
Quantitative Fault Injection Analysis

Jakob Feldtkeller1 , Tim Güneysu1,2 , and Patrick Schaumont3

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
{jakob.feldtkeller, tim.gueneysu}@rub.de

2 DFKI, Bremen, Germany
3 Worcester Polytechnic Institute, Worcester, USA

pschaumont@wpi.edu

Abstract. Active fault injection is a credible threat to real-world digi-
tal systems computing on sensitive data. Arguing about security in the
presence of faults is non-trivial, and state-of-the-art criteria are overly
conservative and lack the ability of fine-grained comparison. However,
comparing two alternative implementations for their security is required
to find a satisfying compromise between security and performance. In
addition, the comparison of alternative fault scenarios can help optimize
the implementation of effective countermeasures.
In this work, we use quantitative information flow analysis to establish
a vulnerability metric for hardware circuits under fault injection that
measures the severity of an attack in terms of information leakage. Po-
tential use cases range from comparing implementations with respect to
their vulnerability to specific fault scenarios to optimizing countermea-
sures. We automate the computation of our metric by integrating it into
a state-of-the-art evaluation tool for physical attacks and provide new
insights into the security under an active fault attacker.

Keywords: Fault Injection Analysis · Fault Metric · Quantitative In-
formation Flow.

1 Introduction

Since their first publication in 1997 by Boneh et al. [12], Fault Injection Anal-
ysis (FIA) has become a fundamental part of the threat landscape for digital
systems. In FIA, a malicious attacker disturbs the intended execution flow of a
sensitive system to cause a denial of service, escalate privileges, or gain secret in-
formation. Such disturbance of execution is possible through fault injection, for
example, via clock glitching [1], voltage glitching [50], electromagnetic pulses [6],
or focused laser beams [52]. To thwart the exploitation of FIA, system design-
ers use shields and sensors to prevent and notice a fault injection attempt or
introduce redundancy in time, space, or information to detect the propagation
of faults throughout the system after successful penetration.

However, the construction of FIA-secure systems requires clear criteria of
vulnerability and security for a circuit under attack to direct the deployment

https://orcid.org/0000-0001-9797-1257
https://orcid.org/0000-0002-3293-4989
https://orcid.org/0000-0002-4586-5476

2 Feldtkeller et al.

of countermeasures. State-of-the-art security definitions for FIA focus on the
observability of faulty behavior at the outputs. In particular, the fault effect is
propagated through the circuit and deemed insecure when the output gets af-
fected and dedicated countermeasures are not triggered [22,4,43]. While helpful,
this criterion lacks precision for FIA aimed at information leakage. Specifically,
it is overly conservative in some cases and fails to detect practical attacks in
others. On the one hand, some faults may propagate undetected to the outputs
without affecting security. For example, injecting a fault directly into the output
of some cryptographic cipher does not affect the security but is marked insecure
by the criterion. Hence, the criterion is more a measure of the effectiveness of
the countermeasures than of the circuit’s vulnerability. On the other hand, Sta-
tistical Ineffective Fault Analysis (SIFA) exploits the fact that a fault injection
has no impact on the execution (ineffective fault) and is therefore not captured
by the criterion at all while being a viable threat to implementation security.
For SIFA, additional rules are introduced, such as checking the statistical de-
pendency between secrets and fault detection behavior [31,42]. In addition, the
given criterion is binary in the sense that it only offers a categorization in the
buckets secure and insecure. Hence, a qualitative comparison within one of those
categories is not possible.

To overcome these limitations, we need a general metric to capture the se-
curity quantitatively in the context of information-leaking FIA. In particular,
such a quantitative metric universally describes the secrecy loss caused by fault
injection, i.e., not by providing a specific attack but by a quantification that is
independent of the used analysis method. Such a quantitative metric can be used
to identify the necessity of countermeasures and measure their effectiveness more
tightly, leading to more optimal secure designs. It also allows the comparison of
different designs for security, enabling a trade-off between performance (area,
power, latency) and security. Such a trade-off could mean that a certain level
of vulnerability is willingly accepted to gain some performance. However, it re-
quires a realistic assessment of the cost in terms of security. Similarly, a designer
(or attacker) can locate the most vulnerable fault positions to prioritize devel-
opment efforts where they are most effective. Also, such a quantitative metric
can be used by machine learning algorithms to learn the construction of secure
designs in a fine-grained manner. Since machine learning provides no guarantees
for the resulting designs, security criteria are required again to assess the result.

To summarize, the overall goal is to create a framework and automated tool
for the computation of fault severity that requires minimal effort from the user,
with domain- and design-specific information being derived automatically or
provided with ease. The tool will be used in an automatic design or evaluation
framework to determine realistic fault locations, compute a quantitative secu-
rity metric for the threat, and use the security assessment to optimize circuit
synthesis for both performance and security.

Contribution. In this work, we show how to use methods of Quantitative In-
formation Flow (QIF) analysis [3,53] to evaluate security in the context of
information-leaking FIA (cf. Section 3). For that, we extend a commonly used

Quantitative Fault Injection Analysis 3

fault model [44] with probabilistic faults and show how to model FIA based
on stateless information channels. Hence, we merge results from two scientific
communities to define a quantitative vulnerability metric for FIA that separates
the notion of secrecy-loss due to fault injection from specific attacks against
specific implementations. We provide an algorithm for precise computation, ex-
ploiting the efficient representation of boolean functions via Binary Decision
Diagrams (BDDs), and integrate this approach into the state-of-the-art evalua-
tion tool for physical security VERICA [42] (cf. Section 4). In our implementation,
we cover deterministic information channels only. However, we show that we can
transform each probabilistic channel into a deterministic channel with external
random inputs and, hence, this is no restriction in generality.

The proposed quantitative FIA metric can be used to evaluate the efficiency
of fault attacks (cf. Section 5) or the quality of countermeasures (cf. Section 6).
We use the analysis of attacks to showcase the accuracy of our metric achieved by
the tight match between theory and practice. Afterward, the analysis of counter-
measures focuses on the generation of new insights to deepen our understanding
of secrecy loss due to active fault injection. In particular, we show that some of
the recent findings (and foundations to some security proofs) on SIFA are flawed.
Also, our quantitative metric allows identifying fault locations that reduce the
amount of leakage caused by other faults. This enables the implementation of
new defense mechanisms, where the structure of the circuit ensures that when
there is a leaking fault, there is always a leakage-reducing fault active.

While there already exist occasional works in the literature that use QIF for
the evaluation of FIA, these works are non-generic and limited to specific attacks,
countermeasures, or ciphers (cf. Section 8.1). Hence, applying those methods to
other scenarios requires significant effort and expert knowledge. In contrast, we
provide a general evaluation method for automatic computation.

2 Preliminaries

The important notation used throughout this work is given in Table 1. In general,
we write functions in sans serif font (e.g., F) and sets as upper-case characters
using a calligraphic font (e.g., S). We denote a distribution over a set S by DS.

2.1 Fault Injection Analysis

Fault Injection Methods. In FIA, an adversary disrupts the normal execution
of a system under attack to gain an advantage. Most fault injection methods
require physical access to the attacked device and often manipulate the tim-
ing behavior of the circuit [44]. Prominent examples include clock glitching [1],
which increases the clock frequency; voltage glitching [50], which increases the
propagation delay of logic gates by lowering the supply voltage; electromagnetic
pulses [6], which reset parts of the circuit and cause a race between clock and
information signals; or focused laser beams [52], which temporarily affect the
physical properties of transistors. Recently, however, more and more research

4 Feldtkeller et al.

Table 1. Important notations used throughout this work.

Notation Description
C

ir
cu

it

C Digital logic circuit.
C Information-theoretic channel.

S, S, s Set of secrets, random variable of secrets, and secret value.
X , X, x Set of inputs (no secrets), random variable of inputs, and input value.
R, r Set of random values and specific random value.

Y, Y , y Set of outputs, random variable of outputs, and output value.
Y ′, y′ Random variable of faulty output, and faulty output value.

δ Detection flag.

F
IA

k Maximum number of simultaneous faults (security order).
τ Fault type.
F Set of possible fault combinations.
V Vulnerability metric (probability of correct guess in one attempt).
L Leakage metric (number of leaked bits).

has shown the ability to inject faults via software, allowing remote execution of
FIA. This can be done through the energy management system of modern Cen-
tral Processing Units (CPUs) [55], through high-frequency accesses to memory
locations [29], through valid but malicious bitstreams for Field-Programmable
Gate Arrays (FPGAs) [28], or through randomly occurring faults in large sys-
tems [54]. In general, faults can be transient, i.e., having only a short-term effect,
or permanent.

Analysis Methods. By exploiting faults, an adversary can bypass access-control
mechanisms, cause denial of service, or obtain secret information. In this work, we
focus on the leakage of sensitive information, where many analysis mechanisms
are inspired by techniques from cryptanalysis. The first published fault attack by
Boneh et al. [12] falls in the category of Algebraic Fault Analysis (AFA) [19]. It
solves a system of equations depending on correct and faulty outputs and inter-
mediate variables for the secret. Similarly, Differential Fault Analysis (DFA) [9]
exploits known differentials between a correct and a faulty intermediate state to
reduce the possible key space. In particular, only those key hypotheses remain
where, for all pairs of correct and faulty outputs, the intermediate differential
matches with the induced fault. The same idea can be applied to impossible
differentials [8]. Collision-based Fault Analysis (CFA) [10] uses only correct and
faulty output pairs where the output does not change despite the injected fault.
The simplest example is a known fault injected into some key bit. If the output
is the same for the correct and the faulty output, then the fault is a correct
key guess. All the previous FIA techniques require pairs of correct and faulty
outputs. The insight of biased FIA [37] is that only faulty outputs are needed if
the fault injection causes some bias in an intermediate state, either because of
dependencies between the secret and the fault occurrence or because of the fault
itself is biased (e.g., set/reset faults). Then, only those key hypotheses remain

Quantitative Fault Injection Analysis 5

Channel Construction
(cf. Section 3.4)

Metric Computation
(cf. Section 3.5)

CFIA
C

DX
DS
DF

V

L

Fig. 1. Framework for quantitative fault-injection analysis.

that lead to the known bias in the intermediate state. SIFA [23] uses the same
idea, but creates the bias by discarding all outputs where the fault has an effect.

2.2 Side-Channel Analysis and Masking

Another highly relevant attack is passive Side-Channel Analysis (SCA), where
an adversary observes some physical characteristics such as timing [35], instan-
taneous power consumption [36], or electromagnetic emanations [27] to recover
some processed secret, e.g., a cryptographic key. For arguing about SCA secu-
rity theoretically, the d-probing model [33] was introduced, where an adversary
gets access to d chosen intermediate values. As protection against such attacks,
boolean masking [15] replaces each xi ∈ F2 with a vector ⟨xi,0, . . . , xi,n−1⟩ ∈ Fn

2

with n ∈ N, such that knowing any set of up to d shares xi,j does not reveal
any information about xi, and xi =

⊕n−1
j=0 xi,j . The optimal amount of shares is

n = d+1 (with less there is a trivial attack by probing all shares of some value).
Similarly, the circuit is transformed into a masked circuit by transferring each
operation to a set of operations that produces share vectors of the output from
share vectors of the input.

3 A Vulnerability Metric for FIA

In the following, we describe the proposed vulnerability metric for FIA. For that,
we start by defining our circuit, fault, and adversary models. Then we present
our framework by showing how to construct an appropriate information channel
and describe the actual computation of the vulnerability metric (cf. Figure 1).

3.1 Circuit Model

Stateless Channel. We model a circuit C as a probabilistic information chan-
nel C : X×S → DY with a secret s ∈ S and some x ∈ X as inputs that produce a
(probabilistic) output y ∈ Y [3]. Thereby, the adversary tries to learn the secret
s and the output y should model all information that an adversary learns by
observing the execution of the circuit. In general, we describe such a channel as
a matrix, where each entry C(x,s),y gives the probability Pr[y | x, s]. Hence, each
row lists all the output probabilities given a specific input and sums up to 1. If
C(x, s) is uniquely defined, i.e., each row has exactly one entry equal to 1, we
call the circuit deterministic.

We assume a stateless channel, meaning that each input is processed inde-
pendently of all previous inputs, i.e., there is no notion of time or order between

6 Feldtkeller et al.

different executions. In particular, the channel always accepts the same input
multiple times and processes it in the same (probabilistic) way. This restriction
has implications for the type of countermeasures captured by this model, as dis-
cussed below (cf. Section 3.4). A stateless channel does not restrict the circuit
to be stateless, i.e., the circuit may contain memory elements such as registers.
However, before feeding a new input to the circuit, all memory elements are reset
to an initial value, so there is no dependency between different executions.

Directed Graph. To precisely model the ability of a faulting adversary, we
need more internal information about the circuit than provided by a probabilistic
channel. A common method in the literature is to model a circuit via a Direct
Acyclic Graph (DAG) [44]. For this, we define a set of input and output gates
Gio = {in, out} where in has no input and outputs a value from the finite field
F2, and out does the opposite. Further, without loss of generality, we define the
set of combinatorial gates to be Gc = {inv, and, nand, xor, xnor} and the set of
memory gates to be clocked registers Gm = {reg}. To represent probabilistic
circuits, we define a randomness gate Grand = {rand} with no input that outputs
an independent and uniformly chosen value at each clock cycle. Then, we model
a circuit C as a directed graph C = {G,W}, where vertices g ∈ G = Gio ∪ Gc ∪
Gm ∪ Grand represent logical gates and edges w ∈ W represent wires connecting
two gates and carrying a value from the field F2.

3.2 Fault Model

We assume a slightly modified version of the fault model from Richter-Brockmann
et al. [44]. In this model, up to k faults are injected into gates, and affected gates
are transformed to a different gate type specified by the fault type τ ∈ T (cf.
Figure 2a and 2b). Typical fault types are set, reset (replacing the targeted gate
with a constant one or zero, respectively), or bit flips (inversion of the gate).
In contrast to Richter-Brockmann et al., we introduce a probabilistic notion of
fault location. A fault can occur in a subset of gates G′ ⊆ G. Then a fault is a
tuple fi = (g, τ) with g ∈ G′ and τ ∈ T . We define a probability distribution DF
over the set F of all fault combinations f with up to k faults. The combination
with zero faults is always in DF , potentially with probability zero. Hence, each
fault combination will occur with a certain probability defined by Pr[f] ∈ DF ,
as depicted in Figure 2c.

This model naturally expresses transient faults, i.e., faults that affect the
circuit only for a short amount of time (at one invocation). Permanent faults
can be modeled by altering the underlying circuit structure according to the
fault (as a fault is inherently a gate transformation).

Motivation for Probabilistic Fault Model. In the context of FIA, we consider an
adversary (cf. Section 3.3) who is deliberate in the choice of faults that they
inject. Specifically, an adversary will always try to inject faults that maximize
the gain, i.e., maximize the leakage of some secret value. However, in practice,

Quantitative Fault Injection Analysis 7

Ef0 : τset

E
f1 : τxor

(a) Circuit with fault injection.

1

(b) Circuit after fault injection.

∅ {f0} {f1}{f0f1}
0

0.2

0.4

Pr[f]

(c) Fault distribution.
Fig. 2. In our fault model gates are transformed into other gate types depending on
the fault type τ ∈ T . Each fault combination occurs with a probability Pr[f] ∈ DF .

an adversary is restricted in the means of fault injection, resulting in a certain
imprecision in the fault location. While precise methods exist, e.g., via focused
laser beams [52], those methods are expensive in equipment and challenging in
execution. Other fault methods, e.g., clock or voltage glitching [1,50], are much
easier and cheaper but have a widely dispersed effect on the circuit. For exam-
ple, the effect of clock glitching is determined by the timing behavior of each
path given the current inputs together with the previously stored values of each
register [44]. Similarly, a laser attack where the diameter of the laser beam is
larger than the size of the transistor switches in the underlying technology may
simultaneously affect multiple neighboring gates. Hence, mostly an attacker is
not in total control of the effect the injected fault has on the circuit, which leads
to a probabilistic fault behavior. We model this probabilistic behavior by DF .
While we extend the fault model with probabilistic faults and use DF in our
subsequent analysis, we do not answer the question of how to come up with
reasonable fault distributions. However, in practice, all fault attacks have im-
plicit or explicit assumptions on DF (e.g., uniformly distributed faults) which
can be used for analysis. Ideally, deriving DF would be part of a security-aware
Electronic Design Automation (EDA) environment, which computes a reason-
able approximation given some fault injection parameters. However, as this is a
complex research question in its own right, we leave this for future work.

3.3 Adversary Model

The adversary Af gets access to a circuit C that can be invoked exactly twice
with the same input, once without manipulation and once with manipulation
via fault injection. For this, Af has access to the circuit structure as a directed
graph and the corresponding channel matrix. The goal of Af is to learn the
specific input s ∈ S of which Af has prior knowledge of the general distribution
DS. In addition, Af knows the distribution over the other inputs DX (which is
independent of DS) and of the distribution over possible faults DF .

Usually, the distribution of secrets DS is defined as a uniform distribution,
meaning that the adversary has no prior knowledge about the secret. The distri-
bution over the other inputs DX can be adjusted to model the specific scenario
of interest. For example, a uniform distribution to represent other secret values
Af is not particularly interested in, a distribution with Pr[x] = 1 for some x ∈ X
to represent a known or adversary chosen input value, or something in between

8 Feldtkeller et al.

for scenarios where Af has some knowledge about the input, e.g., because of
formatting or padding.

After the invocation of C , Af gets access to a fault-free output y and a
faulty output y′. Providing Af with the pair (y, y′) marks a powerful attacker
who can observe the precise effect of the injected fault. Often this is justified by
an adversary who can run a circuit multiple times with the same input (as the
channel C is stateless). By using probabilistic channels, our model also accounts
for circuits where different probabilistic choices are used to derive y and y′.
Importantly Af is an information-theoretical adversary, and we do not restrict
the computational power. Also, the adversary always tries to learn a secret and is
not interested in behavior manipulation for other purposes, e.g., denial of service
or bypassing access control.

3.4 Constructing a FIA Channel

Channel Composition. Channels can be combined into larger channels ac-
cording to certain rules. In the following, we provide the composition rules for
two types of two-channel compositions. Of course, these can be extended to the
composition of any number of channels through iterative composition.

Parallel Composition. The simplest variant of channel composition is a parallel
composition [3], where the adversary gets the output of two independent runs of
two channels. The resulting channel matrix can be computed from the channel
matrices being composed. In particular, given two channels C1 : X → Y1 and
C2 : X → Y2 the entries for the parallel channel matrix can be computed as
(C1 ∥ C2)x,(y1,y2) = C1

x,y1
· C2

x,y2
.

Composition via Internal Probabilistic Choice. Another form of composition is
internal probabilistic choice [3], where the adversary gets the output of only one
of two channels, but does not know which one was chosen. Again, the resulting
channel matrix can be computed from the two channels. Given two channels
C1 : X → Y1 and C2 : X → Y2 the entries for the composed channel can be
computed by

(C1 ⊕r C
2)x,y =

Pr[C1]C1

x,y + (1− Pr[C1])C2
x,y y ∈ Y1 ∩ Y2

Pr[C1]C1
x,y y ∈ Y1 \ Y2

(1− Pr[C1])C2
x,y y ∈ Y2 \ Y1

FIA Channel We use the above composition rules to construct a channel
that represents the adversary’s view and knowledge. In particular, we construct
individual channels Cf for all fault combinations f ∈ F , such that Cf represents
the circuit C under the fault combination f . All these channels are composed
by internal probabilistic choice under the distribution DF to model a randomly
selected fault scenario. The resulting channel CF is then composed in parallel

Quantitative Fault Injection Analysis 9

C

..
.

C

CF

yf0

yf0...fk

Ef0

Ef0 . . .

Efk

⊕r..
.

DF

C
CFIA

DX r→ x

DS r→ s

y

y′

View of AfView of Af

Fig. 3. Construction of a FIA information channel via composition.

with the unaltered circuit channel C, to acknowledge the leakage of pairs of
correct and faulty outputs. An overview of the construction is given in Figure 3.
As a result, the overall channel matrix can be computed as

CFIA
(x,s),(y,y′) = C(y,s),y

∑
f∈F

Pr[f]Cf
(x,s),y′

By providing the same input x and s to all channels, we can model the correct
and incorrect channel executions as independent runs while still guaranteeing
that the output pair (y, y′) results from the same inputs.

Coverage of FIA Channel. The presented FIA channel covers a wide range of
possible fault attacks and circuit structures. In particular, the channel represents
all attacks that use only faulty outputs, use only correct outputs (where faulty
outputs are suppressed), and use a combination of faulty and correct outputs.
While the last attack scenario is trivially covered, the other two scenarios are
included because the FIA channel is a composition of the channels that model
the attacks where only one type of output is used. In particular, the composition
strategies used do not reduce the amount of leaked information. The proposed
channel is restricted in the sense that Af only has access to a single output pair
(y, y′). However, we argue that the analysis of leakage for a single output pair
is a good enough approximation of the severity of attacks using multiple output
pairs since these attacks also rely on the existence of leakage for a single output
pair. Similarly, an attacker using multiple faulty outputs y′i for each non-faulty
output y relays on the existence of leakage in the case of a single faulty y′.

Since the only requirement for the channel is that it is stateless, a wide range
of countermeasures can be evaluated. In particular, all countermeasures that do
not depend on a stored state are covered by our model, e.g., detection, correction,
and infection based on redundancy in time, space, or information. An example
of a countermeasure that is out of scope is an implementation that stores all
used inputs and never responds to an input a second time.

10 Feldtkeller et al.

3.5 FIA Vulnerability and Leakage

Vulnerability. After constructing the appropriate channel for FIA, we can
now compute the leakage of a given fault scenario and use this leakage as a
metric for severity. In general, the vulnerability V is defined as the probability
that an adversary can guess the secret in one attempt [3,53]. In particular, an
adversary would always guess the most likely value to maximize the probability
of success and hence V [S] = maxs∈S Pr[S = s]. However, we are interested in the
vulnerability given some output observation, which is given by the conditional
vulnerability [3,53] with V [S | Y] =

∑
y∈Y Pr[Y = y] ·maxs∈S Pr[S = s | Y = y].

Intuitively, the conditional vulnerability provides the expected probability that
an adversary can guess the secret in one attempt, given a particular observation.
Using the expected probability makes it a property of the channel rather than
of a specific observation. Hence, the FIA vulnerability separates the secrecy loss
caused by a fault injection from the specific attack and provides a general metric.
Computing the conditional vulnerability is more practical when computed as
V [S | Y] =

∑
y∈Y maxs∈S Pr[Y = y | S = s]Pr[S = s], which is equivalent using

Bayes’ Theorem [53]. Then, using the channel CFIA defined above, we can derive
the vulnerability for FIA as:

V [S | Y, Y ′] =
∑
y,y′

max
s

(Pr[s]Pr[y, y′ | s])

(∗)
=

∑
y,y′

max
s

(
∑
x

Pr[s]Pr[x]Pr[y, y′ | x, s])

(∗∗)
=

∑
y,y′

max
s

(
∑
x

Pr[s]Pr[x]Pr[y | x, s]
∑
f

Pr[f]Pr[y′ | x, s]).

* Law of total probability ** Channel decomposition

Information Leakage. Translating the vulnerability to a measure of bits
leads to the min-entropy H∞(S) = log2(1/V [S]) or the conditional min-entropy
H∞(S | Y) = log2(1/V [S | Y]) [3,53]. Here, the min-entropy is an expression of
the residual uncertainty of the secret for the adversary. Finally, we can compute
the information leakage L as the difference between the uncertainty before and
after the circuit execution, i.e., L[S | Y] = H∞(S)−H∞(S | Y) [3,53].

The information leakage is a measure of the information that an adversary
can expect to learn about a secret after observing the execution of the system
(in our case, the FIA channel), i.e., the leakage is weighted by the probability of
occurrence. Thus, a non-integer value can be interpreted as: There is a certain
probability that some of the secret bits will be leaked to the adversary.

3.6 Composition of Independent Fault-Channels

With the above-given definition of vulnerability, we can provide a meaningful
definition of independence in the context of faults. In particular, two faults (or

Quantitative Fault Injection Analysis 11

sets of faults) are independent of each other if the vulnerability caused by both
faults can be split into the product of the individual vulnerabilities for each fault
(with a correction term for the general vulnerability of the secret). Hence, the
definition mirrors the definition of independent probabilities.

Definition 1. For a given channel C two fault combinations f0, f1 ∈ F are
independent iff

V [S | Cf0 → (Y, Y ′)] · V [S | Cf1 → (Y, Y ′)] = V [S] · V [S | Cf0∧f1 → (Y, Y ′)].

Intuitively, this means that the impact of f0 does not interfere with the im-
pact of f1 and vice versa. This gets more obvious when considering the leakage of
two independent faults, which gets additive. Hence, the two faults leak different,
i.e., independent, bits about the secret.

Theorem 1. Two fault combinations f0, f1 ∈ F are independent iff
L[S|Cf0 → (Y, Y ′)] + L[S|Cf1 → (Y, Y ′)] = L[S|Cf0∧f1 → (Y, Y ′)].

Proof.

V [S | Cf0 → (Y, Y ′)] · V [S | Cf1 → (Y, Y ′)] = V [S] · V [S | Cf0∧f1 → (Y, Y ′)]

⇔H∞(S | Cf0 → (Y, Y ′)) +H∞(S | Cf1 → (Y, Y ′))

= H∞(S) +H∞(S | Cf0∧f1 → (Y, Y ′))

⇔H∞(S)−H∞(S | Cf0 → (Y, Y ′)) +H∞(S)−H∞(S | Cf1 → (Y, Y ′))

= H∞(S)−H∞(S | Cf0∧f1 → (Y, Y ′))

⇔ L[S | Cf0 → (Y, Y ′)] + L[S | Cf1 → (Y, Y ′)] = L[S | Cf0∧f1 → (Y, Y ′)]

The property of independent faults can be used to analyze fault scenarios in
isolation rather than in combination. Usually, the independence of faults follows
from the underlying circuit structure, i.e., the propagation path of the faults does
not cross. Then, the leakage can be computed independently for each circuit part
and then be combined by Theorem 1 (cf. Section 5.1 and 5.2).

4 Methodology for Computation

Below we present how to efficiently compute the FIA vulnerability and leakage
with Reduced Ordered Binary Decision Diagrams (ROBDDs) [2,13], a canoni-
cal, graph-based representation of boolean functions based on the Shannon De-
composition (in accordance with the literature we refer to ROBDDs as BDDs
throughout this work). The transformation from a circuit to a BDD is simple
but limited to DAGs. As a consequence, no looping is allowed within the cir-
cuit, and thus no iterative circuits are supported. However, such circuits can be
trivially supported by simple loop unrolling. In addition, we restrict ourselves to
deterministic circuits/channels for simplicity. However, we show below how to
transform any probabilistic channel into a deterministic channel, so this is not
a real limitation of our approach.

12 Feldtkeller et al.

4.1 Circuit Transformation

We begin by describing some basic circuit/channel transformations required as
preprocessing for our main algorithm.

Deterministic and Probabilistic Channels. Our approach is tailored to
deterministic channels. However, we show that any probabilistic channel can be
transformed into an equivalent deterministic channel. As a result, the proposed
analysis approach applies to all channels, after a preprocessing for probabilistic
channels has been applied. The transformation is done by adding additional
random input variables that externalize the random choices of the channel. The
formal result is given in Theorem 2, where we use the notation C → y to indicate
that the value y is an output of channel C.

Theorem 2. Any probabilistic channel CP : X → DY can be transformed to a
deterministic channel CD : X ×R → Y with Pr[CP → y | x] = Pr[CD → y | x].

Proof. Let CP : X → DY be a probabilistic channel with corresponding channel-
matrix entries 0 ≤ CP

x,y ≤ 1. By definition of the channel matrix it holds that
CP
x,y = Pr[y | x]. We start by defining a set of random elements R such that

there is a distinct rx ∈ R for each x ∈ X with ∃y ∈ Y : CP
x,y ̸∈ {0, 1}. Further,

let all rx ∈ R be of ⌈log2(|Y|)⌉ bits such that each value rx = i selects one
output value yi ∈ Y. We define the distribution DR such that ∀rx ∈ R it holds
that Pr[rx = i] = CP

x,yi
= Pr[y | x]. Now we define a deterministic channel

CD : X ×R → Y with the following channel matrix entries:

CD
(x,rx),yi

=

{
1, if CP

x,yi
̸= 0 ∧ rx = i

0, otherwise

This is the required channel for the following reasons:

Pr[CD → yi | x]
(∗)
=

∑
j

Pr[yi | x ∧ rx = j]Pr[rx = j]

(∗∗)
= Pr[yi | x ∧ rx = i]Pr[rx = i]
(∗∗)
= Pr[rx = i]
(∗∗∗)
= Pr[CP → y | x]

* Law of total probability ** Definition CD
(y,rx),yi

*** Definition Pr[rx = i]

Since the adversary Af has access to the channel matrix CP , it is essential
to provide Af with the distribution DR after the transformation to CD. Oth-
erwise, the adversary would be less powerful than before the transformation,

Quantitative Fault Injection Analysis 13

x1

x2

x0

y0E
f0 : τor

(a) Fault injected in a circuit.

x1

x2

x0

y0

sel0

(b) Circuit transformation for fault simulation.
Fig. 4. A circuit under fault injection is adapted to include a MUX that selects between
the correct and the faulty behavior of the circuit.

since the details of the probabilistic choices would be missing. In addition, the
computation of the vulnerability in the channel CFIA changes to:

V [S | Y, Y ′] =
∑
y,y′

max
s

(
∑
x,r

Pr[s]Pr[x]Pr[r]Pr[y | x, s, r]
∑
f

Pr[f]Pr[y′ | x, s, r])

(1)

Fault-Selection Variables. The adversary and fault model used allows Af to
select a subset of gates and change them to different gate types according to the
specified fault types. A trivial algorithm would instantiate a different circuit C f

for each combination of faults f ∈ F (as indicated in Figure 3) and change the
gates accordingly. These different circuit instances can be distributed in time or
space. We introduce a more efficient method by proposing a way to encode all
possible fault combinations into a single circuit representation. To do this, we
introduce new fault-selection signals selg for each fault location g ∈ G′. Then,
for each fault location g ∈ G′, we add a Multiplexer (MUX) to the circuit so that
the select signal of the MUX is driven by the signal selg. Now, the MUX will
pass the output of g if selg = 0, or otherwise select a fault type. For each fault
type τ , a different gate is added to the circuit so that the gate type corresponds
to τ , the inputs of the gate are the same as the inputs of g, and the output is
connected to the MUX. An example instantiation is shown in Figure 4. In this
way, we can evaluate different combinations of faults f ∈ F by activating the
corresponding fault selection signals selg. Of course, this increases the size of
the circuit and thus the size of the associated BDD, but it eliminates the need
to create each faulty circuit individually.

4.2 Computation of FIA Vulnerability.

General Idea. A naive computation of the FIA vulnerability V [S | Y, Y ′] starts
by deriving the channel matrix CFIA, as shown in Figure 3, by iterating over
all x ∈ X , s ∈ S, r ∈ R, and f ∈ F , before computing Equation 1. Note,
however, that after transforming the probabilistic channel CFIA into a deter-
ministic channel, all entries in CFIA are either one or zero. Thus, the matrix
is just an encoding of valid input/output pairs that can be efficiently encoded
via a BDD. When computing Equation 1, we ensure that we only iterate over

14 Feldtkeller et al.

(y′, y)∀y′ : ⇒ V [S | Y, Y ′ = y′]

SA
T

C′ C

H x, s, f
∀h ∈ H

D

Fig. 5. High-level overview of the principle of Algorithm 1, with H = X ×S ×R×F .

valid pairs of (y, y′) by fixing the faulty output y′, determining all input and
fault combinations that can lead to y′, and computing only the corresponding
non-faulty outputs y. This general principle is illustrated in Figure 5 and can
be efficiently realized using BDDs. In addition, this approach allows for paral-
lel and probabilistic computation of V [S | Y, Y ′], as we discuss below and in
Appendix A.

Deterministic Computation. Our BDD-based algorithm for computing the
FIA vulnerability V [S | Y, Y ′] is given in Algorithm 1. The use of BDDs allows
the efficient inversion of a channel since the set of satisfying assignments of a
function is given by all paths ending in the true-leave of the function’s BDD
(without storing the entire channel matrix).

The input to Algorithm 1 is a circuit C and a set of fault combinations F .
We first extend the circuit with fault selection variables (cf. Section 4.1) and
construct the corresponding channel BDD C′. Then, according to Figure 5, we
iterate over all possible faulty output values y′ and compute the corresponding
part of the vulnerability. For the actual computation, we need all inputs x ∈ X ,
s ∈ S in addition to all fault combinations f ∈ F that can lead to the faulty
output y′. This gives us the set of satisfying assignments H = X×S×R×F of the
BDD that encodes the output y′. The set of satisfying assignments also contains
the specific values for r ∈ R that lead to the faulty output. However, to get all
possible pairs (y, y′) we consider all possible assignments to r when computing
y (cf. Line 12). In addition, since we have a deterministic channel, it holds that
Pr[y′ | x, s, r, f] = 1 for (x, s, r, f) ∈ H while Pr[y′ | x, s, r, f] = 0 otherwise.
Given the set H, we can compute all pairs (y, y′) with Pr[y, y′ | x, s, r, f] = 1
and then compute the vulnerability V [S | Y, Y ′ = y′].

Since Algorithm 1 isolates the computation of V [S | Y, Y ′ = y′] for each y′,
it is easy to parallelize the computation and derive the overall vulnerability V
by summing up all individual V [S | Y, Y ′ = y′] at the end.

Complexity. The runtime of Algorithm 1 depends on the circuit structure, the
number of faults, and their locations. Without this information, it is hard to
estimate the number of matching faults in Line 8 and the size of L in each loop
iteration. This makes the impact of the fault cardinality a function of the circuit
and the fault locations. However, if we inspect the algorithm considering its use
with deterministic circuits, we can see that throughout all iterations of the outer

Quantitative Fault Injection Analysis 15

Algorithm 1: Fault-vulnerability for deterministic circuits.
1 function fault_vulnerability(C ,F):

// Get BDD of circuit
2 C′ ← BDD[add_fault_mux(C ,F)]

// Compute vulnerability
3 V ← 0
4 for y′ = 0 to 2m do

// Get satisfying assignment for given y′

5 H ← SAT(BDD[C′ = y′])
6 L ← ∅
7 for ∀(x, s) ∈ H do

// Compute
∑

f Pr[f]Pr[y
′ | x, s]

8 fpr ← 0
9 for f with matching (x, s) do

10 fpr ← fpr + Pr[f]

11 for ∀r ∈ R do
12 y ← C (x, s, r)

// Sum up according to matching y
13 if (y, s) ∈ L then
14 Ly,s ← Ly,s + Pr[x] · fpr · Pr[s]
15 else
16 Ly,s ← Pr[x] · fpr · Pr[s]

// Sum up everything
17 for ∀y ∈ L do
18 V ← V +max(Ly)

19 return V

loop, the for loop in Line 6 is executed for all inputs x, s, since in a deterministic
circuit all inputs result in exactly one output value. Later, and within this for
loop, there is a loop over all random values r. Thus, the algorithm is at least
exponential in the number of input bits (secret, non-secret, and random).

4.3 Implementation

We integrated the computation of the FIA vulnerability and leakage, as described
in Section 4.2, into the state-of-the-art verification tool VERICA [42]4. VERICA is
a BDD-based framework for verifying the independence of secrets and probe
distributions for SCA, evaluating the impact of fault propagation on the circuit
output for FIA, and the combination of both for Combined Analysis (CA). In
contrast to the general fault model (cf. Section 3.2), we also allow faults at inputs
to model cases where the analysis is performed for a part of a larger design, and
thus faults can be placed outside of the analyzed section.
4 https://github.com/Chair-for-Security-Engineering/VERICA

https://github.com/Chair-for-Security-Engineering/VERICA

16 Feldtkeller et al.

Input/Output. VERICA receives as input a Verilog netlist of the design under
test, an annotation file that defines the type of input/output signals (e.g., se-
crets, randomness, sharing, or replication), and a definition of the fault model,
i.e., the transformation of gates under faults. In addition, to compute the fault
vulnerability, a fault whitelist has to be provided that specifies the fault locations
(gates) and the fault probabilities (for specific gates). The tool then outputs the
vulnerability (and leakage) of the given scenario.

Restrictions to the Implementation. For simplicity and ease of use, we have made
the following design choices for the practical implementation. First, we assume
that all faults at different fault locations are independent of each other, i.e., the
probability of two faults occurring together is the product of the individual prob-
abilities. This simplifies the definition of the fault distribution DF since only one
fault probability per fault location needs to be defined. Second, we assume that
all inputs x ∈ X , s ∈ S, and r ∈ R are drawn from an independent and uniform
distribution. For s and r, this is the most natural choice for most real-world sce-
narios. For x, this restriction means that Af has no control or prior knowledge
of the non-secret input, which limits the applicable scenarios. However, it is a
reasonable assumption when x is the internal state of a cryptographic function.
Both assumptions are not intrinsic to the way of computation, but a simplifica-
tion to reduce the burden on the user. Of course, all of the above restrictions
(Section 3 and Section 4) still apply.

5 Measuring the Efficiency of Fault Attacks

In the following section, we evaluate the described methodology for a quanti-
tative FIA metric with respect to the match between theory and practice, by
analyzing the efficiency of known fault attacks. To do so, we extend the fault
model from Section 3.2 with additional faults on input values, i.e., each input
bit can be manipulated with a set, reset, or bit-flip fault. While input faults
have no counterpart in real-world attacks (an input fault is just another input),
it is useful when analyzing only parts of circuits where input faults can occur
through fault propagation. Indeed, in the following we only focus on scenarios
where we analyze parts of the circuits and, hence, Af has no prior knowledge
of the non-secret input x. All of our circuits are synthesized using the Synop-
sys Design Compiler with a subset of cells in the NanGate 45 nm Open Cell
Library (OCL).

We report our results using the leakage L[S | Y, Y ′]. In general, vulnerability
and leakage are two representations of the same quantitative metric with dif-
ferent advantages and disadvantages. While the vulnerability provides a stand-
alone metric for security, the leakage is more human understandable but requires
knowledge of the bit width of the secret. We decided to focus on the leakage and
provide the theoretical maximum leakage where necessary for interpretation.

Quantitative Fault Injection Analysis 17

s

x
y

n
n

n

E
E

Fig. 6. Setup for key addition.

s

x
y

n
n

n

SE
Fig. 7. Setup for DFA.

Table 2. Leakage after injecting faults into a key addition (cf. Figure 6).

Fault Metric
location Pr[f] type V * H∞* L

in
p
u
t

k
ey

s0 1.0 set 0.125 3.000 1.000
s0 1.0 reset 0.125 3.000 1.000
s0 1.0 flip 0.062 4.000 0.000
s0 0.5 set 0.094 3.415 0.585

in
p
u
t

st
a
te

x0 1.0 set 0.125 3.000 1.000
x0 1.0 reset 0.125 3.000 1.000
x0 1.0 flip 0.062 4.000 0.000

k
=

2 s0 s1 1.0 1.0 set 0.250 2.000 2.000
s0 s1 1.0 0.5 set 0.188 2.415 1.585

* with n = 4.

Theoretical maximum: Lmax
KeyAdd = 4.

5.1 Faulting Key Addition

We start our analysis with a simple key addition, i.e., an xor between some
intermediate state x and some secret key s, as shown in Figure 6. This is a
well-understood construction with respect to FIA and serves as a trivial test of
the soundness of our approach. The results for a 4-bit word are given in Table 2.
As expected, set/reset faults on a key bit si lead to the leakage of one bit (the
faulted key bit), while a bit flip does not reveal any secret information (because
x is unknown). The reason is that for set/reset faults, the two outputs y and
y′ are equal if and only if the injected fault is ineffective. In contrast, a bit flip
always results in an effective fault at the output. A similar effect can be achieved
by corrupting a state bit xi, as knowing two bits of an xor operation completely
determines the third bit. An interesting property of the key addition is that each
bit is processed individually, and thus faults injected into a key bit si only affect
the leakage of that particular key bit. In other words, the injected faults are
independent (cf. Definition 1) and it is sufficient to analyze a single construction
and scale the leakage to the number of faulted key bits.

5.2 Differential Fault Analysis

One of the most common fault attacks on cryptographic ciphers is DFA [9],
where an adversary Af gains access to a set of correct and faulty ciphertext
pairs (y, y′) and uses statistical analysis to reduce the search space for the secret

18 Feldtkeller et al.

Table 3. DFA against PRESENT and DEFAULT with a single S-box (cf. Figure 7).
Each fault is a bit-flip with probability Pr[fi] = 1 at the indicated input xi. In addition,
we provide the number of key candidates left after observation of one pair (y, y′), where
256× 16 means that in 256 cases for (y, y′) there are 16 key candidates left.

Fault PRESENT DEFAULT
location L Key Candidates L Key Candidates

in
p
u
t

- 0.000 256× 16 0.000 256× 16
x0 x1 x2 x3 2.000 256× 4 0.000 256× 16
x0 2.000 256× 4 1.000 256× 8
x0 x3 2.585 128× 2, 128× 4 0.000 256× 16
x1 x2 2.585 128× 2, 128× 4 0.000 256× 16
x0 x1 x2 2.585 128× 2, 128× 4 1.000 256× 8
x3 2.585 128× 2, 128× 4 1.000 256× 8
x1 2.807 192× 2, 64× 4 1.000 256× 8
x2 2.807 192× 2, 64× 4 1.000 256× 8
x0 x1 2.807 192× 2, 64× 4 1.000 256× 8
x0 x2 2.807 192× 2, 64× 4 1.000 256× 8
x1 x3 2.807 192× 2, 64× 4 1.000 256× 8
x2 x3 2.807 192× 2, 64× 4 1.000 256× 8
x0 x1 x3 2.807 192× 2, 64× 4 1.000 256× 8
x0 x2 x3 2.807 192× 2, 64× 4 1.000 256× 8
x1 x2 x3 3.000 256× 2 1.000 256× 8

Theoretical maximum: Lmax
PRESENT = 4, Lmax

DEFAULT = 4.

key s. For DFA to work, Af must inject bit-flip faults into an intermediate state
with a subsequent nonlinear layer. For block ciphers, this is commonly done
by attacking the last-round key and targeting the faults at the input of the
last-round S-boxes. Hence, we have y = S(x) ⊕ s and y′ = S(x ⊕ ∆) ⊕ s for
an intermediate state x and a fault difference ∆ (a potential last-round linear
layer can be removed by choosing the corresponding output bits accordingly).
More advanced attacks use the same principle but inject faults in earlier rounds
to exploit fault propagation in the given cipher structure to affect multiple S-
boxes at once. Therefore, to analyze the susceptibility of ciphers to DFA, it is
sufficient to analyze the S-box and key addition of the last round, as shown in
Figure 7, with bit-flip faults on the input bits xi. This simplification removes the
propagation of faults to the input of the last-round S-boxes. While it removes a
potential dependency between faults at the S-box input this is a common way
to analyze DFA [48]. Similar to the key addition analyzed in the last section,
the last-round S-boxes are also in parallel to each other, and faults injected
into different S-boxes are independent of each other. Hence, we can restrict our
analysis to a single instance and scale the leakage to the full set of affected
S-boxes.

4-Bit S-boxes. The results for two 4-bit S-boxes are given in Table 3, along
with the number of key candidates remaining after observation of one pair (y, y′).

Quantitative Fault Injection Analysis 19

In particular, we analyze the S-boxes of PRESENT [11], a cipher with a focus on
implementation efficiency in hardware, and DEFAULT [5], which is specifically
designed to resist DFA. First, we observe that the leakage metric is directly
related to the number of remaining key candidates. For example, for PRESENT
we have a leakage of L = 2 when flipping the bit x0. For the same scenario,
it holds that for all possible pairs of (y, y′), 4 out of 16 key candidates remain
after observing (y, y′), which means that Af learns exactly 2 bits of the key. For
the leakage metric, a higher value is better for the adversary, corresponding to a
lower number of remaining key candidates. In addition, our metric also correctly
measures the improved resistance of the DEFAULT S-box against DFA.

8-Bit S-boxes. We also analyzed AES regarding its susceptibility to DFA by
using the AES S-box in the construction of Figure 7. Interestingly, for all possible
input differentials (with Pr[f] = 1), we computed a leakage of L = 6.989 bits
(where 8 is the theoretical maximum), i.e., all faults are equally bad and leak
almost all possible key bits. This is confirmed by the number of key candidates
left which is 1024× 4 ∧ 64512× 2 for all fault scenarios. This behavior changes
when each bit flip occurs with a probability Pr[f] < 1, e.g., a bit-flip probability
of Pr[f] = 0.5 leads to a leakage of L = 6 when only bit x7 can flip and L = 0
when all bits can flip. However, further analysis is needed to obtain realistic fault
scenarios (cf. Section 8.2) and their leakage behavior.

5.3 Statistical Ineffective Fault Analysis

Another popular fault attack is SIFA [23], which exploits the knowledge that a
fault is injected into some intermediate state but has no effect on the output. This
is useful in situations where faulty outputs are suppressed, so Af only knows
correct outputs and whether a fault is ineffective (has no effect). A sufficient
condition for a SIFA vulnerability is a statistical dependency between the detec-
tion behavior and the secret. That is if an attacker can learn something about
the secret just by observing the detection behavior (in the form of a detection
flag or suppression of incorrect outputs), SIFA is possible. However, contrary to
claims in the literature [31], we later show that this is not a necessary condition
for SIFA, i.e., security does not follow from the absence of dependency.

In the following, we show that our tool accurately detects leaks from SIFA
when there is a statistical dependency between the detection flag and secrets.
To do this, we implement two instances of a design and feed the outputs to
a detection module, as shown in Figure 8. Then, faults are injected into only
one instance to maintain the correct functionality of the detection module. By
considering only the detection flags as outputs, we can ensure that the only
leakage detected by our metric results from a SIFA vulnerability.

For the evaluation, we selected three circuits discussed by Daemen et al. [20]
based on masking (cf. Section 2.2). On its own, masking is not sufficient to
protect against SIFA, but it provides valuable properties by ensuring that inter-
mediate values are independent of secrets [23]. Below, we consider the circuit’s

20 Feldtkeller et al.

Table 4. SIFA against ISW multiplication, and χ3 and χ5 with masked Toffoli gates
(cf. Figure 8). All faults occur with probability Pr[f] = 1 and no randomness source is
faulted.

Fault Metric L
location type ISW χ3 χ5

in
te

rn
a
l

k
=

1 any set 0.000 0.000 0.000
any reset 0.000 0.000 0.000
any flip 0.000 0.000 0.000

in
p
u
t

m
a
x

s0,0 set 0.585 0.000 0.000
s0,0 reset 0.585 0.000 0.000
s0,0 flip 1.000 0.000 0.000

k
=

2 inv(s0,1) inv(s0,0) set - 0.585 0.322

Theoretical maximum: Lmax
ISW = 2, Lmax

χ3
= 3, Lmax

χ5
= 5.

unshared inputs as secrets, use a security order d = 1, and implement a detection
module for each share index individually to preserve the independence properties
(cf. Figure 8).

ISW Multiplication. The first circuit we analyze is the ISW multiplication [33]
with additional registers to prevent SCA leakage from glitches. This circuit im-
plements a masked and, where each input and output is masked with two shares.
As can be seen in Table 4, there is no leakage for any internal fault with car-
dinality k = 1 (excluding randomness generation). However, when some input
s0,0 (first share of first input) is faulted, we see leakage due to a dependency
between the secret values and the detection signal [20], i.e., Pr[s0 · s1 = 1] ̸=
Pr[s0 · s1 = 1 | f ineffective]. Thus, the composition of the ISW multiplication
is not SIFA-secure. From the structure of the circuit follows that faults in any
input behave the same.

The inferred leakage is specific to the given implementation since implemen-
tation changes change the possible fault locations. For example, the Synopsys
Design Compiler replaces and(s0,0, s1,1) with nor(inv(s0,0), inv(s1,1)) for timing
and area optimization unless instructed otherwise. However, this potentially al-
lows Af to fault the gate inv(s0,0), which effectively introduces a fault at input
s0,0 (with the corresponding leakage behavior).

S-boxes from XOODOO and KECCAK. To protect against SIFA, Daemen
et al. [20] propose circuits constructed by the composition of masked Toffoli
gates. A Toffoli gate computes the term x0 ⊕ (x1 ·x2) and has the property that
all injected effective faults (set, reset, bit flip) are effective faults at the output.
This guarantees that there is no dependency between the detection behavior
and the secrets since all effective faults are always detected. Two S-boxes that
can be easily implemented with Toffoli gates are those from XOODOO [21] and

Quantitative Fault Injection Analysis 21

1. Shared
Instance

2. Shared
Instance

Det

Det

y∗,0

y∗,1

δ01

δ11

x∗,0

x∗,1

n

n

E

Fig. 8. Setup for SIFA.

S

S Det

n 0 n

y
n

δ
1

x
n

E

y∗,1

Fig. 9. Setup for analysis of detection.

S

S

S

x
n

C
or

re
ct

io
n

y
n

E

Fig. 10. Setup for analysis of correc-
tion.

x0

x1

x2

x3

3

3

3

3

Present
ParTI y3,2

1

E ⊸

Fig. 11. Setup for CA.

KECCAK [7]5. The analyzed instances are claimed to be first-order SIFA secure,
i.e., there should be no leakage for a single fault. Our metric accurately shows the
independence of the detection behavior and the secrets for k = 1, while leakage
can be seen for two injected faults (cf. Table 4).

6 Evaluating the Quality of Countermeasures

The quantitative FIA metric cannot only be used to measure the efficiency of
fault attacks but also to evaluate the quality of countermeasures or the general
resistance of designs against FIA. The last section used known attack vectors to
highlight the close match between theory and practice. In contrast, we now show
that meaningful insights can be drawn even under the constraints of scalability.

6.1 Detection/Correction

Various countermeasures against FIA have been proposed in the literature based
on redundancy in time, space, or information. Common to all countermeasures
is that redundancy is used either to react to the detection of faults or to directly
correct faults that occur. To evaluate the effectiveness of countermeasures, we
use the setting shown in Figure 7, but with countermeasures applied. As S-box,
we choose the PRESENT S-box because of its interesting leakage behavior for
DFA (cf. Section 5.2), which we implemented according to Cassiers et al. [14].

5 We implemented both S-boxes with Toffoli gates in parallel (instead of sequential,
as in [20], to get the correct output) and without any registers.

22 Feldtkeller et al.

Table 5. Leakage for faults injected in a PRESENT S-box & KeyAdd with counter-
measures (cf. Figure 9 and 10). All faults occurs with probability Pr[f] = 1.

Fault Metric L
location type Plain Detection

(both - y, δ)
Detection

(no flag - y)
Detection

(flag only - δ) Correction

in
p
u
t

m
a
x

x2 set 3.000 1.000 0.954 0.000 0.000
x2 reset 3.000 1.000 0.954 0.000 0.000
x2 flip 2.807 0.000 0.000 0.000 0.000

in
te

rn
a
l

m
a
x

inv(x1) set 3.000 1.000 0.954 0.000 0.000
inv(x1) reset 3.000 1.000 0.954 0.000 0.000
and(x2, x̄1) flip 3.000 1.000 0.954 0.000 0.000

Theoretical maximum: Lmax
PRESENT = 4.

Detection/Correction. The most basic countermeasures are based on repe-
tition (in space or time) of the computation, which allows comparing the result
of different instances to either detect faults (inequality) or correct them directly
(majority voting). To detect an arbitrary set of k faults k + 1 instances are re-
quired, while for correction, 2k+1 instances are required. In Table 5, we show the
leakage behavior for countermeasures with k = 1 and spatial repetition, where
we have chosen one of the locations with the highest leakage for a given scenario.
With respect to the countermeasures, we distinguish between plain (no counter-
measure, no repetition - cf. Figure 7), detection (2 repetitions with output set to
0 on fault detection - cf. Figure 9), and correction (3 repetitions with majority
voting - cf. Figure 10). To get a fine-grained analysis of the detection, we have
three different versions of the detection circuit: (i) detection flag δ and output
y are given to Af , (ii) only the output y is given to Af while the detection flag
is suppressed, and (iii) only the detection flag δ is given to Af while the output
is suppressed (cf. Section 5.3). We further distinguish between faults at inputs
and faults in the internal structure (including the detection/correction logic).

We observe that the detection countermeasure cannot prevent all existing
leaks. This is due to the occurrence of ineffective faults and the resulting biased
intermediate state, as exploited by SIFA [23]. Implementing the attack in the
given scenario reduces the key space to 8 out of 16, which perfectly matches the
inferred leakage of L = 1. Also, there is no leakage for bit flip faults at the in-
puts, since these do not introduce any bias [23] and all faults are effective faults
at the output [20]. However, we observe no leakage when we look only at the
detection flag, which means that there is no statistical dependency between the
detection behavior and the secrets. From this, we conclude that there are designs
vulnerable to SIFA whose detection behavior is independent of secrets, directly
contradicting Proposition 1 of Hadzic et al. [31] which claim the opposite. Sig-
nificantly, this has implications for verification methods of SIFA security that
reduce to this proposition (e.g., [31,42]). In cases where there is some leakage
for detection, it is always L = 1 (we observed the same behavior when using
the AES S-box). Whether this is a coincidence or a structural property requires

Quantitative Fault Injection Analysis 23

Table 6. Leakage of faults injected in masked PRESENT S-box with key addition
(Figure 7 with masking) forAf obtaining shared outputs (L[{si,j} | y, y′]) and unshared
outputs (L[s | y, y′]), respectively. All faults occur with probability Pr[f] = 1.

Fault L[{si,j} | y, y′] L[s | y, y′]
location type DOM HPC2 DOM HPC2

in
p
u
t

st
a
te

m
a
x

(k
=

1
)

x2,0 set 2.000 2.000 2.000 2.000
x2,0 reset 2.000 2.000 2.000 2.000
x2,0 flip 2.807 2.807 2.807 2.807
x2,0 x2,1 set 3.170 3.170 3.000 3.000
x2,0 x2,1 reset 3.170 3.170 3.000 3.000
x2,0 x2,1 flip 1.585 1.585 0.000 0.000

se
cr

et
m

a
x

s0,0 set 0.000 0.000 0.000 0.000
s0,0 reset 0.000 0.000 0.000 0.000
s0,0 flip 0.000 0.000 0.000 0.000
s0,0 s0,1 set 1.000 1.000 1.000 1.000
s0,0 s0,1 reset 1.000 1.000 1.000 1.000
s0,0 s0,1 flip 0.000 0.000 0.000 0.000

ra
n
d
.

m
a
x

r0 set 1.322 1.322 0.000 0.000
r0 reset 1.322 1.322 0.000 0.000
r0 flip 2.000 2.000 0.000 0.000

in
te

rn
a
l

m
a
x

inv(x3,0) set 1.907 1.907 1.585 1.585
inv(x3,0) reset 1.907 1.907 1.585 1.585
inv(x3,0) flip 2.700 2.700 2.322 2.322
and(x3,1, x1,0 ⊕ x2,0) set 1.700 - 1.700 -
and(x1,0 ⊕ x2,0, r0) set - 1.700 - 1.700

Theoretical maximum: Lmax
PRESENT = 4.

further investigation. For the same cases, suppressing the detection signal only
marginally reduces the leakage, since Af can no longer trivially distinguish be-
tween 0 as a valid or suppressed faulty output. Finally, as expected, there is no
leakage when the correction is used.

Masking. As mentioned above, masking is not a countermeasure against FIA,
but against passive SCA, although it has some advantageous properties for the
prevention of SIFA. However, real-world implementations must withstand a wide
variety of attacks, so it is interesting to analyze masking from a FIA perspective.
To do so, we consider the circuit shown in Figure 7 with masking using d = 1
and instantiating the S-box with composable-secure DOM [24] and HPC2 [14]
gadgets (i.e., small but secure subcircuits that can be securely combined). In
Table 6, we show the corresponding leakage, again selecting a location with the
maximum leakage for a given fault scenario (except for the two simultaneous
faults in the input state x, where we selected both shares of x2).

In general, masking does not seem to harm FIA security. In particular, faults
in the input state x have the same effect as without sharing (cf. Table 5). Flip-

24 Feldtkeller et al.

ping one share results in a bit-flip in the unshared value, while flipping both
shares results in no fault. If the secret itself is faulted, it is necessary to set/reset
both shares of the same secret si, which results in resetting the unshared se-
cret bit (cf. Section 5.1). Faulting random inputs ri (required to refresh the
masking after non-linear operations) does not result in a leak after observing
the unshared output. This is expected since the value of the randomness has no
functional impact. Also, the leakage decreases as one moves from looking at the
shared outputs to the unshared outputs since there is less information in the
unshared values. Finally, for this particular design, the type of gadgets has no
impact on the leakage behavior. However, this may be different when consider-
ing fault combinations from real-world attack scenarios (e.g., clock glitching - cf.
Section 8.2).

6.2 Detailed Analysis of Combined Vulnerabilities

Real-world circuits are not only exposed to FIA and SCA individually but po-
tentially also to the combination of both attacks. While the VERICA tool [42] can
verify security in such a CA setting, it does not provide a quantitative security
assessment for vulnerable designs. Similar to the general FIA setting, we can
also apply our quantitative metric to CA by computing V [S | P,P ′], where the
adversary receives a set of probes P instead of the outputs Y . Such an analy-
sis may be more efficient than for general FIA (for a given probe set) since it
is worthwhile to consider an internal subset of the design structures (which is
probed) instead of the entire circuit. In general, security against CA seems to
be quite expensive [25], and we hope that a dedicated quantitative analysis can
instruct more efficient protection mechanisms with an acceptable leakage level.

For our case study, we chose a ParTI [49] implementation of a PRESENT S-
box. ParTI is a protection scheme that combines masking (in particular Thresh-
old Implementation (TI) [18]) with error detection codes to protect against both
FIA and SCA individually. However, the scheme does not claim security against
combined attacks. We use an implementation with k = 1 and d = 1, for which
we ran VERICA to find a suitable probe position (output y3,2) and removed all
parts not related to that probe (cf. Figure 7). We consider all unshared inputs
as secrets.

ParTI Implementation of PRESENT Sbox. In Table 7, we show the leak-
age for all unshared-input bits together (s) and for each unshared-input bit
individually (si). Concerning the fault locations, we selected locations with the
maximum leakage when one input is faulted with a given fault type, the mini-
mum leakage when two inputs are faulted with a given fault type such that the
single-bit fault with the most leakage is in the fault pair and the maximum leak-
age for an internal fault. First, we observe that some fault locations and types
leak more across all inputs than the sum of all individual leakages. For example,
while L[s | y3,2] = 0.129 for reset faults in s3,0 and s3,1, the same scenario leads
to

∑
i L[si | y3,2] = 0, 087. Thus, Af learns something about the combination of

Quantitative Fault Injection Analysis 25

Table 7. Leakage of Combined Analysis on ParTI implementation of the PRESENT
S-box when the output y3,2 is probed (cf. Figure 11). All faults occur with probability
Pr[f] = 1.

Fault Metric L[t | y3,2, y′
3,2]

location type t = s t = s0 t = s1 t = s2 t = s3

in
p
u
t

m
a
x

s3,0 set 0.392 0.322 0.044 0.044 0.000
s3,0 reset 0.392 0.322 0.044 0.044 0.000
s1,0 flip 0.585 0.585 0.000 0.000 0.000
s1,0 s3,0 set 0.492 0.459 0.000 0.044 0.000
s1,0 s3,0 reset 0.492 0.459 0.000 0.044 0.000
s0,0 s1,0 flip 0.585 0.585 0.000 0.000 0.000

in
p
u
t

m
in

w
it

h
m

a
x

k
=

1 s3,0 s0,1 set 0.170 0.170 0.000 0.000 0.000
s3,0 s3,1 reset 0.129 0.087 0.000 0.000 0.000
s1,0 s0,1 flip 0.000 0.000 0.000 0.000 0.000

in
te

rn
a
l

m
a
x

xor(t0, s2,0 ⊕ s3,2) set 0.833 0.807 0.000 0.000 0.000
nand(s2,0, s1,2 ⊕ s3,0) reset 0.858 0.807 0.000 0.000 0.022
nor(s̄1,0, t1) flip 1.000 1.000 0.000 0.000 0.000

t0 = s2,0 · (s1,2 ⊕ s3,0); t1 = s0,1 ⊕ s1,2 ⊕ s3,0 ⊕ x2,0.
Theoretical maximum: Lmax

PRESENT = 4.

secrets even if the individual secret is securely hidden, e.g., if it is more likely
that s = ⟨0, 0, 0, 0⟩, even if the distribution over each si is uniform. For some of
the given fault scenarios, the sum of the individual leakages is larger than the
combined leakage. However, since the difference is only marginal, we explain this
by rounding errors throughout the computation.

Second, we see that adding additional faults to a fault scenario can have
different effects. In Figure 12, we provide additional insight into three of the given
scenarios. Specifically, we show the leakage over the change in fault probability
for two faults, where the x-axis is always the probability for a fault in s1.0.
While adding a bit-flip fault in s0,0 has no effect (cf. Figure 12a), a set fault in
s3,0 increases the leakage (cf. Figure 12b). However, the reverse is also possible,
i.e., a fault that reduces or even eliminates the leakage (e.g., bit-flip s0,1 - cf.
Figure 12c). This gives us a new protection scheme against FIA by constructing a
design structure that ensures that when a fault occurs in s1,0, there is also a fault
in s0,1. Since most faults are related to the timing behavior of a circuit [44], this
can be achieved by delaying some of the signals in the circuit. We can also see
that, in general, for a single fault, a lower fault probability means a lower leakage,
which follows directly from the equation for the vulnerability (cf. Equation 1).

7 Performance of Prototype Implementation

In the following, we provide some insight into the performance of our imple-
mentation. We run all experiments on a 64-bit Linux Operating System (OS)

26 Feldtkeller et al.

0 0.5 1

0

0.5

1

Pr[fs1,0]

P
r[
f
s
0
,0

]

0 0.59
L

(a) Bit flip in s0,0 and s1,0.

0 0.5 1

0

0.5

1

Pr[fs1,0]

P
r[
f
s
3
,0

]

0 0.49
L

(b) Set faults in s1,0 and s3,0.

0 0.5 1

0

0.5

1

Pr[fs1,0]

P
r[
f
s
0
,1

]

0 0.59
L

(c) Bit flip in s0,1 and s1,0.
Fig. 12. Leakage behavior of fault combinations under changing fault probability.

Table 8. Execution time for vulnerability computation on a 64-bit Linux OS executing
on an Intel Xeon E5-1660v4 CPU with 16 cores, a clock frequency of 3.20GHz, and
128GB of RAM.

Design Fault Metric
Description inx,r ins out comb. reg. k Pr[f] type time L

P
R

E
S
E
N

T
∗

Plain 4 4 4 26 0 1 0.7 flip 0.82s 2.561
Plain 4 4 4 26 0 4 0.7 flip 0.80s 2.407
DOM 8 4 4 91 16 1 0.7 flip 1.15s 0.766
DOM 8 4 4 91 16 4 0.7 flip 3.56s 0.766
HPC2 8 4 4 115 44 1 0.7 flip 1.16s 1.036
HPC2 8 4 4 115 44 4 0.7 flip 2.69s 1.514
2× 8 8 8 52 0 1 0.7 flip 0.81s 2.561
2× 8 8 8 52 0 4 0.7 flip 0.90s 3.124
3× 12 12 12 78 0 1 0.7 flip 8.57s 2.561
3× 12 12 12 78 0 4 0.7 flip 38.70s 3.124
4× 16 16 16 104 0 1 0.7 flip 44.30m 2.561
4× 16 16 16 104 0 4 0.7 flip 3.50h 3.124

A
E
S

∗

Plain 8 8 8 143 0 1 0.7 flip 0.84s 7.043
Plain 8 8 8 143 0 4 0.7 flip 1.03s 5.712
Detection 8 8 8 319 0 1 0.7 flip 0.96s 0.000
Detection 8 8 8 319 0 4 0.7 flip 1.62s 0.000
Correction 8 8 8 464 0 1 0.7 flip 0.97s 0.000
Correction 8 8 8 464 0 4 0.7 flip 5.88s 0.000
2× 16 16 16 288 0 1 0.7 flip 1.22h 7.043
2× 16 16 16 288 0 4 0.7 flip 6.89h 13.359

K
E
C

C
A

K
∗
∗ 1 B. Input 0 10 10 1175 0 1 0.7 flip 1.99s 9.743

1 B. Input 0 10 10 1175 0 4 0.7 flip 3.36s 9.970

2 B. Input† 10 10 10 2392 0 1 0.7 flip 5.59m 7.995

2 B. Input† 10 10 10 2392 0 4 0.7 flip 59.11m 6.643

*S-box & KeyAdd; **b = 25, r = 10; †single core.

environment on an Intel Xeon E5-1660v4 CPU with 16 cores, a clock frequency
of 3.20GHz, and 128GB of RAM.

Quantitative Fault Injection Analysis 27

In Table 8, we show the execution time together with important character-
istics of the analyzed circuits (for randomly selected faults). The results clearly
confirm the complexity considerations in Section 4.2, i.e., the execution time
depends strongly (exponentially) on the number of input bits. We are able to
analyze a design with 32 inputs, 16 outputs, and 104 gates (4× PRESENT S-box
& KeyAdd) in 45 minutes with a single fault and in about 4 hours with four
faults. A design with the same input and output sizes but more than twice the
number of combinatorial gates (2× AES S-box & KeyAdd) takes about twice
as long. At the same time, the size of the circuit does not have such a signif-
icant impact on the execution time, and a design with over 2000 gates can be
evaluated in less than 6 minutes with one fault and in less than 1 hour with
four faults, even on a single core (for 16 cores, we ran out of memory because
the BDD library used requires a copy of the BDD for each core). The parallel
implementations of S-box & KeyAdd could also be analyzed separately due to
their independence with respect to the leakage (cf. Section 5.1), but we show
them here to give a sense of scalability.

8 Related and Future Work

In the following section, we will discuss related and future work of the presented
methodology.

8.1 Related Work

Quantitative Information Flow. Early methods for QIF relied on Shan-
non entropy along with mutual information to measure the flow of informa-
tion [16,17]. Intuitively, the Shannon entropy is a measure of uncertainty be-
cause it provides the minimum number of bits required to encode a given piece
of information. However, it has been shown that the security guarantees derived
from Shannon entropy do not generally provide meaningful results [53]. To better
capture the information leakage, Smith proposed the min-entropy as a measure
of uncertainty [53], which was later refined and extended (see Alvim et al. [3] for
an overview). We, therefore, rely on the min-entropy as presented in Section 4.

QIF for Hardware. The first attempt at quantitative analysis in the context of
hardware was done by Mao et al. [39], who evaluated the leakage caused by the
timing behavior (in the number of cycles) of an algorithmic hardware implemen-
tation in terms of mutual information. An extension to general information flow
with automatic integration into a Hardware Description Language (HDL) was
proposed by Guo et al. with QIF-Verilog [30]. They define operation-specific rules
for leakage propagation from inputs to outputs of logical operations. These rules
are inspired by Smith’s vulnerability metric V , but not an exact computation.
Later, Reimann et al. extended this approach with QFlow [41] by computing
the vulnerability V and the leakage L of subparts (groups of operations) and
combining them via a Markov chain. However, this requires the assumption of

28 Feldtkeller et al.

independence for all inputs to a component of the Markov chain, which is usually
not given. In contrast, we analyze the entire system at once, leading to an exact
computation with weaknesses in scalability. It remains an open question how the
approaches for HDLs can be tailored to the computation of V in the context of
FIA.

QIF for Fault Injection Analysis. Information-theoretic metrics and QIF
have also been used in the context of FIA. Sakiyama et al. [48] used Shan-
non entropy to determine the information leakage in DFA given a design as
shown in Figure 7. They used a handcrafted analysis to analyze and improve
existing attacks against AES. Later, Liu et al. [38] extended this approach to
general Substitution-Permutation Networks (SPNs) with potential FIA counter-
measures. However, they assume the independence of internal signals for com-
putational efficiency. In another line of research, Patranabis et al. [40] analyze
the security of a specific infection scheme in software using the mutual informa-
tion between an output differential y ⊕ y′ and the key s. An infection scheme
tries to make a faulty output y′ useless for Af by randomizing the effect of the
fault. Hence, security is achieved when the mutual information is equal to zero.
A more general methodology has been proposed by Feng et al. [26] for build-out
infections, i.e., infections applied after an unmodified cipher implementation. In
particular, they consider an attacker who obtains an output differential y ⊕ y′

after a single fault injection. Using the structure of build-out infection schemes,
the authors decompose the security analysis into the contribution of the unpro-
tected cipher and the contribution of the infection scheme. In addition, common
infection schemes are a composition of simple randomness-based operations that
can be analyzed individually. While the methodology covers a wide range of in-
fection schemes, the preparation must be tailored to the individual cipher and
infection scheme and requires considerable expertise. In contrast to these works,
we use QIF based on the min-entropy to develop a general metric for FIA not
tailored to specific attacks and circuit structures. In addition, we introduce the
notion of probabilistic faults into the fault model, allowing the analysis of more
realistic fault scenarios.

Fault Analysis Tools. In recent years, the research community has focused on
the development of automatic tools for fault susceptibility. The first set of tools
focuses on the construction of potential key distinguishers for DFA, i.e., differ-
entials between correct and incorrect intermediate states, and the evaluation of
the associated attack complexity. For this purpose, XFC [34] uses classical In-
formation Flow Analysis (IFA) in a high-level cipher description. For the same
purpose, ExpFault [47] uses system simulation in combination with data min-
ing techniques. Of course, these methods are limited to DFA. The second set of
tools takes a more general approach by analyzing the impact of faults on the
output, i.e., distinguishing between detected, ineffective, and effective faults. To
do this, VerFi [4] uses traditional simulation techniques to evaluate the system
behavior, while FIVER [43] uses symbolic analysis based on BDDs. As an ex-

Quantitative Fault Injection Analysis 29

tension to FIVER, VERICA [42] compares output distributions to verify security
against SIFA. Except for the SIFA extension, these tools assume that all faulty
outputs are equally dangerous, and are therefore unable to make a qualitative
comparison between two different fault scenarios. However, since these tools are
much more efficient than the proposed FIA vulnerability calculation, they can
be used as a preliminary analysis step to extract interesting fault scenarios. As a
third set of tools, recent works compare ciphertext distributions with a t-test for
different fault locations with fixed secrets or different secrets with fixed fault lo-
cations [46,45]. The ciphertexts for the analysis are generated by non-exhaustive
simulation and a design is classified as vulnerable to FIA when the two ciphertext
distributions can be distinguished according to the t-test. Again, the result does
not allow a quantitative analysis, as the t-test provides a score for the confidence
of the classification and not for the difference of the distributions.

8.2 Future Work

The first and most obvious shortcoming of our proposal is scalability. While we
have shown that valuable insights can be gained from essential cryptographic
components of small or medium size, more efficient methods of evaluation are
needed for larger structures. Thus, we need some notion of composability to
reduce the complexity of a single analysis and still be able to conclude complex
structures. One approach in this direction is the construction of checkpoints (as
proposed by Shahmirzadi et al. [51]) that isolate two parts of a design with
respect to faults. Of course, this approach imposes additional overhead on the
design, and more efficient methods are desirable.

In this work, we consider an adversary who has access to exactly one pair of
correct and faulty outputs (y, y′). While this seems to be a good approximation
for the general vulnerability of a design to FIA, since more advanced attacks rely
on the existence of leakage in this simple case, a criterion for multiple output
pairs may provide more fine-grained insights. A trivial way to achieve this is to
combine different FIA channels into one large channel that produces a set of
output pairs (yi, y

′
i). However, since the complexity is already high for a single

output pair, it is prohibitive for additional pairs and more efficient approaches
are needed. In addition, we only consider state-less channels, which limits the
type of circuits and countermeasures that can be analyzed. Thus, extending the
concept to state-full channels is a valuable generalization.

Our fault model is based on a distribution over a set of faults DF , without
providing any instructions on how to come up with this set and distribution
of faults. Indeed, this is a complex and challenging problem in itself. We envi-
sion a tool that analyzes a given circuit structure with respect to a given fault
scenario and returns a set of likely fault combinations and an estimate of their
distribution. Combined with our approach, this would provide a powerful tool
for real-world evaluation of security in the context of FIA.

30 Feldtkeller et al.

9 Conclusion

In this work, we have shown how methods from QIF can be used to estab-
lish a quantitative metric for the security of a circuit against FIA. This metric
allows for fine-grained analysis of existing and new defense mechanisms, thus
enabling a trade-off between performance and security. Although computation-
ally expensive, the proposed method can provide new insights and enhance the
understanding of FIA and related countermeasures. For example, we were able
to find incorrect assumptions in the context of SIFA security and enable the
identification of security-enhancing faults.

Acknowledgments

We would like to thank Jan Richter-Brockmann and Pascal Sasdrich for fruit-
ful discussions on fault security and support with the tool VERICA. The work
described was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972, by the German Federal Ministry of Education and Research BMBF
through the projects VE-HEP (16KIS1345) and 6GEM (16KISK038) and by
the European Commission under the project CONVOLVE (101070374). This
research was also supported in part by NSF Award 2219810.

A Probabilistic Computation

A.1 Methodology

The isolated computation of V [S | Y, Y ′ = y′] for each y′ ∈ Y allows not only the
parallel computation of the vulnerability but also a probabilistic computation.
Here, instead of computing the exact value of V [S | Y, Y ′], we can approximate
it using a subset of Y. Specifically, we use the Monte-Carlo method [32], where
the mean of a set of samples is used to estimate the mean of a probability
distribution. This is a good approximation if the sample set is large enough
and each sample is chosen independently. The quality of the approximation is
given by the Confidence Interval (CI), which provides a range in which the true
distribution mean lies with a certain probability (given by the confidence level).

To compute the FIA vulnerability probabilistically, we randomly select N
faulty output values y′ ∈ Y and compute V [S | Y, Y ′ = y′] (as done in Algo-
rithm 1). We then estimate the overall vulnerability by scaling the mean of the
samples by the number of existing faulty outputs y′:

V [S | Y, Y ′] ≈ |Y|
∑N

i=0 V [S | Y, Y ′ = y′i]

N
(2)

Then the CI can be calculated using the Central Limit Theorem as (µ−z σ√
N
, µ+

z σ√
N
), where µ is the sample mean, σ is the sample standard deviation, and z

Quantitative Fault Injection Analysis 31

1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

0.2

0.4

0.6

0.8

Runs

L
[s
|y

,y
′]

(a) χ3 with shared-Toffoli gates and a probe on the output y0,0.

2,000 4,000 6,000

0

2

4

6

Runs

L
[s

|
y
,
y
′]

(b) AES S-box and KeyAdd.

2,000 4,000 6,000

0

0.2

0.4

0.6

0.8

1

Runs

L
[s

|
y
,
y
′]

(c) ISW Multiplication.

2,000 4,000 6,000

0

2

4

6

Runs

L
[s

|
y
,
y
′]

(d) PaTi Present S-box.
Fig. 13. Leakage over the number of runs for probabilistic computation with a set fault
injected to the first input (i.e., x0 or x0,0) Leakage is given in blue while upper and
lower bounds of the confidence range (95%) are given in black. Lighter colors represent
different executions. The precise leakage is marked in red.

is the z-score of the confidence level. The z-score of common confidence levels
is 1.64 for a 90% confidence level, 1.96 for a 95% confidence level, and 2.57 for
a 99% confidence level. For efficient computation, an iterative formula for mean
and variance can be used. The CI is defined for the mean vulnerability and
therefore must be scaled up for the overall vulnerability, similar to Equation 2.
This results in a CI that grows with the number of possible output values.

A.2 Evaluation

In Figure 13, we show the convergence of the estimated leakage to the real leakage
over the number of executions for four different circuits. While the estimation im-
proves with an increasing number of executions, several thousand executions are
required to obtain a high-confidence result. Thus, this only becomes interesting
for circuits with a high number of output bits, and for most of the designs we an-
alyzed, the exact computation is faster than running the probabilistic algorithm
so often. Interestingly, however, there are some cases where the probabilistic
algorithm yields the exact leakage after only one iteration (cf. Figure 13b and
13d). This is the case when the vulnerability is the same for all possible output
values, i.e., the expression maxs(

∑
x Pr[s]Pr[x]Pr[y | x, s]

∑
f Pr[f]Pr[y

′ | x, s]) is
the same for all (y, y′). Further investigation is required to determine the set of
circuits for which this holds. If this can be easily determined, the computation
can be accelerated significantly, e.g., running 10 iterations for the 4× PRESENT
S-box & KeyAdd takes only 3.87 seconds instead of about 3.5 hours to get the
exact leakage for four faults.

32 Feldtkeller et al.

References

1. Agoyan, M., Dutertre, J., Naccache, D., Robisson, B., Tria, A.: When Clocks Fail:
On Critical Paths and Clock Faults. In: CARDIS 2010. Lecture Notes in Computer
Science, vol. 6035, pp. 182–193 (2010)

2. Akers, S.B.: Binary Decision Diagrams. IEEE Trans. Computers 27(6), 509–516
(1978)

3. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: The Science of Quantitative Information Flow. Information Security and Cryp-
tography, Springer (2020)

4. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic Fault Diagnosis
using VerFI. In: HOST 2020. pp. 229–240. IEEE (2020)

5. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T., Sarkar, S., Sim, S.M.:
DEFAULT: Cipher Level Resistance Against Differential Fault Attack. In: Ad-
vances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, De-
cember 6-10, 2021, Proceedings, Part II. pp. 124–156 (2021)

6. Beckers, A., Kinugawa, M., Hayashi, Y., Fujimoto, D., Balasch, J., Gierlichs, B.,
Verbauwhede, I.: Design Considerations for EM Pulse Fault Injection. In: CARDIS
2019. Lecture Notes in Computer Science, vol. 11833, pp. 176–192. Springer (2019)

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: EUROCRYPT.
Lecture Notes in Computer Science, vol. 7881, pp. 313–314. Springer (2013)

8. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In: Fast Software Encryption: 12th Interna-
tional Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Selected
Papers. pp. 359–367 (2005)

9. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings. pp.
513–525 (1997)

10. Blömer, J., Krummel, V.: Fault Based Collision Attacks on AES. In: Fault Diag-
nosis and Tolerance in Cryptography, Third International Workshop, FDTC 2006,
Yokohama, Japan, October 10, 2006, Proceedings. pp. 106–120 (2006)

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Ci-
pher. In: CHES 2007. Lecture Notes in Computer Science, vol. 4727, pp. 450–466.
Springer (2007)

12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults (Extended Abstract). In: Advances in Cryptology
- EUROCRYPT ’97, International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding. pp.
37–51 (1997)

13. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

14. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware Private Circuits: From
Trivial Composition to Full Verification. IEEE Trans. Computers 70(10), 1677–
1690 (2021)

15. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO. Lecture Notes in
Computer Science, vol. 1666, pp. 398–412. Springer (1999)

Quantitative Fault Injection Analysis 33

16. Clark, D., Hunt, S., Malacaria, P.: Quantitative Analysis of the Leakage of Con-
fidential Data. In: Workshop on Quantitative Aspects of Programming Laguages,
QAPL 2001, Satellite Event of PLI 2001, Firenze, Italy, September 7, 2001. pp.
238–251 (2001)

17. Clark, D., Hunt, S., Malacaria, P.: A Static Analysis for Quantifying Information
Flow in a Simple Imperative Language. J. Comput. Secur. 15(3), 321–371 (2007)

18. Cnudde, T.D., Nikova, S.: More Efficient Private Circuits II through Threshold
Implementations. In: FDTC 2016. pp. 114–124. IEEE Computer Society (2016)

19. Courtois, N., Jackson, K., Ware, D.: Fault-algebraic attacks on inner rounds of
DES. In: E-Smart’10 Proceedings: The Future of Digital Security Technologies.
Strategies Telecom and Multimedia (2010)

20. Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.:
Protecting against Statistical Ineffective Fault Attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(3), 508–543 (2020)

21. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

22. Dhooghe, S., Nikova, S.: My Gadget Just Cares for Me - How NINA Can Prove
Security Against Combined Attacks. In: CT-RSA. Lecture Notes in Computer
Science, vol. 12006, pp. 35–55. Springer (2020)

23. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)

24. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
Masking Schemes in the Presence of Physical Defaults & the Robust Probing
Model. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 89–120 (2018)

25. Feldtkeller, J., Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: CINI MINIS:
domain isolation for fault and combined security pp. 1023–1036 (2022)

26. Feng, J., Chen, H., Li, Y., Jiao, Z., Xi, W.: A Framework for Evaluation and
Analysis on Infection Countermeasures Against Fault Attacks. IEEE Trans. Inf.
Forensics Secur. 15, 391–406 (2020)

27. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES. Lecture Notes in Computer
Science, vol. 2162, pp. 251–261. Springer (2001)

28. Gnad, D.R.E., Oboril, F., Tahoori, M.B.: Voltage Drop-Based Fault Attacks on
FPGAs Using Valid Bitstreams. In: 27th International Conference on Field Pro-
grammable Logic and Applications, FPL 2017, Ghent, Belgium, September 4-8,
2017. pp. 1–7 (2017)

29. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript. In: Detection of Intrusions and Malware, and Vulner-
ability Assessment - 13th International Conference, DIMVA 2016, San Sebastián,
Spain, July 7-8, 2016, Proceedings. pp. 300–321 (2016)

30. Guo, X., Dutta, R.G., He, J., Tehranipoor, M.M., Jin, Y.: QIF-Verilog: Quan-
titative Information-Flow based Hardware Description Languages for Pre-Silicon
Security Assessment. In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2019, McLean, VA, USA, May 5-10, 2019. pp. 91–100
(2019)

31. Hadzic, V., Primas, R., Bloem, R.: Proving SIFA Protection of Masked Redundant
Circuits. In: Automated Technology for Verification and Analysis. Lecture Notes
in Computer Science, vol. 12971, pp. 249–265. Springer (2021)

34 Feldtkeller et al.

32. Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for
laplacian smoothing splines. Communications in Statistics - Simulation and Com-
putation 19(2), 433–450 (1990)

33. Ishai, Y., Sahai, A., Wagner, D.A.: Private Circuits: Securing Hardware against
Probing Attacks. In: Boneh, D. (ed.) CRYPTO. Lecture Notes in Computer Sci-
ence, vol. 2729, pp. 463–481. Springer (2003)

34. Khanna, P., Rebeiro, C., Hazra, A.: XFC: A Framework for eXploitable Fault
Characterization in Block Ciphers. In: Proceedings of the 54th Annual Design
Automation Conference, DAC 2017, Austin, TX, USA, June 18-22, 2017. pp. 8:1–
8:6 (2017)

35. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO. Lecture Notes in Computer
Science, vol. 1109, pp. 104–113. Springer (1996)

36. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer
(1999)

37. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
Sensitivity Analysis. In: Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings. pp. 320–334 (2010)

38. Liu, Q., Ning, B., Deng, P.: Information Theory-Based Quantitative Evaluation
Method for Countermeasures Against Fault Injection Attacks. IEEE Access 7,
141920–141928 (2019)

39. Mao, B., Hu, W., Althoff, A., Matai, J., Oberg, J., Mu, D., Sherwood, T., Kast-
ner, R.: Quantifying Timing-Based Information Flow in Cryptographic Hardware.
In: Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2015, Austin, TX, USA, November 2-6, 2015. pp. 552–559 (2015)

40. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault Tolerant Infective
Countermeasure for AES. J. Hardw. Syst. Secur. 1(1), 3–17 (2017)

41. Reimann, L.M., Hanel, L., Sisejkovic, D., Merchant, F., Leupers, R.: QFlow: Quan-
titative Information Flow for Security-Aware Hardware Design in Verilog. In: 39th
IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT, USA,
October 24-27, 2021. pp. 603–607 (2021)

42. Richter-Brockmann, J., Feldtkeller, J., Sasdrich, P., Güneysu, T.: VERICA - Veri-
fication of Combined Attacks: Automated Formal Verification of Security Against
Simultaneous Information Leakage and Tampering. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2022(4), 255–284 (2022)

43. Richter-Brockmann, J., Rezaei Shahmirzadi, A., Sasdrich, P., Moradi, A., Güneysu,
T.: FIVER – Robust Verification of Countermeasures against Fault Injections.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 447–473 (Aug 2021)

44. Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: Revisiting Fault Adversary
Models - Hardware Faults in Theory and Practice. IEEE Trans. Computers pp. 1
– 14 (2022)

45. Saha, S., Alam, M., Bag, A., Mukhopadhyay, D., Dasgupta, P.: Learn from Your
Faults: Leakage Assessment in Fault Attacks Using Deep Learning. J. Cryptol.
36(3), 19 (2023)

46. Saha, S., Kumar, S.N., Patranabis, S., Mukhopadhyay, D., Dasgupta, P.: ALAFA:
Automatic Leakage Assessment for Fault Attack Countermeasures. In: Proceedings
of the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas,
NV, USA, June 02-06, 2019. p. 136 (2019)

Quantitative Fault Injection Analysis 35

47. Saha, S., Mukhopadhyay, D., Dasgupta, P.: ExpFault: An Automated Framework
for Exploitable Fault Characterization in Block Ciphers. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018(2), 242–276 (2018)

48. Sakiyama, K., Li, Y., Iwamoto, M., Ohta, K.: Information-Theoretic Approach
to Optimal Differential Fault Analysis. IEEE Trans. Inf. Forensics Secur. 7(1),
109–120 (2012)

49. Schneider, T., Moradi, A., Güneysu, T.: ParTI - Towards Combined Hardware
Countermeasures Against Side-Channel and Fault-Injection Attacks. In: CRYPTO
2016. Lecture Notes in Computer Science, vol. 9815, pp. 302–332. Springer (2016)

50. Selmane, N., Guilley, S., Danger, J.: Practical Setup Time Violation Attacks on
AES. In: EDCC-7 2008. pp. 91–96. IEEE Computer Society (2008)

51. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable Circuits II. In: DAC
2020. pp. 1–6. IEEE (2020)

52. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: CHES
2002. Lecture Notes in Computer Science, vol. 2523, pp. 2–12. Springer (2002)

53. Smith, G.: On the Foundations of Quantitative Information Flow. In: Foundations
of Software Science and Computational Structures, 12th International Conference,
FOSSACS 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings. pp.
288–302 (2009)

54. Sullivan, G.A., Sippe, J., Heninger, N., Wustrow, E.: Open to a Fault: On the
Passive Compromise of TLS Keys via Transient Errors. In: 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022. pp.
233–250 (2022)

55. Tang, A., Sethumadhavan, S., Stolfo, S.J.: CLKSCREW: Exposing the Perils of
Security-Oblivious Energy Management. In: 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017. pp. 1057–
1074 (2017)

	Quantitative Fault Injection Analysis

