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Abstract. A t-out-of-n threshold decryption system assigns key shares to n parties so that any t of
them can decrypt a well-formed ciphertext. Existing threshold decryption systems are not secure when
these parties are rational actors: an adversary can offer to pay the parties for their key shares. The
problem is that a quorum of t parties, working together, can sell the adversary a decryption key that
reveals nothing about the identity of the traitor parties. This provides a risk-free profit for the parties
since there is no accountability for their misbehavior — the information they sell to the adversary
reveals nothing about their identity. This behavior can result in a complete break in many applications
of threshold decryption, such as encrypted mempools, private voting, and sealed-bid auctions.
In this work we show how to add accountability to threshold decryption systems to deter this type
of risk-free misbehavior. Suppose a quorum of t or more parties construct a decoder algorithm D(·)
that takes as input a ciphertext and outputs the corresponding plaintext or ⊥. They sell D to the
adversary. Our threshold decryption systems are equipped with a tracing algorithm that can trace D
to members of the quorum that created it. The tracing algorithm is only given blackbox access to D
and will identify some members of the misbehaving quorum. The parties can then be held accountable,
which may discourage them from selling the decoder D in the first place.
Our starting point is standard (non-threshold) traitor tracing, where n parties each holds a secret key.
Every party can decrypt a well-formed ciphertext on its own. However, if a subset of parties J ⊆ [n]
collude to create a pirate decoder D(·) that can decrypt well-formed ciphertexts, then it is possible
to trace D to at least one member of J using only blackbox access to the decoder D. Traitor tracing
received much attention over the years and multiple schemes have been developed.
In this work we develop the theory of traitor tracing for threshold decryption, where now only a subset
J ⊆ [n] of t or more parties can collude to create a pirate decoder D(·). This problem has recently be-
come quite important due to the real-world deployment of threshold decryption in encrypted mempools,
as we explain in the paper. While there are several non-threshold traitor tracing schemes that we can
leverage, adapting these constructions to the threshold decryption settings requires new cryptographic
techniques. We present a number of constructions for traitor tracing for threshold decryption, and note
that much work remains to explore the large design space.

1 Introduction

Accountability is needed in many applications of cryptography. In the context of digital signatures,
accountability is often needed when using threshold signatures: if a quorum of t-out-of-n parties
sign an invalid message, there is a need to identify the misbehaving quorum. An accountable
threshold signature scheme is often built from a multisignature scheme [41,5,43,7,12,10,15] where
every signature securely identifies the set of signing parties that generated it.

In this paper we develop the concept of accountability for threshold decryption. In a t-of-n
threshold decryption scheme, there are n parties, and party i obtains at setup a secret key share ski.
Later, when that party chooses to decrypt a ciphertext c, it uses ski to output a decryption share.
Another party, which we call the combiner, collects t decryption shares and uses them to obtain a
plaintext m, possibly using a public combiner key denoted by pkc.



The concern is that an adversary could offer to buy the secret key shares from some parties.
Without accountability, this offer provides a risk-free profit for the parties. Our goal is to ensure
that if some parties sell their secret key shares, then it is possible to securely identify those parties —
or some subset of them — and hold them accountable. Here we are assuming that a whistleblower,
William, reveals the information that the adversary purchased. William wants to ensure that this
information securely identifies the guilty parties. We explain below why this is a good framing of
the problem.

William might hope that reporting a set of well-formed secret key shares will identify the subset
who sold their keys. However, this is clearly insecure. First, for common threshold decryption
schemes (such as [30,53,23,9] and many others), a quorum of t parties has enough information to
derive the secret key share of every other party. This lets them frame an innocent quorum by giving
the adversary key shares that belong to some other parties. Second, only a naive decryption party
would give the adversary its decryption key share as is. A more sophisticated set of t parties would
jointly generate a “master” key that lets the adversary decrypt, but cannot be traced to anyone.

We will need to defend against both issues raised above. These issues suggest that a sophisti-
cated set of parties will not sell the adversary a simple key. Instead, they will jointly construct an
“obfuscated” decoder algorithm D(·) that takes as input a ciphertext c and outputs a plaintext m.
The decoder D will contain inside it information derived from their key shares, but that informa-
tion might not be easily readable from the decoder source code. The challenge then is to identify
the guilty set of parties using only black-box access to this decoder D. This question is closely
related to traitor tracing [25], but in a very different context. Traitor tracing schemes are designed
for settings where every party can decrypt a ciphertext on its own. Think of a set of dvd players,
where every player needs to decrypt an encrypted dvd disk on its own. In our settings, at least t
secret key shares are needed to decrypt a ciphertext. As such, this work generalizes the traitor
tracing problem to the settings of threshold decryption. We consider two very different situations.

Case 1: A decoder from a greater-than-threshold quorum. Suppose that a coalition of
f traitors, where f ≥ t, constructs a decoder algorithm D(·). They have enough information to
construct a decoder that takes as input a ciphertext c and outputs its decryption. Our goal is to
trace this decoder to at least one member of the coalition of traitors, possibly using a tracing key
tk generated at setup. We give precise definitions in Section 3.

A natural starting point to construct such a system is any of the (non-threshold) traitor tracing
schemes that are fully collusion resistant. Some such systems are built from pairings [16,32,57,56,33],
some are built from lattices [34,24], and some are built from iO [21], to name a few. We explain
in Section 3 that adapting these schemes to the threshold settings requires new techniques. In this
paper we look at using a fully collusion-resistant scheme due to Boneh and Naor [14] and Billet
and Phan [6] (see Section 4). This traitor tracing scheme has constant size ciphertext and public
key. Secret key shares in this scheme are large; however, for the application described below, this
is quite reasonable. Adapting this non-threshold traitor tracing system to the threshold decryption
settings requires a new cryptographic primitive we call Bipartite Threshold Encryption (technically,
Bipartite Threshold KEM, or BT-KEM), as described in Section 4.1. We give three constructions for
a BT-KEM: a direct (but inefficient) combinatorial construction, an efficient construction with short
ciphertexts from DDH, and a further improvement providing also short public keys using pairings.
These constructions illustrate the added complexity in constructing traitor tracing systems for
threshold decryption. We note that the short ciphertext size in our schemes is especially appealing
for an encrypted mempool system, such as [4], where ciphertexts are posted on chain.
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In an upcoming work, we also show how to adapt the recent traitor tracing scheme of Gong,
Lou, and Wee [33] to the threshold setting using very different techniques.

Case 2: A decoder from a below-threshold quorum. We next turn to tracing a decoder D
built from a coalition J of f traitors, where f < t. This decoder cannot decrypt a ciphertext on its
own and needs to take additional decryption shares as input. In particular, for a ciphertext c the
decoder D is invoked as D(c, d1, . . . , dk), where d1, . . . , dk are decryption shares for c from some set
of parties S ⊆ [n] of size |S| = k ≥ t− f . We consider two types of decoders:

– A universal decoder outputs the correct decryption of a well-formed ciphertext c (with non-
negligible probability) whenever |J ∪ S| ≥ t. That is, the decoder will decrypt a well-formed c
whenever it has enough information to do so. In Section 6 we describe a generic tracing procedure
for such a decoder, assuming that the threshold decryption scheme is semantically secure. The
tracing procedure will output at least one member of the coalition J that created D.

– An exact decoder outputs the correct decryption of a well-formed ciphertext c (with non-
negligible probability) only when |S| = t − f and |J ∪ S| = t. This is a more restrictive
decoder that only takes t − f valid decryption shares as input. Tracing is not possible in this
case because, without knowledge of J , the tracing algorithm cannot find a set S such that
|S| = t − f and |J ∪ S| = t. To see why, observe that the number of such sets is only

(
n−f
t−f

)
,

and this can be a negligible fraction of the total number of subsets of size t − f . For example,
when t = n/3 and f = t/2, the fraction is 2−Ω(n). Consequently, we show in Section 6 that for
a robust threshold decryption scheme, the tracing algorithm can never get the decoder to work
(the decoder always outputs ⊥), and this implies that tracing is impossible.

Instead, we design in Section 6 a confirmation algorithm. The algorithm takes as input a suspect
coalition J ∗ ⊆ [n] and uses blackbox access to the decoder D to convince a verifier that J ∗ is
the traitor set.

Note that we disallow a decoder D that only works for a constant number of specific sets S∗
where |J ∪ S∗| = t. In this extreme case, neither confirmation nor tracing is possible, by a similar
argument as above.

1.1 Motivation

Why study traitor tracing for threshold decryption? First, accountability for threshold decryption
is a well-motivated question that is interesting in its own right. It comes up naturally in many
applications of threshold decryption, such as voting [26] and sealed-bid auctions [51]. In all these
applications one wants accountability for parties who sell their secret key shares. Second, this topic
has recently become important due to the introduction of encrypted mempools [4] using threshold
decryption in several blockchain projects [45,28]. The goal of an encrypted mempool is to keep the
data in a block secret until the block is finalized (posted) on chain. After finalization, the block
should become available in the clear so that all the transactions in the block can be executed.
Keeping transaction data hidden until the block is finalized is intended to prevent a certain value
extraction technique called MEV [27,2,47]. We refer to Rondelet and Kilbourn [48] for a detailed
analysis of the benefits and limitations of deploying an encrypted mempool.

Several encrypted mempool designs use identical consensus and decryption committees [1,4].
The idea is that when a validator signs a block, it also releases one decryption share for that block.
This way, once two thirds of the validators in the consensus committee sign the block — thereby
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finalizing it — there are also enough decryption shares to decrypt the block. In particular, the
decryption threshold is set to two thirds of the consensus committee.

A critical weakness of this design is that an adversary could bribe members of the consensus
committee into creating a decoder D that lets the adversary decrypt blocks before they are final-
ized. This lets the adversary engage in MEV extraction and defeats the purpose of encrypting the
mempool in the first place. Crucially, without the ability to trace the decoder D, this bribe provides
a risk-free profit for the validators, so there is no reason for them to refuse the bribe. Traitor tracing
for threshold decryption puts the validators at risk of being slashed and may compel them to not
engage with the adversary.

A similar problem comes up in other applications of threshold decryption, such as voting [26]
and sealed-bid auctions [51]. In the case of a sealed-bid auction, threshold decryption is used to
ensure that the bids are decrypted only after all the encrypted bids are submitted. If the decryption
parties sell their key shares to the adversary, risk free, then secrecy of the bids is compromised, and
the adversary can optimally win every auction.

Why focus on tracing a decoder. So far we focused on tracing a stateless decoder to at least one
member of the coalition that created that decoder. Consequently, a sophisticated set of t or more
traitors who want to evade tracing, might refuse to give the adversary a decoder. Instead, they might
jointly offer an anonymous decryption service: the adversary sends a well-formed target ciphertext c
to the service, the traitors jointly decrypt it, and send back (anonymously) the decryption of c.
This will defeat our tracing algorithms because the set of traitors can maintain state across different
decryption requests. For example, if they ever receive a request to decrypt a malformed ciphertext
(which is how tracing often works) they could panic and shut down the decryption service, refusing
to answer any more requests. This will defeat tracing algorithms designed for stateless decoders,
although other, more complex, tracing strategies may apply [36,37,54,46].

The decryption service option, however, may be unappealing to an adversary trying to decrypt
a ciphertext for its own benefit. The problem is that the parties running the decryption service will
learn the plaintext before the adversary. They could then use the plaintext for their own benefit
and cut off the adversary. In other words, for an application such as an encrypted mempool, the
adversary might only be willing to pay the bribe in exchange for a decoding algorithm that the
adversary can run on its own.

1.2 Additional related work

The literature on traitor tracing is vast. Some schemes, such as [25,39,11], are designed to trace a
pirate decoder that was created by a coalition of bounded size. Schemes that are secure against an
arbitrary coalition size are said to be fully collusion resistant.

The first fully collision-resistant traitor tracing scheme with a public key, ciphertext, and secret
key that are all sublinear in the number n of parties was proposed by Boneh, Sahai, and Waters [16]
(see also [20]). Their scheme was based on an assumption over composite order bilinear groups,
and enjoyed public key and ciphertext of size O(

√
n) and constant size secret keys. Garg, Kumara-

subramanian, Sahai, and Waters [32] subsequently achieved similar parameters using prime order
bilinear groups. In [56], Wee constructed a functional encryption scheme for quadratic functions,
that can be used to reproduce the result of [32] directly using the framework of [16]. In a recent
breakthrough result, Zhandry [57] constructed a pairing-based traitor tracing scheme where the
public key, ciphertext, and secret key were all of size O(n1/3). His proof of security was in the
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generic group model [52]. This was later on improved by Gong, Luo, and Wee [33], who got the
secret key size down to a constant while relying on standard assumptions over bilinear groups.

There are also traitor-tracing schemes from lattice-based assumptions. The groundbreaking
work of Goyal, Koppula, and Waters [34] constructed the first fully collision-resistant traitor trac-
ing scheme directly from lattice-based assumptions. Their construction boasts essentially optimal
parameters, where the public key, ciphertext size, and secret keys, all grow poly-logarithmically
in n. Their construction was later greatly simplified by Chen et al. [24]. In Section 3 we discuss the
techniques underlying all these pairing-based and lattice-based schemes in more detail.

Optimal traitor tracing can also be achieved from indistinguishability obfuscation [21]. We be-
lieve that this construction lends itself to the threshold decryption setting in a fairly straightforward
manner.

Naor and Pinkas studied [42] threshold traitor tracing, where the goal is to trace a pirate decoder
that successfully decrypts an input ciphertext with some threshold probability. This is unrelated
to traitor tracing for threshold decryption.

The recent work of Li et al. [40] also considered accountability for decryption. However, their
focus was completely dissimilar to ours, as they considered notions of accountability in the non-
threshold setting and hardware-based solutions.

Finally, we mention that Goyal, Song, and Srinivasan [35] considered the question of account-
ability in a secret sharing scheme, where share holders might be willing to sell their shares. Apart
from the fact that they consider accountability in secret sharing, whereas we consider threshold
decryption, their work also considers a different leakage model than ours. In their model, party i
may leak some function fi(si) of its secret share si. There is an algorithm D that takes as input
{fi(si)}i∈J for a subset J of at least t parties and, informally, outputs some non-trivial information
about the shared secret. The tracing task is this: given {fi(si)}i∈J , a description of the functions fi,
and access to D, the tracing algorithm outputs at least one party from J along with a proof π
implicating this party. In our setting, the tracing algorithm is only given access to D and the tracing
key, and nothing else. In particular, the parties are free to construct the decoder D from their key
shares however they want and can keep this information secret.

2 Preliminaries

Threshold Decryption Schemes. We begin by defining threshold decryption schemes [29,30].
The definitions we use follow those of Boneh and Shoup [19]. A threshold decryption scheme E =
(KeyGen,Enc,Dec,Combine) is a tuple of four polynomial-time algorithms:

1. KeyGen(1λ, n, t) → (pk, pkc, sk1, . . . , skn) is the probabilistic key generation algorithm. It
takes in the security parameter λ ∈ N, the number n of decryptors and the threshold t. It
outputs a public key pk, a combiner public key pkc, and secret keys sk1, . . . , skn.

2. Enc(pk,m)→ c is the probabilistic encryption algorithm. It takes as input the public key pk
and a message m, and it outputs a ciphertext c.

3. Dec(ski, c) → di is the deterministic decryption algorithm. It takes in a decryptor’s secret
key ski and a ciphertext c, and its output is a decryption share di of c under ski.

4. Combine(pkc, c,J , {dj}j∈J ) → m/⊥ is the deterministic combiner algorithm. Its input is a
combiner public key pkc, a ciphertext c, a subset J of [n], and decryption shares {dj}j∈J . It
outputs either a message m or a rejection symbol ⊥.
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Correctness. An honestly generated ciphertext should be correctly decrypted by any subset of t
decryptors. Specifically, for all security parameters λ ∈ N, all n, t ∈ N, all t-size subsets J ⊆ [n],
and all messages m in the message space, it holds that

Pr

m′ = m :

(pk, pkc, sk1, . . . , skn)←$ KeyGen(1λ, n, t)
c←$ Enc(pk,m)

∀i ∈ J , di ← Dec(ski, c)
m′ ← Combine(pkc, c,J , {dj}j∈J )

 = 1.

Security. We require that a threshold decryption scheme satisfies the standard notion of semantic
security. Many applications require the stronger notion of security against chosen-ciphertext at-
tacks (CCA security). We do not consider CCA security in this paper since our focus is the notion
of traitor tracing, which seems orthogonal to CCA security. The notion of semantic security is
captured by the security game in Fig. 1.

Definition 1 (Semantic security). We say that E satisfies semantic security if for every proba-
bilistic polynomial time adversary A, the following function is negligible in λ:

AdvcpaA,E(λ) := |1− 2 · Pr[IND-CPAA,E(λ) = 1]| .

Experiment IND-CPAA,E(λ)

1 : J ← ∅

2 : (n, t, state)← A(1λ)

3 : (pk, pkc, sk1, . . . , skn)←$ KeyGen(1λ, n, t)

4 : (m0,m1)←$ Acorrupt(·)(state, pk, pkc)

5 : b←$ {0, 1}, c←$ Enc(pk,mb)

6 : b′ ←$ Acorrupt(·)(state, c)

7 : if |J | ≥ t then return 0

8 : if b′ = b then return 1 else return 0

Oracle corrupt(i)

1 : if i ̸∈ [n] then return ⊥
2 : J ← J ∪ {i}
3 : return ski

Fig. 1. The semantic security experiment for a threshold decryption scheme E and an adversary A.

Robustness. Most scenarios call for a robust threshold decryption scheme. By that, we mean that a
decryption share di can be publicly verified, to make sure that it is indeed a valid decryption share
of a ciphertext c, originating from party i. Syntactically, the KeyGen algorithm now outputs an
additional verification key vk and the Dec algorithm outputs a robustness proof πi along with the
decryption share di. We define an additional algorithm, ShareVf(pk, vk, c, (di, πi), i), that takes as
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input the public key pk, the verification key vk, a cipher text c and a decryption share along with the
corresponding robustness proof (di, πi) from party i, and the index i of that party. It outputs 0 or
1, denoting whether (di, πi) is a valid decryption share for c for party i. For correctness, we require
that ShareVf outputs 1 for an honestly generated share, i.e. ShareVf(pk, vk, c, (di, πi), i) = 1 for any
(pk, pkc, sk1, . . . , skn) ←$ KeyGen(1λ, n, t), c ←$ Enc(pk,m), (di, πi) ← Dec(ski, c) for all values of
n, t,m, i. We may sometimes implicitly assume that in a robust scheme, each decryption share di
encodes the party i from which it originated. For security, we require that the threshold decryption
scheme satisfies decryption consistency. Informally, it means that an adversary cannot produce
two different shares di, d̂i with valid robustness proofs for any party i, and any ciphertext c, even
if it is given the secret keys for all parties. This is captured by the security game in Fig. 2.

Definition 2 (Robustness). We say that E satisfies robustness if, for every probabilistic poly-
nomial time adversary A, the following function is negligible in λ:

AdvdcA,E(λ) := Pr [DCA,E(λ) = 1]

Experiment DCA,E(λ)

1 : J ← ∅

2 : (n, t, state)← A(1λ)

3 : (pk, pkc, sk1, . . . , skn, vk)←$ KeyGen(1λ, n, t)

4 : (c, (di, πi), (d̂i, π̂i), i)←$ A(state, pk, pkc, sk1, . . . , skn, vk)

5 : if di ̸= d̂i ∧ ShareVf(pk, vk, c, (di, πi), i) = ShareVf(pk, vk, c, (d̂i, π̂i), i) = 1 then

6 : return 1

7 : else return 0

Fig. 2. The security game DCA,E(λ) capturing robustness for a threshold decryption scheme E and an adversary A.

Looking ahead, our constructions in Sections 4 and 5 do not explicitly provide robustness (since
this is not the focus of this work), but can be made robust using standard techniques. One of our
constructions in Section 6 relies on a generic threshold decryption scheme, that is robust as per
Definition 2 above.

KEM vs. encryption. In certain parts of the paper, we may find it convenient to work with
threshold key-encapsulation mechanisms (KEMs) rather than threshold decryption schemes. Syn-
tactically, a threshold KEM is defined by the same algorithms as a threshold decryption scheme,
but the encapsulation algorithm Enc gets only the public key pk (and no message) as input.
It outputs a ciphertext c but also a key k from some key space K = K(λ) induced by the KEM.
Accordingly, Combine outputs a key k′ from the key space, rather than a message. Correctness
requires that for all λ ∈ N, all 0 < t < n, and all t-size subsets J of [n] it holds that

Pr

k′ = k

∣∣∣∣∣∣∣∣
(pk, pkc, sk1, . . . , skn)←$ KeyGen(1λ, n, t)

(c, k)←$ Enc(pk)
di ← Dec(ski, c) for i ∈ J

k′ ← Combine(pkc, c,J , {di}i∈J )

 = 1.
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Semantic security is defined similarly to that of threshold decryption with the following changes
to the IND-CPAA,E(λ) experiment: the adversary A now does not choose messages (m0,m1).
Instead, Enc outputs a key k together with c. If b = 1, then when A is given the ciphertext c, it is
also given the key k. If b = 0, then A is given a uniformly random key k′ in the key space K.

3 Tracing Large Traitor Coalitions

In this section, we define traitor tracing for threshold KEM schemes, in the setting where the
number f of corruptions is greater than the threshold t.

A traitor tracing threshold KEM (TTT-KEM for short) is a threshold KEM (recall Section 2)
with the following modifications:

– KeyGen(1λ, n, t, 11/ϵ)→ (pk, pkc, sk1, . . . , skn, tk) now also takes in an error parameter ϵ = ϵ(λ)
and outputs an additional tracing key tk.

– There is an additional PPT tracing algorithm Trace that is invoked as J ←$ TraceD(·)(pk, tk, 11/ϵ).
The algorithm takes as input the public key pk, the tracing key tk, and an error bound ϵ = ϵ(λ).
Trace also has oracle access to a “decoder” algorithm D. It outputs a subset J ⊆ [n].

Informally, if the decoder D, given a ciphertext c, can learn any information about the encapsulated
key, then Trace traces D back to a party from the coalition that “manufactured” it. The following
definition captures this property using the security experiment in Fig. 3.

Experiment ExpTraceA,E,ϵ(λ)

1 : J ← ∅
2 : (n, t, state)← A(1λ)

3 : (pk, pkc, sk1, . . . , skn, tk)←$ KeyGen(1λ, n, t, 11/ϵ(λ))

4 : D ←$ Acorrupt(·)(state, pk, pkc) // output a decoder alg. D

5 : J ′ ←$ TraceD(·)(pk, tk, 11/ϵ(λ)) // trace decoder

6 : return (pk,D,J ,J ′)

Fig. 3. The tracing experiment for a threshold KEM E and an adversary A. The corruption oracle corrupt(·) is defined
as in Fig. 1.

Definition 3. Let ϵ = ϵ(λ) and δ = δ(λ) be functions of the security parameter λ ∈ N. A traitor-
tracing threshold KEM E = (KeyGen,Enc,Dec,Combine,Trace) with key space K = {Kλ} is (ϵ, δ)-
secure if for every PPT adversary A and for every λ ∈ N, the following two conditions hold

Pr [GoodTr] ≥ Pr [GoodDec]− δ(λ) and Pr [BadTr] ≤ δ(λ)

where (pk,D,J ,J ′) ←$ ExpTraceA,E,ϵ(λ) as defined in Figure 3. The events GoodDec, GoodTr,
and BadTr are defined as follows:

– GoodDec occurs when P (D) ≥ 1/2 + ϵ(λ), where P (D) is defined by

P (D) := Pr
[
D(c, kb) = b : (c, k0)←$ Enc(pk), k1 ←$ K(λ), b←$ {0, 1}

]
.
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– GoodTr holds when J ′ ̸= ∅ and J ′ ⊆ J .
– BadTr holds when J ′ ̸= ∅ and J ′ ̸⊆ J .

We say that E is secure if there exists a negligible function ν = ν(λ) such that E is (1/p, ν)-secure
for every polynomial p = p(λ). For an adversary A and a TTT-KEM scheme E, we define

AdvttA1,T T T E(λ) := max
{
Pr [GoodDec = 1]− Pr [GoodTr = 1] , Pr [BadTr = 1]

}
.

Semantic security and robustness for TTT-KEM schemes are defined as in Section 2, but the
adversary is also given the tracing key tk in both experiments. In case the TTT-KEM is robust,
then in the ExpTrace, the adversary is also given the share verification key vk.

On “thresholdizing” traitor tracing schemes. Definition 3 is a strict generalization of standard
traitor tracing schemes for non-threshold KEM or public key encryption. In particular, setting the
threshold t = 1 gives the traitor tracing definition for non-threshold schemes. This suggests that
TTT-KEMs are harder to construct than standard traitor tracing schemes.
Existing approaches for traitor tracing. Given the above, a natural avenue to realize the notion of
TTT-KEM is to try and “thresholdize” existing traitor tracing schemes. We briefly survey some
prominent schemes that might serve as the basis for TTT-KEM constructions:1 Starting with the
work of Boneh, Sahai, and Waters [16] (BSW hereinafter), most efficient constructions of traitor
tracing go through variants of a notion called Private Linear Broadcast Encryption (PLBE).
Since the work of BSW, there have been many works constructing pairing-based PLBE or variants
thereof [20,32,56], constructions of PLBE from lattices [34,24], and a construction from indis-
tinguishability obfuscation [21]. Zhandry [57] recently constructed a pairing-based traitor tracing
scheme that deviates from the PLBE framework considerably, but still relies on the general idea of
a broadcast system with private revocation.

A completely different approach to traitor tracing was suggested by Boneh and Naor [14] and
Billet and Phan [6], utilizing fingerprinting codes [17]. Using such codes, they showed how to
construct a traitor tracing scheme with constant-size ciphertexts from any public key encryption
scheme. Zhandry [57] observed that by replacing the underlying public-key encryption scheme with
an identity-based encryption (IBE) scheme, the public-key size is reduced to constant size.

From traitor tracing to TTT-KEM. Converting the above schemes to a TTT-KEM is harder than
might first appear. The traditional route of converting a cryptosystem into a threshold variant of
itself is by secret-sharing some secret key material among all parties. This approach seems to be at
odds with the traitor tracing task: in such transformations, a coalition of f ≥ t corrupted parties
can typically reconstruct the secret key of all other parties, and hence can also frame any inno-
cent party. More generally, to allow tracing, traitor-tracing schemes need to guarantee some sort of
(computational) independence among the parties’ keys. This independence needs to be preserved
even given more than t secret keys, which seems to go against the traditional thresholdizing via
secret-sharing paradigm. Different traitor-tracing schemes employ different algebraic or combinato-
rial mechanisms to ensure this independence among keys, and so different insights may be necessary
in order to convert them into TTT-KEMs. In this paper, we initiate this endeavor by constructing
a TTT-KEM starting from a traitor tracing scheme based on fingerprinting codes [14,6]. Future
work may do the same for other traitor tracing schemes, such as algebraic PLBE-based schemes,
but this will require very different techniques.

1 We focus here on schemes that offer full collusion resistance, as in our definition. Other constructions focus on
defending against more restricted traitor coalitions whose size is a-priori bounded.
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Tracing vs. semantic security. In the context of non-threshold traitor tracing, Zhandry [57]
recently observed that any scheme that provides tracing vis-à-vis a definition similar to Definition 3,
automatically provides semantic security as well. In other words, an adversary that breaks semantic
security can be used to break the tracing guarantee. Consider a successful adversary breaking the
semantic security of a KEM with an advantage of at least 2ϵ for some non-negligible ϵ. Then the state
of this adversary after observing the public key pk can be seen as a decoder. With non-negligible
probability, this decoder will have an advantage of at least ϵ in distinguishing real keys from random,
and so the event GoodDec occurs with non-negligible probability. However, the semantic security
adversary has corrupted no one! Hence, the event GoodTr occurs with probability 0. This breaks
the tracing definition.

In the threshold setting, however, this is no longer the case. The reason is that the semantic
security adversary can corrupt up to t− 1 parties. Hence, GoodTr can occur with strictly positive
probability. As a toy example, say that we have a traitor-tracing threshold KEM E that satisfies
both tracing security and semantic security. Consider a new (flawed) scheme E ′ that on threshold
t instantiates E on threshold t′ < t. E ′ inherits the tracing security of E , but it is not semantically
secure: an adversary in possession of t′ < t keys can decrypt any ciphertext. This shows that for
threshold KEM, tracing security does not imply semantic security.

Knowing ϵ in advance. Note that our definition requires that KeyGen gets a lower bound on the
decoder’s success probability ϵ. Naor and Pinkas [42] refer to such schemes as “threshold traitor
tracing” schemes (not to be confused with our notion of TTT-KEM). The Boneh and Naor traitor
tracing scheme is a threshold traitor tracing scheme in this sense, and hence our construction
in Section 4 will also share the same property. For scenarios in which this assumption may be
unwanted, Zhandry [57] presented a general compiler that transforms any threshold traitor tracing
scheme to a non-threshold one, without changing the dependency of the scheme’s parameters on
the number n of parties. His compilation carries over to our setting.

4 Traitor Tracing from Bipartite Threshold KEM

In this section, we construct a traitor tracing threshold KEM scheme. We begin with a brief
overview.

Overview of the construction. The starting point of our construction is the (non-threshold)
traitor tracing PKE scheme of Boneh and Naor [14] and Billet and Phan [6]. Their construction relies
on a primitive called fingerprinting codes [18,55]. A (binary) fingerprinting code is a set of words
Γ = {w̄(1), . . . , w̄(n)}, where each w̄(j) is an ℓ-bit string. What makes fingerprinting codes special is
that they come equipped with a tracing algorithm Trace that has the following functionality. Say
that an adversary is in possession of a subset W ⊆ Γ of words, and it comes up with a word w̄. It
can decide on w̄ as it pleases but there is a stipulation: w̄ has to be constructable by mixing and
matching the bits of the words in W . That is, if for some index i, the ith bit of all words in W is
0, then the ith bit of w̄ must be 0 as well (and similarly if the ith bit of all words is 1). Call such a
word feasible for W . The guarantee of fingerprinting codes is that Trace can trace w̄ back to least
one of the words in W .

Equipped with such a code Γ , Boneh and Naor constructed a traitor tracing scheme from any
public key encryption scheme E . The idea is to generate 2ℓ key pairs for E , where ℓ is the length of
the words in Γ . The public key consists of all 2ℓ public keys, and can be seen as a matrix with ℓ rows
and two columns in which jth row is (pkj,0, pkj,1) for j = 1, . . . , ℓ. Denote the secret key associated
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with these public keys by (skj,0, skj,1). To decide on the secret keys, Boneh and Naor associate the
ith party with the ith word in the code, w̄(i). The secret key of party i is then (sk

1,w
(i)
1

, . . . , sk
ℓ,w

(i)
ℓ

)

where w̄(i) = w
(i)
1 . . . w

(i)
ℓ . To encrypt a message m, one chooses a random index j ←$ [ℓ], and

encrypts m under both pkj,0 and pkj,1 to obtain to ciphertexts c0 and c1. The final ciphertext is
c = (j, c0, c1). Note that any party with a secret key can decrypt either c0 or c1.

Tracing relies on the observation that, thanks to the semantic security of E , a coalition of
parties holding only skj,0 cannot distinguish between an honestly generated ciphertext (c0, c1) and
a ciphertext (c0, c

′
1) where c1 is an encryption to some random message m′. The same goes for a

coalition holding only skj,1. This observation can be used to extract a word w̄∗(D) from a pirate
decoderD with the property that w̄∗(D) is feasible for the set of words associated with the corrupted
coalition. Hence, we can rely on the tracing algorithm of the fingerprinting code to trace D back
to one of the corrupted parties.

Now let us try and extend the approach of Boneh and Naor to the threshold setting. A naive
attempt would be to replace the use of the public key encryption E with a threshold decrpytion
scheme. Immediately, we can see that this approach runs into a correctness issue. The problem
is this: say that a coalition of t parties wants to decrypt some ciphertext c = (j, c0, c1). It may
very well be the case that some parties can compute decryption shares for c0 and others can
compute decryption shares for c1. These decryption shares do not match and hence do not allow
the decryption of c.

It turns out that what we need is a new kind of threshold decryption that we call “bipartite
threshold decryption”. Loosely speaking, we can think of bipartite threshold decryption as having
two-sided ciphertexts (c0, c1), and each party is given a secret key that can decrypt either c0 or c1.
Moreover, it should satisfy two seemingly contradicting requirements:

– One-sided security: An adversary that holds only keys that can partially decrypt c0 should
not be able to distinguish between an honestly generated ciphertext (c0, c1) and a ciphertext
(c0, c

′
1) where c1 is an encryption to some random message m′ (an analogous condition should

hold if the adversary can only partially decrypt c1). This property, which we call one-sided
security, is necessary for the tracing argument to go through and it is satisfied by the naive
construction above. Informally speaking, one-sided security implies that c0 and c1 must be
computationally independent from the standpoint of such an adversary.

– Two-sided correctness: Still, any coalition holding t secret keys must be able to decrypt c
to recover the encrypted message. This should hold regardless of how many of these keys can
decrypt c0 and how many can decrypt c1. This condition, which we call two-sided correctness,
is necessary for correctness to hold, and it implies that conditioned on the public key, c0 and c1
must be correlated somehow. This condition is not met by the naive construction.

We formally define bipartite encryption in Section 4.1, where for convenience, we focus on
KEM rather than PKE. The formal definition addresses several technical aspects that are ignored
in this informal overview. In section 4.2 we construct a traitor tracing scheme for threshold KEM
from such a bipartite threshold KEM and fingerprinting codes and prove its security. In our case,
the correlation that must be introduced between the two parts of the ciphertext introduces some
subtleties to the security proofs that were not covered in this overview.

In Section 5 we show that even though our requirements of bipartite threshold KEM might
seem contradictory at first glance, they can be constructed and even efficiently. First, we formally
define the building blocks for our traitor tracing scheme.
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4.1 Building Blocks

Our construction of a traitor tracing threshold KEM, a TTT-KEM, relies on two building blocks: a
collusion resistant fingerprinting code [18,55] and a new notion we call a bipartite threshold KEM.
We explain each in turn.

Collusion Resistant Fingerprinting Codes Originally, collusion-resistant fingerprinting codes
(or fingerprinting codes for short) were introduced for fingerprinting digital content [18,55] but they
have found applications to traitor tracing as well (e.g., [25,38,14]). In order to present fingerprinting
codes, we first introduce some notation. A word w̄ ∈ {0, 1}ℓ is a binary string, and we use wi to
denote the ith letter of w̄ for i = 1, . . . , ℓ; that is w̄ = w1w2 . . . wℓ. A noisy word is a ternary string
w̄ ∈ {0, 1, ‘?’}ℓ, and we similarly write w̄ = w1w2 . . . wℓ where each wi is in {0, 1, ‘?’}.

Let W = {w̄(1), . . . , w̄(f)} be a set of words in {0, 1}ℓ. We say that a noisy word w̄∗ is feasible for

W if for all i ∈ [ℓ], either wi = ‘?’ or there is a j ∈ [f ] such that w∗
i = w

(j)
i . That is, if all the words

in W have 0 as their ith bit, then w̄∗ must have either 0 or ‘?’ in its ith bit as well (the analogous
condition should for 1). For example, if W = {00110, 10100}, then the words that are feasible for W
are 00100, 00110, 10100, 10110 and any word obtained from any of these four by replacing a subset
of the bits with ‘?’. For a set W of words, the feasible set for W , denoted F (W ), is the set of all
noisy words feasible for W . For δ ∈ [0, 1], we say that a word is δ-noisy if at most a δ-fraction of
its characters is ‘?’, and for a set W of words we denote Fδ(W ) = {w̄ ∈ F (W ) : w̄ is δ-noisy}.

Formally, a fingerprinting code is a pair C = (FCGen,FCTrace) of algorithms:

– FCGen(1n, ϵ, δ)→ (Γ, tk) is the probabilistic code generation algorithm. It takes in a number
n > 0 of words, a security parameter ϵ, and a noise bound δ. It outputs a code Γ , which is a
set of n words in {0, 1}ℓ, and a tracing key tk. The length ℓ of the code words is a function
ℓ = ℓ(n, ϵ, δ) of the code size n, the security parameter ϵ, and the noise bound δ.

– FCTrace(w̄∗, tk) → S is the deterministic tracing algorithm. It takes as input a noisy word
w̄∗ and the tracing key tk, and outputs a subset S of [n].

The security property of fingerprinting codes says that if an adversary in possession of a subset
W ⊆ Γ of codewords generates a δ-noisy word w̄∗ which is feasible for W (that is, w̄∗ ∈ Fδ(W )),
then FCTrace(w̄∗, tk) outputs a set S that corresponds to a non-empty subset of W . This is formally
captured by the security game in Fig. 4, which is parameterized by n, ϵ, δ, and the subset I of
indices that defines the subset W of words given to the adversary.

Definition 4. A fingerprinting code C is said to be fully collusion resistant if for all algorithms
A, all n > 0, all ϵ ∈ (0, 1], all δ ∈ [0, 1], and all subsets I ⊆ [n] it holds that

AdvcrA,C(n, I, ϵ, δ) := Pr[ExpFCA,C(n, I, ϵ, δ) = 1] < ϵ.

Known constructions. The fingerprinting codes we use, that allow for tracing even in the presence
of a bounded fraction of unknown bits (represented by ‘?’ symbols), are called robust fingerprint-
ing codes. These were originally introduced by Boneh and Naor [14], who constructed the first
such codes based on Boneh-Shaw codes [17]. Their construction achieved codewords of length
O(n4 log(n/ϵ) log(1/ϵ)/(1− δ)2), where n is the number of words in the code, ϵ is the tracing error,
and δ is an upper bound on the fraction of ‘?’ in the noisy word that is given to the tracing algorithm.
This was later improved by Nuida [44] and by Boneh, Kiayias, and Montgomery [13]. The latter
work is based on Tardos codes [55] and enjoys codewords of length O((n log n)2 log(n/ϵ)/(1 − δ)).
This is optimal up to logarithmic factors.
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Experiment ExpFCA,C(n, I, ϵ, δ)

1 : (Γ, tk)←$ FCGen(1n, ϵ, δ) // write Γ = {w̄(1), . . . , w̄(n)}

2 : W ← {w̄(i)}i∈I

3 : w̄∗ ←$ A(W )

4 : if w̄∗ ̸∈ Fδ(W ) then return 0

5 : S ← FCTrace(w̄∗, tk)

6 : if S = ∅ ∨ S ̸⊆ I then return 1 else return 0

Fig. 4. The security experiment for a fingerprinting code C and an adversary A. The integer n indicates the number
of words in the code, the subset I ⊆ [n] the set of corrupted codewords, the parameter ϵ ∈ [0, 1] specifies the desired
error bound on the tracing success, and δ ∈ [0, 1] the fraction of unknown (‘?’) locations.

Bipartite threshold KEM The second building block that we will use is a new notion that
we put forth, called a bipartite threshold KEM scheme, or a BT-KEM scheme for short. A
BT-KEM scheme is a threshold KEM scheme, where instead of one set of secret keys, there are 2ℓ
sets, for a parameter ℓ of the scheme. We think of these keys as arranged in 2ℓ rows, or “positions”,
and in each position, there are two possible secret keys for each party: a left key and a right key.
Similarly, a ciphertext is now comprised of two parts: a left ciphertext and a right ciphertext. A
BT-KEM should satisfy two properties: one-sided security and two-sided correctness.

Formally, A BT-KEM is a tuple (KeyGen,Enc,Dec,Combine) of algorithms with the following
syntax:

– KeyGen(1λ, n, t, ℓ)→ (pk, pkc, {(sk(j)1,0, sk
(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ]) is the probabilistic key gen-

eration algorithm. It takes in the security parameter λ ∈ N, the number n of decryptors, the
threshold t, and a number ℓ of “positions”. It outputs a public key pk, a combiner public key pkc,

and n secret keys sk1, . . . , skn. Each secret key is made up of 2ℓ keys: ski = {sk(j)i,0 , sk
(j)
i,1 }j∈[ℓ]

for i = 1, . . . , n. sk
(j)
i,0 is called the left secret key of i at position j and sk

(j)
i,1 is called the right

secret key of i at position j.

– Enc(pk, j) → (c0, c1, k) is the probabilistic encapsulation algorithm. It takes as input the
public key pk and a position j ∈ [ℓ], and it outputs a ciphertext c = (c0, c1) and a key k. c0 is
called the left ciphertext and c1 is called the right ciphertext.

– Dec(j, sk
(j)
i,b , c = (c0, c1)) → di is the deterministic decryption algorithm. It takes in a de-

cryptor’s secret key sk
(j)
i,b — where i ∈ [n], j ∈ [ℓ], and b ∈ {0, 1} — and a ciphertext c, and

its output is a decryption share di of c under sk
(j)
i,b . To simplify notation, we may assume sk

(j)
i,b

encodes the bit b even if this is not explicitly noted.

– Combine(pkc, j, c,J , {di}i∈J )→ k/⊥ is the deterministic combiner algorithm. Its input is a
combiner public key pkc, a position j ∈ [ℓ], a ciphertext c, a subset J of [n], and decryption
shares {di}i∈J . It outputs either a key k or a rejection symbol ⊥.

Definition 5 (correctness). A BT-KEM scheme E = (KeyGen,Enc,Dec,Combine) is said to be
correct if for every polynomially-bounded functions n = n(λ), t = t(λ), and ℓ = ℓ(λ) of the security
parameter λ ∈ N the following holds:
For all λ ∈ N, positions j ∈ [ℓ], subsets J ⊆ [n] of size t(λ), and n-bit strings s ∈ {0, 1}n it holds
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that

Pr

k = k′ :

(pk, pkc, {(sk(j)1,0, sk
(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ])←

$ KeyGen(1λ, n, t)

(c, k)←$ Enc(pk, j)

di ← Dec(j, sk
(j)
i,si

, c) for i ∈ J
k′ ← Combine(pkc, j, c,J , {di}i∈J )

 = 1.

Semantic security. We require that a BT-KEM scheme satisfies semantic security. Observe that
any BT-KEM scheme can be seen as a standard threshold KEM scheme with additional syntactic
properties, and so semantic security is already defined in Section 2, with the following modifications
to the IND-CPA security experiment:

– In addition to n and t, the adversary A also chooses the number ℓ of positions.

– The secret key of party i is made up of all of its 2ℓ secret keys – the left key and the right key
of each position. That is,

ski =
(
(sk

(1)
i,0 , sk

(1)
i,1 ), . . . , (sk

(ℓ)
i,0 , sk

(ℓ)
i,1 )
)
.

– The challenge ciphertext is computed by the challenger by invoking the encapsulation algorithm
with respect to a random position in [ℓ]. That is, the challenger first samples a uniformly random
j ←$ [ℓ], and then samples (c = (c0, c1), k)←$ Enc(pk, j).

One-sided security. In addition, we require that a BT-KEM scheme satisfies “one-sided security”
as discussed at the beginning of this section. The security game for one-sided security is given in
Fig. 5 and the security notion is formally captured by the following definition.

Definition 6. We say that E has one-sided security if for every probabilistic polynomial time ad-
versary A, the following function is negligible in λ:

AdvossA,E(λ) :=
∣∣2Pr[ExpBTKEMA,E(λ) = 1]− 1

∣∣ .
Observe that ExpBTKEMA,E(λ) in Fig. 5 is defined by two cases that are not entirely sym-

metric. When the adversary chooses d = 0, then it receives a key k(0) and a left ciphertext c
(0)
0

that is consistent with it. Its task is to distinguish between the case in which c1 given to it is also

consistent with k(0) and c
(0)
0 (that is c1 = c

(0)
1 ), and the case where c1 is an independent right

ciphertext (c1 = c
(1)
1 ). On the other hand, when d = 1, the adversary receives a key k(0), and a

right ciphertext c
(1)
1 that is independent of this key. Its task is to distinguish between the case in

which c0 is consistent with k(0) (but not with c
(1)
1 ; that is c0 = c

(0)
0 ), and the case where c0 is

consistent with c
(1)
1 (and is independent of k(0); that is c0 = c

(1)
0 ). The reason for the asymmetry

between d = 0 and d = 1 will become apparent in our construction of a traitor tracing threshold
KEM from BT-KEM, and its proof of security (Section 4.2).

4.2 Our construction of a traitor tracing threshold KEM

Equipped with the above two building blocks, we are now ready to present our construction of a
TTT-KEM.
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Experiment ExpBTKEMA,E(λ)

1 : (n, t, ℓ, u, d, state)←$ A(1λ) // t ≤ n, u ∈ [ℓ], d ∈ {0, 1}

2 : (pk, pkc, {(sk(j)
1,0, sk

(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ])←$ KeyGen(1λ, n, t, ℓ)

3 : (c(0) = (c
(0)
0 , c

(0)
1 ), k(0))←$ Enc(pk, u)

4 : (c(1) = (c
(1)
0 , c

(1)
1 ), k(1))←$ Enc(pk, u)

5 : b←$ {0, 1}

6 : if b = 0 then c∗ ← (c
(0)
0 , c

(1)
1 ) // set c∗ to a mixture of c(0) and c(1)

7 : if b = 1 then c∗ ← (c
(d)
0 , c

(d)
1 ) = c(d) // set c∗ to c(0) or c(1)

8 : b′ ←$ A(state, pk, pkc, c∗, k(0), {(sk(j)
1,0, sk

(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ]\{u}, (sk

(u)
1,d , . . . , sk

(u)
n,d))

9 : return (b′ = b)

Fig. 5. The one-sided security experiment for a BT-KEM E and an adversary A.

Let BT E = (BT E .KeyGen,BT E .Enc,BT E .Dec,BT E .Combine) be a bipartite threshold decryp-
tion scheme and let C = (C.FCGen, C.FCTrace) be a collusion-resistant fingerprinting code. Assume
for simplicity that the keys outputted by BT E are uniformly distributed over its key space K.2 Our
construction uses the following subroutine, TR that takes in a public key pk, an index j ∈ [ℓ], an
integer N , and three bits bk, b0, b1 ∈ {0, 1}, and has oracle access to a decoder D. The subroutine
TRD is defined as follows:

1. Set ctr ← 0.
2. For r = 1, . . . , N :

(a) Sample (c(0) = (c
(0)
0 , c

(0)
1 ), k(0))←$ BT E .Enc(pk, j) and (c(1) = (c

(1)
0 , c

(1)
1 ), k(1))←$ BT E .Enc(pk, j).

(b) Set c∗ ← (j, c
(b0)
0 , c

(b1)
1 ).

(c) Query D on (c∗, k(bk)). If the response is 1, set ctr ← ctr + 1.
3. Return ctr.

Our TTT-KEM scheme, denoted T T T E , is defined in Fig. 6. Tracing is done in two steps.
First, the tracing algorithm constructs a word w̄ ∈ {0, 1}ℓ, with the supposed invariant that if the
adversary only corrupts parties with left (resp. right) keys in position j, then wj = 0 (resp. wj = 1).
Then, it invokes the FCTrace algorithm of the underlying fingerprinting code on w̄. Note that there
is an asymmetry in the tracing algorithm. To determine whether the adversary has only right keys
for a position j (i.e. whether wj should be 1), we run the decoder with two types of inputs: (a) a
random key and a ciphertext valid with respect to this key and (b) a random key with a valid left
ciphertext and an invalid (independent) right ciphertext, and check if it can distinguish between
them. But the procedure to determine whether to set wj to 0 is not entirely symmetric. We see if
the decoder can distinguish between the following two types of inputs: (a) a random key and invalid
left and right ciphertexts, and (b) a random key with a valid left ciphertext and an invalid right
ciphertext, i.e. the right ciphertext is invalid in both types of inputs. This asymmetry in the inputs
to the decoder for the two cases utilizes the asymmetry in the one-sided security game defined in
Fig. 5. The formal argument uses one-sided security to relate the advantage of the adversary in

2 This assumption will be satisfied by our constructions of BT-KEM schemes. Generally speaking, note that given
a BT-KEM scheme not satisfying the assumption, we can always construct a scheme for which this condition is
satisfied by applying a randomness extractor to the key.

15



breaking the tracing security of our scheme, to its advantage in breaking the tracing security of an
idealized scheme, in which the tracing algorithm depends on the identity of the corrupted parties.
The reader is referred to the proof of Theorem 1 for more detail.

It is immediate that construction is correct and semantically secure, by the correctness and se-
mantic security of the underlying BT-KEM. The following theorem establishes that it also provides
tracing.

Theorem 1. For every probabilistic polynomial time algorithm A there exists a probabilistic polynomial-
time algorithm B such that

AdvttA,T T T E(λ) ≤ 9ℓ · 2−λ/24 + 2ℓλ2 · AdvossB,BT E(λ)

for all λ ∈ N, where ℓ = ℓ(λ, n, ϵ) is the codeword length as defined in the scheme.

We stress that our definition of decoders is much more general than the one originally considered
by Boneh and Naor [14]. Whereas they considered tracing decoders that fully decrypt with high
probability, we consider (in line with more modern definition of traitor tracing) tracing any decoder
that can learn any non-trivial information regarding the plaintext (via a semantic security type
definition). This on its own poses new technical challenges that require new technical insight in the
security proof.

Proof. Let Exp0 denote the original ExpTrace experiment and let A be an adversary participating
in the experiment. We will show that the probability that the word w̄∗ computed by Trace in the
Exp0 experiment is not feasible for the set J of corrupted parties is small. Concretely, let w̄∗(A)
be the random variable describing the word w̄∗ constructed by Trace in Exp0. We also define J to
be the random variable describing the set J of corrupted parties in the experiment, and C to be
the random variable corresponding to the code generated by C.FCGen. Let W (C, J) = {w̄(i)}i∈J ,
where C = {w̄(1), . . . , w̄(n)}, and denote F (J) = F (W (C, J)).

The following lemma bounds the probability that w̄′(A) is not δ-noisy.

Lemma 1. Suppose that

Pr [D(c, kb) = b : (c, k0)←$ T T T E .Enc(pk), k1 ←$ K(λ), b←$ {0, 1}] ≥ 1

2
+ ϵ.

Then, it holds that

Pr [w̄∗(A) is not δ-noisy] ≤ 4ℓ · e−λ/24.

Proof. We first prove that D must be a good distinguisher for a (1 − δ)-fraction of the positions
j ∈ [ℓ]. Concretely, say that a position j ∈ [ℓ] is good if

Pr

[
D((j, c), kb) = b :

(c, k0)←$ BT E .Enc(pk, j)
k1 ←$ K(λ), b←$ {0, 1}

]
≥ 1

2
+

2√
λ
. (1)
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A TTT-KEM scheme T T T E

T T T E.KeyGen(1λ, n, t, 11/ϵ):

1. Set δ ← (1/2− ϵ)/(1/2− 2/
√
λ) and sample a fingerprinting code: (Γ, tk)←$ C.FCGen(1n, 2−λ, δ).

2. Sample keys for BT E : (pk, pkc, {(sk(j)
1,0, sk

(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ])←$ KeyGen(1λ, n, t, ℓ).

// ℓ = ℓ(n, λ, ϵ) is the word length of the code Γ

3. Set pk′ ← pk, pkc′ ← pkc and tk′ ← tk.
4. For i = 1, . . . , n, set sk′

i ← (sk
(1)

i,w
(i)
1

, . . . , sk
(ℓ)

i,w
(i)
ℓ

)

// w̄(i) is the ith word in the code Γ

5. Return (pk′, pkc′, sk′
1, . . . , sk

′
n, tk

′).

T T T E.Enc(pk):

1. Sample j ←$ [ℓ].
2. (c0, c1, k)←$ BT E .Enc(pk, j).
3. Let c = (j, c0, c1) and return (c, k).

T T T E.Dec(ski, c):

1. Parse ski as (sk
(1)

i,w
(i)
1

, . . . , sk
(ℓ)

i,w
(i)
ℓ

) and c as (j, c0, c1).

2. Compute di ← BT E .Dec(j, sk(j)

i,w
(i)
j

, (c0, c1)).

3. Return di.

T T T E.Combine(pkc, c,J , {di}i∈J ):

1. Parse c as (j, c0, c1) and set c′ ← (c0, c1).
2. Compute k ← BT E .Combine(pkc, j, c′,J , {di}i∈J ).
3. Return k.

T T T E.TraceD(pk, tk, 11/ϵ):

1. Set N ← λ2 and B ← λ3/2.
2. For j = 1, . . . , ℓ:

(a) Compute the following:
– p001 ←$ TRD(pk, j,N, 0, 0, 1) // runs D with a valid left ciphertext and an invalid right ciphertext

– p100 ←$ TRD(pk, j,N, 1, 0, 0) // runs D with invalid left and right ciphertexts

– p111 ←$ TRD(pk, j,N, 1, 1, 1) // runs D with valid left and right ciphertexts

(b) Set a0 ← |p001 − p100| and a1 ← |p001 − p111|.
(c) If a0 ≥ B, set wj ← 0. If not, check if a1 ≥ B, and if so set wj ← 1. If both conditions do not hold,

set wj ← ‘?’.
3. Run J ← FCGen.Trace(tk, w̄∗), where w̄∗ ← w1w2 . . . wℓ.
4. Return J .

Fig. 6. Our TTT-KEM scheme, denoted T T T E , built from a fingerprinting code and a BT-KEM.
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We argue that at least (1 − δ)-fraction of the positions j ∈ [ℓ] are good. Suppose that this is not
the case. Then, it holds that

Pr [D(c, kb) = b : (c, k0)←$ T T T E .Enc(pk), k1 ←$ K(λ), b←$ {0, 1}]

< δ ·
(
1

2
+

2√
λ

)
+ (1− δ) · 1

= δ ·
(

2√
λ
− 1

2

)
+ 1

=
1
2 − ϵ

1
2 −

2√
λ

·
(

2√
λ
− 1

2

)
+ 1

=
1

2
+ ϵ.

This stands in contradiction to the assumption in the claim, and so at least (1− δ)-fraction of the
positions j ∈ [ℓ] are good.

We now show that for all good positions j, it holds that the jth symbol in w̄′(A) is ‘?’ with
negligible probability. Let j ∈ [ℓ] be a good position. Since j is good, this means that in particular∣∣∣Pr [D((j, c

(0)
0 , c

(0)
1 ), k(1)) = 1

]
− Pr

[
D((j, c

(1)
0 , c

(1)
1 ), k(1)) = 1

]∣∣∣ ≥ 4√
λ
,

where (c(b) = (c
(b)
0 , c

(b)
1 ), k(b)) ←$ BT E .Enc(pk, j) for b ∈ {0, 1}. By the triangle inequality, this

means that at least one of the following inequalities holds:∣∣∣Pr [D((j, c
(0)
0 , c

(0)
1 ), k(1)) = 1

]
− Pr

[
D((j, c

(1)
0 , c

(0)
1 ), k(1)) = 1

]∣∣∣ ≥ 2√
λ
, (2)

or ∣∣∣Pr [D((j, c
(1)
0 , c

(1)
1 ), k(1)) = 1

]
− Pr

[
D((j, c

(1)
0 , c

(0)
1 ), k(1)) = 1

]∣∣∣ ≥ 2√
λ
. (3)

Consider first the case where Eq. (2) holds, and assume without loss of generality that

Pr
[
D((j, c

(0)
0 , c

(0)
1 ), k(1)) = 1

]
> Pr

[
D((j, c

(1)
0 , c

(0)
1 ), k(1)) = 1

]
(the analysis in the complementing case is symmetric). This means that p001 is distributed as a
binomial random variable with N trials and probability parameter η for some η ∈ [0, 1], and p100
is distributed binomially with N trials and probability parameter η′ ≥ η + 2√

λ
. In particular, the

expected values of p100 and p001 are at least 2N/
√
λ = 2λ3/2 far apart.

Recall that Trace sets wj = 0 if a0 = |p001 − p100| ≥ B = λ3/2. Hence, it will set wj = 0 in the
specific case where p100 and p001 are both at most N/2

√
λ far away from their expected values.

Hence

Pr [wj ̸= 0] = Pr
[
a0 < N3/2

]
≤ Pr

[(
p100 < E[p100]−

N

2
√
λ

)
∨
(
p001 > E[p001] +

N

2
√
λ

)]
≤ Pr

[
p100 < E[p100]−

N

2
√
λ

]
+ Pr

[
p001 > E[p001] +

N

2
√
λ

]
≤ 2 · Pr

X←$
Bin(N,1/2)

[
|X − E[X]| > N

2
√
λ

]
, (4)
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where X is sampled from the binomial distribution with N trials and probability parameter 1/2
and Eq. (4) follows from convexity. By the Chernoff bound, it holds that

Pr
[
w′
j ̸= 0

]
≤ 4e−λ/24. (5)

Now suppose Eq. (2) does not hold. Then, this means that Eq. (3) holds and a similar analysis
shows that a1 ≥ B with probability at least 1 − 4e−λ/24. Hence, in this case, Trace sets wj ̸= ‘?’
with probability at least 1−4e−λ/24. The proof of the lemma is concluded by taking a union bound
over all good positions and noting that there at most ℓ such positions. ⊓⊔

The following lemma bounds the probability that the word computed by Trace is not feasible
for the set of words induced by the adversary’s corruption queries.

Lemma 2. There exists a probabilistic polynomial-time algorithm B such that

Pr [w̄∗(A) ̸∈ F (J)] ≤ 4ℓ · e−λ/6 + 2ℓλ2 · AdvossB,BT E(λ).

Proof. Consider the experiment Exp1 obtained from Exp0 by the following modification: instead
of running the true Trace algorithm, the challenger runs a Trace′J algorithm that depends on the set
J of parties that the adversary corrupted before outputting the decoder D. The modified tracing
algorithm is defined by:

1. Set N ← λ2 and B ← λ3/2.

2. For j = 1, . . . , ℓ:

(a) If w
(i)
j = 0 for all i ∈ J then compute p ←$ TRD(pk, j,N, 0, 0, 0). Otherwise, compute

p←$ TRD(pk, j,N, 0, 1, 1).

(b) Compute p100 ←$ TRD(pk, j,N, 1, 0, 0), and p111 ←$ TRD(pk, j,N, 1, 1, 1).

(c) Set a0 ← |p− p100| and a1 ← |p− p111|.
(d) If a0 ≥ B, set wj ← 0. If not, check if a1 ≥ B, and if so set wj ← 1. If both conditions do

not hold, set wj ← ‘?’.

3. Run J ← FCGen.Trace(tk, w̄∗), where w̄∗ ← w1w2 . . . wℓ.

We abuse notation and let C and J be defined as before but over Exp1 (observe that they are
identically distributed in both experiments). Let w̄′(A) be the random variable describing the word
w̄′ constructed by Trace′J in Exp1. We wish to claim that w̄′(A) ∈ F (J) with high probability.

Claim 2 Pr [w̄′(A) ̸∈ F (J)] ≤ 4ℓ · e−λ/6.

Proof. We will prove that

Pr
[
w̄′(A) ̸∈ F (J)

]
≤ 4ℓ · e−B2/6N . (6)

and the claim will follow by our choice of N and B. Let j ∈ [ℓ] and consider two cases:

1. Say that w
(i)
j = 1 for all i ∈ J . We wish to upper bound the probability that Trace′J sets w′

j = 0.

Since w
(i)
j = 1, p is computed in the jth iteration of Trace′J by p ←$ TRD(pk, j,N, 0, 1, 1).
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Moreover, Trace′J sets w′
j = 0 only if a0 = |p− p100| ≥ B in the j iteration, where p100 ←$

TRD(pk, j,N, 1, 0, 0). Note that p100 and p are identically distributed. Hence, it holds that

Pr [a0 ≥ B] = Pr [|p− p100| ≥ B]

≤ Pr

[∣∣∣∣p− N

2

∣∣∣∣ ≥ B

2
∨
∣∣∣∣p100 − N

2

∣∣∣∣ ≥ B

2

]
≤ 2 · Pr

[∣∣∣∣p− N

2

∣∣∣∣ ≥ B

2

]
. (7)

Observe that p sampled from the binomial distribution with N trials and some probability
parameter η ∈ [0, 1]. By convexity, the probability in eq. (7) is maximized when η = 1/2.
Hence, by the Chernoff bound, it holds that

Pr [a0 ≥ B] ≤ 4e−B2/6N .

2. Say that w
(i)
j = 0 for all i ∈ J . Then, the probability that Trace′J sets w′

j = 1 is bounded

by 4e−B2/6N . The analysis is symmetrical to the previous case, noting that in this case, p is
computed as the outputs of TRD(pk, j,N, 0, 0, 0), which is identically distributed to p111, and
that w′

j is set to 1 only if a1 = |p− p111| is at least B.

We call an index j ∈ [ℓ] fixed for J if for all i1, i2 ∈ J it holds that w
(i1)
j = w

(i2)
j ; that is, the jth bit

of all code words corresponding to J are the same. The above analysis shows that for all indices
j ∈ [ℓ] that are fixed for J , Trace′J computes a false w′

j with probability at most 4e−B2/6N . Eq. (6)
then follows by a union bound over all indices j ∈ [ℓ]. This concludes the proof of the claim. ⊓⊔

We now relate the probability that w̄′(A) ̸∈ F (J) to the probability that w̄∗(A) ̸∈ F (J). Note
that for the event w̄∗(A) ̸∈ F (J) to occur, it must be the case that for some position j ∈ [ℓ] that is
fixed for J , the jth character w̄∗(A) is inconsistent with W (C, J); that is, if all words corresponding
to corrupted parties have 0 as their jth bit, then w̄∗(A) has 1 in its jth entry, or vice versa. However,
if all words corresponding to corrupted parties have 0 as their jth bit, then A has only left keys in
position j. Hence, the one-sided security of BT E implies that it should not be able to distinguish

between a ciphertext of the form (j, c
(0)
0 , c

(1)
1 ) as given to it by the real Trace algorithm in Exp0

and a ciphertext of the form (j, c
(0)
0 , c

(0)
1 ) as given to it by Trace′J in Exp1. The lemma then follows

by our bound of the probability that Trace′J sets w′
j to be 1 (incorrectly) in Exp1.

In more detail, we present an adversary for a generalized version of one-sided security. Instead of
one key-ciphertext pair, the adversary receives N = λ2 such pairs (k1, c1 = (c1,0, c1,1), . . . , (kN , cN =
(cN,0, cN,1)), and it has to distinguish between the case where c1,1−d, . . . , cN,1−d are consistent with
k1, . . . , kN and the case where these are independent random ciphertext halves. A standard hybrid
argument shows that an adversary B with advantage ϵ′ in this experiment can be transformed into
an adversary B′ with advantage ϵ/N for the original ExpBTKEMB′,E(λ) experiment.

Consider an adversary B which invokes A(1λ) and gets back n and t. It then samples a code
(Γ, tk) ←$ C.FCGen(1n, 2−λ, δ), an index u ←$ [ℓ], and a side d ←$ {0, 1}, and outputs (n, t, ℓ, u, d)
as its outputs in Step 1 of the generalized ExpBTKEMB,E(λ) experiment. In response, it gets
B key-ciphertext pairs ((k1, c1 = (c1,0, c1,1)), . . . , (kN , cN = (cN,0, cN,1)) and all secret keys but
those that correspond to side 1− d at position u. B uses these keys and the code Γ to respond to
corruption queries issued by A. If at any point, A issues a query for which B does not possess the
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entire corresponding secret key (i.e., a query for a party i for which w
(i)
u = 1− d), then B outputs a

random b′ ←$ {0, 1}. Denote this event by guess. Otherwise, A outputs a decoder D. B then decides
on its outputs as follows:

1. It computes p by invoking D on (cr, kr) for r = 1, . . . , N and sets p to be the number of times
D returns 1.

2. It computes p100 ←$ TRD(pk, j,N, 1, 0, 0), and p111 ←$ TRD(pk, j,N, 1, 1, 1).
3. A sets a0 ← |p001 − p100| and a1 ← |p001 − p111|.
4. If a0 ≥ B, set A outputs 0. If not, it checks if a1 ≥ B, and if so it outputs 1. If both conditions

do not hold, it outputs ⊥.
Let fix denote the event over Exp0 in which there is at least one index that is fixed for J . fix can

similarly be defined over Exp1 and has equal probability over both experiments. In the subsequent
analysis, we assume that Pr [fix] = 1. This is without loss of generality: it may only increase the
difference ∣∣Pr [w̄∗(A) ̸∈ F (J)]− Pr

[
w̄′(A) ̸∈ F (J)

]∣∣
since if no index is fixed for J , then all words are feasible. In particular,

Pr
[
w̄∗(A) ̸∈ F (J)

∣∣ fix ] = Pr
[
w̄′(A) ̸∈ F (J)

∣∣ fix ] = 0.

Since Pr [fix] = 1, it holds that Pr [guess] ≥ 1/2ℓ (note that Pr [guess] is also identical over
both experiments). We condition the rest of the analysis on guess. Suppose for the bit b chosen
by the challenge in ExpBTKEMB,E(λ) is equal to 1, then the ciphertext c∗ is a valid ciphertext,
distributed as the ciphertexts given to the decoder D in Exp1. Hence, the output of B is distributed
identically to w∗(A)u. Similarly, if b = 0, the output of B is distributed identically to w′(A)u. It
follows that the advantage of B in the generalized security experiment is

1

2ℓ
·
∣∣Pr [w̄∗(A) ̸∈ F (J)]− Pr

[
w̄′(A) ̸∈ F (J)

]∣∣ .
Hence, there is a probabilistic polynomial time adversary B′ for the original experiment with ad-
vantage

AdvossB,BT E(λ) ≥
1

2ℓN
·
∣∣Pr [w̄∗(A) ̸∈ F (J)]− Pr

[
w̄′(A) ̸∈ F (J)

]∣∣ . (8)

The lemma follows by incorporating Eq. (8) and (6).

Together, Lemmas 2 and 1 show that

Pr [w̄∗(A) ̸∈ Fδ(J)] < 8ℓ · 2−λ/24 + 2ℓλ2 · AdvossB,BT E(λ). (9)

To conclude the proof of the theorem, observe that conditioned on w̄∗(A) ∈ F (J), Trace outputs
an index in J with probability at least 1−2−λ by the collusion resistance of the fingerprinting code C.

5 Constructing Bipartite Threshold KEM

In this section, we construct BT-KEM schemes from various assumptions: the stronger the as-
sumption, the more efficient the BT-KEM construction is, and hence also the resulting TTT-KEM
scheme.

Before turning to our efficient constructions, we note that one can fairly easily construct a BT-
KEM scheme from any threshold KEM scheme. The construction is rather inefficient, since the keys
and the ciphertext scale linearly with the threshold t. We sketch this construction in Appendix A.
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5.1 Constant-Size Ciphertexts from DDH

Although the parameters achieved by the generic construction are non-trivial, it still suffers from
long ciphertexts. In this section, we show how to construct a BT-KEM scheme with constant-size
ciphertexts by relying on the DDH assumption in cyclic groups. For asymptotic reasoning, we
consider a distribution ensemble over such groups. This is formalized by the existence of a group
generation algorithm G that takes the security parameter as input and outputs a triple (G, g, p),
where G is a description of a group of order p generated by g. The scheme is formally defined in
Fig. 7.

A BT-KEM scheme BT DDH

Public parameters: (G, g, p) sampled by G(1λ).

BT DDH.KeyGen(1λ, n, t, ℓ):

1. For j = 1, . . . , ℓ do:
(a) Sample xj , yj , zj ←$ Zp and compute Xj ← gxj , Yj ← gyj and Zj ← gzj .
(b) Sample a Shamir t-out-of-n secret sharing sj,1, . . . , sj,n of xj .

(c) Set pkj ← (Xj , Yj , Zj), sk
(j)
i,0 ← sj,i/yj and sk

(j)
i,1 ← sj,i/zj .

2. Set pk ← (pk1, . . . , pkℓ) and pkc← ⊥.
3. Return (pk, pkc, {(sk(j)

1,0, sk
(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ]).

BT DDH.Enc(pk, j):

1. Parse pk as (pk1, . . . , pkℓ) and pkj as (Xj , Yj , Zj).
2. Sample r ←$ Zp and set k ← Xr

j .
3. Compute c0 ← Y r

j and c1 ← Zr
j and set c← (c0, c1).

4. Return (c, k).

BT DDH.Dec(j, sk(j)
i,b , c = (c0, c1)):

1. Compute di ← c
sk

(j)
i,b

b . Observe that di = gsj,ir.
2. Return di.

BT DDH.Combine(pkc, j, c,J , {di}i∈J ):

1. Compute the Lagrange coefficients (λJ
i )i∈J corresponding to the subset J :

λJ
i ←

∏
v∈J\{i}

v
v−i
∈ Zp.

2. Compute k ←
∏

i∈J d
λJ
i

i .
3. Return k.

Fig. 7. Our BT-KEM in cyclic groups, denoted BT DDH.
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Correctness. Let 0 < t < n and let ℓ > 0. Let J be a subset of size t of [n]. Then, for all j ∈ [ℓ],
i ∈ [n], and τ̄ ∈ {0, 1}n it holds that∏

i∈J
d
λJ
i

i =
∏

i∈J ,τi=0

d
λJ
i

i ·
∏

i∈J ,τi=1

d
λJ
i

i

=
∏

i∈J ,τi=0

(
Y r
j

)sj,iλJ
i /yj ·

∏
i∈J ,τi=1

(
Zr
j

)sj,iλJ
i /zj

=
∏

i∈J ,τi=0

(gyjr)sj,iλ
J
i /yj ·

∏
i∈J ,τi=1

(gzjr)sj,iλ
J
i /zj

=
∏
i∈J

(gr)λ
J
i sj,i = gr·

∑
i∈J λJ

i sj,i = gxjr = Xr
j = k.

And so every subset of t parties can decapsulate the correct key k, regardless of how many left keys
and how many right keys there are.

One-sided security. The one-sided security of the scheme is based on the hardness of the following
formulation of the Decisional Diffie-Hellman (DDH) problem relative to G.

Definition 7. Let G be a group generation algorithm. We say that the Decisional Diffie-Hellman
(DDH) problem is hard relative to G if for every probabilistic polynomial-time algorithm A there
exists a negligible function ν(·) such that

AdvddhA,G(λ) :=
∣∣∣Pr [A(G, p, g, gx, gy, gy

′
, gxy) = 1

]
− Pr

[
A(G, p, g, gx, gy, gy

′
, gxy

′
) = 1

]∣∣∣ < ν(λ)

for all λ ∈ N, where (G, p, g)←$ G(1λ) and x, y, y′ ←$ Zp.

Note that this is not the standard formulation of the DDH assumption, but is easily reducible
to it.

Theorem 3. For every probabilistic polynomial-time adversary A there exists a probabilistic polynomial-
time adversary B such that

AdvddhB,G (λ) = AdvossA,BT DDH(λ)

for all λ ∈ N.

Proof. The adversary B gets as input a tuple (G, p, g,X, Y, Y ′, Z), where X = gx, Y = gy, Y ′ = gy
′

for uniformly random x, y, y′ ∈ Zp, and Z is either gxy or gxy
′
. B first invokes A(1λ) to obtain

n, t, ℓ, u and d. We first discuss the case d = 0. In this case, B samples keys for BT DDH and a
ciphertext-key pair as follows:

– For positions j ̸= u, B samples all keys honestly. That is, it samples xj , yj , zj ←$ Zp and
computes Xj ← gxj , Yj ← gyj , and Zj ← gzj . It then samples a Shamir t-out-of-n secret

sharing sj,1, . . . , sj,n of xj , and sets pkj ← (Xj , Yj , Zj), sk
(j)
i,0 ← sj,i/yj , and sk

(j)
i,1 ← sj,i/zj for

every i ∈ [n].
– For position u, B samples xu, yu ←$ Zp and a Shamir secret sharing su,1, . . . , su,n of xu, and

computes Xu ← gxu , Yu ← gyu , and sk
(u)
1,0 = su,1/yu, . . . , sk

(u)
n,0 = su,n/yu as above. It also sets

Zu ← X and pku ← (Xu, Yu, Zu). B sets pk ← (pk1, . . . , pkn) and pkc← ⊥.
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– B sets c0 ← Y yu and c1 ← Z and then sets the ciphertext to be c ← (c0, c1). It also sets
k(0) ← Y xu .

B then passes pk, pkc, (c0, c1), k
(0), {(sk(j)1,0, sk

(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ]\{u} and (sk

(u)
1,0 , . . . , sk

(u)
n,0) to

A, who replies with a bit b′. B then outputs the same bit b′.
Consider two cases. If Z = gxy, then B simulates toA the experiment ExpBTKEMA,BT DDH(λ)

with b = 1. On the other hand, if Z is gxy
′
, it is a uniformly random group element indepen-

dent of (c0, c1) and the keys given to A, and hence B simulates to A the security experiment
ExpBTKEMA,BT DDH(λ) with b = 0. It follows that

AdvddhB,G (λ) = |Pr [B(G, p, g, gx, gy, gxy) = 1]− Pr [B(G, p, g, gx, gy, gz) = 1]|
=
∣∣Pr [b′ = 1

∣∣ b = 1
]
− Pr

[
b′ = 1

∣∣b = 0
]∣∣

=
∣∣Pr [b′ = 1

∣∣ b = 1
]
−
(
1− Pr

[
b′ = 0

∣∣b = 0
])∣∣

=
∣∣2Pr [b′ = b

]
− 1
∣∣

=
∣∣2Pr [ExpBTKEMA,BT DDH(λ) = 1

]
− 1
∣∣

= AdvossA,BT DDH(λ).

The reduction is symmetric in case d = 1, except for the fact that the key k(0) is set to be (Y ′)xu .
This concludes the proof. ⊓⊔

Semantic security. We now argue the semantic security of the scheme, which is also based on
the DDH assumption. Here, we rely on the standard formulation of the DDH assumption: given
gα, gβ, gγ for α, β ←$ Zp, it should be hard to distinguish between the case where γ = αβ and γ
being uniformly random and independent of (α, β).

Theorem 4. For every probabilistic polynomial-time adversary A there exists a probabilistic polynomial-
time adversary B such that

AdvddhB,G (λ) = AdvcpaA,BT DDH(λ)

for all λ ∈ N.

Proof. The adversary B gets as input a tuple (G, p, g, A,B,C), where A = gα and Y = gβ for
uniformly random α, β ∈ Zp, and Z is either gαβ or gγ for a uniformly random γ ∈ Zq. B first
invokes A(1λ) to obtain n, t, ℓ.
B samples a position u←$ [ℓ] and continues in the simulation of the IND-CPA experiment as

follows:

– B samples a public key for BT BF by sampling x1, . . . , xu−1, xu+1, . . . , xℓ ←$ Zp and y1, . . . , yℓ,
z1, . . . , zℓ ←$ Zp. It then sets Xu ← A and Xj ← gxj for every j = 1, . . . , u − 1, u + 1, . . . , ℓ,
and Yj ← gyj , Zj ← gzj for every j ∈ [ℓ]. It sets pkj ← (Xj , Yj , Zj) for every j and sends
pk ← (pk1, . . . , pkℓ) and pkc← ⊥ to A, who may then issue corruption queries.

– Assume without loss of generality that A never repeats queries and always issues at most t− 1
queries (otherwise, the output of the semantic security game is 0 no matter what). B samples
s1, . . . , st−1 ←$ Zp and for q = 1, . . . , Q, where Q ≤ t− 1 is the number of corruption queries by
A, B replies to the qth corruption queries of A as follows. Let i ∈ [n] be the party corrupted in
the qth query. The secret key of party i is composed of 2ℓ components, a left secret key and a
right one in each of the ℓ positions:
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• For positions j ̸= u, B computes the secret keys honestly using its knowledge of xj , yj and
zj . That is, for each such j, B samples a Shamir secret sharing sj,1, . . . , sj,n of xj . Then,

when A queries for the secret key of party i, B sets sk
(j)
i,0 ← sj,i/yj and sk

(j)
i,1 ← sj,i/zj .

• For position u, B sets sk
(u)
i,0 ← sq/yu and sk

(u)
i,1 ← sq/zu.

B then replies toA with {(sk(j)i,0 , sk
(j)
i,1 )}j∈[ℓ]. Note that the secret keys are distributed as honestly-

generated keys of BT DDH. In particular, since A is guaranteed to query at most Q ≤ t − 1
queries, for any Q-tuple of parties (i1, . . . , iQ), the Shamir t-out-of-n secret shares of xu are

distributed uniformly in FQ
p .

– B computes the challenge ciphertext at position u by c0 ← Byu , c1 ← Bzu and sets the challenge
key to be k ← V . It then passes c = (c0, c1) and k as the challenge to A. If A issues additional
corruption queries after obtaining c and k, B replies to them as before.

– Finally, A outputs a bit b′. B outputs b′ as well.

Observe that B simulates IND-CPAA,BT DDH(λ) perfectly to A. Moreover, if V = gαβ then B
simulates the experiment IND-CPAA,BT DDH(λ) with the bit b = 1; that is, it passes to A a key
sampled from the correct distribution according to BT DDH. On the other hand, if V is a uniformly
random element of G, B simulates IND-CPAA,BT DDH(λ) with the bit b = 0. Hence, it holds that

AdvddhB,G (λ) = AdvcpaA,BT DDH(λ).

This concludes the proof. ⊓⊔

5.2 Constant-Size Ciphertexts and Public Keys from Pairings

In this section, we show that by relying on pairings, one can obtain a BT-KEM scheme with a
constant-size public key, in addition to a constant-size ciphertext.

Formally, we consider a bilinear group generation algorithm G that takes in the security param-
eter and outputs a tuple (G1,G2,GT , e, g1, g2, p), where G1,G2,GT are descriptions of cyclic groups
of order p, where Gb is generated by gb for b = 0, 1. The function e is an efficiently computable
non-degenerate bilinear map from G1 × G2 to GT . Though we will present our construction in
asymmetric bilinear groups (in which G1 and G2 may be different), it remains secure in symmetric
groups as well (under the same assumptions in symmetric bilinear groups, when G1 = G2 and
g1 = g2). The construction also uses a hash function H : N → G1. Formally, H should depend on
G1, but to simplify the notation we fix a single function H for all groups G1.

The scheme is presented in Fig. 8. We next prove correctness and security of this scheme.

Correctness. Let 0 < t < n and let ℓ > 0. As noted in Fig. 8, for a ciphertext with respect to position
j ∈ [ℓ], the decryption share di of party i ∈ [n] is di = e(g1, g2)

siyzr, regardless of whether party i
has a left key or a right key for position j. Hence, by the correctness of Lagrange interpolation, it
holds that for any subset J of parties of size at least t, the combined decryption is e(g1, g2)

αyzr,
which is precisely the encapsulated key.

One-sided security. We now prove the one-sided security of BT BF . One-sided security follows from
the following DDH-like assumption.
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A BT-KEM scheme BT BF

Public parameters: (G1,G2,GT , e, g1, g2, p) sampled by G(1λ).

BT BF .KeyGen(1λ, n, t, ℓ):

1. Sample α, y, z ←$ Zp and set X ← gαyz
1 , Y ← gy1 , and Z ← gz1 .

2. The public key is pk← (X,Y, Z) and pkc← ⊥.
3. Sample a Shamir t-out-of-n secret sharing s1, . . . , sn of α ∈ Zp.

4. For i = 1, . . . , n and j = 1, . . . , ℓ set:

k
(0)
0 ← H(j)zsi , k

(0)
1 ← gzsi2 , sk

(j)
i,0 ← (k

(0)
0 , k

(0)
1 ) ∈ G1 ×G2

k
(1)
0 ← H(j)ysi , k

(1)
1 ← gysi2 , sk

(j)
i,1 ← (k

(1)
0 , k

(1)
1 ) ∈ G1 ×G2

5. Return (pk, pkc, {(sk(j)1,0, sk
(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ]).

BT BF .Enc(pk, j):

1. Parse pk as (X,Y, Z).

2. Sample r, t0, t1 ←$ Zp.

3. Set k ← e
(
X, g2

)r
so that k = e

(
g1, g2

)αyzr
.

4. Set

u0 ← gt02 , v0 ← Y r ·H(j)t0 , c0 ← (u0, v0) ∈ G2 ×G1

u1 ← gt12 , v1 ← Zr ·H(j)t1 , c1 ← (u1, v1) ∈ G2 ×G1

Observe that c0 is an ElGamal encryption of Y r and c1 is an ElGamal encryption of Zr.

5. Set c← (c0, c1).

6. Return (k, c).

BT BF .Dec(j, sk(j)i,b , c = (c0, c1)):

1. Parse cb as (u, v) and sk
(j)
i,b as (k0, k1).

2. Compute di ← e(v, k1)/e(k0, u). Observe that di = e(g1, g2)
siyzr.

3. Return di.

BT BF .Combine(pkc, j, c,J , {di}i∈J ):

1. Compute the Lagrange coefficients (λJ
i )i∈J corresponding to the subset J :

λJ
i ←

∏
v∈J\{i}

v
v−i
∈ Zp.

2. Compute k ←
∏

i∈J d
(λJ

i )

i .
3. Return k.

Fig. 8. Our BT-KEM scheme in pairing groups, denoted BT BF .
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Definition 8. Let G be a bilinear group generation algorithm. We say that the Augmented De-
cisional Diffie-Hellman problem (ADDH) is hard relative to the source group of G if for every
probabilistic polynomial-time algorithm A the following function

AdvaddhA,G (λ) :=

∣∣∣∣∣∣Pr
[
A
(
(G1,G2,GT , e, p), h⃗, g

zr+wt
1

)
= 1
]

−Pr
[
A
(
(G1,G2,GT , e, p), h⃗, g

zr′+wt
1

)
= 1
] ∣∣∣∣∣∣

is negligible in λ ∈ N, where (G1,G2,GT , e, g1, g2, p)←$ G(1λ) and

h⃗ =
(
g1, g2, g

w
1 , g

z
1 , g

y
1 , g

yz
1 , gyr1 , gwz

1 , gz2 , g
y
2 , g

t
2, e(g1, g2)

yzr′
)

for y, z, w, t, r, r′ ←$ Zp.

The ADDH problem defined above can be seen as a special case of the Uber problem in bilinear
groups [8,22]. Also note that there is no trivial zero-test involving the “target element”, gzr+wt

1

or gzr
′+wt

1 , that can be trivially computed via group operations and the pairing operation from

the other input elements, namely the elements in h⃗. Therefore, the ADDH problem is hard in the
generic group model [52,8] and its hardness is reducible to that of the standard discrete log problem
in the (decisional) algebraic group model [31,50,3,49].

The following theorem reduces the one-sided security of BT BF to the hardness of ADDH in
the pairing groups.

Theorem 5. For every probabilistic polynomial-time adversary A there exists a probabilistic polynomial-
time adversary B such that

AdvossA,BT BF (λ) ≤ 2L · AdvaddhB,G (λ),

for all λ ∈ N, where the hash function H is modeled as a random oracle, and L = L(λ) is an upper
bound on the number of positions ℓ in the scheme.

Proof. The adversary B gets as input the vector h⃗ of group elements in the ADDH assumption
(Definition 8), and a target element A ∈ G1 that is either gzr+wt

1 or gzr
′+wt

1 . It guesses a bit
d′ ←$ {0, 1} and an index j∗ ←$ [L]. We write the reduction for the case d′ = 0 and later explain
what changes in the case where d′ = 1. B first invokes A(1λ). It replies to A’s random oracle queries
to H as:

– when A queries for H(j∗) reply with the element gw1 from the challenge h⃗;
– for every other j ∈ N, when A queries for H(j), sample wj ←$ Zp and reply with g

wj

1 .

At some point, A outputs n, t, ℓ, u and d. If d′ ̸= d or u ̸= j∗ then B aborts. Denote this event by
abort, and note that since d′ and j∗ are chosen uniformly at random, Pr [¬abort] = 1/(2L).

Upon receiving n, t, ℓ, u and d, B samples any random oracle values it has not yet sampled for
inputs in {1, . . . , ℓ}. That is, for every j not previously queried by A, our B samples wj ←$ Zp and
sets H(j) := g

wj

1 . B then samples keys for BT BF and a key-ciphertext pair as follows:

– Sample α←$ Zp, and compute X ← (gyz1 )α. Set the public key to be pk := (X,Y ← gy1 , Z ← gz1).
Recall that gyz1 , gy1 and gz1 are all provided to B as part of the ADDH instance.

– Generating secret keys:

• B samples a Shamir secret sharing s1, . . . , sn of α ∈ Zp.
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• For each j ∈ [ℓ] \ {u} and i ∈ [n], B sets:

k
(0)
0 ← (gz1)

wjsi = H(j)zsi , k
(0)
1 ← (gz2)

si , sk
(j)
i,0 ← (k

(0)
0 , k

(0)
1 ) ∈ G1 ×G2

k
(1)
0 ← (gy1)

wjsi = H(j)ysi , k
(1)
1 ← (gy2)

si , sk
(j)
i,1 ← (k

(1)
0 , k

(1)
1 ) ∈ G1 ×G2

Recall that gz1 , g
y
1 , g

z
2 , g

y
2 are provided as input to B as part of h⃗, and wj and si were sampled

by B and are known to it.

• For position u, generate left keys for each i ∈ [n] by computing

k
(0)
0 ← (gzw1 )si = H(u)zsi , k

(0)
1 ← (gz2)

si , sk
(u)
i,0 ← (k

(0)
0 , k

(0)
1 ) ∈ G1 ×G2

recall that gzw1 and gz2 are given as input to B as part of h⃗, and s1, . . . , sn were sampled by
B and are known to it.

– To generate the left challenge ciphertext c0, our B samples t0 ←$ Zp and sets

u0 ← gt02 , v0 ← gyr1 · (g
w
1 )

t0 = Y r ·H(u)t0 , c0 ← (u0, v0) ∈ G2 ×G1

The right challenge ciphertext c1 is set using the elements gt2 and A from h⃗ as

u1 ← gt2, v1 ← A, c1 ← (u1, v1) ∈ G2 ×G1

– B sets k ← e(gyr1 , gz2)
α. Observe that k = e(g1, g2)

αyzr.

Now, B passes pk, pkc, (c0, c1), k, {(sk(j)1,0, sk
(j)
1,1), . . . , (sk

(j)
n,0, sk

(j)
n,1)}j∈[ℓ]\{u} and (sk

(u)
1,0 , . . . , sk

(u)
n,0) to

A, who replies with a bit b′. B then outputs the same bit b′.

Observe that when A = gzr+wt
1 , then the ciphertext (c0, c1) is distributed as a valid ciphertext

that encodes the key k (the case b = 1 in the security experiment ExpBTKEMA,BT BF (λ)).
Otherwise, c1 is distributed as a fresh right ciphertext, independent of c0 (the case b = 0 in the
ExpBTKEMA,BT BF (λ) security experiment). Hence, if ¬abort occurs, then the advantage of B is
at least that of A. We therefore obtain that

AdvaddhB,G (λ) ≥ 1

2L
· AdvossA,BT BF (λ)

as required.

The case d = 1 is handled symmetrically, save for the following change: the challenge key k

given to A is set to k ←
(
e(g1, g2)

yzr′
)α

= e(g1, g2)
αyzr′ . Note that when A = gzr+wt

1 , then (c0, c1)

is a valid ciphertext that is independent of the key k. On the other hand, when A = gzr
′+wt

1 , then
c0 is consistent with the key k. These cases exactly match the two cases in the security experiment
ExpBTKEMA,BT BF (λ), and so we again obtain the same advantage as above. This concludes the
proof. ⊓⊔

Semantic security. We now argue the semantic security of BT BF , relying on the following variant
of the Decisional Bilinear Diffie-Hellman (DBDH) assumption.

Definition 9. Let G be a bilinear group generation algorithm. We say that the Augmented De-
cisional Bilinear Diffie-Hellman (ADBDH) problem is hard relative to G if for every probabilistic
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polynomial-time algorithm A the following function

AdvadbdhA,G (λ) :=

∣∣∣∣∣∣∣
Pr
[
A
(
(G1,G2,GT , p, g1, g2, e), g

y
1 , g

z
1 , g

yr
1 , gzr1 , gαyz1 , gy2 , g

z
2 , e(g1, g2)

αyzr
)
= 1
]

−Pr
[
A
(
(G1,G2,GT , p, g1, g2, e), g

y
1 , g

z
1 , g

yr
1 , gzr1 , gαyz1 , gy2 , g

z
2 , e(g1, g2)

v
)
= 1
]
∣∣∣∣∣∣∣

is negligible in λ ∈ N, where (G1,G2,GT , p, g1, g2, e)←$ G(1λ) and α, r, z, y, v ←$ Zp.

The following theorem establishes the semantic security of BT BF .

Theorem 6. For every probabilistic polynomial-time adversary A there exists a probabilistic polynomial-
time adversary B such that

AdvcpaA,BT BF (λ) = AdvadbdhB,G (λ)

for all λ ∈ N, when the hash function H is modeled as a random oracle.

Proof. The adversary B gets as input gy1 , g
z
1 , g

yr
1 , gzr1 , gαyz1 , gy2 , g

z
2 , and an element V that is either

e(g1, g2)
αyzr or e(g1, g2)

v for a uniformly random v ∈ Zq. Then, B first invokes A(1λ) to obtain n, t
and ℓ.
B replies to random oracle queries to H as follows: On query j ∈ N, B samples wj ←$ Zp and

replies with g
wj

1 .
Upon receiving n, t, ℓ, our B samples any random oracle values it has not yet sampled for inputs

in {1, . . . , ℓ}. That is, for every j not previously queried by A, our B samples wj ←$ Zp and sets
H(j) := g

wj

1 . B then continues the simulation of the IND-CPA experiment as follows:

– B sets a public key for BT BF by setting X ← (gαyz1 ), Y ← gy1 , Z ← gz1 and pk ← (X,Y, Z). It
sends pk and pkc← ⊥ to A, who may then issue corruption queries.

– Assume without loss of generality that A never repeats queries and always issues at most t− 1
queries (otherwise, the output of the semantic security game is 0 no matter what). B samples
s1, . . . , st−1 ←$ Zp and for q = 1, . . . , Q, where Q ≤ t− 1 is the number of corruption queries by
A, B replies to the qth corruption queries of A as follows. Let i ∈ [n] be the party corrupted
in the qth query. The secret key of party i is composed of 2ℓ components, a left secret key and
a right one in each of the ℓ positions. B computes these honestly from H(1), . . . ,H(ℓ), using

its input elements gy1 , g
y
2 , g

z
1 , g

z
2 . That is, for j = 1, . . . , ℓ: B sets sk

(j)
i,0 ← ((gz1)

wjsq , (gz2)
sq) and

sk
(j)
i,1 ← ((gy1)

wjsq , (gy2)
sq). B then replies to qth corruption query with {(sk(j)i,0 , sk

(j)
i,1 )}j∈[ℓ].

Note that the secret keys are distributed as honestly generated keys of BT BF . In particular,
since A is guaranteed to query at most Q ≤ t−1 queries, for any Q-tuple of parties (i1, . . . , iQ),

the Shamir t-out-of-n secret shares of x are distributed uniformly in FQ
p .

– To compute the challenge to A, our B samples j∗ ←$ [ℓ] and t0, t1 ←$ Zp. It computes the

challenge ciphertext c0 ← (gt02 , gyr1 · g
wj∗ t0
1 ) and c1 ← (gt12 , gzr1 · g

wj∗ t1
1 ), and sets the challenge

key to be k ← V ∈ GT . It then passes the position j∗, the ciphertext c = (c0, c1) and the key
k as the challenge to A. If A issues additional corruption queries after obtaining c and k, B
replies to them as before.

– Finally, A outputs a bit b′. B outputs b′ as well.

Observe that B simulates IND-CPAA,BT BF (λ) perfectly. Moreover, if V = e(g1, g2)
αyzr then B

simulates the experiment IND-CPAA,BT BF (λ) with the bit b = 1; that is, it passes to A a key
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sampled from the correct distribution according to BT BF . On the other hand, if V is a uniformly
random element of GT , B simulates IND-CPAA,BT BF (λ) with the bit b = 0. Hence, it holds that

AdvadbdhB,G (λ) = AdvcpaA,BT BF (λ).

This concludes the proof. ⊓⊔

6 The Case of Small Traitor Coalitions

In this section, we consider the setting in which the traitor coalition is small; namely, there are
f < t traitors, where t is the decryption threshold as before. We begin with a brief overview of the
challenges that this setting poses and ways to circumvent them. In this informal discussion, we
omit many technical details that can be found later in this section.

In the small coalition setting, we would like to capture the scenario in which the traitor coalition
publishes or sells any piece of information that might be useful for decryption by another set of
parties. To be as general as possible, we model this information as a decoder D that receives
additional decryption shares for some ciphertext c. When the decoder receives enough information
to decrypt, it outputs the encrypted message m. The decoder may be tied to a specific ciphertext
c and only decrypt this ciphertext, or it may be a general decoder that gets also a ciphertext c as
input and tries to decrypt it.3 We focus on decoders that are tied to a specific ciphertext, but the
same problems and solutions arise in both cases. As a concrete example, think of a decoder D that
has a ciphertext c and the secret keys of the f < t corrupted parties embedded in it. Whenever it
gets t− f decryption shares from additional parties as input, it decrypts and outputs the message.
If it does not get enough information to decrypt, it outputs ⊥. Given black-box access to such a
decoder, we would like to trace it back to at least one of the corrupted parties.

Unfortunately, if we allow for arbitrary decoders, then for robust schemes (where in particular,
shares can be publicly traced to their generating party), efficient tracing becomes hopeless for most
choices of f and t. The issue arises already with the simple decoder D described above that has a
subset I of f keys embedded in it, if it is restricted to accept exactly t − f shares as input. If it
gets more shares than that as input, it refuses to decrypt and outputs ⊥. Denote this decoder by
DI . Intuitively, to extract any meaningful information from the decoder, we need to make it work;
i.e., output something other than ⊥. Now consider the distribution over decoders that are defined
as above, where the subset I is sampled uniformly at random from all subsets of [n] of size f . In
this case, we prove the following lower bound.

Theorem 7 (informal). If the underlying threshold decryption scheme is robust, then for any
algorithm B making at most Q oracle queries to DI , the probability that DI returns anything but
⊥ is bounded by Q

(nf)−Q·(n−(t−f)
f )

.

As an example, consider the setting where t = n/3 and f = t/2. In this case, the probability of
making DI output something other than ⊥ is bounded by Q ·2−Ω(n). Hence, an exponential number
of queries to DI are required to even make it work. In Appendix B, we make this theorem precise
and provide a proof.

3 Note that in the case where f ≥ t it makes no sense to consider decoders that are tied to a specific ciphertext c.
This is because when f ≥ t the traitor coalition can just decrypt c and publish the underlying message m as the
decoder. This “decoder” is trivially untraceable.
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In light of the above, we explore two restricted classes of decoders that still capture meaningful
traitor attacks on the one hand, yet allow for some meaningful notion of accountability on the other
hand.

Option I: A decoder that can decrypt, must. The reason the decoder D sketched above was un-
traceable, was that it could choose to reject any input that consisted of more than t − f shares.
A natural question is then what happens if we disallow such behavior on the side of the decoder?
Concretely, we consider here a restricted class of decoders: a decoder D = D(I) is associated with
some subset I of corrupted parties, and if the decoder is fed decryption shares from a subset S
of parties, it outputs the correct message whenever |I ∪ S| ≥ t. This means that the decoder may
output the correct message also on inputs that include up to t, and in particular more than t− f ,
decryption shares. We call such decoders universal. Though (unavoidably) restricted, this class of
decoders already captures natural forms of information leakage, such as leaking the secret keys of
the parties in I or their decryption shares of a specific ciphertext c (or malformed keys/decryption
shares, that still allow decryption).

We show that with this restriction on the decoder, tracing becomes possible. We present a
tracing procedure that can be seen as the mirror image of tracing using private linear broadcast
encryption [16]. By semantic security, we know that when the decoder D gets no decryption share
as input, it should output the correct message with negligible probability. On the other hand, when
given any t decryption shares d1, . . . , dt as input, any universal decoder should output the correct
message, say with probability 1 (below, we relax this notion and consider probabilistic decoders).
This means that there must be some index i ∈ [t] such that D(d1, . . . , di) outputs the correct
message, but D(d1, . . . , di−1) does not. Since D is universal, we may deduce that {d1, . . . , di−1} is
insufficient information for D to decrypt, but {d1, . . . , di} is. Hence it must be the case that party
i is innocent, in the sense that it is not a member of the subset I of corrupted parties that define
the universal decoder D = D(I). Feeding the subsets ∅, {d1}, {d1, d2}, . . . , {d1, . . . , dt} to D one by
one, we are guaranteed to find this i. Moreover, we show that by repeating this procedure, we can
“exonerate” all innocent parties in {1, . . . , t}. The full tracing algorithm is obtained by doing the
same for all subsets {1, . . . , t}, {t+ 1, . . . , 2t}, . . . , {n− t+ 1, . . . , n}.

Option II: Confirmation instead of tracing. The tracing procedure above crucially relied on the
fact that the decoder works for inputs consisting of a variable number of decryption shares. More
clever decoders might try to avoid detection by insisting that the decoder takes in exactly t − f
decryption shares as input. This can be done, for example, by hard-coding the traitors’ secret
keys to the decryption circuit and obfuscating it. By the lower bound result sketched above, in
this setting we cannot hope for full-fledged traitor tracing. Instead, we explore the task of “traitor
confirmation”: given knowledge of the traitor coalition I that manufactured some decoder D (and
possibly some trapdoor information) the task is to create a publicly-verifiable proof that ascertains
that this is indeed the set of traitors. Both the prover and the verifier are given black-box access to
D. Importantly, a malicious prover should not be able to frame an innocent party for the creation of
a decoder D. This should be the case even if the malicious prover gets access to more than t of the
parties’ secret keys. This is important, for example, to fend against cases in which a coalition creates
some decoder D, and at a later stage obtains additional secret keys that it did not possess when
manufacturing D. If now this coalition has more than t keys, they could potentially reconstruct the
keys of all n parties. Framing an innocent party that did not partake in the creation of D should
still be impossible.
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Here, too, we consider decoders D = D(I) that are specified by a subset I of corrupted parties,
and must decrypt if they get decryption shares from a disjoint subset of parties S of size t − f
where f = |I|.4 But now, we do allow the decoder to take in exactly t − f decryption shares as
inputs, and refuse to work on more shares than that. We call such decoders exact decoders. This
is exactly the decoder from the lower bound sketched above. Focusing on confirmation rather than
tracing allows us to circumvent the lower bound.

Now say that we have a robust threshold decryption scheme, and want to produce a proof that
a subset I of size f < t is the corrupted subset behind some decoder D for a ciphertext c. The first
idea that comes to mind is to include in the proof the decryption shares {dj}j∈[n]\I of c of all parties
outside of I. To verify, one partitions these into k ≈ (n− f)/(t− f) subsets S1, . . . ,Sk, each of size
t−f , feeds these to D one by one, and asserts that D outputs the correct message m every time. If
I is indeed the corrupted subset underlying D, then verification will indeed go through. However,
there is a problem. This confirmation system is completely insecure and is susceptible to framing!
As a small example, consider the case n = 6 and t = 4, and an adversary that corrupts the subset
I = {1, 3, 5} and constructs the decoder D = D({1, 3, 5}). This adversary can later claim that the
corrupted set of parties is in fact the set J = {1, 4} and as proof gives the decryption shares of
the other parties π = {d2, d3, d5, d6}. Verification will now go through since both D(d2, d3) and
D(d5, d6) have enough information to decrypt. The issue here is that the adversary can lie about
the number f of corrupted parties underlying the decoder.

To fix this issue, the verification procedure needs to run a few more checks. For every subset
Sj , for every party i ∈ Sj , and for every party i′ in the claimed set of traitors I, verification will
run D((Sj \ {i}) ∪ {i′}). If this query returns the correct message m, then we will reject the proof
as invalid. The intuition behind this check is that if the corrupted subset is actually larger than
what is claimed by the adversarially conjured proof, then there is a decryption share by a corrupted
party i∗ in some Sj . Hence, removing it from Sj (and replacing it with an element in I to keep the
number of input shares the same) should not affect D’s ability to decrypt.

6.1 Traitor Confirmation

We now define what it means for a threshold decryption scheme to allow confirmation of small traitor
sets (less than the threshold t in size). Later, we will show how any robust threshold decryption
scheme can be augmented with a traitor confirmation mechanism to defend against a restricted
class of decoders.

As we discussed before, confirmation for arbitrary decoders (e.g., a decoder that only works
on a few subsets of inputs) is impossible. Therefore, we focus on a class of decoders, that we call
admissible decoders, defined below. The definition assumes that D is deterministic and perfect, and
always outputs the same on a given input di1 , di2 , . . .. After presenting our confirmation definition
and scheme, we discuss how to generalize this definition and the construction to a certain class of
probabilistic imperfect decoders.

Definition 10. We say that a decoder DI for a cipher text c ←$ E .Enc(pk,m) is admissible with
respect to a set of parties I ⊆ [n], if the decoder decrypts successfully if and only if, it is given at
least t− |I| decryption shares for parties in [n] \ I. More formally,

∀S ⊆ [n], |S ∪ I| ≥ t ⇐⇒ DI({dj}j∈S) = m

4 This restriction is necessary due to a lower bound similar to the one described above.
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where di ← E .Dec(ski, c) are decryption shares for c for any i ∈ [n]. We say that a decoder D
is admissible if there exists a set I such that the behavior of D is identical to that of DI . More
formally, D is admissible with respect to I if,

∀S ⊆ [n], D({dj}j∈S) = m ⇐⇒ DI({dj}j∈S) = m

This set I is called the effective traitor set of the decoder D.

Remark 1. When the underlying encryption scheme E is robust, we give the robustness proofs as
an additional input to the decoder along with each decryption share.

We consider two types of admissible decoders, namely universal and exact. A universal decoder
DI admissible with respect to I ⊆ [n] decrypts correctly if given decryption shares of any set S
such that |S ∪ I| ≥ t, where the size of S is allowed to be any number in [t], i.e. 1 ≤ |S| ≤ t. On
the other hand, an exact decoder admissible with respect to I ⊆ [n] and k ∈ [t], outputs the correct
decryption only when given decryption shares of a set S such that |S ∪ I| ≥ t and |S| = k. Note
that, for both universal and exact decoders, for any set S for which |S ∪ I| < t, the decoder will
not decrypt correctly. We now move on to defining traitor confirmation for threshold decryption
schemes with respect to exact admissible decoders.

A threshold decryption scheme with traitor confirmation (TDTC for short) is a threshold
decryption scheme with two additional algorithms, Prove and Verify.

– Prove takes in the public key pk, an alleged subset of traitors I ⊆ [n], a target ciphertext c∗,
and a confirmation key ck that is an additional output of KeyGen. It also gets oracle access to
a decoder D that takes decryption shares as input. The output of Prove is a proof π.

– Verify takes as input the public key pk, the combiner public key pkc, the confirmation verification
key vk′ which is an additional output of KeyGen, the set I, the ciphertext c∗, and a proof π.
It, too, has oracle access to the decoder D. Verify outputs either 1 implying acceptance of the
proof, or 0, implying rejection.

A secure TDTC satisfies two properties: confirmation correctness and confirmation in-
tegrity. Informally, confirmation correctness means that if Prove is given as input the subset I
that actually manufactured the decoder D (in the sense that any t−|I| decryption shares of parties
not in I will make D output the correct message m), then Prove should output a proof that will
be accepted by Verify. This is captured by the security experiment ExpConfirmA,E,S(λ) in Fig. 9.
The experiment is parameterized by an efficiently-samplable distribution S over the message space
M = {Mλ}λ∈N of E . We also define the collision probability of S, cp(S), as the probability that
two messages sampled from the distribution S will be equal. More formally,

cp(S) = Σm∈M Pr[m̂ = m : m̂←$ S]2

The notion of cp(S) is not used by the security definitions, but will become handy when analyzing
the security of our scheme.

Definition 11. We say that E has confirmation correctness if for every probabilistic polynomial
time adversary A, the following function is negligible in λ:

AdvccA,E,S(λ) := Pr[ExpConfirmA,E,S(λ) = 1].
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Experiment ExpConfirmA,E,S(λ)

1 : j ← 1

2 : (n, t, state)← A(1λ)

3 : (pk, pkc, sk1, . . . , skn, ck, vk
′)←$ KeyGen(1λ, n, t)

4 : I ←$ A(state, pk, pkc)

5 : (D, j∗)←$ Act()(state, {ski}i∈I)

6 : if j∗ ̸∈ [j − 1] ∨ |I| ≥ t ∨ I = ∅ then return 0

7 : if D is not exact admissible w.r.t. (I, t− |I|) then return 0

8 : π ←$ ProveD(pk, I, cj∗ , ck)

9 : if VerifyD(pk, pkc, vk′, I, cj∗ , π) = 0 then return 1 else return 0

Oracle ct()

1 : mj ←$ S

2 : cj ←$ Enc(pk,mj)

3 : j ← j + 1

4 : return cj

Fig. 9. The adversarial confirmation correctness experiment for a TDTC scheme E and an adversary A. The experi-
ment is parameterized by a distribution S over plaintext messages.

Confirmation integrity states that an adversary cannot generate a proof that incriminates party
i, if this party did not participate in the construction of D. This is captured by the security
experiment ExpFrameA,E,S(λ) in Fig. 10.

Definition 12. We say that E has confirmation integrity if for every probabilistic polynomial time
adversary A, the following function is negligible in λ:

AdvciA,E,S(λ) := Pr[ExpFrameA,E,S(λ) = 1].

6.2 A Traitor Confirmation System

We now build a generic traitor confirmation system T DT C for any robust threshold decryption
scheme E and for exact decoders D admissible with respect to a set I ⊆ [n] and k ∈ [t]. More
concretely, we show how to add confirmation algorithms to any robust threshold decryption scheme
E . The algorithms (KeyGen,Enc, Dec,Combine,ShareVf) remain unchanged. The confirmation key is
simply the list of secret keys of all n parties, i.e. ck ← {ski}i∈[n], and the confirmation verification
key is simply the verification key used for verifying decryption shares, i.e. vk′ ← vk. The new
confirmation algorithms, Prove and Verify, follow the outline we sketch at the beginning of this
section, and are formally defined in Fig. 11.

We now prove confirmation correctness and integrity. Theorems 8 and 9 below reduce the
correctness and integrity of the scheme to the semantic security and robustness of the underlying
encryption scheme E .
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Experiment ExpFrameA,E,S(λ)

1 : j ← 1,J ← ∅

2 : (n, t, state)← A(1λ)

3 : (pk, pkc, sk1, . . . , skn, ck, vk
′)←$ KeyGen(1λ, n, t)

4 : (D, I, j∗, i∗, state)←$ Act(),corrupt(·)(state, pk, pkc)

5 : if i∗ ̸∈ [n] \ J ∨ j∗ ̸∈ [j − 1] ∨ |J | ≥ t ∨ I ̸⊆ J then return 0

6 : (I′, π)←$ A(state, ck)
7 : if D is not exact admissible w.r.t. (I, t− |I′| − 1) then return 0

8 : if I′ ̸⊆ I then return 0

9 : if VerifyD(pk, pkc, vk′, I′ ∪ {i∗}, cj∗ , π) = 1 then return 1 else return 0

Oracle corrupt(i)

1 : if i ̸∈ [n] then return ⊥
2 : J ← J ∪ {i}
3 : return ski

Fig. 10. The confirmation integrity security experiment for a TDTC scheme E and an adversary A. The experiment
is parameterized by a distribution S over plaintext messages. The oracle ct is defined as in Fig. 9.

A TDTC scheme T DT C

T DT C.ProveD(pk, I, c∗, ck):

1. Parse ck as {sk1, . . . , skn}.
2. Compute decryption shares (di, πi)← E .Dec(ski, c∗) for all i ∈ [n] and output {(di, πi)}i∈[n].

T DT C.VerifyD(pk, pkc, vk, I, c∗, π):

1. Parse π as {(dj , πj)}j∈[n]. If for some j ∈ [n], E .ShareVf(pk, vk, c∗, (dj , πj), j) = 0, then output 0.
2. Compute the decryption of c∗, m∗ ← E .Combine(pkc, c∗, [t], {(dj , πj)}j∈[t]).
3. Partition the set [n]\I into disjoint subsets each of size k = t−|I|. Let us denote these sets by S1, . . . ,Sy,

where y = ⌈n−|I|
k
⌉. If n− |I| does not divide k, then we wrap around for the last set Sy.

4. For each i ∈ [y], run mi ← D({(dj , πj)}j∈Si). If for some i ∈ [y], mi ̸= m∗, then output 0.
5. For each i ∈ [y], let us denote Si as {si,1, . . . , si,k}. Then, for each i ∈ [y], ℓ ∈ [k], j ∈ I, let Si,ℓ,j ←
Si ∪ {j} \ {si,ℓ} and run mi,ℓ,j ← D({(dw, πw)}w∈Si,ℓ,j ). If for any i ∈ [y], ℓ ∈ [k], j ∈ I, mi,ℓ,j is equal to
m∗, then output 0.

6. Otherwise, Output 1.

Fig. 11. Our TDTC scheme, denoted T DT C, built from any robust threshold decryption scheme E .
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Theorem 8. For every probabilistic polynomial time adversary A, there exists an adversary B such
that

AdvconfT DT C,S,A(λ) ≤
qct · (n+ t)2

8 · (1− cp(S))
· Advind-cpaE,B (λ)

where qct = qct(λ), n = n(λ) and t = t(λ) are an upper bound on the number of ct calls A makes,
and on the total number of parties and the threshold respectively.

Proof. Let I be the set returned byA, cj∗ be the j∗th ciphertext, and let π be the honestly generated
proof in the game ExpConfirmA,E,S(λ). Let E1,E2,E3 denote the events that the adversary wins
because the checks in T DT C.Verify(pk, pkc, vk, I, cj∗ , π) fail at Lines 1 or 4 respectively. Then, by
total probability, we have:

AdvconfT DT C,S(A) = Pr
[
ExpConfirmA,E,S(λ) = 1 ∧ E1

]
+Pr

[
ExpConfirmA,E,S(λ) = 1 ∧ E2

]
+Pr

[
ExpConfirmA,E,S(λ) = 1 ∧ E3

]
Note that in the confirmation correctness game, the challenger honestly generates the proof π

when given pk, I, cj∗ and the confirmation key which has the secret keys of all n parties. Hence,
π = {(dj , πj)}j∈[n], where (dj , πj) ← E .Dec(skj , cj∗) is a valid decryption share for party j for
ciphertext cj∗ . Since the decryption shares are honestly generated, the validity check in T DT C.Verify
(Line 1) will go through (as stated in Section 2). This gives us,

Pr
[
ExpConfirmA,E,S(λ) = 1 ∧ E1

]
= 0

Next, for any i ∈ [y], the set Si as defined in Line 3 trivially satisfies Si ⊆ [n] \ I and |Si ∪
I| = t. This means that, by the admissibility of the decoder (which is checked in Line 7 of the
ExpConfirmA,E,S(λ) game), the decoder must decrypt correctly when given shares of Si, for any
i ∈ [y]. More formally, D({(dj , πj)}j∈Si) = mj∗ for all i ∈ [y].

Hence, either the game will output 0 at Line 7 or the check in Line 4 of the T DT C.Verify
protocol will also go through, meaning that,

Pr
[
ExpConfirmA,E,S(λ) = 1 ∧ E2

]
= 0

This means that the only way for an adversary to win this game is to force the checks in Line 5
to fail. The following lemma shows that any adversary that does so, breaks semantic security of
the underlying scheme E , hence proving the theorem.

Lemma 3. There exists an adversary B such that,

Pr
[
ExpConfirmA,E,S(λ) = 1 ∧ E3

]
≤ qct · (n+ t)2

8 · (1− cp(S))
· Advind-cpaE,S,B (λ)

where qct = qct(λ), n = n(λ) and t = t(λ) are an upper bound on the number of ct() queries by A,
on the total number of parties, and on the threshold respectively.
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Proof. Consider an adversary B playing the game IND-CPAE(λ). B invokes A and simulates the
game ExpConfirmA,E,S(λ) as follows. It gets (n, t) from A and forwards it to its challenger. It
then gets pk, pkc from its challenger, and forwards (pk, pkc) to A.

Let qct denote an upper bound on the number of ct() queries made by A. B then samples
distinct messages m0,m1, . . . ,mqct ←$ S randomly from S. It guesses j∗; i.e. it samples ĵ ←$ [qct].
If m0 = mĵ , then B outputs a random bit b′ ←$ {0, 1}.
B forwards (m0,mĵ) to its challenger, and gets back a ciphertext c. B also gets I, the claimed

effective set, from A. B then queries its challenger for secret keys of all parties in I, i.e. {ski ←
corrupt(i)}i∈I , and sends {ski}i∈I to A.

Next, A issues a sequence of queries. B initializes a counter jct = 0 to keep track of the number
of ct() queries so far. We now discuss how B responds to each one of A ’s queries:

– ct(): B increments the counter jct ← jct + 1. If jct = ĵ, then B outputs c, the ciphertext it
received from its challenger. Otherwise, B encrypts mjct , i.e. cjct ← E .Enc(pk,mjct) and sends
cjct to A.

The adversary A eventually outputs a decoder D and an index j∗. If j∗ ̸= ĵ, then B aborts.
And if any of the checks in Line 6 or 7 fail, the game will output 0 and B will output a random bit
b′ ←$ {0, 1}.

Next, if the event E3 occurs, there exists some i ∈ [y], ℓ ∈ [k], z ∈ I such that the decoder
decrypts correctly when given the decryption shares for the set Si ∪ {z} \ {si,ℓ}, where y, k,Si and
si,ℓ are as defined in Line 3 of the T DT C.Verify algorithm.

B samples î ←$ [y], ẑ ←$ I and ℓ̂ ←$ [k] uniformly randomly, as its guesses for i, z and ℓ
respectively.

Then, B queries its challenger for secret keys of all the parties in Sî∪I \ (J ∪{sî,ℓ̂)}, i.e. it calls
ski ← corrupt(i) for all i ∈ Sî ∪ I \ (J ∪ {sî,ℓ̂)}.

It then runs the decoder D with the decryption shares for the set: Sî,ẑ,ℓ̂ ← Sî ∪ {ẑ} \ {sî,ℓ̂}.
More formally, it runs m← D({(dj , πj)}j∈Sî,ẑ,ℓ̂

), where (dj , πj)← E .Dec(ski, c) for all j ∈ Sî,ẑ,ℓ̂.
If m = m0, B outputs 0 to its challenger. If m = mj∗ , B outputs 1 to its challenger. Otherwise,

it outputs a random bit b′ ←$ {0, 1}.
Observe that B wins its ind-cpa game if B does not abort, and guesses î, ℓ̂, ẑ correctly, and if

A wins the ExpConfirm game (and the event E3 occurs). This is because, first, A wins the game
only if, the check on Line 5 fails for some i, z, ℓ, i.e. if the decoder decrypts correctly for some i, z, ℓ.
This means that if B guesses î, ẑ, ℓ̂ correctly, then its response to its challenger would be correct.
Note that if it guesses incorrectly, then B can either win or lose the game, depending upon the
decoder’s behavior.

Secondly, the total number of corrupt() queries that B made is less than t, since it only queried
the secret keys for the set I and Sî \ {sî,ℓ̂}, and by definition of the sets Si, |I ∪ Sî \ {sî,ℓ̂}| = t− 1.

Let Abort denote the event in which B aborts. Let Em be the event that m0 = mĵ . Let Ei,z,l be

the event that B correctly guessed î, ẑ, l̂, i.e. it guessed the set Sî and the elements z ∈ I, sî,l̂ such
that the decoder does indeed decrypt correctly when input shares of Sî,ẑ,l̂. So we get that,

Advind-cpaE,S (B) ≥ Pr
[
(ExpConfirmA,E,S(λ) = 1 ∧ E3) ∧ Abort ∧ Ei,z,l ∧ Em

]
37



We will now analyse the probability of the events Abort, Em and Ei,z,l. We have that Pr[Ei,z,l] ≥
1
k ·

1
y ·

1
|I| ≥

1
(n+t−2|I|)·|I| ≥

8
(n+t)2

, since k = t − |I|, y = ⌈n−|I|
k ⌉. Let Ej denote the event that B

guessed ĵ correctly, i.e. ĵ = j∗. We have that Pr[Ej ] ≥ 1
qct
. Lastly, Pr[Em] = cp(S). We get,

Advind-cpaE,S (B) ≥ Pr
[
(ExpConfirmA,E,S(λ) = 1 ∧ E3) ∧ Abort ∧ Ei,z,l ∧ Em

]
≥ Pr

[
(ExpConfirmA,E,S(λ) = 1 ∧ E3)

]
· Pr[Abort ∧ Ei,z,l ∧ Em]

≥ Pr
[
(ExpConfirmA,E,S(λ) = 1 ∧ E3)

]
· Pr[Ej ∧ Ei,z,l ∧ Em]

≥ Pr
[
(ExpConfirmA,E,S(λ) = 1 ∧ E3)

]
· Pr[Ej ] · Pr[Ei,z,l] · Pr[Em]

≥ Pr
[
(ExpConfirmA,E,S(λ) = 1 ∧ E3)

]
· 1

qct
· 8

(n+ t)2
· (1− cp(S))

This proves the lemma.

We now prove that it is hard for any probabilistic polynomial time adversary to frame an honest
party for the scheme T DT C.

Theorem 9. For every probabilistic polynomial time adversary A , there exists an adversary B2
such that,

Advframe
T DT C,S,A(λ) ≤ AdvdcE,B2

(λ)

Proof. Observe that A can win only if T DT C.Verify(pk, pkc, vk, (I ′ ∪ {i∗}), cj∗ , π) = 1, where cj∗

and π refer to the ciphertext that the decoder decrypts, and the proof provided by A.
Let E1,E2 denote the events that the checks in T DT C.Verify(pk, pkc, vk, (I ′ ∪ {i∗}), cj∗ , π) fail

at Lines 1 and 4 respectively. Next, let {(di, πi) ← E .Dec(ski, cj∗)}i∈[n] be the honest decryption
shares and their corresponding robustness proofs for the ciphertext cj∗ . Then, let Er denote the
event that the proof π sent by A contains the honest decryption shares for all n parties : {di}i∈[n].
Observe that the adversary loses the game if either of the events E1 or E2 occur. Hence, by total
probability, we have that,

Advframe
T DT C,S(A) = Pr

[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ E2

]
= Pr

[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ E2 ∧ Er

]
+Pr

[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ E2 ∧ Er

]
In other words, A can win only if it produces a proof containing decryption shares that pass the

robustness check for all parties in [n], and if the decoder runs correctly when given shares of parties
in Si for all i ∈ [y]. The following lemmas together prove the theorem. Intuitively, they show that
such an adversary can be used to break the robustness of the underlying encryption scheme E .

Lemma 4. There exists an adversary B2 such that,

Pr
[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ E2 ∧ Er

]
≤ AdvdcE,B2

(λ)

Proof. Consider an adversary B2 playing the game DCE(λ). B2 invokes A and simulates the game
ExpFrameA,E,S(λ) as follows. It gets (n, t) from A and forwards it to its challenger. It then gets
(pk, pkc, sk1, . . . , skn) from its challenger. It forwards (pk, pkc) to A.

38



Let qct denote an upper bound on the number of ct() queries made by A. B2 maintains a counter
jct and a mapping C : [qct] →M× C to store metadata for responding to ct(·) queries. Here, C is
the space of the ciphertexts.
A issues a sequence of queries. We now discuss how B2 responds to each one of A’s queries:

– ct() : B2 increments the counter jct ← jct+1. It then samples a message m←$M and encrypts
it c← E .Enc(pk,m). B2 stores C(jct)← (m, c) and outputs c.

– corrupt(i) : B2 sends ski to A.

A eventually outputs a decoder D, a set I, an index j∗ ∈ [qct] and an innocent party i∗ ∈ [n] \ J .
Let (m∗, c∗)← C(j∗) be the message and the ciphertext corresponding to the j∗th ct() query.
B2 then sends {ski}i∈[n] to A, and receives a set I ′ ∪ {i∗} and a proof π = {(d̂i, π̂i)}i∈[n].
B2 computes honest decryption shares and robustness proofs for all parties in [n], i.e. (di, πi)←

E .Dec(ski, c∗) Let ℓ∗ be the smallest index in [n] such that dℓ∗ ̸= d̂ℓ∗ . Note that, in the case of
events E1 and Er, there must be one such index ℓ∗, and, the shares in π must all be valid, i.e.
ShareVf(pk, vk, c∗, (d̂ℓ∗ , π̂ℓ∗), ℓ

∗) = 1. By the correctness of the encryption scheme, we have that
ShareVf(pk, vk, c∗, (dℓ∗ , πℓ∗), ℓ

∗) = 1. B2 returns (c∗, (dℓ∗ , πℓ∗), (d̂ℓ∗ , π̂ℓ∗), ℓ
∗) to its challenger. As per

the discussion above, if A wins the game ExpFrameA,E,S(λ), and if the events E1 and Er occur,
then, B2 wins the game DCE(λ). This gives us,

AdvdcE,B2
(λ) = Pr

[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ Er

]
≥ Pr

[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ E2 ∧ Er

]
This proves the lemma.

Lemma 5.
Pr
[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ E2 ∧ Er

]
= 0

Proof. For any adversary A, in the events E1,E2 and Er, we have that,

– Er implies that the proof π sent by A is {(di, π̂i)}i∈[n], where (di, πi) ← E .Dec(ski, cj∗) for all
i ∈ [n] (πi may or may not be equal to π̂i).

– Then, E2 implies that all the checks in Line 4 will go through. This implies that the decoder
decrypts correctly when given decryption shares and robustness proofs of Si for all i ∈ [y].

– By the admissibility check (Line 7), we know that A can win only if D = DI . This, combined
with the fact that D({(di, π̂i)}i∈S1) = m implies that, |S1 ∪ I| ≥ t.

– Next, consider the set S1,ℓ = S1∪{i∗}\{s1,ℓ}, for any ℓ ∈ [k], where S1 = {s1,1, . . . , s1,k}. Since,
i∗ ̸∈ I, adding i∗ and removing s1,ℓ cannot reduce the size of intersection with I. More formally,

|S1 ∪ I| ≥ t ∧ i∗ ̸∈ I =⇒ |S1 ∪ {i∗} \ {s1,ℓ} ∪ I| ≥ t

By the admissibility of the decoder, this implies that the decoder must decrypt correctly when
given decryption shares of S1,ℓ for any ℓ ∈ [k]. This means that the checks in Line 5 in the Verify
procedure will fail for i = 1, i∗ ∈ (I ′ ∪ {i∗}), ℓ ∈ [k], meaning that the adversary cannot win.
More formally,

Pr
[
ExpFrameA,E,S(λ) = 1 ∧ E1 ∧ E2 ∧ Er

]
= 0

This proves the lemma.
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Handling probabilistic decoders. We presented our algorithms for admissible decoders that
are deterministic and perfect. Note they can be easily generalized to handle probabilistic decoders,
which decrypt correctly with a certain non-negligible probability.

First, we extend the definition of admissible decoders to probabilistic decoders. We focus on
general encryption schemes for the definition below, but if a robust threshold encryption scheme is
used, the decoder also takes the robustness proofs as input, along with the decryption shares.

Definition 13. We say that a decoder DI for a cipher text c ←$ Enc(pk,m) is admissible with
respect to a set of parties I ⊆ [n], if the decoder decrypts with non-negligible probability if and only
if, it is given at least t − |I| valid decryption shares for parties in [n] \ I. Namely, there exists
non-negligible functions ϵ = ϵ(λ) and a polynomial q = q(λ)

∀S ⊆ [n], |S ∪ I| ≥ t =⇒ Pr [DI({dj}j∈S) = m] ≥ ϵ (10)

∀S ⊆ [n], |S ∪ I| < t =⇒ Pr [DI({dj}j∈S) = m] ≤ ϵ− 1/q(λ) (11)

Intuitively, Eq. (11) enforces the fact that I is precisely the subset underlying the decoder
D. Moreover, if the adversary can only corrupt the parties in I, this follows from the semantic
security of the scheme. In this case, we should think of ϵ − 1/q as negligible, due to the semantic
security of the scheme. Hence, in particular, 1/q ≥ ϵ/2 and hence non-negligible. Allowing arbitrary
polynomials q makes our definition more general.

To extend our T DT C scheme for a probabilistic admissible decoder, the Verify procedure now
takes ϵ and q(λ) as input. Additionally, we modify Steps 4 and 5 as follows:

– (Step 4): For each i ∈ [y], run the decoder W = Ω(λ · (q(λ))2) times on decryption shares of Si.
Let mi,r ←$ D({(dj , πj)}j∈Si) for all r ∈ [W ]. Let cti = Σr∈W1[mi,r = m∗]. If for some i ∈ [y],
cti
W < ϵ− 1

2q(λ) , then output 0.

– (Step 5): For each i ∈ [y], ℓ ∈ [k], j ∈ I, run the decoder W times on shares of Si,ℓ,j . Let
mi,ℓ,j,r ←$ D({(ds, πs)}s∈Si,ℓ,j

) for all r ∈ [W ], and let cti,ℓ,j = Σr∈W1[mi,ℓ,j,r = m∗]. If for some

i ∈ [y], ℓ ∈ [k], j ∈ I, cti,ℓ,j
W > ϵ− 1

2q(λ) , then output 0.

We claim that the above algorithm satisfies confirmation correctness and integrity. Let pS be the
probability that the decoder decrypts correctly when given decryption shares of parties in S ⊆
[n]. Then, running the decoder W times with shares of S allows us to get a good estimate of
this probability. More formally, let p̂S denote ctS

W , where ctS is the number of times the decoder
decrypts correctly when run W times with shares of S. Then, by Chernoff bound, we have that
Pr[|p̂S −pS | > 1/4q(λ)] < 2e−Ω(λ). This means that with high probability, p̂S < ϵ−1/2q(λ) implies
that pS must be less than ϵ − 1/q(λ), and that |S ∪ I| < t (by admissibility of the decoder), and
vice versa. Hence, confirmation and integrity can be argued similarly to the proofs for Theorems 8
and 9.

6.3 Tracing Small Traitor Coalitions

In this section, we define traitor tracing in the small traitor coalition setting, where the number
of corruptions f is less than the threshold t. We start with definitions and a construction for
deterministic admissible decoders, and discuss how to generalize to probabilistic admissible decoders
later in this section.
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A threshold decryption with traitor tracing (or TDTT for short) is a threshold decryption with
an additional PPT tracing procedure Trace, which takes as input the public key pk, the combiner
public key pkc, the tracing key tk which is an additional output of KeyGen, and the ciphertext c
along with oracle access to a decoder D that can decrypt c. It outputs a subset J ⊆ [n].

A secure threshold decryption with traitor tracing must satisfy tracing correctness. This
notion is defined similarly to the large coalition case, but considers universal admissible decoders
that take in decryption shares. The definition is also simplified compared to the large coalition case,
since we focus on ciphertext-specific deterministic decoders. We will discuss how to generalize the
definition and our construction to probabilistic decoders later in this section. We formally describe
the security experiment in Fig. 12.

Experiment ExpTraceSmallA,E,ϵ(λ)

1 : J ← ∅
2 : (n, t, state)← A(1λ)
3 : (pk, pkc, sk1, . . . , skn, tk)←$ KeyGen(1λ, n, t)

4 : (D, Ieff , j∗)←$ Acorrupt(·),ct(·)(state, pk, pkc) // output a decoder alg. D

5 : if |J | ≥ t ∨ Ieff ̸⊆ J ∨ j∗ ̸∈ [j − 1] then return 0

6 : if D is not universal admissible w.r.t. Ieff then return 0

7 : J ′ ←$ TraceD(·)(pk, pkc, cj∗ , tk) // trace decoder

8 : return J ′ ̸= Ieff

Fig. 12. The small coalition tracing experiment for a threshold decryption scheme E and an adversary A. The oracles
corrupt and ct are defined as in Fig. 1 and Fig. 9, respectively.

Definition 14. We say that T DT T has tracing correctness if for every probabilistic polynomial
time adversary A, the following function is negligible in λ:

AdvtcA,E,S(λ) = Pr
[
ExpTraceSmallA,E,S(λ) = 1

]
We now build a generic traitor tracing system for universal admissible decoders that accept any

1 ≤ x ≤ t number of shares. We do so from any semantically-secure threshold decryption scheme.
The algorithms KeyGen,Enc,Dec,Combine remain the same as the underlying encryption scheme.
The Trace procedure is described in Fig. 13, and it takes the secret keys of all n parties as the
tracing key, i.e. tk ← {ski}i∈[n].

Theorem 10 below proves tracing correctness.

Theorem 10. Let T DT T be a threshold decryption scheme with traitor tracing. Then, for every
probabilistic polynomial time adversary A, we have that,

AdvtcA,E,S(λ) = 0

Before proving the theorem, we note that the advantage of the adversary is 0 due to our
assumption that the decoder is deterministic and perfect (i.e., it always decrypts with at least t
shares, but never decrypts with less). Looking ahead, when lifting this restriction, the advantage
will become negligible.
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T DT T : A threshold scheme with small coalition tracing

T DT T .TraceD(pk, pkc, c∗, tk):

1. Parse tk as {sk1, . . . , skn}.
2. Split [n] into disjoint subsets of size t, namely T1, . . . , Tz, where Tj = {t · (j−1)+1, . . . , tj}, where z = n

t
.

We assume n divides t for simplicity, but this can be generalized by wrapping around for the last subset
Tz.

3. Compute decryption shares for all parties, i.e. dj ← E .Dec(ski, c∗) for all j ∈ [n]. Compute the decryption
of the ciphertext; m∗ ← E .Combine(pkc, c∗, [t], {di}i∈[t]).

4. Let I∗ = ∅. For i = 1, . . . , z do:
(a) Set Ji ← Ti, and Hi ← ⊥.
(b) Let Ji = {j1, . . . , jy}, where y = |Ji|.
(c) If D({dv}v∈Ji) = m∗, then,

i. For each r ∈ [y + 1], run the decoder with decryption shares of {jr, . . . , jy}, i.e. mr ←
D({dv}v∈{jr,...,jy}).

ii. Let w ∈ [y] be the smallest value such that mw = m∗ but mw+1 ̸= m∗. Abort if there is no such
w.

iii. Then, set Hi ← Hi ∪ {jw}, and Ji ← Ji \ {jw}. Run step 4b with the updated Ji,Hi sets.
(d) Otherwise, if D({dv}v∈Ji) ̸= m∗, then,

i. Let Hi = {h1, . . . , hu} where u = |Hi|.
ii. For each r ∈ [u], run the decoder with decryption shares of Ji ∪ {h1, . . . , hr}, i.e. set m̂r ←

D({dv}v∈Ji∪{h1,...,hr}).
iii. Let ŵ be the first (smallest) value such that m̂ŵ = m∗. Abort if there is no such value ŵ.
iv. If the decoder works when given shares of {h1, . . . , hŵ}, i.e. if D({dv}v∈{h1,...,hŵ}) = m∗, then

all parties in Ji are traitors, so we set I∗ ← I∗ ∪ Ji.
v. Otherwise, if D({dv}v∈{h1,...,hŵ}) ̸= m∗, then, for every r ∈ [y + 1], run the decoder with

decryption shares of {jr, . . . , jy} ∪ {h1, . . . , hŵ}, i.e. m′
r ← D({dv}v∈{jr,...,jy}∪{h1,...,hŵ}). Let w

′

be the smallest value such that m′
w′ = m∗ but m′

w′+1 ̸= m∗. Abort if there is no such value.
Otherwise, set Ji ← Ji \ {jw′} and Hi ← Hi ∪ {jw′}. Run step 4b with these updated values.

5. Output I∗.

Fig. 13. A threshold decryption scheme with tracing of small traitor coalitions, denoted T DT T , built from any
robust threshold decryption scheme.
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Proof. First, observe that the adversary can only win the game if it makes less than t corrupt(·)
calls, outputs Ieff ⊆ J and j∗ ∈ [j − 1]. Next, Line 6 ensures that the adversary will lose the game
if it outputs a non-admissible decoder, or if it outputs any set Ieff that is not indeed the effective
traitor set of the decoder D. More formally, D must be a universal admissible decoder with respect
to Ieff , for the adversary to win. Given all of the above, we prove that the Trace algorithm will be
able to trace the decoder to the set Ieff .

First, observe that, during the algorithm, the following holds for all i ∈ [z] at all times:

Ji ∪Hi = Ti (12)

Ji ∩Hi = ϕ (13)

This can be seen by induction, based on the fact that, (a) at the beginning of the algorithm,
Ji = Ti and Hi = ⊥, and (b) every time these sets are updated, an element v is removed from Ji,
and it is added to Hi. This also means that, each time step 4b is run, either the algorithm finishes
execution or, the size of Ji reduces by one.

Lemma 6. For any T DT T scheme, and any admissible decoder D, the Trace algorithm does not
abort for any i ∈ [z].

Proof. Observe that, for any i ∈ [z], whenever the algorithm reaches Step 4c, it holds that the
decoder outputs m∗ when given shares of Ji as input. For an admissible decoder, this implies that,

|Ji ∪ Ieff | ≥ t

At the same time, the decoder does not output m∗ when given no shares as input, since |Ieff | < t,
i.e. |⊥ ∪ Ieff | < t.

Let us use Ji,r to denote the set {jr, . . . , jy} for r ∈ [y+1], and let I(S) be defined as |S ∪ Ieff |
for any set S ⊆ [n]. By definition, I(Ji,r) is a monotonic, non-increasing function with respect to r,
specifically, we know that I(Ji,r)− 1 ≤ I(Ji,r+1) ≤ I(Ji,r). We also have that I(Ji,1) = I(Ji) ≥ t
and I(Ji,y+1) = I(Ieff) < t. This means that there must exist a value v ∈ [y] such that I(Ji,v) = t
and I(Ji,v+1) = t− 1. For this v, mv will be m∗ and mv+1 will be ̸= m∗, since D is an admissible
decoder. Hence, the algorithm will never abort at Step 4(c)ii.

Next, whenever the algorithm reaches Step 4d, we have that D({dv}v∈Ji) ̸= m∗, implying that
I(Ji) < t. Let us define Ĵi,r to be the set Ji ∪ {h1, . . . , hr}, for r ∈ [u] ∪ {0}. Again, I(Ĵi,r) is a
monotonic, non-decreasing function with respect to r, specifically, I(Ĵi,r) ≤ I(Ĵi,r+1) ≤ I(Ĵi,r)+1.
Lastly, since we know from Equation 12 that |Ji ∪Hi| = |Ti| = t, we have that I(Ĵi,u) = I(Ti) ≥ t.
Combined with the fact that I(Ĵi,0) = I(Ji) < t, we get that there must exist a v̂ ∈ [u] such that
I(Ĵi,v̂−1) = t − 1 and I(Ĵi,v̂) = t. This means that m̂v̂ will be m∗, and hence, the algorithm will
not abort at Step 4(d)iii.

Next, there are two possibilities:

– The decoder outputs m∗ when given shares of {h1, . . . , hŵ}. In this case, the iterative algorithm
finishes for Ti.

– The decoder does not outputm∗ when given shares of {h1, . . . , hŵ}, meaning that I({h1, . . . , hŵ}) <
t. For this case, let us define J ′

i,r to be the set {jr, . . . , jy} ∪ {h1, . . . , hŵ} for r ∈ [y + 1]. We
have that I(J ′

i,r) is a monotonic, non-increasing function with respect to r, and I(J ′
i,y+1) =

I({h1, . . . , hŵ}) < t, and I(J ′
i,1) = I(Ĵi,ŵ) ≥ t. Hence, there must exist a value v′ ∈ [y] such

that I(J ′
i,v′) = t but I(J ′

i,v′+1) = t− 1, and the algorithm will not abort at Step 4(d)v.
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Lemma 7. For each i, at the end of the iterative algorithm, we have,

Ji ⊆ Ieff

Proof. We will prove this by contradiction.
For each i, when the algorithm ends (at Step 4(d)iv), we have that,

D({dv}v∈Ji) ̸= m∗

By the definition of an admissible decoder, this implies that

|Ji ∪ Ieff | < t

We also have that, m̂ŵ = m∗ and m̂ŵ−1 ̸= m∗. These combined with the definition of an admissible
decoder imply the following:

|Ji ∪ {h1, . . . , hŵ−1} ∪ Ieff | < t

|Ji ∪ {h1, . . . , hŵ} ∪ Ieff | ≥ t

Since adding just one element makes the size of the union cross the threshold, we get that

|Ji ∪ {h1, . . . , hŵ} ∪ Ieff | = t (14)

Lastly, we also have that the decoder decrypts correctly when given decryption shares of {h1, . . . , hŵ},
which implies that,

|{h1, . . . , hŵ} ∪ Ieff | ≥ t (15)

Note that hj ∈ Hi for all j ∈ [ŵ]. Then, Equations 15 and 14 combined with the fact that
Ji ∪ Hi = ϕ can only hold together if Ji ⊆ Ieff . This can be seen by contradiction; if there were
even a single element u ∈ Ji \ Ieff , then, |Ji ∪ {h1, . . . , hŵ} ∪ Ieff | would have to be strictly larger
than |{h1, . . . , hŵ} ∪ Ieff |.

Lemma 8. For any party h that is added to Hi, h ̸∈ Ieff .

Proof. Let Ieff denote the effective traitor set of the decoder D, as defined in Definition 10. There
are two steps in the algorithm where a party might be added to Hi. We will consider them one by
one:

– Step 4c. Here, a party w is added to Hi, if mw = m∗ and mw+1 ̸= m∗. By the definition of an
admissible decoder, we have that,

{jw, . . . , jy} ∪ Ieff ≥ t

and,
{jw+1, . . . , jy} ∪ Ieff < t

Since the only element that is different between the sets is jw, these together imply that jw ̸∈ Ieff .
– Step 4d. Here, a party w′ is added to Hi if m

′
w′ = m∗ but m′

w′+1 ̸= m∗. This combined with
the fact that D is an admissible decoder, we get that,

|{jw′ , . . . , jy} ∪ {h1, . . . , hŵ} ∪ Ieff | ≥ t

|{jw′+1, . . . , jy} ∪ {h1, . . . , hŵ} ∪ Ieff | < t

Again, since these sets are different by just a single element, we have that jw′ ̸∈ Ieff .
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Lemma 8 also implies that, for any i ∈ [z], if Ti had any party y ∈ Ti ∩ Ieff , then it cannot
be in Hi. Combined with Lemmas 7 and 13, we get that y must end up in Ji, and hence in I∗.
Lastly, Lemma 7 implies that I∗ ⊆ Ieff . Combining the above, we get that I∗ = Ieff , i.e. the tracing
algorithm does trace the decoder to the exact set of effective traitors. Lastly, since we know that
the adversary outputs the effective set, we get that I∗ = Ieff = I, meaning that the game will
output 0, hence proving the theorem.

Handling probabilistic decoders. We now discuss how to generalize our tracing procedure to
probabilistic, universal and admissible decoders, as defined in Definition 13. The Trace procedure
now takes ϵ and q(λ) as input, and we modify the procedure similar to how we handled probabilistic
decoders for our confirmation algorithm, as described in Section 6.2. Informally, we replace checking
whether D({dj}j∈S) = m∗ (for any set S) with checking whether the estimated probability of D
decrypting correctly, when given shares of S, is more than ϵ− 1

2q(λ) . The rest of the logic remains
the same.

We now formally describe all the changes to the procedure:

– (Step 4c) Run the decoder W = Ω(λ · q(λ)2) times on decryption shares of Ji. Let mr ←$

D({dj}j∈Ji) for all r ∈ [W ]. Set ct← Σr∈[W ]1[mr = m∗] and p̂Ji ← ct
W . If p̂Ji > ϵ− 1

2q(λ) ,

• (Step 4(c)i) For each r ∈ [y+1], run the decoderW times on decryption shares of {jr, . . . , jy}.
Let mr,u ←$ D({dv}v∈{jr,...,jy}) for all u ∈ [W ]. Then, set mr ← m∗ if

Σu∈[W ]1[mr,u=m∗]

W >

ϵ− 1
2q(λ) , and mr ← ⊥ otherwise. The rest of the steps remain the same.

– (Step 4d) If p̂Ji < ϵ− 1
2q(λ) , then,

• (Step 4(d)ii) For each r ∈ [u], run the decoder W times with decryption shares of the set
Ji ∪ {h1, . . . , hr}. Let m̂r,ℓ ←$ D({dv}v∈Ji∪{h1,...,hr}) for all ℓ ∈ [W ]. Then, set m̂r ← m∗ if
Σℓ∈[W ]1[mr,ℓ=m∗]

W > ϵ− 1
2q(λ) , and mr ← ⊥ otherwise.

• Step 4(d)iii remains the same, i.e. we find the smallest value ŵ s.t. m̂ŵ = m∗.

• In Step 4(d)iv, we run the decoder W times with decryption shares of the set {h1, . . . , hŵ}.
Let mh,u ←$ D({dv}v∈{h1,...,hŵ}) for all u ∈ [W ]. If

Σu∈[W ]1[mh,u=m∗]

W > ϵ − 1
2q(λ) , then all

parties in Ji are traitors, i.e. I∗ ← I∗ ∪ Ji.
• (Step 4(d)v) Otherwise, for every r ∈ [y + 1], we run the decoder W times with decryption
shares of the set {jr, . . . , jy} ∪ {h1, . . . , hŵ}, i.e. m′

r,u ←$ D({dv}v∈{jr,...,jy}∪{h1,...,hŵ}) for all

u ∈ [W ]. Next, set m′
r ← m∗ if

Σu∈[W ]1[m
′
r,u=m∗]

W > ϵ − 1
2q(λ) , and m′

r ← ⊥ otherwise. The

rest of the logic remains the same as Step 4(d)v.

We claim that the updated Trace algorithm satisfies tracing correctness. For any set S, let pS
be the probability that the decoder decrypts correctly when given decryption shares of parties in
S. Then, running the decoder W times on shares of S gives us an estimate of this probability, p̂S .
By Chernoff bound, we have that |pS − p̂S | < 1

4q(λ) with high probability. Hence, p̂S > ϵ − 1
2q(λ)

implies that pS must be ≥ ϵ with high probability. By adimissibility of the decoder D, this means
that |S ∪ I| must be at least t, where I is the effective traitor set of D. The implication also holds
in the other direction, i.e. p̂S < ϵ− 1

2q(λ) implies that |S ∪ I| < t with high probability. Hence, we
can simply use the same proof technique as in the proof of Theorem 10 that the tracing algorithm
does indeed trace the decoder to the set I.
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7 Conclusion and Future Directions

This work initiates the study of accountability for threshold decryption schemes, focusing on the
notion of traitor tracing for such schemes. To the best of our knowledge, this is the first work
to consider this problem, and it gives new definitions and constructions that satisfy them. We
strongly believe that this may open an exciting avenue for research, as there are many natural open
questions that arise from our work. We present two of them here, in the setting of tracing large
traitor coalitions.

Thresholdizing additional traitor tracing schemes. As we explain in Section 3, a natural
path to constructing a threshold decryption scheme with traitor tracing is by converting existing
traitor tracing schemes into their threshold variant. In this work, we make the first step in this effort,
showing how to convert the traitor tracing scheme of Boneh and Naor [14] to a threshold decryption
scheme that allows for traitor tracing. In an upcoming follow-up work, we do the same for the recent
traitor tracing scheme of Gong, Lou, and Wee [33]. An interesting open question is to adapt other
traitor tracing schemes to the threshold setting. Natural candidates are other schemes based on
private linear broadcast encryption (PLBE) from either pairing-based assumptions [20,32,56] or
lattice-based assumptions [34,24], as well as the recent construction of Zhandry [57], which takes a
different approach for implementing broadcast encryption with private revocation. Extending any
of these works to the threshold setting will most likely require very different techniques than the
ones we develop in this paper.

Detecting many traitors. Our definition of traitor tracing (Section 3) requires that the tracing
algorithm Trace outputs at least one member of the traitor coalition. This is in line with previ-
ous definitions for traitor tracing in the non-threshold case. In the non-threshold setting, this is
unavoidable: an adversary that corrupts f > 1 parties may very well still “use” just one of their
secret keys when constructing the decoder. In threshold decryption, however, the decoder must use
– in some intuitive sense – the secret keys of at least t parties in order to decrypt, or semantic
security is broken. So one may consider a strengthening of our definition that requires that Trace
outputs at least t corrupted parties. We observe that there is an inefficient scheme that does satisfy
this definition, built from any semantically secure public key encryption E . Consider the trivial
threshold decryption scheme, in which each party i has its own secret-public key pair (ski, pki)
and the overall public key is pk = (pk1, . . . , pkn). To encrypt a message m, we secret share m into
shares s1, . . . , sn using a t-out-of-n secret sharing scheme, and encrypt the ith share under pki to
obtain ci ←$ E .Enc(pki, si). The final ciphertext is c = (c1, . . . , cn). It is not hard to see that this
scheme has a tracing algorithm (à la PLBE) that can find at least t traitors given black-box access
to a good decoder. The task is to satisfy this stronger requirement — tracing a decoder to t or
more traitors — with an efficient construction. The combinatorial objects underlying most existing
efficient traitor tracing constructions (PLBE and fingerprinting codes) are specifically tailored to
catch just one traitor, and no more. So extending them to the task of catching t traitors seems to
require new ideas, and is a very interesting open question.

Distributed key generation. Our definition and constructions consider a central key generation
procedure. However, one could also consider a distributed key generation protocol instead, taking
place among the n decryptors and a tracing authority. The tracing authority would only learn the
information needed to trace the decoder back to a corrupted party, and no more. In particular, in our
constructions, the trapdoor information needed for tracing would not allow the tracing authority
to break semantic security of the encryption scheme.
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A A BT-KEM Construction from any Threshold KEM

We briefly describe how one can generically construct a BT-KEM scheme any threshold KEM
scheme. Let E be such a threshold KEM scheme. A naive first attempt of constructing a BT-KEM
from E is already implicit in our discussion at the beginning of Section 4. Casted as a BT-KEM
scheme, this naive construction uses 2ℓ t-out-of-n copies of E , a left one and a right one for each
position j ∈ [ℓ]. The public key of our BT-KEM is now composed of ℓ pairs of E public keys

(pk
(1)
0 , pk

(1)
1 ), . . . , (pk

(ℓ)
0 , pk

(ℓ)
1 ). Similarly, the secret key of party i ∈ [n] consists of 2ℓ secret keys,

one for each copy of E . To encapsulate a key to position j ∈ [ℓ], the encapsulation algorithm Enc
invokes E .Enc twice: once for each of the copies of E at position j. It thus obtains two keys k0 and
k1 and two ciphertexts c0 and c1. It samples a key k from the key space of E , and one-time pads it
with both k0 and k1 to obtain ciphertexts c′0 and c′1. It then outputs they key k and the ciphertext

49

https://docs.osmosis.zone/overview
https://arxiv.org/abs/2307.10878
https://eprint.iacr.org/2006/383


c = ((c0, c
′
0), (c1, c

′
1)). As we discussed in Section 4, this construction does not provide two-sided

correctness.

To fix this issue, we add more information to the ciphertext. In each position j ∈ [ℓ], we initialize
2(t − 1) additional copies of E : for s = 1, . . . , t − 1, we sample a set of left keys for an s-out-of-n
instance of E and a set of right keys for a (t− s)-out-of-n instance of E . This is in addition to the
two sets of t-out-of-n keys. All in all, we now have t sets of left keys and t sets of right keys at
each position (2tℓ sets of keys overall). When encapsulating to position j ∈ [ℓ], the encapsulation
algorithm now repeats the following for s = 1, . . . , t− 1: it 2-out-of-2 secret shares k to k′0 and k′1.
It encrypts k′0 under the s-out-of-n left key at position j and k′1 under the (t−s)-out-of-n right key.
Now, if a coalition has s left keys for some s ∈ {0, . . . , t} and t− s right keys, it can decapusalte by
using its left keys to recover k′0 and its right keys to recover k′1, and reconstructing the encapuslated
key k.

The construction that we just sketched demonstrates that BT-KEM can be constructed from
the minimal building block which is a standard threshold KEM scheme. However, due to its long
keys and ciphertexts, it is mainly of foundational interest. In Section 5 we describe much more
efficient constructions from specific assumptions.

B A Lower Bound for Tracing of General Decoders

We now prove that if we pose no restrictions on the decoder outputted by a small coalition, then
tracing is impossible if the underlying threshold decryption scheme is robust (recall Defintion 2).
Let E be any robust threshold, let n ∈ N, t < n, and f < t, let (pk, pkc, sk1, . . . , skn, vk, tk) ←$

E .KeyGen(1λ, n, t), and let m be an arbitrary message in the message space of E , and let c ←$

E .Enc(pk,m). Consider the following distribution D = D(n, t, f, pk, pkc, sk1, . . . , skn, vk) over de-
coders:

1. Sample a uniformly random subset I ⊆ [n] of size f .

2. For each i ∈ I, compute di ← E .Dec(ski)
3. Construct a decoder D, that takes in an arbitrary number of decryption shares {dj}j∈J for

some subset J ⊆ [n]. Since E is robust, the subset J is recoverable from the shares {dj}j∈J . D
is defined as follows:

(a) If |J | ̸= t− f , then output ⊥.
(b) If I ∩ J ≠ ∅ then output ⊥.
(c) If not aborted, compute m← E .Combine(pkc, c,J ∪ I, {di}i∈J∪I).

4. Output the decoder D.

Note that the decoder outputted by the distribution depends only on the secret keys corre-
sponding to the subset I. Hence, it can be computed by a small traitor coalition possessing f < t
keys. The decoder is also useful, in the sense that for any subset J ⊂ [n] of size t−f that is disjoint
from I, feeding the decoder {dj ← E .Dec(skj , c)}j∈J will make it output the encrypted message
m.

We claim that given oracle access to a decoder D sampled from this distribution, it is very
unlikely to make it output anything but ⊥.
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Theorem 11. Let n, t, f, pk, pkc, sk1, . . . , skn, vk, tk and D be defined as above. Then, for any prob-
abilistic polynomial-time algorithm B making at most Q = Q(λ) queries to its oracle, it holds that

Pr [A ≠ {⊥}] ≤ Q(
n
f

)
−Q ·

(n−(t−f)
f

) ,
where A is the set of all oracle answers in a random execution of BD(n, t, f, pk, pkc, sk1, . . . , skn, vk, tk),
and the probability is over D ←$ D and the random coins of B.

Before proving the theorem, we wish to better understand its implications. To this end, consider
the case t = n/3 and f = t/2. Note that we can rewrite the bound from Theorem 11 as

Q(
n
f

)
−Q ·

(n−(t−f)
f

) =
Q(

n
f

)
·
(
1−Q ·

(n−(t−f)
f

)
/
(
n
f

)) .
We now turn to bound the term

(n−(t−f)
f

)
/
(
n
f

)
. By Stirling approximation, we obtain that(n−(t−f)

f

)(
n
f

) =
(n− (t− f))!(n− f)!

n!(n− t)!

≤ e2

√
(n− t+ f)(n− f)

n(n− t)
·

(
n−t+f

e

)n−t+f
·
(
n−f
e

)n−f

(
n
e

)n · (n−t
e

)n−t

≤ e2
√
n · (n− t+ f)n−t+f · (n− f)n−f

nn · (n− t)n−t
(16)

Plugging in t = n/3 and f = t/2, we get that the term from Eq. (16) is upper bounded by
e2
√
n·0.97n. In particular, assuming thatQ < 0.97−n/(2e2

√
n) (and in particular for any polynomial

Q), it holds that

Pr [A ≠ {⊥}] ≤ Q(
n
f

)
−Q ·

(n−(t−f)
f

)
≤ Q(

n
f

)
· (1−Qe2

√
n · 0.97n))

<
Q

2
(
n
f

)
Invoking Stirling’s approximation one more time, we can show that(

n

f

)
≥ 6

e
√
10πn

·

(
1(

1
6

)1/6 · (56)5/6
)n

>
6

e
√
10πn

· (1.569)n

Putting everything together, we obtain that

Pr [A ≠ {⊥}] ≤ Q · e
√
10πn

12 · (1.569)n
= Q · 2−Ω(n)

We now turn to prove Theorem 11.
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Proof. Assume without loss of generality that B only queries D on subsets of size t− f . Since E is
robust, each decryption share is deterministically associated with some party j ∈ [n]. To make D
output anything other than ⊥, B has to query D on decryption shares from a subset J of parties
that is of size t − f and is disjoint from I. If this does not happen, then D always outputs ⊥
regardless of the decryption shares themselves given to it. Hence, for the remainder of the proof,
we will ignore the decryption shares and just think of it as if B queries D on subsets J1, . . . ,JQ.
We will prove an upper bound on the probability that there is a k ∈ [Q] for which Jk ∩ I = ∅.

Let Sf denote the collection of all f -size subsets of [n]. For i = 1, . . . , Q− 1, denote

S−i = {T ∈ Sf : T ∩ Ji = ∅}.

That is, S−i is defined to be the collection of all f -size subsets of [n] that do not intersect Ji. Let
W0 = Sf and for i = 1, . . . , Q− 1 let Wi =Wi−1 \ S−i. In words, the set Wi is the collection of all
f -size subsets of [n], when we remove from it all subsets that do not intersect at least one of the
subsets J1, . . . ,Ji.

Moreover, for i ∈ [Q], the size of Wi−1 is at least

|Wi−1| ≥ |Sf | − (i− 1) ·
(
n− (t− f)

f

)
(17)

This can be seen by induction on i. For i = 1, Eq. (17) holds by definition. For i > 1, we have that

|Wi−1| =
∣∣Wi−2 \ S−(i−1)

∣∣
≥ |Wi−2| −

∣∣S−(i−1)

∣∣
≥ |Sf | − (i− 2) ·

(
n− (t− f)

f

)
−
∣∣S−(i−1)

∣∣ (18)

= |Sf | − (i− 1) ·
(
n− (t− f)

f

)
. (19)

Eq. (18) is the induction hypothesis, and Eq. 19 holds since the number of f -size subsets that do

not intersect Ji−1 is
(n−(t−f)

f

)
.

For i = 1, . . . , Q let Hiti denote the event in which one of the first i queries B made to D
was answered with something other than ⊥. For i = 1 we let Hit0 denote empty event; that is,
Pr [Hit0] = 0. The main observation is this: let i ∈ [Q] and suppose that Hiti−1 occurred. Then,
conditioned on the view of B after i − 1 queries, the subset I is uniformly distributed in the set
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Wi−1. Hence,

Pr [A ≠ {⊥}] =
Q⋃
i=1

Pr
[
Hiti

∣∣ Hiti−1

]
≤

Q∑
i=1

Pr
[
Hiti

∣∣ Hiti−1

]
=

Q∑
i=1

1

|Wi−1|

<
Q

|Sf | −Q ·
(n−(t−f)

f

)
=

Q(
n
f

)
−Q ·

(n−(t−f)
f

) .
This concludes the proof of the Theorem.
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