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Abstract

We construct a new post-quantum cryptosystem which consists of enhancing CSIDH and similar
cryptosystems by adding a full level N structure. We discuss the size of the isogeny graph in this new
cryptosystem which consists of components which are acted on by the ray class group for the modulus
N . We conclude by showing that, if we can efficiently find rational isogenies between elliptic curves, then
we can efficiently find rational isogenies that preserve the level structure. We show that one can reduce
the group action problem for the ray class group to the group action problem for the ideal class group.
This reduces the security of this new cryptosystem to that of the original one.

1. Introduction

Group actions are a promising direction in post-quantum cryptography. In 1997, Couveignes
proposed the first isogeny-based group action cryptosystem [4] which used ordinary elliptic curves
over a finite field Fq and whose difficulty relied on the isogeny problem. This cryptosystem was
later independently rediscovered by Rostovtsev and Stolbunov [7]. In 2018, the CSIDH [2]
cryptosystem was proposed. It was based on the Couveignes-Rostovtsev-Stolbunov (CRS) key
exchange but constructed using supersingular curves over Fp instead of ordinary curves over
Fq. The authors chose supersingular curves for various efficiency reasons which are explained
in detail in [2]. When CSIDH was initially proposed, the authors claimed the key exchange
was over 2000 times faster than the state-of-the-art CRS implementation at the time. However,
even with this speedup, a drawback of CSIDH is that it is still considered to be inefficient when
compared to other post-quantum algorithms.

In 2011, De Feo, Jao, and Plût proposed an alternative isogeny-based scheme, supersingular
isogeny Diffie-Hellman (SIDH), which was based on the path finding problem in the full isogeny
graph of supersingular curves[5]. The scheme involved publishing images of torsion points to
create a Diffie-Hellman type protocol to overcome the non-commutativity of the endomorphism
rings. These image points turned out to be problematic and this scheme was later shown to be
insecure[1]. Our proposal also uses torsion points, but in a different way from SIDH.

In this paper, we will construct a modification of CSIDH which involves adding a level N
structure. The hope is to gain additional security by choosing appropriate N which in turn
would allow us to reduce the size of prime field we work over and thus speed up computations.
We will then show if we can solve the isogeny problem presented in CRS and CSIDH that we
can solve this new problem efficiently and give an algorithm for doing so.

1.1. Preliminaries. We begin by briefly recalling the CSIDH cryptographic primitive and refer
the reader to [2] for the full details.

For a supersingular elliptic curve E/Fp, we will let Endp(E) ⊆ End(E) denote the subring
of End(E) that consists of Fp-rational endomorphisms of E. Although End(E) is an order in a
quaternion algebra, this subring is in fact isomorphic to an order O in an imaginary quadratic
field K.
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Figure 1. A commutative diagram of CRS-like key exchange protocols.

For an ordinary elliptic curve E/Fq, where q = pk for some k ∈ Z, the whole endomorphism
ring End(E) is an order O in an imaginary quadratic field K.

For a given order O, we are interested in EllO(Fp) the set of supersingular elliptic curves
whose Fp-rational endomorphism rings are O.

It is a well-known fact that the class group Cl(O) acts simply transitively on EllO(Fp)[9,
Corollary II.1.2]. The CSIDH key exchange is similar to the CRS cryptosystem [4, 7]: Alice
samples an element [a] ∈ Cl(O), computes [a] ∗ E0 = Ea, for some starting curve E0 and sends
Ea to Bob. Bob does the same but with an element [b] ∈ Cl(O) and their shared secret is
[a][b]E0 = Eab = Eba = [b][a]E0. This key exchange works due to the commutativity of the
action of Cl(O) as shown in Figure 1.

2. CSIDH with Level Structure

In this section, we will discuss modifying CSIDH by adding a level structure. Our motivation
is to obtain a larger group action than standard CSIDH which would allow us to with a smaller
prime. Recall the security of CSIDH is dependent on #Cl(O) which is asymptotically known

to be #Cl(O) ≈
√
|∆| [8] where ∆ = t2 − 4p and t ∈ Z is the trace of Frobenius. Since we are

working with supersingular curves over Fp, t = 0 and so the size of the class group is determined
by our choice of p.

Definition 2.1. Consider an elliptic curve E and a prime N with (p,N) = 1. Then a Γ(N)-
structure on E is a pair of points (P,Q) that is a basis for E[N ].

When considering the isogeny graph of EllO(Fp), we can add level structure to the graph as
follows:

Definition 2.2. Let N be a prime with (p,N) = 1 and

V = {(E,P,Q) | E ∈ EllO(Fp), P,Q a basis for E[N ]} / ∼
be a set of vertices modulo the equivalence relation (E,P,Q) ∼ (E′, P ′, Q′) if there exists an
isomorphism f : E → E′ with f(P ) = P ′ and f(Q) = Q′. There is an edge between vertices
(E,P,Q), (E′, P ′, Q′) if there is an isogeny φ : E → E′ with φ(P ) = P ′ and φ(Q) = Q′. We say
this graph has Γ(N)-structure or full level N structure.

If we consider the isogeny graph G with vertex set V = EllO(Fp), we can add a Γ(N) structure
to it to obtain a new graph G(N). It is clear that #G(N) > #G. In fact, it can be shown

(1) #G(N) = #G
(N2 −N)(N2 − 1)

2
.

As such, we have a group larger than the usual class group acting on this set. We can observe
this by considering the multiplication-by-m map where (m,N) = 1. For a curve E on G, we have
[m] : E 7→ E while for the triple (E,P,Q) on G(N) we have [m] : (E,P,Q) 7→ (E,mP,mQ).

Definition 2.3. LetK be an imaginary quadratic field, O ⊆ K an order, and m ⊆ O a modulus.
We let Im denote the group of fractional ideals which are coprime to m, and Pm,1 ⊆ Im denote
the subgroup generated by principal ideals (α) where α ≡ 1 mod m. The ray class group for
the modulus m is the quotient

Clm(O) = Im/Pm,1.



CSIDH WITH LEVEL STRUCTURE 3

There exists an algorithm [3] to compute Clm(O) and its size hm.

Proposition 2.4. Let O be an order in an imaginary quadratic field K, and m a modulus for
K. The class number hm := #Clm(O) is finite and given by

hm(O) =
#(O/m)×h(O)

[O× : O×
m ]

where h(O) = #Cl(O) and O×
m is the group of units O× congruent to 1 modulo m.

Proof. See [3, Corollary 3.2.4]. □

Setting m = (N), the group action we have on G(N) comes from Clm(O). The cardinality hm

of Clm(O) is at most (N2 − 1)h(O) while equation (1) gives #G(N) = (N2−1)(N2−N)h(O)
2 , and

so G(N) is disconnected.
We will now consider a slight modification of the CSIDH key exchange whereby we add a

level structure to EllO(Fp). We choose a prime N with (p,N) = 1, along with a basis P0, Q0

of E0[N ]. As in the original scheme, sample an element [a] ∈ Clm(O) with (N(a), N) = 1 and
compute the isogeny φa induced by [a]. This time, however, in addition to sending Ea to Bob,
she also sends a basis Pa, Qa of Ea[N ] where φa(P0) = Pa, φa(Q0) = Qa, and similarly for Bob.
The shared secret is then (Eab, Pab, Qab) where Pab = Pba by the commutativity of Figure 1.

In terms of security of such a scheme, consider the following. Suppose there is a secret isogeny
φ : E0 → E1 with φ(P0) = P1 and φ(Q0) = Q1 where (Pi, Qi) is a basis for Ei[N ], and we can
find an isogeny ψ : E0 → E1 but with ψ(P0) = P,ψ(Q0) = Q for (P,Q) a basis for E1[N ].
Any additional security of this scheme would come from the fact that the isogeny graph is
disconnected and the ability to solve standard CSIDH (i.e. given E0, E1, find φ : E0 → E1) may
not imply we could find an isogeny mapping the N -torsion points correctly. This leads to the
natural question: does there exist an endomorphism α = a+ bπ such that the following system

α(P ) = aP + bπP = P1,

α(Q) = aQ+ bπQ = Q1

is consistent? Recall we are interested in endomorphisms of the form α = a + bπ since we are
working with curves whose Fp endomorphism rings are of the form O = Z[π] and the action of
the class group corresponds to Fp-rational isogenies.

If we consider adding a Γ(N)-structure to the isogeny graph, then the vertices (E0, P0, Q0),
(E1, P1, Q1), and (E1, P,Q) are certainly all on the same component. Further, we notice not all
principal ideals act trivially on these vertices.

Proposition 2.5. Let G(N) be an isogeny graph with Γ(N)-structure and vertex set V as in
Definition 2.2. Then the subgroup of I(N) that acts trivially on V is given by

PN,±1 = {(α) = αO|(α) ≡ ±1 mod (N)} .

Proof. Consider linearly independent P,Q ∈ E[N ]. Suppose (α) ≡ 1 mod (N). Then (α) =
1 + βN for some β ∈ O. It follows that αP = P and αQ = Q since [N ]P = [N ]Q = OE . Now
suppose α ∈ O such that α |E[N ]= 1. For α ̸= 1, there exist P ∈ E such that αP ̸= P. Then
α − 1 is an isogeny. We have that E[N ] ⊆ ker(α − 1), and so there exists an isogeny φ such
that α− 1 = φ ◦ [N ] =⇒ α ≡ 1 mod (N). Similarly for α ≡ −1 mod (N) by the equivalence
relation in Definition 2.2, (E,P,Q) ∼ (E,−P,−Q) with isomorphism [−1]. □

We now give the main result of this paper. We will restrict ourselves to the CSIDH problem
with elliptic curves E0, E1 with Fp-rational endomorphism rings O = Z[π].

Theorem 2.6. Let N be prime with N | p+ 1 and {P0, Q0} , {P1, Q1} be bases of E0[N ], E1[N ]
respectively along with an isogeny φ : E0 → E1 such that φ(P0) = P1, φ(Q0) = Q1. Suppose we
can find an isogeny ψ : E0 → E1 with degψ = m coprime to N and ψ(P0) = P,ψ(Q0) = Q.
Then there exists an endomorphism α : E1 → E1 of the form α = a + bπ such that α(P ) =
P1, α(Q) = Q1.
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Figure 2. Vertices connected by an edge on an isogeny graph with no level structure.
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Figure 3. A subgraph of a Γ(N) graph with degψ = m.

Proof. Consider the map φ ◦ ψ̂ where ψ̂ is the dual isogeny of ψ. This is certainly an endo-
morphism of E1. In the isogeny graph with level structure, this map corresponds to the walk
E1 → E0 → E1 as seen in Figure 2. However, this is not the case when level structure is added
as can be seen in Figure 3. We then have

φ ◦ ψ̂(P ) = φ ◦ ψ̂ ◦ ψ(P0)

= φ ◦ [m](P0)

= [m]φ(P0)

= [m](P1)

where [m] is the multiplication-by-m map. Since (N,m) = 1, there exists an m′ such that

mm′ ≡ 1 (mod N). Then we have α = [m′] ◦ φ ◦ ψ̂ and α(P ) = P1, α(Q) = Q1. To see α is of

the form a+ bπ with a, b ∈ Z, we observe that [m′], φ, and ψ̂ are all rational and so α must also
be rational. □

Remark 2.7. When working with ordinary curves as in [4, 7], the endomorphism α will not
necessarily be of the form α = a+ bπ since we may not have O = Z[π].

We emphasise the above only shows the existence of such an endomorphism and does not say
anything about the difficulty in computing such an endomorphism. The problem of computing
α is similar to the discrete log problem, but where the coefficient ring is O/(N) instead of the
usual Z/NZ.

Definition 2.8. Let E/K be an elliptic curve with char(K) = p and N a positive integer with
(N, p) = 1. The Weil pairing is a bilinear form

eN : E[N ]× E[N ]→ µN

where µN denotes the multiplicative group of Nth roots of unity in K.

Proposition 2.9. The Weil pairing eN satisfies the following properties.

(1) Bilinear: For P,Q,R ∈ E[N ], eN (P + Q,R) = eN (P,R)eN (Q,R) and eN (P,Q + R) =
eN (P,Q)eN (P,R).

(2) Alternating: For P,Q ∈ E[N ], eN (P,Q) = eN (Q,P )
−1 and eN (P, P ) = 1.

(3) Non-degenerate: For P ∈ E[N ], if eN (P,Q) = 1 for all Q ∈ E[N ], then P = O.
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(4) Galois-invariant: If E is defined over K, then for all σ ∈ GalK/K, eN (σ(P ), σ(Q)) =
σ(eN (P,Q)).

(5) Compatible: If P ∈ E[NN ′] and Q ∈ E[N ], then eNN ′(P,Q) = eN ([N
′]P,Q).

Proof. See [10, Proposition III.8.1]. □

An application of the Weil pairing is the MOV attack [6] which reduces the discrete log
problem (DLP) on an elliptic curve E to the DLP in a multiplicative group in the field which
E is defined over. The following algorithm is from [6] and E is defined over Fq. Observe that

Algorithm 1 ([6, Algorithm 2])

Input: An element P ∈ E[N ] and R ∈ ⟨P ⟩ .
Output: An integer r such that R = rP.

Find k ∈ Z such that E[N ] ⊆ E(Fqk).
Find Q ∈ E[N ] such that eN (P,Q) is a primitive Nth root of unity.

Compute s = eN (R,Q).

Compute the discrete log of s to the base eN (P,Q) in Fqk .

s = eN (R,Q) = eN (rP,Q) = eN (P,Q)r. The authors of [6] remark that Algorithm 1 does not
provide a method for finding Q as required. As we will see below, this does not apply to our
situation since N is prime and no extra points need to be computed. The idea is to pre-compute
eN (P, πP ) then apply Algorithm 1 once with input P1, πP and again with P1, P to recover a, b
respectively.

For a given basis P,Q of E1[N ], we will assume P is not an eigenvector of π. If it is, we swap
P and Q. This ensures that the Weil pairing eN (P, πP ) will be an Nth root of unity. We know
there exists an α as above by Theorem 2.6, and so we can find α by solving the DLP

eN (P1, πP ) = eN (aP + bπP, πP )

= eN (P, πP )
a

for the integer a. Similarly, we can solve

eN (P, P1) = eN (P, aP + bπP )

= eN (P, πP )
b

for b and set α = a+ bπ.
It is possible for both basis points to be eigenvectors of π. Since we have chosen N such that

N | p+ 1, we see the characteristic polynomial p(X) of π modulo N is given by

p(X) = X2 − 1 (mod N)

and so there exist eigenvectors of π in E[N ] with eigenvalues ±1. Assume P,Q are such eigen-
vectors with πP = P and πQ = −Q. We want to find a, b in the system

P1 = aP + bP = (a+ b)P

Q1 = aP − bP = (a− b)P.
If we let c = a+ b, we can apply use the MOV algorithm on P1 = cP to solve for c. We use the
same method to find d = a− b where Q1 = dQ and use linear algebra to find a, b.
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We will conclude by giving an algorithm of the above attack.

Algorithm 2 Solving CSIDH with Γ(N) structure.

Input: N ∈ Z and Γ(N) structures (E0, P0, Q0), (E1, P1, Q1)

Output: Ideal a such that [a] ∗ (E0, P0, Q0) = (E1, P1, Q1).

Find an ideal b such that φb : E0 → E1.

Set P ← ϕb(P0), Q← φb(Q0).

Solve for b in eN (P, P1) = eN (P, πP )
b where eN is the Weil pairing.

Solve for a in eN (P1, πP ) = eN (P, πP )
a.

Set a← (a+ bπ)b

return a
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