
Optimizing S-box Implementations Using SAT
Solvers: Revisited

Fuxin Zhang1,2 and Zhenyu Huang1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{zhangfuxin,huangzhenyu}@iie.ac.cn

Abstract. We propose a new method to encode the problems of optimizing S-box
implementations into SAT problems. By considering the inputs and outputs of
gates as Boolean functions, the fundamental idea of our method is representing
the relationships between these inputs and outputs according to their algebraic
normal forms. Based on this method, we present several encoding schemes for
optimizing S-box implementations according to various criteria, such as multiplicative
complexity, bitslice gate complexity, gate complexity, and circuit depth complexity.
The experimental results of these optimization problems show that, compared to the
encoding method proposed in FSE 2016, which represents these relationships between
Boolean functions by their truth tables, our new encoding method can significantly
accelerate the subsequent solving process by 2-100 times for the majority of instances.
To further improve the solving efficiency, we propose several strategies to eliminate the
redundancy of the derived equation system and break the symmetry of the solution
space. We apply our method in the optimizations of the S-boxes used in Ascon,
ICEPOLE, PRIMATEs, Keccak/Ketje/Keyak, Joltik/Piccolo, LAC, Minalpher, Prøst,
and RECTANGLE. We achieve some new improved implementations and narrow the
range of the optimal values for different optimization criteria of these S-boxes.
Keywords: S-box · SAT solver · Circuit optimization · Algebraic normal form.

1 Introduction
As one of the main primitives in symmetric-key cryptography, S-boxes play a pivotal role in
providing nonlinearity and confusion. Efficient implementations of S-boxes are of paramount
importance in enhancing the overall performance of symmetric-key algorithms. Depending
on the requirements of the specific platform, the optimization of S-box implementations
involves one or multiple criteria, such as throughput, latency, power consumption, memory
usage, and resistance against side-channel attacks.

Courtois et al. were the first to introduce SAT solvers for optimizing S-box imple-
mentations [CMH13]. The main idea of their method is encoding the decision problems
related to S-box implementations into SAT problems, which are subsequently solved by
off-the-shelf SAT solvers. At FSE 2016 [Sto16], Stoffelen generalized this method and
proposed specific schemes to encode optimization problems based on various criteria,
such as multiplicative complexity, bitslice gate complexity, gate complexity, and circuit
depth complexity, into SAT problems. Moreover, some optimized implementations for
lightweight S-boxes used in Ascon [DEMS16], ICEPOLE [lMGH+15], PRIMATEs [ABB+],
Keccak [BPVA+11]/Ketje [BDP+]/Keyak [BDP+16], Joltik [JNP15]/Piccolo [SIH+11],
LAC [ZWW+14], Minalpher [STA+14], Prøst [KLL+14] and RECTANGLE [ZBL+14],
were presented in [Sto16]. Stoffelen’s method was further extended to search for S-box im-
plementations with the smallest area [LWH+21, FWL+21], as well as the lowest AND-depth

mailto:{zhangfuxin, huangzhenyu}@iie.ac.cn

2 Optimizing S-box Implementations Using SAT Solvers: Revisited

and AND-count jointly [BMD+20].
In addition to the SAT-based method, some heuristic search-based methods have been

developed for optimizing S-box implementations [Osv00, BMP13]. In [JPST17], based on
a graph-based meet-in-the-middle search algorithm, Jean et al. proposed an automated
tool named LIGHTER, which can generate an efficient implementation of a lightweight
S-box given a certain set of available instructions and their corresponding costs. Utilizing
the implementation model of LIGHTER, a more efficient and versatile platform named
PEIGEN was presented in [BGLS19]. In [Ras22], Rasoolzadeh investigated the latency
complexity of S-boxes, and proposed algorithms for determining the latency complexity
and finding the circuits with the minimum latency complexity of a given S-box.

Compared to the heuristic search-based methods, an advantage of the SAT-based
methods is the theoretical guarantee of obtaining optimal results. Specifically, for the
problem of implementing an S-box based on an optimization criterion with a value of k,
if the SAT solver returns UNSAT(unsatisfiable) for k = k1 and returns SAT(satisfiable) for
k = k2 with k2 = k1 + 1, then k2 is the optimal value for this criterion. However, the
SAT solver cannot always return the results within a reasonable time (especially for the
UNSAT instances), hence there is often a gap between k1 and k2 for many instances. Our
motivation is to accelerate the solving process of the SAT-based method, thus bridging
the gap between k1 and k2. For this purpose, we focus on modifying the way of encoding
the problems of optimizing S-box implementations into SAT problems.

Our contribution. We propose a new method to encode the decision problems associated
with the implementations of S-boxes based on different optimization criteria, such as multi-
plicative complexity, bitslice gate complexity, gate complexity, and circuit depth complexity,
into SAT problems. Compared to the encoding method introduced in FSE 2016 [Sto16], our
new encoding method can significantly reduce the running time of the subsequent solving
process. For the majority of instances originated from the implementations of various 4-bit
and 5-bit S-boxes used in Ascon, ICEPOLE, Joltik/Piccolo, Keccak/Ketje/Keyak, LAC,
Minalpher, Prøst, and RECTANGLE, our method can accelerate the solving processes by
approximately 2-100 times.

To further improve our encoding method, we introduce several strategies aimed at
eliminating the redundancy within the derived equation system and breaking the symmetry
of the solution space. Experimental results show that these improvements lead to additional
acceleration in solving all UNSAT instances and the majority of SAT instances.

We achieve some new optimized implementations for the S-boxes used in Ascon, ICE-
POLE, Joltik/Piccolo, Keccak/Ketje/Keyak, LAC, Minalpher, Prøst, and RECTANGLE.
Moreover, we narrow the range of the possible optimal values for different optimization
criteria of these S-boxes. Especially, we determine the multiplicative complexity of the
S-box used in PRIMATEs, the gate complexities of the S-box and S-box−1 used in RECT-
ANGLE, as well as the optimal widths of the low-depth implementations of the S-boxes
used in Keccak/Ketje/Keyak, LAC, and RECTANGLE.

2 Preliminaries
2.1 Boolean Functions and Boolean Equations
Let F2 be the finite field with only two elements {0, 1}, and Fn

2 denotes the n-dimensional
vector space over F2. A n-variable Boolean function f(x1, x2, . . . , xn) is a function mapping
Fn

2 to F2. Let Bn be the set of n-variable Boolean functions. A Boolean function f ∈ Bn

can be represented by a truth table, which is a list of all 2n vectors together with their
function values.

A Boolean function can also be represented as an element in the Boolean polynomial
ring R2 = F2[x1, x2, . . . , xn]/⟨x2

1 + x1, x2
2 + x2, . . . , x2

n + xn⟩, and has a unique polynomial

Fuxin Zhang and Zhenyu Huang 3

form:

f(x1, x2, . . . , xn) =
∑

u={u1,u2,...,un}∈Fn
2

au

n∏
i=1

xui
i .

This form is called the Algebraic Normal Form (ANF) of a Boolean function. A Boolean
function in form is called a Boolean polynomial. In this paper, when we say a general
Boolean polynomial we mean a Boolean polynomial whose 2n coefficients are all variables,
and when we say a specific Boolean polynomial we mean a Boolean polynomial whose 2n

coefficients take specific Boolean values.
A vectorial Boolean function is a map from Fn

2 to Fm
2 :

(x1, x2 . . . , xn) → (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)),

where each fi(x1, x2, . . . , xn) is a Boolean function. An S-box with n-bit input and m-bit
output can be represented by a vectorial Boolean function from Fn

2 to Fm
2 .

A (Boolean) circuit is a directed acyclic graph where the inputs and the gates are the
nodes, and the edges correspond to the Boolean-valued wires. The most common gates
used in a circuit are XOR, AND, NOT, and OR. Each of them corresponds to a specific vectorial
Boolean function over F2.

If a circuit implements a given S-box, then by setting the input nodes as variables
{x1, x2, . . . , xn}, it outputs the vectorial Boolean function corresponding to the S-box.
Note that, in this circuit implementation, the input and output of each gate can be
described as Boolean functions with variables {x1, x2, . . . , xn}, and the coefficients of their
ANFs will have some relations. For example, if the gate is from the set {XOR, AND, NOT},
then we have the following relations.

• XOR: Suppose f =
∑

ui∈F2
au1,...,un

∏n
i=1 xui

i , g =
∑

ui∈F2
bu1,...,un

∏n
i=1 xui

i are the
inputs of an XOR gate, and h =

∑
ui∈F2

cu1,...,un

∏n
i=1 xui

i is the output, then h = f +g
and we have:

cu1,...,un
= au1,...,un

+ bu1,...,un
, ∀(u1, . . . , un) ∈ Fn

2 . (1)

• AND: Suppose f =
∑

ui∈F2
au1,...,un

∏n
i=1 xui

i , g =
∑

vi∈F2
bv1,...,vn

∏n
i=1 xvi

i are the
inputs of an AND gate, and h =

∑
wi∈F2

cw1,...,wn

∏n
i=1 xwi

i is the output, then h = f ·g
and we have:

cw1,...,wn
=

∑
max(ui,vi)=wi,1≤i≤n

au1,...,un
· bv1,...,vn

, ∀(w1, . . . , wn) ∈ Fn
2 . (2)

• NOT: If the input of a NOT gate is f =
∑

ui∈F2
au1,...,un

∏n
i=1 xui

i , and the output of
the gate is g =

∑
ui∈F2

bu1,...,un

∏n
i=1 xui

i , then g = f + 1 and we have:

b0,...,0 = a0,...,0 + 1, and bu1,...,un = au1,...,un , if (u1, . . . , un) ̸= (0, . . . , 0). (3)

More generally, suppose f1, f2, . . . , fk are some general Boolean polynomials, g1, g2, . . . , gs

some specific Boolean polynomials, and H is either a general or a specific Boolean polyno-
mial. It is easy to see that given an equation

H(f1, f2, . . . , fk, g1, g2, . . . , gs) = 0,

similarly to generating Equation (1), (2) and (3), by comparing the coefficients of different
monomials, we can derive some equations with respect to the coefficients of these general
Boolean polynomials. In the following paragraphs of this paper, we use

H(f1, f2, . . . , fk, g1, g2, . . . , gs) c= 0

4 Optimizing S-box Implementations Using SAT Solvers: Revisited

to denote these coefficient equations generated from the original polynomial equation.

Equations for the at-most-one constraint: Suppose a1, a2, . . . , ak are some Boolean
variables, then the constraint that there is at most one nonzero element in {a1, a2, . . . , ak}
can be depicted by the following Boolean polynomial equations:

aiaj = 0, for all 1 ≤ i < j ≤ k

In the followings, we use the notation AtMost1(a1, a2, . . . , ak) to denote the above Boolean
polynomial equations for the at-most-one constraint.

Equations for the exactly-one constraint: Suppose a1, a2, . . . , ak are some Boolean
variables, then the constraint that there is exactly one nonzero element in {a1, a2, . . . , ak}
can be depicted by the following Boolean polynomial equations:{

a1 + a2 + · · · + ak = 1
aiaj = 0, for all 1 ≤ i < j ≤ k

In the followings, we use the notation Exactly1(a1, a2, . . . , ak) to denote the above Boolean
polynomial equations for the exactly-one constraint.

2.2 Optimization Criteria
Since an S-box is equivalent to a vectorial Boolean function, the S-box implementation is
sometimes mentioned as the Boolean function implementation. The S-box implementation
in software and hardware can be optimized according to various criteria. In this paper, we
consider the S-box implementations using gates with fan-in at most two, and focus on the
optimization criteria addressed in [Sto16]. Here we reference their definitions from [Sto16]:

Multiplicative Complexity (MC). The multiplicative complexity of an S-box is defined
as the minimum number of AND gates required to implement the S-box using the gates
from the set {XOR, AND, NOT}. We shall also call the multiplicative complexity of a given
circuit the actual number of AND gates involved in the circuit. Reducing the MC is useful
in protecting against side-channel attacks, since the cost of the masking for side-channel
analysis countermeasure depends on the MC. Moreover, it is important in multi-party
computation and fully homomorphic encryption, where linear operations almost come for
free [ARS+15].

Bitslice Gate Complexity (BGC). The bitslice gate complexity of an S-box is defined
as the minimum number of gates in {XOR, OR, AND, NOT} required to implement the S-box.
Reducing the BGC leads to efficient bitsliced software implementations. Note that, NAND,
NOR, and XNOR are not allowed under the BGC measure, since on the most common CPU
architectures, no instruction can immediately compute these gates.

Gate Complexity (GC). The gate complexity of an S-box is defined as the minimum
number of logic gates required to implement the S-box. In addition to bitslice gates {XOR,
OR, AND, NOT}, {NAND, NOR, XNOR} are now permitted. From a low GC implementation,
one can obtain an efficient hardware implementation, although the different area costs of
different gates still need to be considered.

Circuit Depth Complexity. For a circuit implementing an S-box, its depth is defined
as the length of the longest path from the input gate to the output gate. In hardware
implementations, circuit depth is highly relevant to the latency of the circuit. Here, we
only consider the circuits consisting of gates from the set {XOR, OR, AND, NOT, NAND, NOR,
XNOR}.

Fuxin Zhang and Zhenyu Huang 5

The procedures of using SAT solvers to solve these different optimization problems are
similar. Here, we take the problem of finding an implementation with the optimal MC as
an example.

• For any fixed k, the problem of determining whether there is a circuit that implements
an S-box S with at most k AND gates, which is called the multiplicative complexity
decision problem, can be converted to a SAT problem. Then this SAT problem can
be solved by an off-the-shelf SAT solver. If the solver returns SAT (satisfiable) for
some k and returns UNSAT (unsatisfiable) for k − 1, then it is proven that k is the
minimum number of AND gates required to implement S. Moreover, in this case,
from a SAT result, we can construct a circuit that implements S with k AND gates.

Similarly, circuit optimizations based on different criteria correspond to different decision
problems. For encoding such a decision problem into a SAT problem, we can first
encode it into a system of Boolean polynomial equations, then convert this system into a
CNF (Conjunctive Normal Form) expression, which serves as the input of SAT solvers.
The conversion process can be accomplished by an ANF-to-CNF converter, such as
Bosphorus [CSCM19]. Therefore, we focus on the problem of encoding the decision
problems into Boolean equation systems.

3 Two Encoding Methods
We use the following toy example to illustrate our encoding method and its difference with
the one proposed in [Sto16].

Example 1. Implementing an S-box : (x1, x2, x3) → (x1x2 + x3, x2x3 + x1, x1x3 + x2)
with gates in {AND, XOR, NOT}, and using at most two AND gates.

First, we present a scheme for encoding the above problem into a Boolean equation
system based on our encoding method. We use general Boolean polynomials X1, X2, and
X3 to denote the circuit inputs, and use general Boolean polynomials Y1, Y2, and Y3 to
denote the circuit outputs. In this case, if a circuit implements this S-box, the following
coefficient equations must hold.

X1
c= x1, X2

c= x2, X3
c= x3, Y1

c= x1x2 + x3, Y2
c= x2x3 + x1, Y3

c= x1x3 + x2

Suppose the two inputs and one output of the first AND gate are denoted by general
Boolean polynomials Q1, Q2, and T1 respectively. Then Q1 and Q2 should be constructed
from the circuit inputs and previous gates outputs by applying some XOR and NOT gates.
Since no AND gate was applied before, we can express Q1 and Q2 by some affine combinations
of the circuit inputs. It means there exist some ai ∈ F2, i ∈ {1, 2, . . . , 8} such that

Q1 = a1 + a2X1 + a3X2 + a4X3,
Q2 = a5 + a6X1 + a7X2 + a8X3,
T1 = Q1 · Q2.

(4)

Now we denote the two inputs and one output of the second AND gate by general Boolean
polynomial Q3, Q4, and T2 respectively. Similarly to Q1 and Q2, Q3 and Q4 can be
expressed as an affine combination of X1, X2, X3, and T1. Hence, there are some
ai ∈ F2, i ∈ {9, 10, . . . , 18} such that

Q3 = a9 + a10X1 + a11X2 + a12X3 + a13T1,
Q4 = a14 + a15X1 + a16X2 + a17X3 + a18T1,
T2 = Q3 · Q4.

(5)

6 Optimizing S-box Implementations Using SAT Solvers: Revisited

Similarly, the circuit outputs can be expressed as some affine combinations of X1, X2, X3,
T1, and T2, thus there are some ai ∈ F2, i ∈ {19, 20, . . . , 36} such that

Y1 = a19 + a20X1 + a21X2 + a22X3 + a23T1 + a24T2,
Y2 = a25 + a26X1 + a27X2 + a28X3 + a29T1 + a30T2,
Y3 = a31 + a32X1 + a33X2 + a34X3 + a35T1 + a36T2.

(6)

Then by setting these ai’s and the coefficients of these general Boolean polynomials as
unknowns, we can generate the following Boolean equation system:

G =

X1
c= x1, X2

c= x2, X3
c= x3

Q1
c= a1 + a2X1 + a3X2 + a4X3

Q2
c= a5 + a6X1 + a7X2 + a8X3

Q3
c= a9 + a10X1 + a11X2 + a12X3 + a13T1

Q4
c= a14 + a15X1 + a16X2 + a17X3 + a18T1

T1
c= Q1 · Q2, T2

c= Q3 · Q4
Y1

c= a19 + a20X1 + a21X2 + a22X3 + a23T1 + a24T2
Y2

c= a25 + a26X1 + a27X2 + a28X3 + a29T1 + a30T2
Y3

c= a31 + a32X1 + a33X2 + a34X3 + a35T1 + a36T2
Y1

c= x1x2 + x3, Y2
c= x2x3 + x1, Y3

c= x1x3 + x2

(7)

Obviously, a solution of this system corresponds to a circuit that implements the given
S-box with at most two AND gates.1 In this solution, the values of the coefficient variables
determine the ANFs of different wires in the circuit, and from the values of a1, a2, . . . , a36,
one can easily construct the sub-circuits that can generate these AND gate inputs by XOR
and NOT gates. The number of XOR and NOT gates used to generate these AND gate inputs
can be optimized by solving the shortest linear straight-line program problem as mentioned
in [Sto16].

Now, based on the method proposed in [Sto16], we present another scheme to encode
the same problem into Boolean equation systems. First, suppose we have a circuit that
implements the given S-box with 2 AND gates. If the inputs of the circuit take some specific
Boolean values {x0

1, x0
2, x0

3}, then the outputs of the circuit are some fixed Boolean values
{y0

1 , y0
2 , y0

3}, where {x0
1, x0

2, x0
3} and {y0

1 , y0
2 , y0

3} correspond to a row in the truth table of
the S-box. In this case, the input and output wires of all gates will also take some specific
Boolean values. It is easy to see that if we substitute the variables Xi, Qi, Ti, and Yi with
these specific values, Equations (4), (5), and (6) hold for some assignments of these ai’s.
Note that, if the inputs of the circuit take any other values, then the wires of this circuit
will also take some other fixed values. If we substitute the variables Xi, Qi, Ti, and Yi

with these new values, Equations (4), (5), and (6) still hold for the same assignments of
ai’s.

Actually, we can construct a Boolean equation system F which consists of 23 subsystems
Fi (0 ≤ i ≤ 23 − 1) with the same structure, and Fi is generated by setting the input of
the S-box as (i0, i1, i2), where i0i1i2 is the binary expression of i. Moreover, we have

1If a24, a30, a36 = 0, then T2 is not used in the following gates. This means the AND gate generating T2
is redundant, which induces a circuit implementing the S-box with one AND gate.

Fuxin Zhang and Zhenyu Huang 7

Fi =

xi,1 = i0, xi,2 = i1, xi,3 = i2
qi,1 = a1 + a2xi,1 + a3xi,2 + a4xi,3
qi,2 = a5 + a6xi,1 + a7xi,2 + a8xi,3
qi,3 = a9 + a10xi,1 + a11xi,2 + a12xi,3 + a13ti,1
qi,4 = a14 + a15xi,1 + a16xi,2 + a17xi,3 + a18ti,1
ti,1 = qi,1 · qi,2, ti,2 = qi,3 · qi,4
yi,1 = a19 + a20xi,1 + a21xi,2 + a22xi,3 + a23ti,1 + a24ti,2
yi,2 = a25 + a26xi,1 + a27xi,2 + a28xi,3 + a29ti,1 + a30ti,2
yi,3 = a31 + a32xi,1 + a33xi,2 + a34xi,3 + a35ti,1 + a36ti,2
yi,1 = i0i1 + i2, yi,2 = i1i2 + i0, yi,3 = i0i2 + i1

(8)

Apparently, a solution of F corresponds to a circuit that implements the given S-box with
at most two AND gates. In this solution, the values of xi,j , yi,j , qi,j , ti,j are equal to the
values taken by the corresponding wires when the circuit input is (i2, i1, i0).

It is easy to see that, for these two encoding schemes, their basic encoding frameworks,
which define the relations among gate inputs, outputs, and ai’s, are the same. The
difference is how we generate Boolean equations from these relations. In our method,
the equations are generated based on the algebraic expressions of the vectorial Boolean
functions corresponding to the gate inputs and outputs. In comparison, in the method
proposed in [Sto16], the equations are generated based on the truth tables of these vectorial
Boolean functions. Therefore, we call our encoding method the algebraic expression method,
and call the method proposed in [Sto16] the truth table method.

For two encoding schemes, which are obtained by the algebraic expression method and
the truth table method respectively, if their encoding frameworks are the same, then the
two equation systems generated by them have the same number of variables and the same
number of equations. For example, for this toy problem, in the first scheme, each “ c=”
equation corresponds to 23 Boolean equations, since there are 23 coefficients for a Boolean
polynomial with 3 variables. Moreover, each general Boolean polynomial corresponds to 23

Boolean variables. Therefore, the system G has 12 · 23 + 36 variables and 15 · 23 equations.
For the second scheme, there are 23 subsystems and each Fi contains 36 common variables,
12 special variables, and 15 equations. Therefore, F also has 12 · 23 + 36 variables and
15 · 23 Boolean equations.

Although the numbers of variables and equations for the systems generated by these
two schemes are the same, the corresponding reduced equations, which are obtained by
applying simple substitutions to eliminate intermediate variables, have different sizes. We
observed that, in most cases, the reduced equation system generated by the algebraic
expression method is simpler than the one generated by the truth table method. This can
be illustrated by the following toy example.
Example 2. Implementing the 2-to-1 Boolean function: f : (x1, x2) → x1x2 + x1 + x2
with {AND,XOR,NOT} gates, and using 1 AND gate.

Based on the algebraic expression method and the truth table method, we can generate
two Boolean equation systems, and both of them have 34 variables and 28 equations. For
the algebraic expression method, we have to solve the system:

c1 = 0, c2 = 1, c3 = 0, c4 = 0, c5 = 0, c6 = 0, c7 = 1, c8 = 0
c9 = a1 + a2c1 + a3c5, c10 = a2c2 + a3c6, c11 = a2c3 + a3c7, c12 = a2c4 + a3c8
c13 = a4 + a5c1 + a6c5, c14 = a5c2 + a6c6, c15 = a5c3 + a6c7, c16 = a5c4 + a6c8
c17 = c9c13, c18 = c10c14 + c10c13 + c9c14, c19 = c11c15 + c11c13 + c9c15
c20 = c9c16 + c10c15 + c10c16 + c11c14 + c11c16 + c12c13 + c12c14 + c12c15 + c12c16
c21 = a7 + a8c1 + a9c5 + a10c17, c22 = a8c2 + a9c6 + a10c18
c23 = a8c3 + a9c7 + a10c19, c24 = a8c4 + a9c8 + a10c20
c21 = 0, c22 = 1, c23 = 1, c24 = 1.

8 Optimizing S-box Implementations Using SAT Solvers: Revisited

For the truth table method, we have to solve the system:

x1,1 = 0, x1,2 = 0,
q1,1 = a1 + a2x1,1 + a3x1,2, q1,2 = a4 + a5x1,1 + a6x1,2
t1,1 = q1,1q1,2
y1,1 = a7 + a8x1,1 + a9x1,2 + a10t1,1,
y1,1 = 0
x2,1 = 0, x2,2 = 1,
q2,1 = a1 + a2x2,1 + a3x2,2, q2,2 = a4 + a5x2,1 + a6x2,2
t2,1 = q2,1q2,2
y2,1 = a7 + a8x2,1 + a9x2,2 + a10t2,1,
y2,1 = 1
x3,1 = 1, x3,2 = 0,
q3,1 = a1 + a2x3,1 + a3x3,2, q3,2 = a4 + a5x3,1 + a6x3,2
t3,1 = q3,1q3,2
y3,1 = a7 + a8x3,1 + a9x3,2 + a10t3,1,
y3,1 = 1
x4,1 = 1, x4,2 = 1,
q4,1 = a1 + a2x4,1 + a3x4,2, q4,2 = a4 + a5x4,1 + a6x4,2
t4,1 = q4,1q4,2
y4,1 = a7 + a8x4,1 + a9x4,2 + a10t4,1,
y4,1 = 1.

After simple substitution, the reduced system for the algebraic expression method is: a7 + a10a1a4 = 0, a10a2a6 + a10a3a5 = 1,
a8 + a10a2a5 + a10a2a4 + a10a1a5 = 1,
a9 + a10a3a6 + a10a3a4 + a10a1a6 = 1.

In comparison, the reduced system for the truth table method is:
a7 + a10a1a4 = 0,
a7 + a9 + a10a1a4 + a10a1a6 + a10a3a4 + a10a3a6 = 1,
a7 + a8 + a10a1a4 + a10a1a5 + a10a2a4 + a10a2a5 = 1,
a7 + a8 + a9 + a10a1a4 + a10a1a5 + a10a1a6 + a10a2a4

+a10a2a5 + a10a2a6 + a10a3a4 + a10a3a5 + a10a3a6 = 1.

Apparently, the reduced systems generated by the algebraic expression method are simpler.
Since the complexity of the reduced systems often determines the difficulty of solving
the original system, we conjecture that the system generated by the algebraic expression
method can be probably solved faster, and our experimental results shown in Section 4.5
confirm this conjecture.

4 Algebraic Encoding Schemes for Circuit Optimizations
For the sake of simplicity, in the following paragraphs, we call an encoding scheme obtained
by the algebraic expression method, an algebraic expression scheme, and call an encoding
scheme obtained by the truth table method, a truth table scheme. According to Section 3,
from a truth table scheme, one can easily construct an algebraic expression scheme by
using the same encoding framework. Therefore, we can convert the truth table schemes
proposed in [Sto16] to algebraic expression schemes. However, we found that there are
some minor issues with the basic encoding frameworks proposed in [Sto16], which will
lead to incorrect results in certain cases. For this reason, we have slightly modified these
flawed encoding frameworks to ensure that the algebraic expression schemes proposed
in this section can work well in any case. In the following parts, we will present these

Fuxin Zhang and Zhenyu Huang 9

algebraic expression schemes, and show their advantages by comparing the time to solve
the equations generated by these schemes and those from [Sto16] for specific problems.

4.1 An Encoding Scheme for MC Optimizations
In this subsection, we present an algebraic expression scheme for MC optimizations. This
algebraic expression scheme uses the same encoding framework proposed in [Sto16] with
slightly modification, since we observed that there is a flaw in this encoding framework.

Given an S-box S : (x0, . . . , xn−1) → (S0(x0, . . . , xn−1), . . . , Sm−1(x0, . . . , xn−1)), our
decision problem is determining whether S can be implemented with at most k AND gates.
We follow the notations used in Section 3:

• Xi is the general Boolean polynomial corresponding to the circuit input;

• Yi is the general Boolean polynomial corresponding to the circuit output;

• Qi is the general Boolean polynomial corresponding to the gate input;

• Ti is the general Boolean polynomial corresponding to the gate output;

• ai is the variable that describes the expressions of Qi and Yi w.r.t. Xi and Ti.

Then the Boolean equation system can be generated as follows.
1) ∀i ∈ {0, . . . , n − 1}, ∀j ∈ {0, . . . , m − 1}, Xi

c= xi, Yj
c= Sj(x0, . . . , xn−1). These

equations encode the circuit inputs and outputs.
2) ∀i ∈ {0, . . . , 2k − 1},

Qi
c= ali +

(∑n−1
j=0 ali+j+1 · Xj

)
+

(∑⌊ i
2 ⌋−1

j=0 ali+n+j+1 · Tj

)
,

where li = i(n + 1) +
⌊

i2−2i+1
4

⌋
. These coefficient equations encode that Qi, the inputs of

the AND gates, can be expressed as an affine combination of the circuit inputs and previous
AND gate outputs. Here al corresponds to a possible NOT gate.
3) ∀i ∈ {0, . . . , k − 1}, Ti

c= Q2i · Q2i+1. These equations encode the k AND gates.
4) ∀i ∈ {0, . . . , m − 1},

Yi
c= as +

(∑n−1
j=0 as+j+1 · Xj

)
+

(∑k−1
j=0 as+n+j+1 · Tj

)
, (9)

where si = 2k(n + 1) + k(k − 1) + i(n + k + 1). These equations encode that the S-box
outputs can be expressed as an affine combination of the S-box inputs and all AND gate
outputs.

Remark 1. If we directly use the encoding framework proposed in [Sto16] , Equation (9)
should be rewritten as

Yi
c=

(∑n−1
j=0 as+j+1 · Xj

)
+

(∑k−1
j=0 as+n+j+1 · Tj

)
. (10)

Compared to Equation (9), this equation does not contain as, which encodes a possible
NOT gate. However, we observed that Equation (10) may lead to an incorrect result
when the ANF of the S-box contains the constant term 1. For example, the S-box
(x1, x2, x3) → (x1x2 + x2x3 + 1, x2x3 + x1x3, x1x2 + x1x3) has multiplicative complexity
2, since it can be implemented by the following steps:

• q1 = x1 + x3; t1 = q1 · x2 = x1x2 + x2x3; q2 = x2 + x3; t2 = x1 · q2 = x1x2 + x1x3;
y1 = t1 + 1; y2 = t1 + t2; y3 = t2.

10 Optimizing S-box Implementations Using SAT Solvers: Revisited

However, if we utilize the algebraic expression scheme based on Equation (10) or the truth
table scheme proposed in [Sto16] with setting k = 2, the SAT solver will output UNSAT.
Therefore, to avoid potentially incorrect results, in our proposed scheme we modify the
equations for Yi as Equation (9).

4.2 An Encoding Scheme for BGC optimizaitons
Given an S-box S : (x0, . . . , xn−1) → (S0(x0, . . . , xn−1), . . . , Sm−1(x0, . . . , xn−1)), the
BGC decision problem is determining whether S can be implemented with at most k bitslice
gates. Let Xi, Yi, Qi, and ai be defined as in the MC decision problem, then we can encode
this decision problem into a Boolean equation system as follows.

1) ∀i ∈ {0, . . . , n − 1}, ∀j ∈ {0, . . . , m − 1}, Xi
c= xi, Yj

c= Sj(x0, . . . , xn−1). These
equations encode the circuit inputs and outputs.

2) ∀i ∈ {0, . . . , k − 1},

Ti
c= b3i · Q2i · Q2i+1 + b3i+1 · Q2i + b3i+1 · Q2i+1 + b3i+2 · Q2i + b3i+2.

These equations encode the k gates from the set {AND, OR, XOR, NOT}, where Boolean
variables b3i, b3i+1, b3i+2 determine the type of the gate. Table 1 shows the correspondence
between the values of (b3i, b3i+1, b3i+2) and the types of gates.

3) ∀i ∈ {0, . . . , k − 1}, b3i · b3i+2 = 0, b3i+1 · b3i+2 = 0. These equations prevent
(b3i, b3i+1, b3i+2) from taking the values (0, 1, 1), (1, 0, 1), (1, 1, 1), ensuring that only
AND, OR, XOR, and NOT are allowed in this circuit.

4) ∀i ∈ {0, . . . , 2k − 1},

Qi
c=

(∑n−1
j=0 ali+j · Xj

)
+

(∑⌊ i
2 ⌋−1

j=0 ali+n+j · Tj

)
, AtMost1(ali , . . . , ali+n+⌊ i

2 ⌋−1),

where li = ni +
⌊

i2−2i+1
4

⌋
. These equations encode that Qi, the gate input, can be the

constant 0, an S-box input, or a previous gate output.

5) ∀i ∈ {0, . . . , m − 1} :

Yi
c=

(∑n−1
j=0 asi+j · Xj

)
+

(∑k−1
j=0 asi+n+j · Tj

)
, AtMost1(asi

, . . . , asi+n+k−1),

where si = 2kn + k(k − 1) + i(n + k). These equations encode that Yi, the S-box output,
can be the constant 0, an S-box inputs, or a gate output.

Table 1: Gate types for different (b3i, b3i+1, b3i+2)

(b3i, b3i+1, b3i+2) Expression for Ti Gate represented by Ti

(0,0,0) 0 0
(0,0,1) Q2i + 1 NOT(Q2i)
(0,1,0) Q2i + Q2i+1 XOR(Q2i, Q2i+1)
(0,1,1) Q2i+1 + 1 Prevented
(1,0,0) Q2i · Q2i+1 AND(Q2i, Q2i+1)
(1,0,1) Q2i · Q2i+1 + Q2i + 1 Prevented
(1,1,0) Q2i · Q2i+1 + Q2i + Q2i+1 OR(Q2i, Q2i+1)
(1,1,1) Q2i · Q2i+1 + Q2i+1 + 1 Prevented

Fuxin Zhang and Zhenyu Huang 11

4.3 An Encoding Scheme for GC Optimizations
The encoding scheme for GC optimizations is similar to that for BGC optimizations. There
are only two differences:

1) The gate outputting Ti is encoded by a different expression:

∀i ∈ {0, . . . , k − 1}, Ti
c= b3i · Q2i · Q2i+1 + b3i+1 · Q2i + b3i+1 · Q2i+1 + b3i+2.

These equations encode k gates in {XOR, XNOR, AND, OR, NAND, NOR}, where Boolean
variables b3i, b3i+1, b3i+2 determine the type of the gate. The correspondence between
the values of (b3i, b3i+1, b3i+2) and the types of gates is presented in Table 2. Note
that, the NOT gate is not in this table, but it can be implemented by other gates with
some specific inputs. For example, if Q2i = Q2i+1, NAND(Q2i, Q2i+1) = NOT(Q2i), and if
Q2i+1 = 0, XNOR(Q2i, Q2i+1) = NOT(Q2i). An explanation for the necessity of the NOT
gate for GC optimizations can be found in Remark 2.

Table 2: Gate types for different (b3i, b3i+1, b3i+2)

(b3i, b3i+1, b3i+2) Expression for Ti Gate represented by Ti

(0,0,0) 0 0
(0,0,1) 1 1
(0,1,0) Q2i + Q2i+1 XOR(Q2i, Q2i+1)
(0,1,1) Q2i + Q2i+1 + 1 XNOR(Q2i, Q2i+1)
(1,0,0) Q2i · Q2i+1 AND(Q2i, Q2i+1)
(1,0,1) Q2i · Q2i+1 + 1 NAND(Q2i, Q2i+1)
(1,1,0) Q2i · Q2i+1 + Q2i + Q2i+1 OR(Q2i, Q2i+1)
(1,1,1) Q2i · Q2i+1 + Q2i + Q2i+1 + 1 NOR(Q2i, Q2i+1)

2) There is no constraint for b3i, b3i+1, b3i+2, since all types of gates are allowed.

Remark 2. For some problems, by using NOT gates, one can achieve implementations
with lower GC. For example, consider the problem of implementing the following 3-bit
S-box: (x1, x2, x3) → (x1x2 + x2, x1x3 + x3, x2x3). It is easy to check that without NOT
gates, the optimal implementation has GC 5. In comparison, with NOT gate, the optimal
implementation has GC 4: t1 = x1 + 1, t2 = t1 · x2, t3 = t1 · x3, t4 = x2 · x3, y1 = t2,
y2 = t3, y3 = t4. Theoretically, we only need to consider the NOT gates in the first depth
layer of a circuit for GC optimization. Actually, if the input of a NOT gate is the output of
a previous gate G, we can remove this NOT gate by modifying G. For example if G is an
AND gate, then we can change G to be a NAND gate. By this way, without changing the GC
of a circuit, one can remove all NOT gates with depth ≥ 2 in this circuit. However, in our
scheme for GC optimizations, determining a gate in the first depth layer is costly, hence
we suppose any gate in the circuit could be a NOT gate.

4.4 An Encoding Scheme for Depth Optimizations
The decision problem for circuit depth complexity differs slightly from the former ones. We
can divide a circuit into different layers based on the depth of each gate. Note that, if only
the depth of a circuit is bounded, the number of gates in each layer can be arbitrarily large,
and it is not possible to encode a problem with an infinite number of operations into a fixed
Boolean equation system. For this reason, the following decision problem was considered in
[Sto16]. Given an S-box S : (x0, . . . , xn−1) → (S0(x0, . . . , xn−1), . . . , Sm−1(x0, . . . , xn−1)),
determine whether there is a circuit implementing S with depth ≤ k, and using at most w
gates in each layer.

12 Optimizing S-box Implementations Using SAT Solvers: Revisited

In the encoding framework proposed in [Sto16], the following property was deemed to
be valid.

• For a fan-in 2 gate in the i-th layer, any of its inputs should be the circuit input or
the output of a gate in some layer with depth less than i.

However, based on this property, one may not always obtain a gate with depth i. For
example, if the inputs of this gate are the outputs of a gate with depth i − 2, then this gate
has depth i − 1. Therefore, when encoding under this property, a gate that was originally
intended to be in the i-th layer may actually be located in some previous layer. In this
case, the number of gates in this previous layer may exceed the width bound w. More
precisely, the solver may output a solution that corresponds to a circuit containing a layer
with more than w gates. For this reason, we modify this property as follows.

• For a fan-in 2 gate in the i-th layer, its inputs should be the circuit input or the
output of a gate in some layer with depth less than i. Moreover, at least one bit
of its inputs should be the output of a gate in the (i − 1)-th layer.

Under this property, the Boolean equation system can be generated as follows.

1) ∀i ∈ {0, . . . , n − 1}, ∀j ∈ {0, . . . , m − 1}, Xi
c= xi, Yj

c= Sj(x0, . . . , xn−1). These
equations encode the circuit inputs and outputs.

2) ∀i ∈ {0, . . . , kw − 1},

Ti
c= b3i · Q2i · Q2i+1 + b3i+1 · Q2i + b3i+1 · Q2i+1 + b3i+2.

These equations encode the kw gates, with the type of gates being encoded by (b3i, b3i+1, b3i+2)
as shown in Table 2. Similarly, the NOT gate can be implemented by other fan-in 2 gates
with some specific inputs.

3) ∀i ∈ {0, . . . , 2w−1}, Qi
c=

∑n−1
j=0 ani+j ·Xj , AtMost1(ani, . . . , ani+n−1). These equations

encode that the input of a gate in first layer can be the constant 0 or an S-box input.

4) ∀i ∈ {w, . . . , kw − 1},

Q2i
c=

(∑n−1
j=0 ali+j · Xj

)
+

(∑vw−1
j=0 ali+n+j · Tj

)
, AtMost1(ali

, . . . , ali+n+vw−1),

Q2i+1
c=

(∑w−1
j=0 ali+n+vw+j · T(v−1)w+j

)
, Exactly1(ali+n+vw, . . . , ali+n+(v+1)w−1),

where v =
⌊

i
w

⌋
, li = i(n + vw + w) + nw − v2+v+2

2 w2. Here Q2i and Q2i+1 are two inputs
of a gate in the (v + 1)-th layer of the circuit. These equations encode that Q2i can be the
constant 0, or an input of the S-box, while Q2i+1 can only be the output of a gate in the
v-th layer. Note that, if Q2i+1 equals zero, this gate may be a NOT gate with depth less
than v + 1. Thus, in order to avoid this case, {ali+n+vw, ali+n+vw+1, . . . , ali+n+(v+1)w−1}
should satisfy the exactly-one constraint.

5) ∀i ∈ {0, . . . , m − 1},

Yi
c=

(∑n−1
j=0 asi+j · Xj

)
+

(∑kw−1
j=0 asi+n+j · Tj

)
, AtMost1(asi

, . . . , asi+n+kw−1),

where si = kw(kw
2 + n + w

2) + w(n − w) + i(n + kw). These equations encode that Yi, the
S-box outputs, can be the constant 0, an S-box input, or a gate output.

Fuxin Zhang and Zhenyu Huang 13

4.5 Algebraic Expression Method v.s. Truth Table Method
In this subsection, we present the experimental comparison between the algebraic expression
method and the truth table method by contrasting the time of the solving process. Our
experiments focus on optimizing the implementations of the S-boxes considered in [Sto16]
for different criteria. These S-boxes are, the S-boxes used in Ascon [DEMS16], ICEPOLE
[lMGH+15], PRIMATEs [ABB+], Keccak [BPVA+11]/Ketje [BDP+]/Keyak [BDP+16],
Joltik [JNP15]/Piccolo [SIH+11], LAC [ZWW+14], Minalpher [STA+14], Prøst [KLL+14],
RECTANGLE [ZBL+14], and their inverses, if they exist and are used in decryption.

Table 3: The time of the solving process for MC and BGC optimizations

Result S-box Size MC BGC

k Truth Alge. k Truth Alge.

SAT

Ascon 5 × 5 5 7.4 s 1.4 s 16 8477 s 1813 s
ICEPOLE 5 × 5 6 31.2 s 4.8 s 26 25262 s 5357 s
Keccak 5 × 5 5 3.7 s 1.2 s 13 19.7 s 75.5 s
PRIMATEs 5 × 5 7 85.4 s 3.6 s 27 # 5840 s
PRIMATEs−1 5 × 5 9 9234 s 1750 s - - -
Joltik 4 × 4 4 0.91 s 0.28 s 10 41.8 s 27.9 s
Joltik−1 4 × 4 4 0.72 s 0.27 s 10 157 s 77.9 s
LAC 4 × 4 4 1.0 s 0.25 s 11 91.3 s 66.2 s
Minalpher 4 × 4 5 2.0 s 0.85 s 18 # 5022 s
Prøst 4 × 4 4 1.4 s 0.25 s 8 3.9 s 4.4 s
RECTANGLE 4 × 4 4 0.53 s 0.24 s 12 606 s 98.7 s
RECTANGLE−1 4 × 4 4 1.8 s 0.22 s 12 34.7 s 81.1 s

UNSAT

Ascon 5 × 5 4 104 s 0.42 s 10 647 s 215 s
ICEPOLE 5 × 5 5 # 51.4 s 10 229 s 132 s
Keccak 5 × 5 4 215 s 0.45 s 9 231 s 72.8 s
PRIMATEs 5 × 5 5 120936 s 142 s 10 385 s 182 s
PRIMATEs−1 5 × 5 6 # 658 s 10 436 s 101 s
Joltik 4 × 4 3 2.3 s 0.08 s 9 1076 s 193 s
Joltik−1 4 × 4 3 2.3 s 0.07 s 9 897 s 205 s
LAC 4 × 4 3 2.4 s 0.07 s 9 504 s 120 s
Minalpher 4 × 4 4 99.8 s 0.17 s 9 240 s 62.6 s
Prøst 4 × 4 3 2.2 s 0.07 s 7 4.5 s 3.9 s
RECTANGLE 4 × 4 3 2.6 s 0.04 s 9 500 s 128 s
RECTANGLE−1 4 × 4 3 2.4 s 0.06 s 9 514 s 148 s

In our experiments, we chose Bosphorus [CSCM19] as the ANF-to-CNF converter, and
Kissat [BF22] as the SAT solver. Since Bosphorus contains a process of simplifying the
equations and the entire converting process may take more time than the SAT problem-
solving process, the timings presented in this paper are the sum of the running times of
Bosphorus and Kissat. Our experimental platforms are a PC with a 3.4GHz Intel i7-6700
CPU and a workshop with a 2.9GHz AMD 3990X CPU. For each optimization problem,
timings for different methods were obtained on the same platform, using only one thread.

In Tables 3 and 4, the timings for solving different instances are presented. The instances
for the algebraic expression method were generated based on the schemes presented in
Section 4. For a fair comparison, the instances for the truth table method should be
generated based on the same basic encoding frameworks, hence we modify the code given
in [Sto16] accordingly and generated the instances for the truth table method by the
modified code.

In these tables, the columns labeled as “Alge.” present the timings for solving the
equation systems generated by the algebraic expression method, while the columns labeled

14 Optimizing S-box Implementations Using SAT Solvers: Revisited

Table 4: The time of the solving process for GC and depth optimizations

Result S-box GC Depth

k Truth Alge. (k, w) Truth Alge.

SAT

Ascon 15 7303 s 398 s (3, 6) 1024 s 37.1 s
ICEPOLE 21 # 27303 s (4, 7) # 2057 s
Keccak 13 230 s 21.8 s (2, 10) 86.0 s 5.1 s
PRIMATEs 26 116710 s 34554 s (4, 8) 11190 s 542 s
Joltik 8 3.3 s 3.1 s (4, 2) 2.0 s 1.4 s
Joltik−1 8 18.1 s 8.8 s (4, 3) 57.1 s 24.5 s
LAC 10 45.4 s 20.4 s (3, 6) 140 s 22.5 s
Minalpher 16 # 916 s (4, 5) 27031 s 396 s
Prøst 8 4.6 s 1.8 s (4, 3) 22.9 s 10.9 s
RECTANGLE 11 626 s 76.5 s (3, 6) 241 s 86.9 s
RECTANGLE−1 11 283 s 86.5 s (3, 6) 252 s 61.9 s

UNSAT

Ascon 8 3496 s 34.1 s (2, 8) 358 s 6.3 s
ICEPOLE 8 57605 s 221 s (3, 10) 1298 s 505 s
Keccak 8 1991 s 93.9 s (2, 7) 52934 s 1621 s
PRIMATEs 8 118807 s 41.9 s (2, 15) 865 s 43.4 s
PRIMATEs−1 8 1215 s 13.4 s (3, 10) 1571 s 377 s
Joltik 7 27.0 s 13.8 s (3, 10) 436 s 101 s
Joltik−1 7 37.8 s 13.1 s (3, 10) 566 s 136 s
LAC 7 52.0 s 10.9 s (2, 10) 127 s 9.6 s
Minalpher 7 797 s 8.6 s (3, 10) 988 s 233 s
Prøst 7 19.1 s 16.1 s (3, 10) 749 s 132 s
RECTANGLE 8 9096 s 357 s (2, 10) 517 s 8.0 s
RECTANGLE−1 8 4658 s 323 s (2, 10) 145 s 7.1 s

as “Truth” present the timings for solving the equation systems generated by the truth
table method. Here “#” means running over 2 days without output. For MC, BGC, and
GC, the columns labeled as “k” list the maximum number of gates allowed in the decision
problems we introduced before. For depth, in the column labeled as “(k, w)”, the first
number is the depth bound, and the second one is the maximum number of gates allowed
in each layer.

Based on these experimental results, it is evident that the algebraic expression method
accelerates the solving process for all instances except three cases for BGC. Moreover, for
the majority of instances, the acceleration rate is approximately 2 to 100 times.

5 Eliminating Redundancy and Breaking Symmetry
In this section, we further improve the efficiency of the solving process by modifying the
basic encoding frameworks. We consider two types of techniques: eliminating redundancy
and breaking symmetry.

• For eliminating redundancy, we aim to eliminate redundant variables in the derived
equations and prevent the occurrence of redundant gates. Here, redundant variables
are variables that can be set to some fixed Boolean values (usually 0) without affecting
the satisfiability of the equations. In a circuit, redundant gates refer to gates that
can be removed directly from the circuit without affecting the outputs of the circuit.

• For breaking symmetry, we aim to break the symmetry of the solution space, which
arises from the commutativity of the binary operations corresponding to the fan-in 2
gates.

In the following, we show how to apply such techniques to different optimization problems.

Fuxin Zhang and Zhenyu Huang 15

We should notice that for our implementation problems, solving UNSAT instances is much
harder than solving SAT instances, since for a SAT instance, there are a lot of solutions,
and the SAT solver only needs to return 1 solution. Moreover, the solving time for SAT
instances is not very stable, since slightly modifying the equations may vary the solving
time. For these reasons, our primary goal is to reduce the solving time for UNSAT instances.

5.1 Improvements for MC Optimizations
Eliminating Redundant Variables. In the scheme proposed in Section 4.1, Qi and Yi

are encoded as follows:

Qi
c= ali

+
(∑n−1

j=0 ali+j+1 · Xj

)
+

(∑⌊ i
2 ⌋−1

j=0 ali+n+j+1 · Tj

)
,

Yi
c= asi

+
(∑n−1

j=0 asi+j+1 · Xj

)
+

(∑k−1
j=0 asi+n+j+1 · Tj

)
.

In these equations, ali
and asi

encode possible NOT gates. The following proposition
demonstrates that if the ANF of the S-box has no constant term, then we can remove al

and as in these equations without affecting the satisfiability of the system. The proof of
this proposition can be found in Appendix A.

Proposition 1. Let S ′ : (x0, . . . , xn−1) → (S′
0(x0, . . . , xn−1), . . . , S′

m−1(x0, . . . , xn−1)) be
an S-box with MC k, and the ANF of each S′

i(x0, . . . , xn−1) has no constant term. Then
there exists a circuit implementing S ′ has MC k and only contains AND and XOR gates.

For any S-box S : (x0, . . . , xn−1) → (S0(x0, . . . , xn−1), . . . , Sm−1(x0, . . . , xn−1)). Sup-
pose S ′ is derived from S by removing the constant term of each Si. It is easy to see
that S and S ′ have the same MC, and based on an implementation of S′ one can easily
obtain an implementation of S by adding some NOT gates to generate the constant term 1.
Therefore, we can equivalently consider the MC decision problem for S ′. Then, based on
Proposition 1, we can modify the encoding scheme by rewriting the equations for Qi and
Yi as

Qi
c=

(∑n−1
j=0 ali+j · Xj

)
+

(∑⌊ i
2 ⌋−1

j=0 ali+n+j · Tj

)
,

Yi
c=

(∑n−1
j=0 asi+j · Xj

)
+

(∑k−1
j=0 asi+n+j · Tj

)
.

By this modification, we can eliminate 2k + m redundant variables, when the decision
problem is for testing k.

Avoiding Redundant Gates. Here we consider the occurrences of redundant AND gates.
For our encoding scheme introduced before, two types of redundant AND gates may appear.

1) The first type is the gates having trivial outputs, and we call this type of gates trivial
gates. If the input of a circuit are variables, the output of a gate should be a specific
Boolean polynomial. A trivial output means this specific Boolean polynomial is equal
to the constant 0, constant 1, or one of the gate inputs.

2) The second type is the gates having useless outputs, and we call this type of gates
useless gates. If Ti is the output of an AND gate, we say Ti is useless if its value does
not affect the final outputs of the circuit. Specifically, it means Ti is neither an input
of any subsequent gate nor an output of the circuit.

By adding some equations corresponding to the constraints that at least one of some
ai’s should be nonzero, we can avoid these two kinds of redundant gates2. However, our

2A specific introduction of how to avoid these redundant gates can be found in Appendix B

16 Optimizing S-box Implementations Using SAT Solvers: Revisited

experimental results show that these at-least-one constraints will slightly decrease the
efficiency of the subsequent solving process. Therefore, for MC optimizations, we choose
to keep these two types of redundant gates. But for optimization problems based on other
criteria, we observed that avoiding the trivial gates, which could be achieved by adding
some much simpler equations, can accelerate the subsequent solving processes, and we will
introduce this in the following subsections.

Breaking Symmetry. We consider the symmetry derived from the commutativity of the
multiplication operation. In our modified scheme, the two inputs of the AND gate that
outputs Ti are encoded as

Q2i =
(∑n−1

j=0 al2i+j · Xj

)
+

(∑i−1
j=0 al2i+n+j · Tj

)
,

Q2i+1 =
(∑n−1

j=0 al2i+n+i+j · Xj

)
+

(∑i−1
j=0 al2i+2n+i+j · Tj

)
.

Let N = n+ i and l = l2i. Suppose A = {(α0, . . . , αN−1), (β0, . . . , βN−1)} is an assignment
for variables al, . . . , al+N−1, and al+N , . . . , al+2N−1, with (α0, . . . , αN−1) ̸= (β0, . . . , βN−1).
Let A′ = {(β0, . . . , βN−1), (α0, . . . , αN−1)} be another assignment, then we have A ≠ A′.
Obviously, A and A′ will result in the same Ti, since Q2i · Q2i+1 = Q2i+1 · Q2i. In this
case, we say A and A′ are a pair of symmetric assignments. It is easy to check that there
are 2N−1(2N − 1) pairs of symmetric assignments, and symmetry breaking aims to exclude
one assignment from each of these 2N−1(2N − 1) pairs of symmetric assignments.

We can completely break this symmetry by imposing the constraint (al, . . . , al+N−1) ⪰
(al+N , . . . , al+2N−1), where “⪰” is a total order, such as the lexicography order “⪰lex”, for
N -dimension Boolean vectors. Then, an assignment A′ = {(β0, . . . , βN−1), (α0, . . . , αN−1)}
with (β0, . . . , βN−1) ⪯ (α0, . . . , αN−1) will be an invalid assignment. Hence, in the subse-
quent solving process, the searching branches containing this partial assignment are pruned
early. Theoretically, this early pruning may reduce the running time of the SAT solver,
if its computational cost is lower than that of determining the invalidity of assignments
containing A′ in the original system.

If we use the lexicography order, then we can encode the constraint (al, . . . , al+N−1) ⪰lex

(al+N , . . . , al+2N−1) to the following equations.

• (al + 1)al+N = 0, which encodes al ≥ al+N .

• For all 0 ≤ j ≤ N − 2,
∏j

i=0(al+i + al+N+i + 1)(al+j+1 + 1)al+N+j+1 = 0, which
encodes: if al = al+N , . . . , al+j = al+N+j , then al+j+1 ≥ al+N+j+1.

By adding all these equations into the equation system, we can exclude one assignment
from each of the 2N−1(2N − 1) pairs of symmetric assignments. However, since there are
some complicated ones in these equations, if all these equations are added, the size of
the system will significantly increase, which will undesirably slow down the subsequent
solving process. To address this issue, we consider eliminating a part of these symmetric
assignments by just adding some simple equations.

In these equations, the first equation (al + 1)al+N = 0 can exclude assignments with
the form {(0, ∗, . . . , ∗), (1, ∗, . . . , ∗)}. There are 22(N−1) assignments having this form,
and each of them contains in a pair of symmetric assignments. These pairs account
for 1/(2 − 1

2N−1) > 1/2 of all pairs of symmetric assignments. Hence, by adding this
equation for each pair of Q2i and Q2i+1, we can eliminate more than 1/2 of the symmetric
assignments we aim to eliminate. Based on our experiments, we observed that compared
to the strategy of adding more equations to exclude more symmetric assignments, this
strategy provides better acceleration.

Experimental Results. By applying the above strategies for eliminating redundant
variables and breaking partial symmetry, we achieve an improved encoding scheme. In

Fuxin Zhang and Zhenyu Huang 17

Table 5, we compare this improved scheme and the basic scheme based on the time to solve
the UNSAT instances in Table 3. Experimental results show that the improved encoding
scheme can accelerate the solving process for all these UNSAT instances. For instances that
are not considered “too easy” (with solving time exceeding 0.5 seconds), the acceleration
rate is approximately 2.

Table 5: Comparison of the basic scheme and the improved scheme for MC optimizations

UNSAT instances
S-box k Basic Improved S-box k Basic Improved
Ascon 4 0.42 s 0.40 s Joltik−1 3 0.07 s 0.04 s
ICEPOLE 5 51.4 s 22.7 s LAC 3 0.07 s 0.04 s
Keccak 4 0.45 s 0.39 s Minalpher 4 0.17 s 0.16 s
PRIMATEs 5 142 s 96.1 s Prøst 3 0.07 s 0.03 s
PRIMATEs−1 6 658 s 239 s RECTANGLE 3 0.04 s 0.03 s
Joltik 3 0.08 s 0.04 s RECTANGLE−1 3 0.06 s 0.04 s

5.2 Improvements for BGC Optimizations
Eliminating Redundant Variables. In the encoding scheme proposed in Section 4.2,
the following equations encode that the output Yi is equal to either a circuit input or a
gate output.

Yi
c=

(∑n−1
j=0 asi+j · Xj

)
+

(∑k−1
j=0 asi+n+j · Tj

)
, AtMost1(asi

, . . . , asi+n+k−1)

Note that, in a practical problem, the ANF of an output of a S-box is always not equal to
the ANF of any input of the S-box. Therefore, we can modify these equations as follows,

Yi
c=

∑k−1
j=0 asi+j · Tj , AtMost1(asi , . . . , asi+k−1),

By this modification, we can eliminate n · m variables.

Avoiding Redundant Gates. Similarly to MC optimizations, for BGC optimizations, the
achieved circuits may contain two types of redundant gates: trivial gates and useless gates.
To avoid useless gates, as in MC optimizations, we should add at-least-one constraints
for certain aj ’s, but this will decrease the efficiency of the subsequent solving process as
observed in our experiments. Therefore, we focus on avoiding the trivial gates.

In our encoding scheme, the inputs of a fan-in 2 gate that outputs Ti are Q2i and Q2i+1.
This gate is trivial, when Q2i = Q2i+1, Q2i = 0, or Q2i+1 = 0. The following equations
encode Q2i and Q2i+1 in our scheme.

Q2i
c=

(∑n−1
j=0 al2i+j · Xj

)
+

(∑i−1
j=0 al2i+n+j · Tj

)
, AtMost1(al2i

, . . . , al2i+n+i−1),

Q2i+1
c=

(∑n−1
j=0 al2i+1+j · Xj

)
+

(∑i−1
j=0 al2i+1+n+j · Tj

)
, AtMost1(al2i+1 , . . . , al2i+1+n+i−1),

Thus, to ensure Q2i ̸= 0 and Q2i+1 ̸= 0, we only need to replace AtMost1 with Exactly1 in
the above equations. Moreover, when Q2i ≠ 0, to ensure Q2i ≠ Q2i+1, we can impose the
constrain that for any 0 ≤ j ≤ n + i − 1, al2i+j and al2i+1+j cannot be 1 simultaneously.
For this purpose, we can add the following equations into the system.

al2i+jal2i+1+j = 0, for all 0 ≤ j ≤ n + i − 1.

Additionally, if the gate outputting Ti is a NOT gate, Q2i+1 is a free input. In this case, to
guarantee this gate being nontrivial, we only need Q2i ̸= 0.

18 Optimizing S-box Implementations Using SAT Solvers: Revisited

Breaking Symmetry. Similarly to MC optimizations, to break the symmetry derived
from the commutativity of the binary operation with inputs Q2i and Q2i+1, one can
impose the constraint (al2i , . . . , al2i+n+i−1) ⪰lex (al2i+1 , . . . , al2i+1+n+i−1). We denote this
constraint by Q2i ⪰lex Q2i+1 for simplicity. Note that, we can combine the constraint
Q2i ⪰lex Q2i+1 with the constraint Q2i ≠ Q2i+1 (this prevents the trivial gates with two
same inputs) to the constraint Q2i ≻lex Q2i+1. When Q2i ̸= 0, this constraint can be
encoded as the following equations.

al2i+jal2i+1 = 0, al2i+jal2i+1+1 = 0, . . . , al2i+jal2i+1+j = 0, 0 ≤ ∀j ≤ n + i − 1.

Note that, if (al2i , . . . , al2i+n+i−2, al2i+n+i−1) = (0, . . . , 0, 1), the only valid assignment
for (al2i+1 , . . . , al2i+1+n+i−1) in the above equations is (0, . . . , 0). This contradicts the
constraint Q2i+1 ̸= 0. From our experiments, we observed that compared to modifying the
constraint Q2i ≻ Q2i+1, removing the constraint Q2i+1 ≠ 0 is a better choice. Therefore,
in our final improved encoding scheme, we impose the constrains Q2i ≻ Q2i+1 and Q2i ≠ 0,
to avoid the majority of trivial gates and completely break the symmetry derived from
commutativity.

Experimental Results. In Table 6, we present the comparison of the performances of
our basic encoding scheme and the improved encoding scheme. We can observe that for
all UNSAT instances, the solving process can be accelerated by approximately 2 to 6 times.
Moreover, for most SAT instances, the solving process also has a moderate acceleration.

Table 6: Comparison of the basic scheme and the improved scheme for BGC optimizations

S-box SAT instances UNSAT instances
k Basic Improved k Basic Improved

Ascon 16 1813 s 299 s 10 215 s 118 s
ICEPOLE 26 5357 s 2046 s 10 132 s 19.2 s
Keccak 13 75.5 s 17.8 s 9 72.8 s 34.1 s
PRIMATEs 27 5840 s 1900 s 10 182 s 65.4 s
PRIMATEs−1 - - - 10 101 s 50.6 s
Joltik 10 27.9 s 17.4 s 9 193 s 117 s
Joltik−1 10 77.9 s 84.6 s 9 205 s 86.8 s
LAC 11 66.2 s 65.3 s 9 120 s 52.4 s
Minalpher 18 5022 s 3397 s 9 62.6 s 15.7 s
Prøst 8 4.4 s 3.6 s 7 3.9 s 2.4 s
RECTANGLE 12 98.7 s 62.9 s 9 128 s 54.4 s
RECTANGLE−1 12 81.1 s 104 s 9 148 s 52.0 s

5.3 Improvements for GC Optimizations
Since the only difference of the encoding schemes for BGC optimizations and GC opti-
mizations is the way of encoding different gates, we use the strategies introduced in last
subsection. Specifically, we apply the following three strategies:
1) Assuming Yi ≠ Xj for any 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1; 2) Adding the constraint
Q2i ̸= 0; 3) Adding the constraint Q2i ≻lex Q2i+1.
Note that, after this modification, Q2i+1 can still be equal to 0, thus a NOT gate can be
applied as XNOR(Q2i, Q2i+1) with Q2i+1 = 0.

Table 7 presents the performances of our basic and improved schemes. It is evident
that the improved scheme accelerates the solving process for all UNSAT and SAT instances.

Fuxin Zhang and Zhenyu Huang 19

It is surprising that the acceleration rate reaches approximately 40 to 200 for some UNSAT
instances.

Table 7: Comparison of the basic scheme and the improved scheme for GC optimizations

S-box SAT instances UNSAT instances
k Basic Improved k Basic Improved

Ascon 15 398 s 91.5 s 8 34.1 s 11.6 s
ICEPOLE 21 27303 s 18631 s 8 221 s 1.4 s
Keccak 13 21.8 s 19.9 s 8 93.9 s 6.5 s
PRIMATEs 26 34554 s 4570 s 8 41.9 s 1.4 s
PRIMATEs−1 - - - 8 13.4 s 1.5 s
Joltik 8 3.1 s 2.4 s 7 13.8 s 3.0 s
Joltik−1 8 8.8 s 4.5 s 7 13.1 s 2.1 s
LAC 10 20.4 s 12.6 s 7 10.9 s 1.7 s
Minalpher 16 916 s 800 s 7 8.6 s 0.42 s
Prøst 8 1.8 s 1.7 s 7 16.1 s 3.1 s
RECTANGLE 11 76.5 s 9.6 s 8 357 s 5.5 s
RECTANGLE−1 11 86.5 s 10.6 s 8 323 s 7.4 s

5.4 Improvements for Depth Optimizations
Similarly, we apply the following three improving strategies:
1) Assuming Yi ̸= Xj for any 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1; 2) For the first layer, adding
the constraint Q2i+1 ̸= 0; 3) Adding the constraint Q2i ≺lex Q2i+1

3.
Note that, after applying these strategies, a NOT can only be implemented by an XNOR gate
with inputs 0 and Q2i+1, therefore we cannot impose the constraint Q2i ̸= 0. Moreover,
to be consistent with the property that Q2i can be equal to 0 and Q2i+1 ̸= 0, we use the
constraint Q2i ≺lex Q2i+1 instead of Q2i ≻lex Q2i+1.

The experimental results in Table 8 show that for all UNSAT instances and the majority
of SAT instances, the solving process can be accelerated moderately.

Table 8: Comparison of the basic scheme and the improved scheme for depth optimizations

S-box SAT instances UNSAT instances
(k, w) Basic Improved (k, w) Basic Improved

Ascon (3, 6) 37.1 s 82.1 s (2, 8) 6.3 s 3.9 s
ICEPOLE (4, 7) 2057 s 1360 s (3, 10) 505 s 203 s
Keccak (2, 10) 5.1 s 3.6 s (2, 7) 1621 s 42.1 s
PRIMATEs (4, 8) 542 s 274 s (2, 15) 43.4 s 26.2 s
PRIMATEs−1 - - - (3, 10) 377 s 341 s
Joltik (4, 2) 1.4 s 1.4 s (3, 10) 101 s 55.8 s
Joltik−1 (4, 3) 24.5 s 17.8 s (3, 10) 136 s 92.0 s
LAC (3, 6) 22.5 s 7.9 s (2, 10) 9.6 s 7.6 s
Minalpher (4, 5) 396 s 388 s (3, 10) 233 s 128 s
Prøst (4, 3) 10.9 s 3.9 s (3, 10) 132 s 76.9 s
RECTANGLE (3, 6) 86.9 s 15.9 s (2, 10) 8.0 s 4.3 s
RECTANGLE−1 (3, 6) 61.9 s 10.1 s (2, 10) 7.1 s 4.0 s

3Here we compare the last w ai’s in Q2i with the w ai’s in Q2i+1

20 Optimizing S-box Implementations Using SAT Solvers: Revisited

6 New Results for Optimized S-box Implementations
Based on our improved encoding schemes, we achieved some new results for optimizing
the implementations of the S-boxes introduced in Section 4.5. We present these results in
this section, and the corresponding detailed implementations are given in Appendix C 4

Here we denote the range of the optimal value for a criterion (MC, BGC, GC) as
[k1, k2]. For example, let k be the value we test in the MC decision problem. When we say
the MC of an S-box is in [k1, k2], it means the SAT-solver returns UNSAT when k = k1 − 1,
and returns SAT when k = k2.

Multiplicative Complexity. The MCs of the S-boxes for Ascon, ICEPOLE, Kec-
cak/Ketje/Keyak, Joltik/Piccolo, Joltik−1/Piccolo−1, LAC, Minalpher, Prøst, RECTAN-
GLE, RECTANGLE−1 have already been determined in [Sto16]. Considering the issue
mentioned in Remark 1, which may cause potentially incorrect results, we verified the
correctness of these results by our method. Moreover, as shown in Table 9, we deter-
mined the MC of the PRIMATEs S-box and narrowed the value range of the MC of the
PRIMATEs−1 S-box.

Table 9: Multiplicative complexities of PRIMATEs and PRIMATEs−1

S-box [Sto16] This paper
PRIMATEs ∈ [6, 7] 7
PRIMATEs−1 ∈ [6, 10] ∈ [7, 8]

Bitslice Gate Complexity. For the S-boxes of Joltik/Piccolo, Joltik−1/Piccolo−1, LAC,
and Prøst, their BGCs have been determined in [Sto16]. We verified these results, and
obtained some new BGC results for other S-boxes. These new results are summarized in
Table 10.

Table 10: Bitslice gate complexities of S-boxes

S-box [Sto16] This paper S-box [Sto16] This paper

Ascon - ∈ [12, 16] Keccak ≤ 13 ∈ [12, 13]
ICEPOLE - ∈ [12, 26] Minalpher ∈ [11, ∞] ∈ [12, 17]
PRIMATEs - ∈ [12, 27] RECTANGLE ∈ [10, 12] ∈ [11, 12]
PRIMATEs−1 - ∈ [12, 45]

Gate Complexity. The GCs of the S-boxes for Joltik/Piccolo, Joltik−1/Piccolo−1, LAC,
and Prøst have been determined in [Sto16]. Here, we determined the GCs of RECTANGLE
and RECTANGLE−1, and obtained some new results for other S-boxes. Table 11 presents
these new results.

Table 11: Gate complexities of S-boxes

S-box [Sto16] This paper S-box [Sto16] This paper

Ascon - ∈ [12, 15] Keccak - ∈ [11, 13]
ICEPOLE - ∈ [12, 21] Minalpher - ∈ [11, 14]
PRIMATEs - ∈ [12, 23] RECTANGLE ∈ [10, 11] 11
PRIMATEs−1 - ∈ [12, 43] RECTANGLE−1 ∈ [10, 11] 11

4For the BGC and GC optimizations of PRIMATEs−1 , the solver cannot return a SAT result in a
reasonable time. The BGC-45 and GC-43 implementations are constructed from the MC-8 implementation.

Fuxin Zhang and Zhenyu Huang 21

Depth complexity. In comparison to the results presented in [Sto16], we achieved new
low-depth implementations and UNSAT boundaries for the 4-bit Minalpher S-box and all
5-bit S-boxes. We also refined the UNSAT boundaries for some 4-bit S-boxes (from LAC,
RECTANGLE, RECTANGLE−1). Especially, we can determine the optimal widths for
implementing some S-boxes (from Ascon, Keccak, LAC, RECTANGLE, RECTANGLE−1)
with low depth.

Table 12: Circuit depth complexities of S-boxes. k is the depth of the circuit and w is the
width of the circuit.

S-box (k, w) for SAT results (k, w) for UNSAT bounds Optimal width
[Sto16] This paper [Sto16] This paper

Ascon - (3, 6) - (3, 5) ✓
ICEPOLE - (4, 7) - (4, 4) ×
PRIMATEs - (4, 7) - (4, 4) ×
Keccak - (2, 10) - (2, 9) ✓
Minalpher - (4, 5) - (4, 3) ×
LAC (3, 6) (3, 6) (3, 4) (3, 5) ✓
RECTANGLE (3, 6) (3, 6) (3, 4) (3, 5) ✓
RECTANGLE−1 (3, 6) (3, 6) (3, 4) (3, 5) ✓

7 Conclusion
We revisit the problem of optimizing S-box implementations with SAT solvers. For
accelerating the SAT problem-solving process, we propose the algebraic expression method
for encoding the circuit optimization problems into SAT problems. Experimental results
show that, in most cases, compared to the truth table method introduced in FSE 2016, the
algebraic expression method can accelerate the subsequent solving process by approximately
2 to 100 times. To further improve the solving efficiency, we propose several strategies
to remove redundant variables, avoid redundant gates, and break the symmetry of the
solution space. Based on these further improved encoding schemes, we obtain some new
optimized implementations for the S-boxes used in Ascon, ICEPOLE, PRIMATEs, Keccak,
Minalpher, and RECTANGLE. We also narrow the value ranges of their MC, BGC, GC,
and their optimal circuit width for low-depth implementations. It is easy to see that our
method can be easily combined with the SAT-based algorithms for optimizing circuit area
and AND-depth proposed in previous works.

References
[ABB+] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,

Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. Primates v1.
02. submission to caesar. 2016.

[ARS+15] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for mpc and fhe. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 430–454. Springer, 2015.

[BDP+] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Caesar submission: Ketje v1, march 2014. URL
http://competitions.cr.yp.to/round1/ketjev11.pdf.

[BDP+16] Guido Bertoni, Joan Daemen, Michaël Peeters, GV Assche, and RV Keer.
Keyak v2. Submission to the CAESAR Competition, 2016.

22 Optimizing S-box Implementations Using SAT Solvers: Revisited

[BF22] Armin Biere and Mathias Fleury. Gimsatul, isasat and kissat entering the sat
competition 2022. Proc. of SAT Competition, pages 10–11, 2022.

[BGLS19] Zhenzhen Bao, Jian Guo, San Ling, and Yu Sasaki. PEIGEN - a platform
for evaluation, implementation, and generation of s-boxes. IACR Trans.
Symmetric Cryptol., 2019(1):330–394, 2019.

[BMD+20] Begül Bilgin, Lauren De Meyer, Sébastien Duval, Itamar Levi, and François-
Xavier Standaert. Low AND depth and efficient inverses: a guide on s-boxes
for low-latency masking. IACR Trans. Symmetric Cryptol., 2020(1):144–184,
2020.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization tech-
niques with applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[BPVA+11] Guido Bertoni, Michaël Peeters, Gilles Van Assche, et al. The keccak reference.
2011.

[CMH13] Nicolas Courtois, Theodosis Mourouzis, and Daniel Hulme. Exact logic mini-
mization and multiplicative complexity of concrete algebraic and cryptographic
circuits. Int. J. Adv. Intell. Syst, 6(3):165–176, 2013.

[CSCM19] Davin Choo, Mate Soos, Kian Ming A Chai, and Kuldeep S Meel. Bosphorus:
Bridging anf and cnf solvers. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 468–473. IEEE, 2019.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1. 2. Submission to the CAESAR Competition, 5(6):7, 2016.

[FWL+21] Yanhong Fan, Weijia Wang, Zhihu Li, Zhenyu Lu, Siu-Ming Yiu, and Meiqin
Wang. Forced independent optimized implementation of 4-bit s-box. In
Joonsang Baek and Sushmita Ruj, editors, Information Security and Privacy
- 26th Australasian Conference, ACISP 2021, Virtual Event, December 1-3,
2021, Proceedings, volume 13083 of Lecture Notes in Computer Science, pages
151–170. Springer, 2021.

[JNP15] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1. 3. CAESAR Round,
2, 2015.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimiz-
ing implementations of lightweight building blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017.

[KLL+14] Elif Bilge Kavun, Martin M Lauridsen, Gregor Leander, Christian Rechberger,
Peter Schwabe, and Tolga Yalçın. Prøst v1. CAESAR Round, 1, 2014.

[lMGH+15] Pawe l Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Matusiewicz,
Josef Pieprzyk, Marcin Rogawski, Marian Srebrny, and Marcin Wójcik. Icepole
v2. CAESAR submission: http://competitions.cr.yp.to/round2/icepolev2.pdf,
2015.

[LWH+21] Zhenyu Lu, Weijia Wang, Kai Hu, Yanhong Fan, Lixuan Wu, and Meiqin Wang.
Pushing the limits: Searching for implementations with the smallest area for
lightweight s-boxes. In Avishek Adhikari, Ralf Küsters, and Bart Preneel,
editors, Progress in Cryptology - INDOCRYPT 2021 - 22nd International
Conference on Cryptology in India, Jaipur, India, December 12-15, 2021,
Proceedings, volume 13143 of Lecture Notes in Computer Science, pages
159–178. Springer, 2021.

Fuxin Zhang and Zhenyu Huang 23

[Osv00] Dag Arne Osvik. Speeding up serpent. In The Third Advanced Encryption
Standard Candidate Conference, April 13-14, 2000, New York, New York,
USA, pages 317–329. National Institute of Standards and Technology„ 2000.

[Ras22] Shahram Rasoolzadeh. Low-latency boolean functions and bijective s-boxes.
IACR Trans. Symmetric Cryptol., 2022(3):403–447, 2022.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: an ultra-lightweight blockcipher. In
International workshop on cryptographic hardware and embedded systems,
pages 342–357. Springer, 2011.

[STA+14] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara,
Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1. CAE-
SAR Round, 1, 2014.

[Sto16] Ko Stoffelen. Optimizing s-box implementations for several criteria using
sat solvers. In International Conference on Fast Software Encryption, pages
140–160. Springer, 2016.

[ZBL+14] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. Rectangle: a bit-slice ultra-lightweight block cipher.
Suitable for Multiple Platforms, 2014.

[ZWW+14] Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, and Jian Zhang. Lac:
A lightweight authenticated encryption cipher. Submitted to the CAESAR
competition, 2014.

24 Optimizing S-box Implementations Using SAT Solvers: Revisited

A Proof of Proposition 1
First, we need the following lemma.

Lemma 1. Let S : (x1, . . . , xn) → (S1, . . . , Sm) be an S-box with MC k. There exists a
circuit, which implements S with MC k, satisfying that the NOT gates in this circuit all
locate after the last AND gate.

Proof. Let C0 be a circuit that implements S with k AND gates. Denote its outputs by
y1, y2, . . . , ym. Suppose ANDi is the i-th AND gate in C0. We denote its inputs as pi and qi,
and its output as ti. Then we have

pi = ai + Li(x1, . . . , xn, t1, . . . , ti−1)

for some ai and linear function Li. If ai = 0, this is a linear combination of these xj ’s
and tj ’s, and for simplicity, we say pi is a linear combination. In this case, pi can be
generated from xj ’s and tj ’s by only using XOR gates, hence we say NOT gate is not used
for generating pi. If a1 = 1, we say pi is an affine combination. In this case, one should
use at least one NOT gate to generate pi from xj ’s and tj ’s, hence we say NOT gate is used
for generating pi The same terminology applies to qi and yi.

Now we prove the following assertion: one can remove the NOT gates used for generating
pi and qi by modifying the XOR and NOT gates following ANDi, while preserving the circuit
outputs.

If NOT gates are used for generating pi or qi, we have the following two cases.

1) Both pi and qi are affine combinations. We have

pi = p′
i + 1, qi = q′

i + 1, ti = piqi = p′
iq

′
i + p′

i + q′
i + 1,

where p′
i = Ui(x1, . . . , xn, t1, . . . , ti−1), q′

i = Vi(x1, . . . , xn, t1, . . . , ti−1), and Ui, Vi are
two linear functions. We can change the inputs of ANDi to p′

i and q′
i by removing the

NOT gates used to generate pi and qi. Then, the output of ANDi will be t′
i = p′

iq
′
i. Note

that in C0, ti is used to generate the inputs of some ANDj with j > i, or generate
the circuit outputs. For any case, ti is used to generate some affine combination
L(x1, . . . , xn, t1, . . . , ti, . . . , ts) + a. Note that

ti = t′
i + p′

i + q′
i + 1 = t′

i + Ui(x1, . . . , xn, t1, . . . , ti−1) + Vi(x1, . . . , xn, t1, . . . , ti−1) + 1.

By substituting ti with this expression in L, we have

L(x1, . . . , xn, t1, . . . , ti, . . . , ts) + a = L′(x1, . . . , xn, t1, . . . , t′
i, . . . , ts) + a′ (11)

for some a′ and linear function L′.
Equation (11) means that we can modify the XOR and NOT gates following ANDi to
preserve the circuit outputs.

2) One of pi and qi is an affine combination. Without loss of generality, suppose pi is an
affine combination. Then, we have

pi = p′
i + 1, ti = piqi = p′

iqi + qi,

where p′
i = Ui(x1, . . . , xn, t1, . . . , ti−1), qi = Vi(x1, . . . , xn, t1, . . . , ti−1), and Ui, Vi are

two linear functions.
By removing the NOT gate used to generate pi, we can change the inputs of ANDi to p′

i

and qi. Then the output of ANDi will be t′
i = p′

iqi, and we have

ti = t′
i + Vi(x1, . . . , xn, t1, . . . , ti−1).

Fuxin Zhang and Zhenyu Huang 25

Similarly, for any affine combination L(x1, . . . , xn, t1, . . . , ti, . . . , ts) + a, we can sub-
stitute ti with the above expression, and obtain an equivalent affine combination
L′(x1, . . . , xn, t1, . . . , t′

i, . . . , ts) + a′. This proves our assertion.

Based on the above assertion, we can recursively reconstruct the circuit as follows.
For i from 1 to k, remove the NOT gates used to generate the inputs of ANDi and modify
the following XOR and NOT gates accordingly. After the above process, the NOT gates only
appear after ANDk. Note that, we only modify the XOR and NOT gates, hence the new circuit
still has k AND gates. This proves the lemma.

Proof of Proposition 1. According to Lemma 1, we can construct a circuit C that
implements S with multiplicative complexity k, and all NOT gates in C appear after the
last AND gate. Suppose ti is the output of the i-th AND gate, then the ANF of ti has no
constant term, for any 1 ≤ i ≤ k. Since yi, the i-th bit of the circuit output, can be
written as yi = L(x1, . . . , xn, t1, . . . , tk) + ai, where ai ∈ F2 and L is a linear function. By
substituting ti with its ANF in L, we have yi = T (x1, . . . , xn) + ai, where T is a Boolean
polynomial without a constant term. This induces that ai = 0. Therefore, we can construct
yi from (x1, . . . , xn, t1, . . . , tk) only by XOR gates. This proves the proposition.

B Attempts in Eliminating Redundant Gates for MC Opti-
mizations

1) Trivial gates. In our modified scheme (without NOT gates), the two inputs of an AND
gate are encoded as

Q2i =
(∑n−1

j=0 al2i+j · Xj

)
+

(∑i−1
j=0 al2i+n+j · Tj

)
,

Q2i+1 =
(∑n−1

j=0 al2i+1+j · Xj

)
+

(∑i−1
j=0 al2i+1+n+j · Tj

)
.

Obviously, if al2i = 0, . . . , al2i+n+i−1 = 0 or al2i+1 = 0, . . . , al2i+1+n+i−1 = 0, which
means Q2i = 0 or Q2i+1 = 0, this AND gate will be a trivial gate. Moreover, if
al2i

= al2i+1 , . . . , al2i+n+i−1 = al2i+1+n+i−1, which means Q2i = Q2i+1, this AND gate
will also be a trivial gate.

2) Useless gates. For our encoding scheme, if Ti is useless, then it is irrelevant to any
Qr (r > 2i + 1) and any Yt (0 ≤ t ≤ m − 1). In our scheme, Qr and Yt are encoded as
follows,

Qr =
(∑n−1

j=0 alr+j · Xj

)
+

(∑⌊ r
2 ⌋−1

j=0 alr+n+j · Tj

)
,

Yt =
(∑n−1

j=0 ast+j · Xj

)
+

(∑k−1
j=0 ast+n+j · Tj

)
.

If Ti is irrelevant to Qr and Yt, we have alr+n+i = ast+n+i = 0.

We use AtLeast1(S) to denote the equations corresponding to the constraint that
there is at least one nonzero element in a variable set S. Then, to avoid trivial gates, we
can impose the constraints Q2i ̸= 0, Q2i+1 ̸= 0, and Q2i ̸= Q2i+1. This can be done by
adding AtLeast1(al2i

, . . . , al2i+n+i−1), AtLeast1(al2i+1 , . . . , al2i+1+n+i−1), AtLeast1(al +
al+n+i, . . . , al+n+i−1 + al+2n+2i−1), for all 0 ≤ i ≤ k − 1, into the equation system.
Moreover, we can add, AtLeast1(al2i+2+n+i, . . . , al2k−1+n+i, as0+n+i, . . . , ask−1+n+i) for all
0 ≤ i ≤ k − 1, into the equation system, to avoid the useless gates.

However, our experiments show that adding either of these two groups of equations
will slightly decrease the efficiency of the subsequent solving process5. Therefore, for MC
optimizations, we choose to keep these two types of redundant gates.

5We have tested two ways of encoding AtLeastOne(a1, a2, . . . , as): 1) directly adding a1 ∨ a2 ∨ · · · ∨ as

into the input of the SAT solver; 2) adding (a1 + 1)(a2 + 1) · · · (as + 1) = 0 into the equation system.

26 Optimizing S-box Implementations Using SAT Solvers: Revisited

C New Optimized S-box Implementations
Here we present some new optimized S-box implementations achieved by our method. In
these implementations, logical connectives are used to denote different gates, i.e., let ∧, ∨,
⊕, ¬ denote AND, OR, XOR, NOT, respectively. Moreover, we use x0 and y0 to denote the
most significant bit of the S-box input x and the S-box output y, respectively.

C.1 MC Optimized Implementation

PRIMATEs−1

k = 8

q1 = x0 ⊕ x1

t0 = x1 ∧ q1

u0 = x4 ⊕ t0

u1 = x2 ⊕ t0

u2 = ¬x1

q2 = x1 ⊕ u0

q3 = u1 ⊕ u2

t1 = q2 ∧ q3

u3 = x3 ⊕ q3

u4 = x2 ⊕ q1

q4 = u3 ⊕ u4

q5 = x4 ⊕ u3

t2 = q4 ∧ q5

u5 = x4 ⊕ t2

q6 = u5 ⊕ u2

q7 = x1 ⊕ q5

t3 = q6 ∧ q7

u6 = x2 ⊕ q7

q8 = t3 ⊕ u6

u7 = q6 ⊕ q8

q9 = q4 ⊕ u7

t4 = q8 ∧ q9

u8 = x3 ⊕ t1

q10 = u8 ⊕ u1

q11 = t4 ⊕ u8

t5 = q10 ∧ q11

u9 = x2 ⊕ t2

q14 = t5 ⊕ u9

q15 = t4 ⊕ u5

u10 = t0 ⊕ q15

u11 = u8 ⊕ u10

q12 = ¬u11

u12 = q15 ⊕ q14

q13 = u4 ⊕ u12

t6 = q12 ∧ q13

t7 = q14 ∧ q15

u13 = t7 ⊕ u9

u14 = t6 ⊕ u7

u15 = u3 ⊕ q8

u16 = u14 ⊕ u15

y0 = u13 ⊕ u15

y1 = u8 ⊕ u13

y2 = u10 ⊕ u16

y4 = q13 ⊕ u14

y3 = y4 ⊕ u11

Fuxin Zhang and Zhenyu Huang 27

C.2 BGC Optimized Implementations

Ascon
k = 16

t0 = x0 ⊕ x4

t1 = ¬x4

t2 = t1 ∨ x3

t3 = x1 ⊕ x2

t4 = x3 ⊕ x2

t5 = x3 ⊕ x4

t6 = t0 ∨ x1

t7 = x0 ∨ t5

t8 = t4 ∨ t3

y1 = t0 ⊕ t8

y3 = t3 ⊕ t7

t11 = x2 ∧ t3

t12 = t6 ⊕ t5

y2 = t3 ⊕ t2

y0 = t12 ⊕ t11

y4 = t0 ⊕ t12

ICEPOLE
k = 26

t0 = x4 ∧ x3

t1 = x1 ∨ x0

t2 = x4 ⊕ x1

t3 = ¬x1

t4 = x4 ∧ x0

t5 = x3 ⊕ t2

t6 = x2 ⊕ x0

t7 = ¬x3

t8 = x1 ⊕ t4

t9 = x4 ⊕ x0

t10 = x0 ⊕ t3

t11 = x3 ∧ x2

t12 = t11 ⊕ x0

t13 = x2 ∨ x1

t14 = t0 ⊕ t6

t15 = t7 ∨ t12

t16 = t2 ⊕ t13

t17 = t15 ⊕ t13

t18 = t17 ∧ t10

t19 = t18 ∨ t9

t20 = t5 ⊕ t19

y2 = t14 ⊕ t19

y3 = t20 ⊕ t8

y1 = t12 ⊕ t20

y0 = t16 ⊕ t19

y4 = t19 ⊕ t1

PRIMATEs
k = 27
t0 = x2 ∧ x3

t1 = x0 ∧ x2

t2 = x0 ∧ x3

t3 = t0 ⊕ x4

t4 = x1 ⊕ t1

t5 = x0 ∧ x4

t6 = x0 ⊕ x3

t7 = t6 ∧ x4

t8 = x1 ∨ x0

t9 = t1 ⊕ t2

t10 = t5 ⊕ t8

t11 = x2 ⊕ x3

t12 = x2 ∧ t3

t13 = t4 ∧ x2

t14 = t9 ⊕ t3

t15 = t11 ⊕ t14

t16 = t7 ⊕ x0

t17 = t12 ⊕ t14

t18 = x1 ∧ t11

y2 = t12 ⊕ t10

t20 = ¬t4

t21 = t12 ⊕ t18

y3 = t13 ⊕ t16

t23 = x1 ∨ x4

y4 = t20 ⊕ t17

y0 = t15 ⊕ t23

y1 = t6 ⊕ t21

PRIMATEs−1

k = 45
See C.1

Minalpher
k = 17

t0 = ¬x3

t1 = x0 ∨ t0

t2 = t1 ⊕ x2

t3 = t2 ⊕ x0

t4 = t2 ⊕ x3

t5 = t4 ⊕ x1

t6 = t5 ⊕ t1

t7 = x3 ⊕ t3

t8 = t7 ∨ x1

t9 = t6 ∧ t4

t10 = t3 ∧ t8

y3 = t9 ⊕ t2

y2 = t10 ∨ t9

t13 = t6 ∧ x0

t14 = t0 ⊕ t10

y0 = t9 ⊕ t8

y1 = t14 ∨ t13

28 Optimizing S-box Implementations Using SAT Solvers: Revisited

C.3 GC Optimized Implementations

Ascon
k = 15
t0 = x4 ⊕ x3

t1 = x2 ⊕ x3

t2 = x1 ⊕ x2

t3 = ¬(x0 ⊕ x4)
t4 = ¬(t0 ∨ x0)
t5 = ¬(t3 ⊕ t2)
t6 = t5 ∨ x1

t7 = x4 ∧ t0

t8 = ¬(x1 ∧ t3)
t9 = t2 ∨ t1

y3 = ¬(t4 ⊕ t2)
y4 = ¬(t8 ⊕ t0)
y0 = t6 ⊕ t0

y1 = ¬(t3 ⊕ t9)
y2 = ¬(t2 ⊕ t7)

ICEPOLE
k = 21
t0 = ¬(x4 ⊕ x2)
t1 = ¬(x4 ⊕ x1)
t2 = t0 ∨ x3

t3 = x0 ∧ x1

t4 = ¬(x3 ⊕ t3)
t5 = ¬(x2 ∧ x3)
t6 = ¬(x0 ⊕ x2)
t7 = ¬(t4 ⊕ t5)
t8 = ¬(x0 ∧ t1)
t9 = ¬(x1 ∨ t6)

t10 = t0 ∧ t6

t11 = ¬(t1 ∧ t10)
t12 = ¬(t7 ⊕ x4)
t13 = ¬(t2 ⊕ t7)
t14 = t11 ∧ t4

y2 = t14 ⊕ t13

t16 = t14 ⊕ x3

y0 = ¬(t9 ⊕ t16)
y4 = t16 ⊕ t1

y1 = t12 ⊕ y4

y3 = t14 ⊕ t8

Keccak/Ketje/Keyak
k = 13

t0 = x3 ∧ x4

t1 = ¬x2

t2 = ¬x0

t3 = ¬(x1 ∧ t2)
t4 = ¬(t2 ∨ x4)
t5 = ¬(t1 ⊕ t0)
t6 = ¬(t1 ∧ x3)
y1 = ¬(x1 ⊕ t6)
t8 = ¬(t1 ∨ x1)
y2 = x4 ⊕ t5

y4 = ¬(x4 ⊕ t3)
y0 = t8 ⊕ x0

y3 = t4 ⊕ x3

PRIMATEs
k = 23

t0 = x3 ⊕ x2

t1 = ¬(x4 ⊕ x3)
t2 = ¬(x2 ∨ t1)
t3 = x1 ∧ t0

t4 = ¬(x3 ⊕ t2)
t5 = x1 ⊕ x4

t6 = x0 ⊕ x4

t7 = ¬(t5 ∨ x0)
t8 = x2 ∧ t6

t9 = t0 ∨ x3

y2 = t7 ⊕ t4

t11 = t5 ∧ x1

t12 = x0 ∧ t0

t13 = t5 ⊕ x0

t14 = t12 ⊕ t11

t15 = t1 ∧ t13

t16 = t2 ⊕ t3

t17 = ¬(t8 ⊕ t12)
t18 = t15 ⊕ t14

y0 = t9 ⊕ t14

y1 = t6 ⊕ t16

y3 = t18 ⊕ t3

y4 = t17 ⊕ t5

PRIMATEs−1

k = 43
See C.1

Minalpher
k = 14

t0 = ¬(x2 ∧ x3)
t1 = x1 ⊕ t0

t2 = t1 ∨ x0

t3 = ¬(x2 ⊕ t2)
t4 = ¬(t3 ⊕ x3)
t5 = ¬(x3 ⊕ t1)
t6 = t4 ∧ t5

y3 = ¬(t3 ⊕ t6)
t8 = t6 ⊕ t1

y0 = x0 ⊕ t4

t10 = t8 ∧ y0

y2 = t5 ⊕ t10

t12 = ¬(y2 ∧ y3)
y1 = ¬(t12 ⊕ t8)

Fuxin Zhang and Zhenyu Huang 29

C.4 Depth Optimized Implementations

Ascon
k = 3, w = 6

Layer 1

t0 = x2 ⊕ x1

t1 = x1 ⊕ x3

t2 = ¬(x3 ⊕ x4)
t3 = ¬(x0 ⊕ x4)
t4 = x2 ∨ x1

t5 = x4 ∧ x3

Layer 2

t6 = t0 ⊕ t5

t7 = ¬(t2 ∧ t3)
t8 = ¬(t4 ⊕ t2)
t9 = t1 ∨ t0

t10 = ¬(x1 ∨ t3)
t11 = x1 ∧ t3

Layer 3

y0 = t10 ⊕ t8

y1 = ¬(t3 ⊕ t9)
y2 = ¬(x4 ⊕ t6)
y3 = t6 ⊕ t7

y4 = ¬(t2 ⊕ t11)

ICEPOLE
k = 4, w = 7

Layer 1

t0 = ¬(x4 ⊕ x1)
t1 = ¬(x4 ∧ x3)
t2 = x1 ⊕ x3

t3 = ¬(x3 ⊕ x0)
t4 = ¬x1

t5 = ¬(x2 ⊕ x0)
t6 = x4 ⊕ x2

Layer 2

t7 = ¬(x2 ∨ t2)
t8 = t1 ⊕ t6

t9 = ¬(x0 ∨ t4)
t10 = t2 ∨ t6

t11 = ¬(t5 ∧ t0)
t12 = x4 ∨ t3

t13 = x2 ∧ t4

Layer 3

t15 = ¬(t10 ∨ t11)
t16 = x4 ⊕ t9

t17 = t12 ⊕ t11

t18 = ¬(t1 ⊕ t12)
t19 = ¬(x0 ⊕ t13)
t20 = ¬(t7 ⊕ t13)

Layer 4

y0 = ¬(t15 ⊕ t19)
y1 = t20 ⊕ t15

y2 = ¬(t8 ⊕ t15)
y3 = ¬(t18 ⊕ t15)
y4 = t16 ⊕ t15

Keccak/Ketje/Keyak
k = 2, w = 10

Layer 1

t0 = ¬(x1 ∨ x2)
t1 = x2 ∧ x3

t2 = x3 ∧ x4

t3 = ¬(x4 ∧ x0)
t4 = ¬(x3 ⊕ x1)
t5 = ¬(x0 ⊕ x1)
t6 = x2 ⊕ x4

t7 = x0 ∨ x1

t8 = x3 ⊕ x0

t9 = ¬(x4 ⊕ x0)
Layer 2

y0 = t5 ⊕ t0

y1 = ¬(t4 ⊕ t1)
y2 = t6 ⊕ t2

y3 = ¬(t8 ⊕ t3)
y4 = ¬(t7 ⊕ t9)

PRIMATEs
k = 4, w = 7

Layer 1

t0 = ¬(x1 ∨ x4)
t1 = x0 ⊕ x2

t2 = ¬(x1 ⊕ x4)
t3 = x1 ∧ x2

t4 = x3 ⊕ x0

t5 = x2 ⊕ x3

t6 = x4 ⊕ x3

Layer 2

t7 = ¬(x0 ∧ t2)
t8 = x2 ∧ t1

t9 = ¬(x3 ∧ t1)
t10 = x2 ∧ t6

t11 = ¬(t6 ⊕ t0)
t12 = ¬(x4 ∧ t4)
t13 = ¬(x1 ∧ t5)

Layer 3

t14 = x1 ⊕ t10

t15 = ¬(t7 ∨ t8)
t16 = ¬(x4 ⊕ t9)
t17 = t10 ⊕ t13

t18 = t1 ⊕ t8

t19 = t9 ⊕ t8

t20 = ¬(t3 ⊕ t12)
Layer 4

y0 = ¬(t11 ⊕ t19)
y1 = ¬(t4 ⊕ t17)
y2 = t14 ⊕ t15

y3 = t20 ⊕ t18

y4 = ¬(t14 ⊕ t16)

Joltik/Piccolo
k = 4, w = 2

Layer 1

t0 = ¬(x1 ∨ x2)
t1 = ¬(x1 ∨ x0)

Layer 2

y0 = x3 ⊕ t1

y1 = x0 ⊕ t0

Layer 3

t4 = x2 ∨ y0

t5 = y0 ∨ y1

Layer 4

y2 = x1 ⊕ t4

y3 = ¬(x2 ⊕ t5)

30 Optimizing S-box Implementations Using SAT Solvers: Revisited

Joltik−1/Piccolo−1

k = 4, w = 3
Layer 1

t0 = x0 ∨ x1

t1 = ¬(x2 ∧ x1)
t2 = x0 ⊕ x2

Layer 2

t3 = x3 ⊕ t2

t4 = t0 ∧ t1

y2 = ¬(x3 ⊕ t0)
Layer 3

t6 = t2 ∨ y2

t7 = t3 ∧ y2

t8 = x0 ∨ y2

Layer 4

y0 = ¬(x1 ⊕ t6)
y1 = x2 ⊕ t8

y3 = t4 ⊕ t7

LAC
k = 3, w = 6

Layer 1

t0 = x0 ⊕ x3

t1 = ¬(x3 ∨ x1)
t2 = ¬(x3 ⊕ x2)
t3 = ¬(x1 ⊕ x0)
t4 = x2 ∧ x1

t5 = x1 ∨ x0

Layer 2

t6 = ¬(x0 ∨ t1)
t7 = x1 ∧ t2

t8 = ¬(t0 ∧ t2)
t9 = t3 ∨ t4

t10 = ¬(x3 ∧ t5)
t11 = t2 ∨ t2

Layer 3

y0 = ¬(t8 ⊕ t10)
y1 = t9 ⊕ t6

y2 = ¬(t0 ⊕ t7)
y3 = ¬(t5 ⊕ t11)

Minalpher
k = 4, w = 5

Layer 1

t0 = ¬(x2 ∧ x1)
t1 = ¬(x1 ∨ x2)
t2 = ¬(x2 ⊕ x3)
t3 = x1 ∧ x3

t4 = x3 ∧ x2

Layer 2

t5 = x0 ⊕ t2

t6 = ¬(x0 ∧ t0)
t7 = ¬(x3 ∨ t1)
t8 = x1 ⊕ t4

t9 = ¬(x2 ⊕ t3)
Layer 3

t10 = t6 ⊕ t9

t11 = ¬(t5 ⊕ t8)
t12 = ¬(x0 ∧ t8)
t13 = ¬(t5 ∨ t9)
t14 = t3 ⊕ t6

Layer 4

y0 = t12 ⊕ t11

y1 = ¬(t13 ⊕ t14)
y2 = t10 ⊕ t12

y3 = ¬(t7 ∨ t13)

Prøst
k = 4, w = 3

Layer 1

t0 = x0 ∧ x1

t1 = x2 ∧ x1

t2 = ¬(x3 ∧ x0)
Layer 2

t3 = x0 ∨ t1

y0 = x2 ⊕ t0

t5 = ¬(t1 ⊕ t2)
Layer 3

t6 = ¬(x3 ⊕ t5)
t7 = x1 ⊕ t5

t8 = ¬(x3 ∧ y0)
Layer 4

y3 = ¬(t7 ⊕ t8)
y1 = t2 ⊕ t6

y2 = ¬(t3 ⊕ t8)

RECTANGLE

k = 3, w = 6
Layer 1

t0 = ¬(x3 ⊕ x2)
t1 = x2 ⊕ x1

t2 = x2 ∨ x0

t3 = ¬(x1 ⊕ x0)
t4 = x3 ∨ x1

t5 = ¬(x0 ⊕ x3)
Layer 2

t6 = ¬(t2 ⊕ t5)
t7 = ¬(x1 ∨ t3)
t8 = t4 ∧ t0

t9 = ¬(x2 ∨ t0)
t10 = t3 ∨ t5

t11 = t1 ∧ t2

Layer 3

y0 = ¬(t10 ⊕ t11)
y1 = ¬(t8 ⊕ t7)
y2 = ¬(x1 ⊕ t6)
y3 = ¬(t3 ⊕ t9)

RECTANGLE−1

k = 3, w = 6
Layer 1

t0 = ¬(x2 ⊕ x1)
t1 = x0 ⊕ x3

t2 = ¬(x2 ∧ x1)
t3 = ¬(x2 ∧ x3)
t4 = x1 ⊕ x0

t5 = x2 ∨ x1

Layer 2

t6 = t5 ∧ t4

t7 = t0 ∧ t4

t8 = ¬(x0 ∨ t1)
t9 = ¬(t2 ∧ t1)

t10 = ¬(x3 ∧ t4)
t11 = t3 ∧ t1

Layer 3

y0 = ¬(t7 ⊕ t11)
y1 = t0 ⊕ t8

y2 = t0 ⊕ t10

y3 = t6 ⊕ t9

	Introduction
	Preliminaries
	Boolean Functions and Boolean Equations
	Optimization Criteria

	Two Encoding Methods
	Algebraic Encoding Schemes for Circuit Optimizations
	An Encoding Scheme for MC Optimizations
	An Encoding Scheme for BGC optimizaitons
	An Encoding Scheme for GC Optimizations
	An Encoding Scheme for Depth Optimizations
	Algebraic Expression Method v.s. Truth Table Method

	Eliminating Redundancy and Breaking Symmetry
	Improvements for MC Optimizations
	Improvements for BGC Optimizations
	Improvements for GC Optimizations
	Improvements for Depth Optimizations

	New Results for Optimized S-box Implementations
	Conclusion
	Proof of Proposition 1
	Attempts in Eliminating Redundant Gates for MC Optimizations
	New Optimized S-box Implementations
	MC Optimized Implementation
	BGC Optimized Implementations
	GC Optimized Implementations
	Depth Optimized Implementations

