∈ GR(pk, d)n with probability 1.

The notion of a packing method does not capture how the packing and
unpacking algorithms should behave with respect to the operations of the two
involved rings. This is captured by the concept of a degree-D packing, which in
essence, requires that these methods must be additively homomorphic, and they
must be compatible with “up to D multiplications”.

Definition 2 (Degree-D packing, definition 3.1 in [12]). Let (Packi,Unpacki)Di=1

be a collection of packing methods of GR(pk, d)n into GR(pk,m). We call this col-
lection a degree-D packing method, if it satisfies the following: for any 1 ≤ i ≤ D,
then

– Unpacki(a± b) = a± b, if a, b ∈ GR(pk,m) satisfy Unpacki(a) = a ≠ ⊥ and
Unpacki(b) = b ̸= ⊥;

– If s, t ∈ Z+ are such that s + t = i ≤ D, then Unpacki(a · b) = a ⋆ b holds,
where a, b ∈ GR(pk,m) satisfy Unpacks(a) = a ̸= ⊥ and Unpackt(b) = b ̸= ⊥.

These definitions imply that Unpacki(c · a) = c · Unpacki(a) for any c ∈ Zpk ,
and in particular Unpacki(0) = 0.

We define the packing density of a packing method to be the ratio n ·
d/m. Notice that, even though the Pack algorithm of a packing method can be
probabilistic, we can make this algorithm deterministic by fixing the random
coins. This will not affect Definition 2, and the packing density does not decrease.
In what follows, we focus on the deterministic packing algorithms.
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3 Degree-D RMFEs and Relations to Packing Methods

We now introduce the novel concept of a degree-D reverse multiplication-friendly
embedding, or RMFE, for short. For D = 2, the notion of an RMFE was
introduced in [9], where explicit constructions based on techniques from algebraic
geomtry were given. Here we consider a natural generalization for D ≥ 2.

Definition 3 (Degree-D Reverse Multiplication-Friendly Embedding).
Consider two Galois rings GR(pk, d) and GR(pk, rd). Let ϕ : GR(pk, d)n →
GR(pk, rd) and ψ : GR(pk, rd) → GR(pk, d)n be two group homomorphisms
( i.e. they are additively homomorphic). The pair (ϕ, ψ) is a degree-D reverse
multiplication-friendly embedding, or degree-D RMFE for short, if, for any
a1 . . . ,aD ∈ GR(pk, d)n, it holds that ψ(ϕ(a1)·ϕ(a2) · · ·ϕ(aD)) = a1⋆a2⋆· · ·⋆aD.
We call such RMFE a (n, r;D)-RMFE over GR(pk, d).

Some important direct consequences of this definition are presented in the
following propositions.

Proposition 2. Let (ϕ, ψ) be a degree-D RMFE. Then ϕ is injective and ψ is
surjective.

Proof. To see that ϕ is injective it suffices to show that ϕ(a) = 0 implies that a =
0. Indeed, if ϕ(a) = 0 then 0 = ψ(0) = ψ(ϕ(a)⋆ϕ(1) · · ·ϕ(1)) = a⋆1⋆ · · ·⋆1 = a.
Similarly, given a ∈ GR(pk, d)n, it can be verified that a preimage of a under ψ
is given by ϕ(a) · ϕ(1) · · ·ϕ(1), which shows that ψ is surjective. ⊓⊔

Lemma 1. Both ϕ and ψ are Zpk -linear maps.

Proof. The proof is quite straightforward. Due to the fact that ϕ is group
homomorphism, we have ϕ(ha) = ϕ(

∑h
i=1 a) =

∑h
i=1 ϕ(a) = hϕ(a) for any

h ∈ Zpk and a ∈ GR(pk, d)n. The same argument can be applied to ψ as well. ⊓⊔

Lemma 2. Let (ϕ : GR(pk, d)n → GR(pk,m), ψ : GR(pk,m) → GR(pk, d)n) be
a degree-D RMFE. Then there exists a degree-D RMFE (ϕ′ : GR(pk, d)n →
GR(pk,m), ψ′ : GR(pk,m) → GR(pk, d)n) with ϕ′(1) = 1.

Proof. We begin by claiming that ϕ(1) ∈ GR(pk,m) is invertible. Assume not,
and thus p | ϕ(1). As ϕ is a Zpk -linear map, we have ϕ(pk−11) = pk−1ϕ(1) = 0
which contradicts to Proposition 2. Now, we define ϕ′ : GR(pk, d)n → GR(pk,m)
and ψ′ : GR(pk,m) → GR(pk, d)n as follows: ϕ′(a) = ϕ(a) · ϕ(1)−1 for a ∈
GR(pk, d)n, and ψ′(a) = ψ(a · ϕ(1)D) for a ∈ GR(pk,m). It is easy to verify
that these functions are additively homomorphic. We can also see that ϕ′(1) =
ϕ(1) · ϕ(1)−1 = 1, as required. It is only left to check then that (ϕ′, ψ′) is
indeed a degree-D RMFE. To see this, consider a1 . . . ,aD ∈ GR(pk, d)n, then
ψ′(ϕ′(a1)·ϕ′(a2) · · ·ϕ′(aD)) = ψ′(ϕ(a1) · · ·ϕ(aD)·ϕ(1)−D) = ψ(ϕ(a1) · · ·ϕ(aD)·
ϕ(1)−D · ϕ(1)D) = ψ(ϕ(a1) · · ·ϕ(aD)) = a1 ⋆ a2 ⋆ · · · ⋆ aD. ⊓⊔
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A degree-D RMFE (ϕ, ψ) that satisfies ϕ(1) = 1 has several interesting
properties, and due to the previous lemma, we assume this to be the case from now
on. First, the composition ψ ◦ϕ is the identity function GR(pk, d)n → GR(pk, d)n,
which follows from ψ(ϕ(a)) = ψ(ϕ(a) · 1 · · · 1) = ψ(ϕ(a) · ϕ(1) · · ·ϕ(1)) =
a ⋆ 1 ⋆ · · · ⋆ 1 = a.

In addition, such a degree-D RMFE is also a degree-D′ RMFE for any
D′ ≤ D (a property that does not necessarily hold for a more general RMFE).
Indeed, given a1 . . . ,aD′ ∈ GR(pk, d)n, we have that ψ(ϕ(a1) · · ·ϕ(aD′)) =
ψ(ϕ(a1) · · ·ϕ(aD′) · 1 · · · 1) = ψ(ϕ(a1) · · ·ϕ(aD′) ·ϕ(1) · · ·ϕ(1)) = a1 ⋆ · · · ⋆aD′ ⋆
1 ⋆ · · · ⋆ 1 = a1 ⋆ · · · ⋆ aD′ .

These properties will be used later. In what follows, we discuss the equivalence
between the degree-D RMFEs introduced here, and the packing methods from [12],
discussed in Section 2.

3.1 From Degree-D RMFEs to Packing Methods

In this section, we show that every degree-D RMFE is a packing method of
degree-D. Let (ϕ : GR(pk, d)n → GR(pk,m), ψ : GR(pk,m) → GR(pk, d)n) be a
degree-D RMFE. From Proposition 2, we can assume without loss of generality
that ϕ(1) = 1.

Theorem 1 (from RMFEs to packing methods). Let (Packi,Unpacki)Di=1

be defined as follows:

– Packi = ϕ for i = 1, . . . , D.
– For each i = 1, . . . , D, Unpacki(a) = ψ(a) if a ∈ spanZ

pk
(Mi) and Unpacki(a) =

⊥ otherwise, where spanZ
pk
(Mi) is the Zpk-module generated by Mi =

{
∏i
j=1 ϕ(xj) : xj ∈ GR(pk, d)n}.

Then, this constitutes a degree-D packing method.

Proof. It is easy to check that Unpacki(a± b) = a± b whenever a, b ∈ GR(pk,m)
satisfy Unpacki(a) = a ≠ ⊥ and Unpacki(b) = b ̸= ⊥, which follows from the fact
that ψ is additively homomorphic and from the linearity of the Zpk -module Mi.

It remains to be checked that, if s, t ∈ Z+ are such that s + t = i, then
Unpacki(a · b) = a ⋆b holds, where Unpacks(a) = a ̸= ⊥ and Unpackt(b) = b ̸= ⊥.
To see this, first we notice that, since a ̸= ⊥ and b ≠ ⊥, it must be that
a ∈ spanZ

pk
(Ms) and b ∈ spanZ

pk
(Mt), so we can write a and b in the form

a =
∑ℓa
j=1 αjm

(a)
j and b =

∑ℓb
j=1 βjm

(b)
j , where each m(a)

j is in Ms, each m(b)
j is

in Mt, and each αj , βj is in Zpk . Furthermore, we write m(a)
j =

∏s
q=1 ϕ(x

(j)
q ),

and m(b)
j =

∏t
q=1 ϕ(y

(j)
q ). Now, we prove some claims that will be useful.

Claim. It holds that Unpacks(a) =
∑ℓa
j=1 αj

∏s
q=1 x

(j)
q , and similarly Unpacki(b) =∑ℓb

j=1 βj
∏s
q=1 y

(j)
q .

12



Proof (of claim). We prove this for a only, as the proof of b is similar. First,
notice that ψ(m(a)

j ) = ψ(
∏s
q=1 ϕ(x

(j)
q )) =

∏s
q=1 x

(j)
q , which follows from the fact

that (ϕ, ψ) is not only a degree-D RMFE, but also a degree-s RMFE. The claim
then holds because of the linearity of ψ.

Claim. For each j it holds that ψ((
∏s
q=1 ϕ(x

(j)
q ))·(

∏t
q=1 ϕ(y

(j)
q ))) = (

∏s
q=1 x

(j)
q )⋆

(
∏t
q=1 y

(j)
q ).

Proof (of claim). This follows directly from the fact that (ϕ, ψ) is a degree-D′

RMFE for any D′ ≤ D, and the fact that s+ t = i ≤ D.

It is easy to see that a · b ∈ spanZ
pk
(Mi). With this, and the two claims above

at hand, we can compute the following:

Unpacki(a · b) = ψ(a · b)

= ψ((

ℓa∑
j=1

αjm
(a)
j ) · (

ℓb∑
h=1

βhm
(b)
h ))

= ψ(
∑
j,h

αjβh ·m(a)
j m

(b)
h )

=
∑
j,h

αjβh · ψ(m(a)
j m

(b)
h ) linearity of ψ

=
∑
j,h

αjβh · ((
s∏
q=1

x(j)
q ) ⋆ (

t∏
q=1

y(j)
q )) second claim

= (

ℓa∑
j=1

αj

s∏
q=1

x(j)
q ) ⋆ (

ℓb∑
h=1

βh

t∏
q=1

y(j)
q )

= Unpacks(a) ⋆ Unpackt(b). first claim

This concludes the proof of the theorem. ⊓⊔

3.2 From Degree-D Packing to Degree-D RMFEs

In general, not every degree-D packing is a degree-D RMFE. First, a degree-D
packing is a family of pairs (Packi,Unpacki)

D
i=1, while a degree-D RMFE is only

made of one pair of functions. In addition, packing methods do not need to be
deterministic or linear, which are properties satisfied by RMFEs. Finally, the
Unpack algorithm of a packing method can result in ⊥ while RMFEs, being
homomorphisms, do not. In this direction, consider the following example.

Example 1. Consider a packing method for n GR(pk, d)-messages into a GR(pk, 2 ·
n · d) message for pd ≥ n. From proposition 1, we can find n distinct elements
α1, . . . , αn ∈ GR(pk, d) to do interpolation on. The packing algorithm is defined
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as follows: given (x1, . . . , xn) ∈ GR(pk, d)n, we randomly select a polynomial f(x)
of degree n over GR(pk, d) such that f(αi) = xi. Note that this f(x) is not unique
as we only interpolate f at n points. Then, the pack algorithm is defined as
Pack((x1, . . . , xn)) = f(x) ∈ GR(pk, 2nd) as GR(pk, 2nd) ∼= GR(pk, d)/(g(x)) with
a degree-2n irreducible polynomial g(x) over GR(pk, d). The unpack algorithm is
also clear as we define Unpack(f(x)) = (f(α1), . . . , f(αn)). One can also easily
show that this packing method is a degree-2 packing. However, it is not a degree-2
RMFE as the packing method is not deterministic.

In this section, we show that being deterministic and linear is not only
necessary for a degree-D packing to be a degree-D RMFE, but they are in fact
sufficient. In other words, we show that a degree-D RMFE can be derived from
any degree-D packing (Packi,Unpacki)

D
i=1, as long as each Packi is Zpk -linear

and deterministic. This is proven in Theorem 2 below. However, we first present
Proposition 3 and Lemma 3, which are useful tools for proving the claimed result.

Proposition 3. Let (Packi,Unpacki)
D
i=1 be a degree-D packing method. Then,

for any a1 . . . ,aD ∈ GR(pk, d)n, we have that UnpackD(Pack1(a1) · · ·Pack1(aD)) =
a1 ⋆ · · · ⋆ aD.

Proof. We prove it by induction. For D = 2, it is clear that UnpackD(Pack1(a1) ·
Pack1(a2)) = a1 ⋆a2 as we let i = 2, s = t = 1 in Definition 2. We proceed to the
case D. Let a = Pack1(a1) · · ·Pack1(aD−1) and b = Pack1(aD) in Definition 2,
we have UnpackD(a·b) = UnpackD−1(a)⋆Unpack1(b) = UnpackD−1(a)⋆aD. The
proof is completed by applying the induction UnpackD−1(Pack1(a1) · · ·Pack1(aD−1)) =
a1 ⋆ · · · ⋆ aD−1. ⊓⊔

From the proposition above, the following observation holds. Let a ∈MD =
{
∏D
j=1 Pack1(xj) : xj ∈ GR(pk, d)n}, then UnpackD(a) =

∏D
j=1 xj , and in partic-

ular, UnpackD(a) ̸= ⊥. Furthermore, this also extends naturally to the case in
which a ∈ spanZ

pk
(MD) by using the linearity of Unpack1. In particular, Unpack1

restricted to spanZ
pk
(MD) is a Zpk -linear homomorphism, and therefore, the

following lemma can be applied to it.

Lemma 3. Let f : M → GR(pk, d)n be a Zpk-linear function, where M is a
Zpk-submodule of GR(pk,m). Then, f can be extended to a Zpk-linear function
g : GR(pk,m) → GR(pk, d)n.

Proof. As M is Zpk -submodule of GR(pk,m), by the fundamental decomposition
theorem, we write M =

∑a
i=1 Siβi with S1 ⊆ · · · ⊆ Sa are the ideal of Zpk and

βi ∈ GR(pk,m). To extend f , it suffices to decide the value of g(βi). Assume
Si = pαiZpk . As g(x) is Zpk -linear, we have f(pαiβi) = g(pαiβi) = pαig(βi).
This implies that g(βi) = p−αif(pαiβi). Thus, we extend the domain of f from
M to a free module M ′ :=

⊕a
i=1 Zpkβi. As we can write GR(pk,m) = M ′ ⊕N

where N =
⊕m−a

i=1 Zpkγi, define the value g(γi) ∈ GR(pk, d)n in an arbitrary
manner and the proof is completed. ⊓⊔
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With this lemma at hand we can finally construct our degree-D RMFE from
the degree-D packing method (Packi,Unpacki)

D
i=1.

Theorem 2 (from packing methods to RMFEs). Consider the following
functions ϕ : GR(pk, d)n → GR(pk,m) and ψ : GR(pk,m) → GR(pk, d)n:

– ϕ(a) = Pack1(a) for a ∈ GR(pk, d)n;
– ψ is defined by applying Lemma 3 to f = UnpackD and M = spanZ

pk
(MD).

In a bit more detail, ψ(a) = UnpackD(a) for a ∈ spanZ
pk
(MD), and for

a /∈ spanZ
pk
(MD) ψ(a) is defined as to preserve linearity.

Then, (ϕ, ψ) is a degree-D RMFE.

Proof. First, from Lemma 3, we know that ψ is a Zpk -linear map. The linearity of
ϕ is followed by the fact that Pack1 is Zpk -linear. Since both Pack1 and UnpackD
are deterministic, ϕ and ψ are well defined.

Finally, we prove the required multiplicative relation. Let a1 . . . ,aD ∈
GR(pk, d)n, then, from Proposition 3, we have that

ψ(ϕ(a1) · · ·ϕ(aD)) = UnpackD(Pack1(a1) · · ·Pack1(aD))
= a1 ⋆ · · · ⋆ aD,

as required. This completes the proof. ⊓⊔

4 Constructing Degree-D RMFEs

This section is devoted to the explicit construction of degree-D RMFEs over
Galois rings. The organization of this section is the following. First, in Section 4.1
we provide a series of results that will be useful in our general construction.
Then, in Section 4.2 we begin with the particular case of D = 2, presenting
explicit constructions of degree-2 RMFEs over Galois rings. This serves two
purposes. First, even though the results of [15] show that degree-2 RMFEs
over Galois rings can be obtained by lifting existing RMFE constructions over
fields (like, for example, the constructions from [9]), no explicit constructions
or explicit parameters were provided. Second, we generalize the ideas in our
degree-2 constructions in Section 4.3 to obtain our main result: degree-D RMFE
constructions for D ≥ 2.

4.1 Lemmata

We first provide a composition lemma that shows that composing two degree-D
RMFEs results in a degree-D RMFE. Such lemma can be seen as an analogue
of concatenation in classical coding theory. The composition lemma of RMFEs
over fields in [9] can reduce the task of designing an RMFE over a general field
extension to the case of a prime field. Here we present a version of this lemma
over Galois rings. Generally speaking, given one RMFE of large dimension over
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a big Galois ring and another RMFE of small dimension over a small Galois ring,
the composition of these two RMFEs gives rise to an RMFE of large dimension
over the small Galois ring.

Lemma 4 (Composition Lemma). Assume that (ϕ1, ψ1) is an (n1, k1;D)-
RMFE over GR(pℓ, k2r) and (ϕ2, ψ2) is an (n2, k2;D)-RMFE over GR(pℓ, r) .
Then ϕ : GR(pℓ, r)n1n2 → GR(pℓ, rk1k2) given by

(x1, . . . ,xn1) 7→ (ϕ2(x1), . . . , ϕ2(xn1)) ∈ GR(pℓ, rk2)
n1 7→ ϕ1(ϕ2(x1), . . . , ϕ2(xn1))

and ψ : GR(pℓ, rk1k2) → GR(pℓ, r)n1n2 given by

α 7→ ψ1(α) = (u1, . . . ,un1
) ∈ GR(pℓ, rk2)

n1 7→ (ψ2(u1), . . . , ψ2(un1
))

define an (n1n2, k1k2;D)-RMFE over GR(pℓ, r).

Proof. It is clear that both ϕ and ψ are GR(pℓ, r)-linear. For any x(1),x(2), · · · ,x(D) ∈
GR(pℓ, r)n1n2 , we have

ψ(

D∏
i=1

ϕ(x(i))) = ψ2 ◦ ψ1(ϕ1(

D∏
i=1

(ϕ2(x
(i)
1 ), . . . , ϕ2(x

(i)
n1
))))

= ψ2((ϕ2(x
(1)
1 ), . . . , ϕ2(x

(1)
n1

)) ∗ · · · ∗ (ϕ2(x(D)
1 ), . . . , ϕ2(x

(D)
n1

)))

= (ψ2(ϕ2(x
(1)
1 ) ∗ · · · ∗ ϕ2(x(D)

1 )), . . . , ψ2(ϕ2(x
(1)
n1

) ∗ · · · ∗ ϕ2(x(D)
n1

)))

= (x
(1)
1 ∗ · · · ∗ x(D)

1 , . . . ,x(1)
n1

∗ · · · ∗ x(D)
n1

)

= x(1) ∗ · · · ∗ x(D).

This completes the proof. ⊓⊔

It will be important for our constructions to establish a relation between
RMFEs and function fields. This is achieved by the following lemma.

Lemma 5. Let q be a power of a prime. Let F/Fq be a function field of genus g
with n distinct rational places P1, P2, . . . , Pn. Let G be a divisor of F such that
supp(G) ∩ {P1, . . . , Pn} = ∅ and dimFq

L(G) − dimFq
L (G−

∑n
i=1 Pi) = n. If

there is a place R of degree k with k > D deg(G), then there exists an (n, k;D)-
RMFE over Fq.

Proof. Consider the map π : L(G) → Fnq ; f 7→ (f(P1), . . . , f(Pn)). Then the
kernel of π is L(G−

∑n
i=1 Pi). Since dimFq Im(π) = dimFq L(G)−dimFq L (G−

∑n
i=1 Pi) =

n, π is surjective. Choose a subspace V of L(G) of dimension n such that π
induces an isomorphism between V and Fnq .

We identify Fqk with the residue field FR of R. We write by cf (and fR,
respectively) the vector (f(P1), . . . , f(Pn)) (and the residue class of f in FR,
respectively) for a function f ∈ L(D ·G). Define the linear map ϕ : π(V ) = Fnq →
FR = Fqk ; cf 7→ fR ∈ Fqk . Note that the above f ∈ V is uniquely determined
by cf . It is clear that ϕ is Fq-linear and injective since deg(R) > deg(G).
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Define τ : L(D ·G) → FR = Fqk ; f 7→ fR ∈ Fqk . Then τ is Fq-linear and
injective since deg(R) > D deg(G) = deg(D ·G).

Define the map ψ : Im(τ) ⊆ FR → Fnq ; fR 7→ (f(P1), . . . , f(Pn)) ∈ Fnq . Note
that the above f ∈ L(D ·G) is uniquely determined by fR. ψ is Fq-linear and
surjective (but not injective). We extend ψ from Im(τ) to FR linearly. We obtain
the pair (ϕ, ψ).

For any cf(1) , . . . , cf(D) ∈ Fnq with uniquely determined f (1), . . . , f (D) ∈ V ,
we have

ψ(

D∏
i=1

ϕ(cf(i))) = ψ(

D∏
i=1

f
(i)
R ) = ψ((

D∏
i=1

f (i))R) = c∏D
i=1 f

(i) = cf(1) ∗ · · · ∗ cf(D) .

Note that (
∏D
i=1 f

(i))R belongs to Im(τ) since
∏D
i=1 f

(i) ∈ L(DG). We conclude
that (ϕ, ψ) defined above is an (n, k;D)-RMFE over Fq. ⊓⊔

Note that Galois rings are a generalization of finite fields. In [15], the authors
manage to show that one can explicitly construct RMFEs over the Galois ring
GR(pℓ, k) if there exists a explicit construction of RMFEs over the finite field
Fpk . This is captured by the lifting result in Theorem 18 of [15], adapted below
to our setting.

Lemma 6. Let q = pr for a prime p. Then the (n, k;D)-RMFE over Fq con-
structed in Lemma 5 can be lifted to an (n, k;D)-RMFE over GR(pℓ, r) for any
ℓ ≥ 1.

Note that although Theorem 18 of [15] only proves the above lemma for the
case where D = 2, it can be easily generalized to arbitrary D. Let us explain
this briefly. The map ϕ in the proof of Lemma 5 is injective, thus by Lemma
9 of [15] it can be lifted to a map ϕ′ from GR(pℓ, r)n to FR = GR(pℓ, kr) for
any ℓ ≥ 1 and ϕ′ is also injecive. As the map τ in the proof of Lemma 5
is also injective, we can apply Lemma 9 of [15] again to get a map τ ′ from
L(D · D) to FR = GR(pℓ, kr). Finally, the map ψ′ can be defined by sending
fR ∈ FR = GR(pℓ, kr) to (f(P1), . . . , f(Pn)) ∈ GR(pℓ, r)n. Thus, the pair (ϕ′, ψ′)
is the desired RMFE.

Corollary 1. If p ≥ n, then there exists an (n, k = D(n − 1) + 1;D)-RMFE
over GR(pℓ, r) for any ℓ ≥ 1.

Proof. We take the rational function field Fp(x) and a divisor G of degree n−1, a
place of degree D deg(G)+1 = D(n−1)+1, we obtain an (n, k = D(n−1)+1;D)-
RMFE over Fp by Lemma 5. The desired result follows from Lemma 6. ⊓⊔

4.2 Construction of Degree-2 RMFEs

In this subsection, we provide some explicit constructions of degree-2 RMFEs.
We begin with an RMFE of bounded length. This RMFE is derived from rational
function fields, or function fields of small genus. Then, we provide the asymptotic
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construction of degree-2 RMFE based on function field towers. This will be
useful to settle ideas that will be generalized in Section 4 when we construct
degree-D RMFEs. Furthermore, we observe that even though degree-2 RMFEs
over Galois rings were first proposed in [15], in that work the authors only
presented asymptotic constructions of degree-2 RMFEs. These objects have found
many applications in recent cryptographic constructions (cf. [7,8,5,2,21]), which
motivates the task of finding explicit constructions with clear and well determined
parameters. We achieve this in this section by providing explicit degree-2 RMFE
constructions over Galois rings, with a wide variety of parameters. We remark
that these constructions have not appeared in the literature before.

Example 2 (concrete degree-2 RMFEs of bounded dimension). Consider the ra-
tional function field over F2. Take n = 2. Choose a divisor G of degree 1 and a
place of degree 2, we obtain a (2, 3; 2)-RMFE over F2 by Lemma 5. Hence, by
Lemma 6, there is a (2, 3; 2)-RMFE over Z2ℓ for all ℓ ≥ 1. With a divisor G of
degree 2 and a place of degree 5, we obtain a (3, 5; 2)-RMFE over F2 by Lemma
5. Hence, by Lemma 6, there is a (3, 5; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.

Now, consider a function field over F8 with n rational places and genus g. Then
for any m ≤ n, we choose m distinct points and a divisor of degree m+ 2g− 1.
Let k = 2(m+2g−1)+1 = 2m+4g−1. Then we have an (m, k = 2m+4g−1; 2)-
RMFE over F8. Hence, we obtain a (2m, 6m+ 12g− 3; 2)-RMFE over GR(2ℓ, 3).
Hence, by Lemma 5, there is a (2m, 6m+12g− 3; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.
As particular cases:

– Taking (g,m) = (0, 9), we get a (2m, 6m−3; 2)-RMFE over Z2ℓ for any m ≤ 9.
For instance, we have a (8, 21; 2)-RMFE, (10, 27; 2)-RMFE, (18, 51; 2)-RMFE
over Z2ℓ for all ℓ ≥ 1.

– Taking (g,m) = (1, 14), we get a (2m, 6m + 9; 2)-RMFE over Z2ℓ for any
m ≤ 14. For instance, we have a (28, 93; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.

– Taking (g,m) = (2, 18), we get a (2m, 6m+ 21; 2)-RMFE over Z2ℓ for any
m ≤ 18. For instance, we have a (36, 129; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.

Finally, consider a function field over F32 with n rational places and genus g.
Then for any m ≤ n, we choose m distinct points and a divisor of degree m+2g−1.
Let k = 2(m+2g−1)+1 = 2m+4g−1. Then we have an (m, k = 2m+4g−1; 2)-
RMFE over F32. Hence, we obtain a (3m, 10m+20g−5; 2)-RMFE over GR(2ℓ, 5).
Hence, by Lemma 6, there is a (3m, 10m + 20g − 5; 2)-RMFE over Z2ℓ for all
ℓ ≥ 1.

– Taking (g,m) = (0, 33), we get a (3m, 10m − 5; 2)-RMFE over Z2ℓ for any
m ≤ 33. For instance, we have a (99, 325; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.

– Taking (g,m) = (1, 44), we get a (3m, 10m+ 15; 2)-RMFE over Z2ℓ for any
m ≤ 44. For instance, we have a (132, 455; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.

– Taking (g,m) = (2, 53), we get a (3m, 10m+ 35; 2)-RMFE over Z2ℓ for any
m ≤ 53. For instance, we have a (159, 565; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.

– Taking (g,m) = (3, 64), we get a (3m, 10m+ 55; 2)-RMFE over Z2ℓ for any
m ≤ 64. For instance, we have a (192, 695; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.
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Asymptotic Construction of Degree-2 RMFEs. Now we consider the
task of constructing degree-2 RMFEs of unbounded dimension. We begin by
considering two function field towers. The first tower was introduced in [22]. Let
q = r2, where r is a prime power. For t ≥ 1, let Ft = Fq(x1, x2, . . . , xt) with

xri+1 + xi+1 =
xri

xr−1
i + 1

(1)

for i = 1, 2, . . . , t− 1. Then the genus g(Ft) of Ft is at most rt and the number
N(Ft) of rational places is at least 1 + rt(r − 1).

We proceed to the second tower. Let q = p2m+1, where p is a prime and
m ≥ 1 is an integer. For t ≥ 1, let Ft = Fq(x1, x2, . . . , xt) with

Trm

(
xi+1

xq
m+1

i

)
+Trm+1

(
xq

m

i+1

xi

)
= 1 (2)

for i = 1, 2, . . . , t−1, where Tra(T ) = T +T q+ · · ·+T qa−1

. Then limt→∞ g(Ft) =

∞. Furthermore, for all t ≥ 1, we have N(Ft)
g(Ft)−1 ≥ 2(pm+1−1)

p+1+ϵ with ϵ = p−1
pm−1 ,

where g(Ft) and N(Ft) stands for the genus and the number rational places of
Ft, respectively. Coupling these observations with our previous results, we obtain
Corollary 2, which shows the existence of degree-D RMFEs over Galois rings for
any dimension and any characteristic q. Then, in Corollary 3 we apply this to
the relevant case of Galois rings over Z2k .

Corollary 2. Let F/Fq be a function field of genus g with n distinct rational
places and a place of degree k ≥ 2n+4g−1. Then there exists an (n, k; 2)-RMFE
over Fq. In particular,

(i) if q is a square, there is a constructive family of (n, k; 2)-RMFE over Fq with
n→ ∞ and k

n → 2 + 4√
q−1 ;

(ii) if q = p2m+1 for a prime p, there is a constructive family of (n, k; 2)-RMFE
over Fq with n→ ∞ and k

n → 2 + 2(p+1+ϵ)
pm+1−1 , where ϵ = p−1

pm−1 .

Proof. One can take a divisor of degree n+ 2g− 1. Then by the Riemann-Roch
Theorem, we have dimFq

L(G)−dimFq
L(G−

∑n
i=1) = deg(G)−g+1−(deg(G)−

g+ 1− n) = n. Take k = 1 + 2deg(G) = 1 + 2(n+ 2g− 1) = 2n+ 4g− 1. Then
k > 2 deg(G). Thus, by Lemma 5, we have an (n, k; 2)-RMFE over Fq.

(i) Applying to the first tower with n being the number N(Ft), we have
k
n = 2n+4g−1

n = 2 + 4g
n − 1

n → 2 + 4√
q−1 .

(ii) Applying to the second tower with n being the number N(Ft), we have
k
n = 2n+4g−1

n = 2 + 4g
n − 1

n =→ 2 + 2(p+1+ϵ)
pm+1−1 . ⊓⊔

Corollary 3. There exists a constructive family of (n, k; 2)-RMFE over Z2ℓ for
all ℓ ≥ 1 with n→ ∞ and k

n → 4.92.
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Proof. Consider the rational function field over F2. Choose a divisor G of degree
2 and a place of degree 5, we obtain a (3, 5; 2)-RMFE over F2. Hence, by Lemma
6, there is a (3, 5; 2)-RMFE over Z2ℓ for all ℓ ≥ 1.

By Corollary 2(ii), there is a constructive family of (N,K; 2)-RMFE over F32

with K
N → 2 + 20

21 = 62
21 . Thus, we obtain (N,K; 2)-RMFE over GR(2ℓ, 5) with

K
N → 2 + 20

21 = 62
21 .

By Lemma 4, we obtain a constructive family of (n = 3N, k = 5K; 2)-RMFE
over Z2ℓ with n→ ∞ and k

n → 62
21 × 5

3 ≈ 4.92. ⊓⊔

4.3 Construction of Degree-D RMFEs

Finally, in this section we provide some explicit constructions of degree-D RMFEs
for D ≥ 2. As before, we begin by considering RMFEs of bounded dimension,
which are obtained from function fields with small genus. Then, we provide
degree-D RMFEs with unbounded dimension, which are obtained by making use
of certain function field towers. We remark that these constructions are entirely
new, considering that the notion of degree-D RMFEs is introduced in our work.

Example 3 (concrete degree-D RMFEs of bounded dimension). Consider the
rational function field over F2. Choose a divisor G of degree 2 and a place of
degree 1 + 2t for all t ≥ 2, we obtain a (3, 1 + 2t; t)-RMFE over F2 by Lemma 5.
Hence, by Lemma 6, there is a (3, 1 + 2t; t)-RMFE over Z2ℓ for all ℓ ≥ 1.

Consider a function field over F22t+1 with n rational places and genus g.
Then for any m ≤ n, we choose m distinct points and a divisor of degree
m + 2g − 1. Let k = t(m + 2g − 1) + 1 = tm + 2tg − t + 1. Then we have
an (m, k = tm + 2tg − t + 1; t)-RMFE over F22t+1 . Hence, by Lemma 4, we
obtain a (3m, (1 + 2t)(tm + 2tg − t + 1); t)-RMFE over F2 by composing the
(3, 1 + 2t; t)-RMFE above and (m, tm+ 2tg− t+ 1; t)-RMFE. Hence, by Lemma
6, there is a (3m, (1 + 2t)(tm+ 2tg− t+ 1); t)-RMFE over Z2ℓ for all ℓ ≥ 1.

– Taking (g,m) = (0, 1 + 22t+1), we get a (3m, (1 + 2t)(tm− t+ 1); t)-RMFE
over Z2ℓ for any m ≤ 1 + 22t+1. For instance, we have a (3(1 + 22t+1), (1 +
2t)(t(1 + 22t+1)− t+ 1); t)-RMFE over Z2ℓ for all ℓ ≥ 1.

– Taking (t, g,m) = (3, 1, 150), we get a (3m, 7(3m+ 4); 3)-RMFE over Z2ℓ for
any m ≤ 150. For instance, we have a (450, 3178; 3)-RMFE over Z2ℓ for all
ℓ ≥ 1.

– Taking (t, g,m) = (3, 2, 172), we get a (3m, 7(3m+ 10); 3)-RMFE over Z2ℓ

for any m ≤ 172. For instance, we have a (516, 3682; 3)-RMFE over Z2ℓ for
all ℓ ≥ 1.

Asymptotic Construction of Degree-D RMFEs. We now proceed to the
asymptotic construction of degree-D RMFEs of unbounded dimension. The
construction makes use of the same function field tower we use in the asymptotic
construction of degree-2 RMFE. Our results are presented in the following two
corollaries. As with the degree-2 case, Corollary 4 shows the existence of degree-
D RMFEs over Galois rings for any dimension and any characteristic q, while
Corollary 5 is a particular case for the relevant setting of Galois rings over Z2k .
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Corollary 4. Let F/Fq be a function field of genus g with n distinct rational
places and a place of degree k. Then there exists an (n, k;D)-RMFE over Fq as
follows.

(i) if q is a square, there is a constructive family of (n, k;D)-RMFE over Fq
with n→ ∞ and k

n → D + 2D√
q−1 ;

(ii) if q = p2m+1 for a prime p, there is a constructive family of (n, k;D)-RMFE
over Fq with n→ ∞ and k

n → D + D(p+1+ϵ)
pm+1−1 , where ϵ = p−1

pm−1 .

Proof. One can take a divisor of degree n+ 2g− 1. Then by the Riemann-Roch
Theorem, we have dimFq

L(G)−dimFq
L(G−

∑n
i=1) = deg(G)−g+1−(deg(G)−

g+1−n) = n. Take k = 1+D deg(G) = 1+D(n+2g− 1). Then k > D deg(G).
Thus, by Lemma 5, we have an (n, k;D)-RMFE over Fq.

(i) Applying to the first tower in (1) with n being the number N(FD), we
have k

n = tn+2Dg−D
n = D + 2Dg

n − D
n → D + 2D√

q−1 .
(ii) Applying to the second tower in (2) with n being the number N(FD), we

have k
n = Dn+2Dg−D

n = D + 2Dg
n − D

n → D + D(p+1+ϵ)
pm+1−1 . ⊓⊔

Corollary 5. There exists a constructive family of (n, k;D)-RMFE over Z2ℓ for
all ℓ ≥ 1 with n→ ∞ and k

n → 1+2D
3 ×

(
D + D(3+1/(2D−1))

2D+1−1

)
.

Proof. Consider the rational function field over F2. Choose a divisor G of degree
2 and a place of degree 1+2D, we obtain a (3, 1+2D;D)-RMFE over F2. Hence,
by Lemma 6, there is a (3, 1 + 2D;D)-RMFE over Z2ℓ for all ℓ ≥ 1.

By Corollary 4(ii), there is a constructive family of (N,K;D)-RMFE over
F21+2D with K

N → D + D(3+1/(2D−1))
2D+1−1

. Thus, we obtain (N,K;D)-RMFE over

Rℓ(2, 1 + 2D) with K
N → D + D(3+1/(2D−1))

2D+1−1
.

By Lemma 4, we obtain a constructive family of (n = 3N, k = (1 + 2D)K)-
RMFE over Z2ℓ with n→ ∞ and k

n →
(
D + D(3+1/(2D−1))

2D+1−1

)
× 1+2D

3 . ⊓⊔

Remark 1. The degree-D RMFE over Z2ℓ presented in Corollary 5 achieves the
ratio k

n ≈ D(1+2D)
3 . By Theorem 1, this also means there exists degree-D packing

method of density roughly 3
D(1+2D) over Z2ℓ .

5 Applications of Degree-D RMFEs

Having established the relations between our novel degree-D RMFEs and the
degree-D packing methods from [12] in Section 3, and after showing explicit
constructions of degree-D RMFEs in Section 4, we now proceed to discuss settings
in which degree-D RMFEs can prove useful. At a high level, degree-D RMFEs
find applications in settings where (1) the goal is to operate over a Galois ring
GR(pk, d) of small degree d, but the underlying machinery requires a Galois
ring extension GR(pk,m) of a large degree m; and (2) degree-D computation is
needed.
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Examples of scenarios that meet these conditions include somewhat homo-
morphic encryption (SHE), secure multiparty computation (MPC), and even
zero knowledge proofs (ZKPs). However, finding direct applications of our novel
degree-D RMFEs for D > 2 to these settings is not trivial since, as we discuss in
the full version[19], degree-2 computation seems to be enough for many use-cases.
Fortunately, there are certain “less direct” scenarios that benefit from computa-
tion of higher degree, and after our initial discussion below we will focus this
section on one of these applications, which have to do with generating correlated
randomness non-interactively for use in secure multiparty computation protocols.

We refer to the full version[19] for a detailed discussion of potential applications
to SHE and MPC, but here we focus on the following.

Our main application: non-interactive correlation generation. Here,
we consider an application to MPC where high degree computation is required,
but interaction is less desired. Instead of aiming at directly improving the
efficiency of MPC protocols, we consider the different but closely related problem
of generating preprocessing material used for secure computation. To provide
context, we observe that it is a common practice to divide the execution of an
MPC protocol into two phases: an offline phase (also known as preprocessing
phase) that is independent of the inputs and hence can be executed by the
parties before the inputs are known, and an online phase, which depends on the
inputs and tends to be much lighter and more efficient than the offline phase,
on top of using in some cases less computational assumptions and simpler tools.
The motivation behind such separation is to push most of the complexities and
inefficiencies to the offline phase which, being independent of the inputs, can be
in principle executed by the parties before the inputs are known (say, overnight
before a computation that will happen next day). This way, the latency from
input provision to output computation, which is dictated by the efficiency of the
online phase, can be minimized.

The role of the offline phase is to establish certain correlated randomness
among the parties (which is, again, independent of the inputs for the computation),
which is then “consumed” in the online phase by the parties in order to securely
compute the given function. An alternative to letting the parties run the offline
phase to generate this correlated randomness themselves, which could be expensive
or prohibitive in some settings where no “overnight” computation is available, is
to let the parties receive this correlated randomness from some external source.
For example, a trusted dealer could be in charge of distributing such randomness
[25], using trusted hardware [17], or using PCGs [6].

Another approach to generating the required correlated randomness consists
of replacing the trusted dealer with a different set of parties who run an MPC
protocol among themselves to generate the required correlations. This way, there
is no single point of failure such as a trusted dealer. This approach can be
regarded as some form of “correlations-as-a-service”, which is a model that has
been considered before in the literature [31,24]. In our application, we require
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minimal interaction among the set of parties in charge of generating the correlated
randomness for other committees.

5.1 Degree-D Correlations

We denote by P = {P1, . . . , Pn} the parties in the preprocessing committee,
i.e. the parties that will generate the required correlations, and we denote by
Q = {Q1, . . . , QN} the parties in the online committee, i.e. the parties who will
“consume” these correlations to securely compute the desired functionality on
their private inputs. We consider an adversary that passively corrupts t out of the
n parties in P . For simplicity we consider correlations over Zpk , although this can
be easily generalized to Galois rings of arbitrary degree. In its more general form,
a correlation is a distribution over vectors of the form (y(1), . . . ,y(N)) ∈ (Zpk)N ,
where, in the MPC context, each party Qi is intended to receive y(i). However,
in this work we focus on a particular case of high relevance, which is the case
in which the parties obtain sharings of m values (y1, . . . , ym) ∈ Zpk following
certain distribution computable from degree-D polynomials. The sharings are
done using some target linear secret-sharing scheme over Zpk , which we denote
by ⟨·⟩. That is, the correlation consists of the parties in Q receiving sharings
(⟨y1⟩, . . . , ⟨ym⟩).

Definition 4 (Degree-D correlations). Consider a degree-D function F :
(Zpk)ℓ → (Zpk)m, meaning that, if (y1, . . . , ym) = F (x1, . . . , xℓ), then each yi is
the evaluation of a multivariate polynomial Fi(x1, . . . , xℓ) of degree at most D.
A degree-D correlation is a list of sharings of the form (⟨y1⟩, . . . , ⟨ym⟩), where
(y1, . . . , ym) = F (x) for some uniformly random x ∈ Zℓpk .

We present several examples of useful degree-D correlations in the full
version[19], which include multiplication triples, authenticated triples, and gener-
alizations.

Overview of our correlation generation techniques. From now onwards, let
F : (Zpk)ℓ → (Zpk)m be a degree-D function given by y = F (x), with yi = Fi(x)
for i ∈ {1, . . . ,m}. At a high level, our approach for the parties in P to generate
the degree-D correlations derived from F towards committee Q consist of the
following steps.

1. Parties in P generate Shamir sharings (Jx1K , . . . , JxℓK), where each xi ∈ Zpk
is uniformly random.

2. Parties in P securely compute (Jy1K , . . . , JymK), where yi = Fi(x) for i ∈
{1, . . . ,m}.

3. Parties in P reshare (Jy1K , . . . , JymK) towards Q, which enable the latter
committee to obtain (⟨y1⟩, . . . , ⟨ym⟩).

Recall that our main goal is to achieve the above while maintaining no
interaction among the parties in P . The rest of this section is devoted to describing
these ideas in detail, and overcoming the following challenges:
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– The parties in P must generate (Jx1K , . . . , JxℓK) non-interactively. This is
done with the help of pseudo-random secret-sharing (PRSS), as described
in Section 5.2. We build on top of the techniques from [3], adapting to the
case of Galois rings, and considering certain extensions we will need for our
concrete use-case.

– The parties in P must compute (Jy1K , . . . , JymK) non-interactively. This is
achieved by requiring the initial threshold in Shamir secret-sharing to be
low enough, so that D sequential multiplications can be carried out locally
without losing the ability to reconstruct the underlying secrets.

– In our case where the ring is Zpk , Shamir secret-sharing does not work
directly, and instead a Galois ring extension GR(pk, δ) of large enough degree
δ = Θ(log(n)) must be used. This is exactly where our degree-D RMFEs
come into the picture: we make use of our RMFEs to remove asymptotically
the overhead caused by this extension, achieving zero overhead and enabling
efficient correlation generation. The use of RMFEs and the use of Galois rings
introduce some changes with respect to the PRSS from [3]. This is discussed
below.

5.2 Pseudo-Random Secret-Sharing

Let R = GR(pk, δ). Committee P generates the Shamir sharings (Jx1K , . . . , JxℓK)
where xi ∈R R for i ∈ {1, . . . , ℓ} using pseudo-random secret sharing, or PRSS
for short, which is a technique that enables the parties in P to generate Shamir
shares of random values without interaction, assuming only a setup phase where
the parties receive certain “seeds” that are used to feed pseudo-random functions
that will determine the corresponding shares. Recall that t is the number of
corrupted parties in P, and D is the degree of the correlation. We assume that
t · D < n, and we let d =

⌊
n−1
D

⌋
≥ t, which is the largest integer such that

d ·D < n. The Shamir sharings that we generate will have degree d, which is in
principle larger than the corruption threshold t.

We use JxKd = (z1, . . . , zn) to denote packed secret-sharing of a vector x ∈ Rκ,
meaning that there exists a polynomial f(X) over R of degree at most d such
that zi = f(αi) for i ∈ {1, . . . , n} and xj = f(βj) for j ∈ {1, . . . , κ}, where
{α1, . . . , αn, β1, . . . , βκ} is an exceptional set over R. It is well known that the
secret x is determined by any d + 1 shares, but given any t of these shares,
the secret vector x is kept private. For our construction we will actually need
{β0}∪{α1, . . . , αn, β1, . . . , βκ} to be an exceptional set, which requires 1+n+κ ≤
pδ.

Recall that R = GR(pk, δ). From now on we fix a degree-D RMFE (ϕ :
Zrpk → R,ψ : R→ Zrpk). In our work, we make use of PRSS to non-interactively
generate sharings of the form JxKd, where x = (x1, . . . , xκ) with xi ∈ Im(ϕ) for
i ∈ {1, . . . , κ}. Inspired by the approach in [3], we construct a PRSS solution
suited for our algebraic structure R, which is in general not a field, and also
ensuring the underlying secrets are uniformly random in the Zpk -submodule
(Im(ϕ))κ, rather than just being uniformly random in Rκ.
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Covering designs. The main insight in [3] is that any PRSS solution is closely
tied to the notion of a covering design, and that the latter become more efficient
as the gap between the adversarial threshold t and the desired degree d increases.
We begin by reusing the definition of a covering design from [3].

Definition 5 (Covering design, Definition 3.2 in [3]). Fix integers 0 <
t ≤ m ≤ n, and let C = (S1, . . . , Sℓ) be a collection of ℓ different subsets
Sj ⊆ {1, . . . , n}, all of size |Sj | = m. C is said to be an (n,m, t)-cover if for
every size-t subset T ⊆ {1, . . . , n}, |T | = t, there is a set Sj ∈ C that covers it,
i.e. T ⊆ Sj.

The goal of pseudo-random secret-sharing (PRSS) as we use it in our work
is to enable n parties P = {P1, . . . , Pn} to generate a large amount of sharings
JrKd, where r is uniformly random in the Zpk -module (Im(ϕ))κ. This was first
considered in [14] for the case d = t (i.e. the degree d equals the desired threshold
t, and κ = 1 so only one secret can be stored), and the secret lies in R with k = 1
(i.e. the algebraic structure is a finite field and the secret is uniform in the field
itself, not in a subset of it). These traditional solutions require the parties to
hold an exponential amount of different seeds, or more precisely, each party must
hold

(
n
t

)
seeds, which is exponential in n for parameter ranges of interest. In the

recent work of [3], a generalization of the techniques in [14] was presented, where
the authors considered the case in which t < d, or in other words, the case where
there is a gap between the threshold and the degree, which enables for packing
more than one secret using packed secret-sharing. In [3], the authors show that
such gap can be used to drastically reduce the amount of seeds required to achieve
PRSS. We draw inspiration from their construction to design our PRSS solution.

PRSS construction. Now we are ready to describe our PRSS solution. Recall
that the goal is to let the parties obtain a large amount of sharings JxKd where
each xi is uniformly random in Im(ϕ). Also, recall that the packing parameter
is 1 ≤ κ ≤ (d − t) + 1. Let C′ = {S′

1, . . . , S
′
ℓ′} be a (n, d − κ + 1, t)-cover.

Consider the collection C = {S′ \ {j} : S′ ∈ C′, j ∈ S′} = {S1, . . . , Sℓ}, which
contains ℓ ≤ ℓ′(d − κ + 1) different subsets, each of size d − κ. Let us denote
Si = {1, . . . , n} \ Si, for each i ∈ {1, . . . , ℓ}. Notice that |Si| = n− (d− κ).

PRSS Construction

Setup: The parties start with the following setup.

1. For each Si as defined above, sample a uniformly random key ki ∈
{0, 1}κ for a PRF, which we denote by PRFki(·).

2. Each party Pj for j ∈ {1, . . . , n} receives the seeds ki for every
i ∈ {1, . . . , ℓ} such that Pj ∈ Si.

Share generation: In order to non-interactively generate shares JrKd
where r is uniformly random in the Zpk -module (Im(ϕ))κ ⊆ Rκ, the
parties proceed as follows.
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1. For each Si = {1, . . . , n}\Si, consider the polynomial PSi
(X) obtained

by interpolating the following conditions: PSi
(X) equals 0 if X = αh

with h ∈ Si, it equals rij if X = βj ∈ {β1, . . . , βκ}, and it equals si if
X = β0, where (ri1, . . . , riκ∥si) = PRFki(id, j) ∈ (Im(ϕ))κ⊕R, where
id is some common identifier corresponding to the current PRSS run
(e.g. a counter). Note that:
– This polynomial has degree at most d since there are (d − κ) +
κ+ 1 = d+ 1 conditions above given that |Si| = d− κ.

– Each party Pj ∈ Si can compute the polynomial PSi
(X) (and in

particular PSi
(αj)).

– Each party Pj /∈ Si can trivially compute PSi
(αj), since this value

is equal to zero.
2. Define the polynomial Q(X) :=

∑ℓ
i=1 PSi

(X), which has degree at most
d. From the observations above, each party Pj can compute Q(αj).

3. The parties output the shares JrKd = (Q(α1), . . . , Q(αn)), where
r = (Q(β1), . . . , Q(βκ)).

Theorem 3. Fix integers 0 < t ≤ d ≤ n and 1 ≤ κ ≤ (d− t)+1. Given a size-ℓ′
(n, d − κ + 1, t)-cover, the construction above is a PRSS solution for t-secure
distribution of sharings JrKd where r ∈R (Im(ϕ))κ, with the following complexity
measures:

– The total number of different PRSS seeds is ℓ ≤ ℓ′(d− κ+ 1), and
– Each key is received by |Si| = n− (d− κ) parties.
– In average, each party in P stores

∑ℓ
i=1 |Si|
n ≤ ℓ′(d−κ+1)(n−(d−κ))

n .

Proof. The claimed complexities can be verified by inspection. For the purpose
of the proof we assume that the values (ri1, . . . , riκ∥si) are uniformly random
(instead of pseudo-random) in (Im(ϕ))κ ⊕R. The general case is achieved by a
standard reduction to the security of the PRF.

Let T ⊆ {1, . . . , n} be any set with |T | = t. Such set determines t shares
Q(αj) for j ∈ T . To see that the PRSS construction is secure we need to show
that, even with the knowledge of the seeds of parties Pi for i ∈ T , the output
polynomial Q(X) is uniformly random subject to its shares for indices j ∈ T
being equal to Q(αj), and its secrets being uniformly random in Im(ϕ). Clearly,
Q(X) has degree ≤ d. From this, it suffices to show that, even with knowledge of
(ri1, . . . , riκ∥si) for i such that Si ∩ T ≠ ∅ (i.e. knowledge of ki), Q(X) satisfies
the following:

1. Q(αj) =
∑
Si∩T ̸=∅ PSi

(αj) for j ∈ T (these are the shares corresponding
to the indices in T , which are computable from (ri1, . . . , riκ∥si) for Si with
Si ∩ T ̸= ∅).

2. (Q(β1), . . . , Q(βκ)) ∈R (Im(ϕ))κ.
3. Q(X) evaluated at any other λ := d+1−κ− t ≥ 0 points is uniformly random

in Rλ.
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Now, observe that, since C′ = {S′
1, . . . , S

′
ℓ′} is a (n, d−κ+1, t)-cover, we have

that there exists S′ ∈ C′ such that T ⊆ S′. Notice that |S′\T | = (d−κ+1)−t = λ.
Let us write S′ \ T = {µ1, . . . , µλ}. By definition of C, for each j ∈ {1, . . . , λ}
there exists ij ∈ {1, . . . , ℓ} such that Sij = S′ \ {µj}. Notice that T ⊆

⋂λ
j=1 Sij .

Let us write Q(X) = Q′(X) +Q′′(X), where Q′(X) =
∑
i∈{i1,...,iλ} PSi

(X) and
Q′′(X) =

∑
i∈{1,...,ℓ}\{i1,...,iλ} PSi

(X). Property (1) above follows directly from
the definition of Q(X). Notice that the polynomials Q′ and Q′′ follow independent
distributions, so to prove properties (2) and (3) it suffices to show they hold for
the polynomial Q′(X). Also, importantly, notice that for every j ∈ {1, . . . , λ}, it
holds that Sij ∩ T = ∅ and therefore (rij1, . . . , rijκ∥sij ) are uniformly random in
(Im(ϕ))κ⊕R. Due to this, (PSij

(β1), . . . , PSij
(βκ)) = (rij1, . . . , rijκ) ∈R (Im(ϕ))κ,

which proves property (2).
For property (3), we claim that (Q′(µ1), . . . , Q

′(µλ)) is uniformly random
in Rλ. It is useful to observe that we can write each PSij

(X) as PSij
(X) =

sij · Hij (X) +
∑κ
a=1 rija · GSij

,a(X). where all GSij
,a(αh) = Hij (αh) = 0 for

h ∈ Si, but also Hij (βh) = 0 for h ∈ {1, . . . , κ}, and equals 1 if h = 0; and
finally GSij

,ℓ(βh) = 0 for h ∈ {0, 1, . . . , κ} \ {j}, and GSij
,a(βj) = 1. Notice that

deg(GSij
,a),deg(Hij ) ≤ d + 1 as we only interpolate GSij

,a(X) and Hij (X) at
d− κ+ 1 + κ+ 1 = d+ 2 points.

In addition to the above, we observe that for every j, j′ ∈ {1, . . . , λ} it holds
that µj′ ∈ Sij if j ̸= j′ and, otherwise µj′ ∈ Sij . Therefore, PSij

(αµj′ ) = 0 if
j ̸= j′. Otherwise, if j = j′, we have that PSij

(αµj ) = sij ·Hij (αµj ) + zj , where
zj =

∑κ
h=1 rijh ·GSij

,h(αµj
).

Importantly, since zj is independent of sij , and sij is uniformly random,
for Property (3) it suffices to show that Hij (αµj ) is invertible in R. By the
definition of Hij (X), we have Hij (X) = cij ·

∏
h∈Sij

(x−αh) ·
∏κ
h=1(x− βh) with

Hij (β0) = cij ·
∏
h∈Sij

(β0 − αh) ·
∏κ
h=1(β0 − βh) = 1. This implies that cij is

invertible in R. Combining with the fact that {α1, . . . , αn, β0, β1, . . . , βκ} is an
exceptional set over R and µj /∈ Sij implies that

Hij (αµj
) = cij

∏
h∈Sij

(αµj
− αh)

κ∏
h=1

(αµj
− βh)

is invertible in R. This leads to the claim that PSij
(αµj ) distributes uniformly at

random over R.
Putting the pieces together, we see then that (Q(αµ1

), . . . , Q(αµλ
)) is equal

to (sij ·Hij (αµj
) + zj)

λ
j=1, which is in a 1-1 correspondence with (si1 , . . . , siλ),

which is uniformly random in Rλ. This concludes the proof. ⊓⊔

On the amount of seeds. An important metric for the efficiency of a PRSS
solution is the amount of seeds that every party should hold. In our case, this
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corresponds to (ℓ′(d− κ+ 1)(n− d+ κ))/n, where ℓ′ is the size of the smallest
(n, d− κ+ 1, t)-cover. As noted in [3], there is not a closed expression for ℓ′, but
concrete lower and upper bounds are known in several cases. First, recall that
1 ≤ κ ≤ d− t+ 1. In the case in which κ = d− t+ 1, we have that d− κ+ 1 = t,
and in this case the smallest (n, t, t)-cover is comprised of all possible subsets of
size t, so ℓ′ =

(
n
t

)
.

For the case in which κ < d− t+ 1, smaller covering designs can be obtained.
For example, if n = 72, t = 6 and d = 23 (as we will see in Section 5.3, taking
d = 23 < 72/3 = n/3 enables us to handle degree-3 correlations) and d−κ+1 = 18
(so κ = 6), the best known size of a (72, 18, 6)-cover is ℓ′ = 10092.7 Assuming
128-bit seeds, the average seed size per party becomes only ≈ 2.2Mb.

5.3 Non-Interactive Correlation Generation

With the building blocks presented previously, we are ready to present our end-
to-end protocol for the committee P to generate a sample from the degree-D
correlation towards committee Q. Recall that R = GR(pk, δ), and that (ϕ : Zrpk →
R,ψ : R→ Zrpk) is a degree-D RMFE. The correlation we aim at generating is
(⟨y1⟩, . . . , ⟨ym⟩), where yi = Fi(x) ∈ Zpk for some degree-D polynomial Fi over
Zpk , and x ∈ Zℓpk is uniformly random. Jumping ahead, due to the use of RMFEs
and packed secret-sharing, our method not only produces one single sample from
such distribution, but it actually generates multiple samples (⟨y1jl⟩, . . . , ⟨ymjl⟩)
for j ∈ {1, . . . , κ} and l ∈ {1, . . . , r}.

We first introduce some preliminaries. Recall that t < n/D is the number
of corrupted parties in P, and d =

⌊
n−1
D

⌋
, so t ≤ d < n. Also recall that

1 ≤ κ ≤ (d− t)+1 is the amount of secrets packed. We denote by π : R→ (Zpk)δ
the natural bijection between R and δ-dimensional vectors over Zpk . As before,
we use JxKd = (z1, . . . , zn) to denote Shamir secret-sharing of degree d of a
secret x = (x1, . . . , xκ) ∈ Rκ, meaning there is a polynomial f(X) over R of
degree at most d such that zi = f(αi) for i ∈ {1, . . . , n} and xj = f(βj) for
j ∈ {1, . . . , κ}, where {α1, . . . , αn, β1, . . . , βκ} is an exceptional set over R. A
simple but important property of packed secret-sharing we will make use of
is that, if JxKd1 = (z1, . . . , zn) and JyKd2 = (w1, . . . , wn), then Jx ⋆ yKd1+d2 =
(z1 · w1, . . . , zn · wn), where ⋆ denotes component-wise product. This implies
that, when the parties in P hold packed sharings, they can locally compute their
product of their shares to obtain shares of the product of the underlying secrets,
albeit with a larger degree.

For j ∈ {1, . . . , κ} and h ∈ {1, . . . , q + 1} for some q, we let λq,j,h ∈ R
be the coefficient such that, for every polynomial f(X) over R of degree at
most q, it holds that f(βj) =

∑d+1
h=1 λq,j,hf(αh). These correspond to standard

Lagrange coefficients used in polynomial interpolation. Given c ∈ R, we denote
by Mc ∈ Zδ×δ

pk
the matrix that represents multiplication by c over Zδpk , that is,

for every x ∈ R it holds that π(c · x) = Mc · π(x). Finally, we use Mϕ ∈ Zδ×r
pk

7 Such covering design sizes can be found in https://www.dmgordon.org/cover/.
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and Mψ ∈ Zr×δ
pk

to denote the matrices representing the linear transformations
π ◦ ϕ : Zrpk → Zδpk and ψ ◦ π−1 : Zδpk → Zrpk , respectively. In other words,
Mϕ · x = π(ϕ(x)) for every x ∈ Zrpk and Mψ · y = ψ(π−1(y)) for every y ∈ Zδpk .

With this notation at hand, we are ready to introduce our protocol to generate
the desired correlation.

Degree-D correlation generation

The following protocol enables the parties in Q to receive κ · r degree-D
correlations (⟨y1jl⟩, . . . , ⟨ymjl⟩) for j ∈ {1, . . . , κ} and l ∈ {1, . . . , r},
generated non-interactively by the parties in P. Assume t ≤ d. Let
d =

⌊
n−1
D

⌋
, and κ = (d− t) + 1. Let Fi : Zℓpk → Zpk be a polynomial over

Zpk of degree Di ≤ D.

Setup: The parties in P have the PRSS seeds from Thm 3.
Protocol: The parties proceed as follows:

1. The parties in P use PRSS to obtain non-interactively
(Ju1Kd , . . . , JuℓKd), where each ui is equal to (ui1, . . . , uiκ) ∈ Rκ,
with uij = ϕ(xij) ∈ R, where xij = (xij1, . . . , xijr) ∈ (Zpk)r.

2. The parties in P locally compute (Jv1Kd·D1
, . . . , JvmKd·Dm

), where
vij = Fi(u1j , . . . , uℓj) ∈ R for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , κ}.
Notice that here, Fi is treated as a polynomial over R. We denote
di = d ·Di and JviKdi = (v

(1)
i , . . . , v

(n)
i ).

3. For each i ∈ {1, . . . ,m}, each Ph ∈ P with h ∈ {1, . . . , di + 1}
computes w

(h)
i = π(v

(h)
i ) ∈ (Zpk)δ. Then Ph distributes shares

(⟨w(h)
i1 ⟩, . . . , ⟨w(h)

iδ ⟩) to the parties in Q.
4. For each i ∈ {1, . . . ,m}, and for each j ∈ {1, . . . , κ}, the par-

ties in Q compute locally (⟨zij1⟩, . . . , ⟨zijδ⟩)⊺ =
∑di+1
h=1 Mλdi,j,h

·
(⟨w(h)

i1 ⟩, . . . , ⟨w(h)
iδ ⟩)⊺.

5. The parties in Q compute locally (⟨yij1⟩, . . . , ⟨yijr⟩)⊺ = Mψ ·
(⟨zij1⟩, . . . , ⟨zijδ⟩)⊺. Finally, the parties in Q output the r · κ cor-
relations (⟨y1jl⟩, . . . , ⟨ymjl⟩) for j ∈ {1, . . . , κ} and l ∈ {1, . . . , r}.

Theorem 4. At the end of the protocol above, the r·κ correlations {(⟨y1jl⟩, . . . , ⟨ymjl⟩)}κ,rj=1,l=1

that the parties in Q obtain follow the desired correlation distribution. Moreover,
a passive adversary corrupting at most t parties in Q does not learn anything
about the underlying secrets.

Proof. Privacy follows straightforwardly from the properties of the PRSS con-
struction, discussed in Section 5.2. Therefore, it only remains to be seen that the
sharings output by the parties in Q follow the correct distribution.

We begin by observing that (w
(h)
i1 , . . . , w

(h)
iδ ) = π(v

(h)
i ) by definition. Then,

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , κ}, the definition of the matrix Mλdi,j,h
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implies that

(zij1, . . . , zijδ)
⊺ =

di+1∑
h=1

Mλdi,j,h
· (w(h)

i1 , . . . , w
(h)
iδ )⊺ (by definition)

=

di+1∑
h=1

Mλdi,j,h
· π(v(h)i ) (observation above)

=

di+1∑
h=1

π(λdi,j,h · v
(h)
i ) (definition of Mλdi,j,h

)

= π

(
di+1∑
h=1

λdi,j,h · v
(h)
i

)
(linearity of π)

= π (vij) (definition of {λdi,j,h}).

Now, notice that since (yij1, . . . , yijr)⊺ =Mψ·(zij1, . . . , zijδ)⊺ and (zij1, . . . , zijδ) =
π(vij) from the analysis above, the definition of Mψ implies that (yij1, . . . , yijr) =
ψ(vij). Furthermore, each vij ∈ R for i ∈ {1, . . . ,m} and j ∈ {1, . . . , κ} satisfies
vij = Fi(u1j , . . . , uℓj) = Fi(ϕ(x1j), . . . , ϕ(xℓj)). Since Fi has degree Di ≤ D, the
properties of the degree-D RMFE (ϕ, ψ) imply that, for each l ∈ {1, . . . , r}, it
holds that

(ψ(vij))l︸ ︷︷ ︸
l-th coordinate of ψ(vij) ∈ Zr

pk

= (ψ(Fi(ϕ(x1j), . . . , ϕ(xℓj))))l = Fi(x1jl, . . . , xℓjl).

However, recall that (yij1, . . . , yijr) = ψ(vij). This implies that (ψ(vij))l is
precisely equal to yijl, so yijl = Fi(x1jl, . . . , xℓjl).

The above leads us to conclude that the outputs (⟨y1jl⟩, . . . , ⟨ymjl⟩) for j ∈
{1, . . . , κ} and l ∈ {1, . . . , r} follow the correct correlation. This is because, for
every j, l, each yijl is equal to Fi(r), where r = (x1jl, . . . , xℓjl) ∈ Zℓpk , and by the
properties of the PRSS, the distribution of this r is uniformly random over Zℓpk ,
as required by the correlation. ⊓⊔

Communication complexity. In step 3 of our correlation generation protocol,
for every i ∈ {1, . . . ,m}, each party Ph ∈ P with h ∈ {1, . . . , Di · n + 1} must
distribute a total of δ shares to each of the N parties in Q. Denoting by s the size
in bits of each ⟨·⟩-sharing corresponding to each party in Q, this communication
sums up to δ ·N · s ·

∑m
i=1(Di ·d+1). Since κ · r correlation samples are produced

in total, and taking into account that Di ≤ D and κ = (d− t)+1 with d =
⌊
n−1
D

⌋
,

the amortized total cost per correlation is

Ns·
(
δ
∑m
i=1(Di · d+ 1)

κr

)
= O

(
Ns

(
δ

r

)(
d

κ

)
(mD)

)
= O

(
Ns

(
δ

r

)(n
κ

)
m

)
.

Notice now that we use the construction of degree-D RMFE (ϕ, ψ) in Corollary
5. This map yields δ

r ≈ (1+2D)D
3 , which crucially, is constant in the number of
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parties n. In contrast, if we did not use our degree-D RMFEs, there would be an
overhead that is logarithmic in n. For the factor n/κ, recall that κ is a term such
that 1 ≤ κ ≤

⌊
n−1
D

⌋
− t+ 1. In the extreme case in which κ = 1, the factor n/κ

equals n, so we get a communication complexity that is quadratic in n, but we get
the smallest possible covers. We can achieve linear communication complexity
by taking κ = Ω(n), although this would increase the cover sizes. We refer the
reader to the discussion in [3] for more details on known cover sizes.
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