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Abstract

Fuzzy extractors convert noisy signals from the physical world into reliable cryptographic keys.
Fuzzy min-entropy measures the limit of the length of key that a fuzzy extractor can derive from a
distribution (Fuller, Reyzin, and Smith, IEEE Transactions on Information Theory 2020). In general,
fuzzy min-entropy that is superlogarithmic in the security parameter is required for a noisy distribution
to be suitable for key derivation.

There is a wide gap between what is possible with respect to computational and information-
theoretic adversaries. Under the assumption of general-purpose obfuscation, keys can be securely
derived from all distributions with superlogarithmic entropy. Against information-theoretic adversaries,
however, it is impossible to build a single fuzzy extractor that works for all distributions (Fuller, Reyzin,
and Smith, IEEE Transactions on Information Theory 2020).

A weaker information-theoretic goal is building a fuzzy extractor for each probability distribution.
This is the approach taken by Woodage et al. (Crypto 2017). Prior approaches use the full description
of the probability mass function and are inefficient. We show this is inherent: for a quarter of
distributions with fuzzy min-entropy and 2k points there is no secure fuzzy extractor that
uses less 2Θ(k) bits of information about the distribution.

We show an analogous result with stronger parameters for information-theoretic secure sketches.
Secure sketches are frequently used to construct fuzzy extractors.

Keywords: Fuzzy extractors, information theory, information reconciliation, secure sketches.

1 Introduction

Information reconciliation and privacy amplification are the two fundamental tasks for key derivation
from noisy sources. Roughly speaking, information reconciliation takes two correlated distributions w
and w′ and maps them to the same value while minimizing what is leaked about that value. Privacy
amplification converts the uncertainty in this mapped value to a uniform value suitable for cryptog-
raphy. Applications areas include quantum key agreement, biometrics, and physically uncloneable
functions [BBR88, DORS08].

We focus on non-interactive versions of these problems [DORS08] as defined by secure sketches,
which perform information-reconciliation, and fuzzy extractors, which perform both information-recon-
ciliation and privacy amplification. A Secure Sketch consists of a pair of algorithms (SS,Rec) where:

1. SS(w) = ss should reveal as little information as possible about w; and

∗The author thanks the reviewers for their helpful feedback and Luke Demarest and Alexander Russell for their helpful
discussions. B.F. is supported by National Science Foundation Grants #2232813 and #2141033 and the Office of Naval
Research.

1



2. SS(w) = ss should allow one to reconstruct w from a nearby w′. That is, it should be the case
that for all nearby w′,Rec(w′, ss) = w. In the above, “nearby” is w′ such that dis(w,w′) ≤ t for
distance metric dis and distance t.

These two properties are in tension because allowing recovery of w requires information about w.
The most natural (inefficient) construction is for ss to be a pairwise independent [CW77] hash h of
w [ST09, FRS16, WCD+17, FRS20]. The hash h should be long enough so that {w|h(w) = y ∧
w′s.t. dis(w,w′) ≤ t} = 1 and short enough so {w|h(w) = y} is large. Efficient constructions are also
known based on error-correcting codes. This is achieved by writing down the coset of w with respect
to an error-correcting code with distance t [DORS08]. In fact, upper bounds on the unpredictability
of w|ss are related to the size of the best error-correcting codes [DORS08, FMR20]. Given a good
information reconciliation, one can achieve privacy amplification using an average-case randomness
extractor [NZ93] to convert w into a uniform value.

Fuzzy extractors perform both information reconciliation and privacy amplification. They consist
of a pair (Gen,Rep). Intuitively, Gen converts a value w into a uniform value, denoted as r and Rep
reproduces that value for any nearby w′. Notationally, (r, p) ← Gen(w) should be indistinguishable
from (u, p) where u is a truly random value. On the correctness side, it should be the case that for all
w′ such that dis(w,w′) ≤ t then Rep(w′, p) = r. Both SS and Gen are allowed to have private internal
randomness.

Since noisy sources come from the physical world, an important goal is to be able to support as
many distributions W as possible. This goal is the focus of this work. Throughout the Introduction,
we use the notation of fuzzy extractors and note when there are material differences for secure sketches.
Fuller, Reyzin, and Smith [FRS16, FRS20] identified the notion of fuzzy min-entropy, Hfuzz

t,∞ (W ), which
measures the adversary’s success when given oracle access to Rep(·, p) but is unable to learn anything
from the value p. Fuzzy min-entropy quantifies the weight of the heaviest ball in the probability mass
function of W . That is,

Hfuzz
t,∞ (W ) := −log

(
max
w′

∑
w

Pr[W = w|dis(w,w′) ≤ t]

)
.

Ideally, one would build a single fuzzy extractor that works for the family of all distributions Wall
fuzz =

{W |Hfuzz
t,∞ (W ) = ω(log(λ))} for some security parameter λ. We call such a fuzzy extractor universal

as it simultaneously works for any secureable distribution W . If one desires computational security,
a universal fuzzy extractor is achievable using general obfuscation [BBC+14, BCKP14, BCKP17] or
under specific number-theoretic assumptions [GZ19].

The situation for information-theoretic security is more complicated.1 Fuller, Reyzin, and Smith [FRS20]
showed that it is impossible to build a universal fuzzy extractor with information-theoretic security.
More precisely, they constructed a family of distributions W and showed that any fuzzy extractor
(Gen,Rep) must be insecure for an average member of W. Let z be a string that indexes the family
W. We use Z to describe a uniformly chosen index for the family W. We use the notation z ← Z
to indicate this choice. We use the notation WZ to indicate sampling W uniformly from W with Z
being a random variable that describes the choice of W ∈ W. For all z, the goal is to build a good
fuzzy extractor for Wz. The impossibility result shows a family W where any (Gen,Rep) is insecure
for an average z chosen according to Z. The model tells the adversary the outcome Z = z but not the
individual point w ←Wz that is input to Gen.

On the positive side, multiple works [HTW14, HTW16, FRS16, WCD+17, TW17, TVW18, LA18,
FP19, FRS20] presented a construction that works for each Wz ∈ Wall

fuzz. This is called the distribution-
sensitive setting as Gen also knows the entire probability mass function described by z, denoted as

1Fuzzy extractors were first designed as an information-theoretic primitive because of strong connections to randomness
extraction and coding theory. An important application is in quantum key agreement which does not allow computational
assumptions. Many computational constructions use an information-theoretic secure sketch [WL18, WLG19]. (Exceptions
exist such as the universal constructions listed above and constructions for distributions with statistical properties beyond
fuzzy min-entropy [ACEK17, ABC+18, FMR20, CFP+21].)
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Genz,Recz. All constructions in this line are computationally inefficient; for an input point w they look
up the probability that Pr[Wz = w] and the probability of points w′ where dis(w,w′) ≤ t. We show
this inefficiency is unavoidable:

Any distribution-sensitive information-theoretic fuzzy extractor requires an ex-
ponential amount of information about the distribution Wz.

Our results are for the Hamming metric over {0, 1}n. Below we present the two informal theorems
for fuzzy extractors (see Theorem 6) and secure sketches (see Theorem 11) respectively. For a value
p ∈ [0, 1] let h2 be the binary entropy of p. Both secure sketches and fuzzy extractor are frequently
parameterized by an error parameter δ which controls the maximum probability they get the wrong
value. We consider δ = 0 for the fuzzy extractor setting and δ > 0 for the secure sketch setting.
(Discussion in Section 1.2.)

Theorem 1 (Informal Theorem 6). Consider {0, 1}n and t < n/2 be a distance parameter. Let
Wγ = {W |Hfuzz

t,∞ (W ) = γ}. Let c > 0 be a constant and suppose that

γ ≤ n ·min

{
(1− h2(t/n)) + o(1),

1−Θ(c)− h2(1/2− t/n)

3

}
.

For a quarter of W ∈ Wγ there is no fuzzy extractor that simultaneously has

1. no error,

2. is of size at most 2γ+cn, and

3. extracts keys of length ω(log(n)) that are within statistical distance 1/3 − ngl(n) to a uniform
key.

Theorem 2 (Informal Theorem 11). Consider {0, 1}n and t < n/2 be a distance parameter. Let
Wγ = {W |Hfuzz

t,∞ (W ) = γ}. Let δ < 1/4 be the error of the secure sketch, let c > 0 be a constant and
suppose that

γ ≤ n ·min {(1− h2(t/n)) + o(1), cδh2(t/n)−Θ(c)} .

where 1/3 ≤ cδ ≤ 2/3 and depends on h2(δ). For 2−5 fraction of W ∈ Wγ there is no secure sketch of
size of at most 2γ+cn that retains unpredictability of w|ss of at least 5.

The size of the fuzzy extractor (resp. secure sketch) refers to the amount of information the
algorithm has about z, it is not a restriction on the running time of the algorithm, our results hold for
unbounded time algorithms. The relevant parameter regimes of impossibility are shown in Figure 1.
The two most important parameters are the noise rate t/n and the fuzzy entropy rate γ/n. The
area under the curves represents parameters where the construction is impossible for the fraction of
distributions in the informal theorems unless one has algorithms of 2Θ(n) size. In spirit, our result rules
out constructions that do not have a full description of the probability mass function written in their
description.

Our results use only first and second-moment bounds. Our theorems are crucial for the future
of information-theoretic fuzzy extractors and secure sketches. To prove security for an
efficient construction one must either restrict to sources with high fuzzy min-entropy or
use properties of a noisy source beyond fuzzy min-entropy. We discuss this more in Section 1.2.

1.1 Proof Techniques

Our results are information-theoretic. We consider a family of distributions W = {Wz} indexed by
a string z. We let Z denote the set of possible z and let Z denote the uniform distribution over Z.
Lastly, we use w ← Wz to denote sampling a point from the distribution indexed by z. We show the
impossibility of two types of fuzzy extractors:
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Figure 1: The region of error rate t/n (x-axis) and fuzzy entropy rate γ/n (y-axis) pairs for which the two
negative results apply. The six curves are maximum fuzzy min-entropy γ/n = (1− h2(t/n)), Theorem 6,
Theorem 11 with δ = .25, Theorem 11 with δ = 0, [FRS20, Theorem 5.1] and [FRS20, Theorem 7.2]. The
parameter δ is how frequently the secure sketch is allowed to be incorrect. We consider fuzzy extractors
with perfect correctness where δ = 0.

Def. 8 (Universal) Fuzzy extractors with distributional advice. This is a triplet of algorithms (advice,Gen,Rep)
designed to work for all Wz ∈ W for a fixed error tolerance t. The fuzzy extractor is given infor-
mation about z through a function advice = advice(z) which is input to both Gen and Rep. The
value of advice specializes (Gen,Rep) to the distribution described by z.

Define w ←Wz and (r, p)← Gen(w, advice), it should be true that

(r, p, z) ≈ (u, p, z).

where u is uniformly and independently sampled. Since advice(·) is a function, advice is available
to the adversary.

Def. 6 Fuzzy extractors for a specific distribution Wz ∈ W that are required to have a bounded size
description of (Gen,Rep).

We show impossibility of building a fuzzy extractor with distributional advice of length ` for W
implies impossibility of building a space bounded fuzzy extractor for length ` for a constant fraction of
W (Lemma 4). The core of our negative results is to show the impossibility of building fuzzy extractors
with distributional advice.
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We review Fuller, Reyzin, and Smith’s [FRS20] impossibility result. Fuzzy extractor correctness
says that for (r, p) ← Gen(w) for all w′ close to w the correct key is reproduced, i.e., Rep(w′, p) = r.
As such, for each value of p, one can partition the input space {0, 1}n by what value of r the point
v ∈ {0, 1}n produces. Values v that could have produced r will be at least distance t from the boundary
of this partition, we call the set of such v, Viabler,p. Viabler,p can be bounded geometrically using
the isoperimetric inequality [Har66]. This bound applies for any distribution over the inputs w.

Consider the following simple distinguisher for a triple r, p, z. One computes the key partition
described above and the set Viabler,p. If Viabler,p ∩Wz = ∅ output the key is random, otherwise
output key is real. The core of Fuller, Reyzin, and Smith’s impossibility was to build a family WFRS

with two properties:

1. The distribution was 2-universal [CW77], so the remainder of the distribution was unknown
conditioned on the input w.

2. Distributions Wz ∈ WFRS shared few points and had fuzzy min-entropy.

These two properties meant that for any partition p created after seeing w for most distributions Wz

where Pr[Wz = w] > 0 have few parts with nonempty interiors. Thus, the above distinguisher works.
The family is as follows: let C be a linear error-correcting code with distance t, let H be its syndrome,

let c be a coset. Then each z = (H, c) and a distribution Wz=(H,c) is the uniform distribution over the
set of all points {w | Hw = c}.

Moving to the distributional advice setting To set notation for the distributional advice
game, we consider the following game for a tuple of algorithms (advice,Gen,Rep):

1. A uniform sample z ← Z which picks Wz ∈ W.

2. A bounded length advice = advice(z) is computed.

3. Sample w ←Wz.

4. The algorithm computes (r, p)← Gen(w, advice).

5. The adversary is given either (r, p, z) or (u, p, z) for a uniform u.

In [FRS20], the only information that Gen has about z was the input point w. In our setting,
Gen gets advice. Fuller, Reyzin, and Smith’s family had a short description so advice allows Gen to
align Viable with points in Wz. Thus, extending the result requires a long description that can’t be
compressed. We consider the natural candidate: the setWγ of all distributions with fuzzy min-entropy
at least γ.

We use the notation Wn,k = {W |W has support size 2k}. For a positive integer γ, If one considers
k = γ + cn for some c > 0 there are few distributions Wz ∈ Wn,k where Hfuzz

t,∞ (W ) < γ. As long as

|advice| is shorter than 2k, most points in the support of Wz are unpredictable conditioned on advice.
The techniques for the secure sketch setting are similar, however, there are stronger geomet-

ric bounds on the number of viable points because secure sketches imply Shannon error correcting
codes [DORS08, FMR20]. Our result considers a secure sketch that retains smooth min-entropy in-
stead of min-entropy. This is so we can useWn,k throughout the proof and “smooth” to a family where
every distribution has fuzzy min-entropy γ. Our final result also applies to secure sketches that retain
non-smooth conditional min-entropy.

Importantly, both results operate generically in the size of the maximum number of viable points for
the relevant primitive. Such bounds have been well established in the literature due to their connections
with coding theory. This means if one can provide a new bound on fuzzy extractor or secure sketch
quality this can be directly used in our results.

1.2 Discussion

Avoiding the result Lemma 4 shows the impossibility of efficient constructions for a constant fraction
of the family. This means it may be possible to secure all low-entropy distributions of practical interest.
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However, new designs or analyses are required. One must use statistical properties beyond fuzzy min-
entropy. Demarest, Fuller, and Russell [DFR21] provide a summary of statistical properties in addition
to fuzzy min-entropy used in low-entropy computationally secure constructions, such as small, random
subsets of bits having high entropy. Simhadri et al. provide a discussion on the current state of biometric
cryptosystems and their limited security [SSF19]. Current information-theoretic constructions fall
into three categories: 1) requiring high min-entropy, such as the coset construction from Dodis et
al. [DORS08] 2) requiring bits of w to be i.i.d. [Mau93, MW96, MTV09, YD10, HMSS12] and 3)
inefficient constructions that use the whole probability distribution such as Woodage et al. [WCD+17].

We provide some intuition for why high entropy distributions are easier to secure. First, from
the construction perspective if the distribution has at log(|Bt|) + ω(log(λ)) bits of entropy, one can
write down enough bits to uniquely determine the original w from a nearby w′ without removing all
entropy of w (assuming a perfect error correcting code). Second, from an impossibility perspective,
impossibility results (both ours and prior results) require the construction to choose Viable points
in the construction and have some side information about the distribution to reduce the size of this
set. The larger the support of the distribution the harder it is for this side information to reduce the
entropy of this set. For example, Fuller, Reyzin, and Smith [FRS20] distributions, W ∈ WFRS , were
lines that overlapped at one point, upper bounding their size.

The two natural directions stemming from this research are 1) can one use natural statistical
properties to provide information-theoretic security and 2) can one compress inefficient information-
theoretic constructions to not require the whole probability distribution of Wz.
Perfect Correctness Our result for fuzzy extractors considers perfect correctness. We do not think
this is a fundamental limitation but we briefly explain the issue. As mentioned above, in the case of
perfect correctness, one includes a point w in Viabler,p if it is distance t from any point that produces
a different r′. Once one allows imperfect correctness, there is no immediate test for whether a point
w should be considered viable. It seems possible that one could argue for a point to be viable when
most points around w produce the same key. We were not able to apply the isoperimetric inequality
in this setting. If one finds a clean argument for viable points with imperfect correctness, it directly
replaces Lemma 8. The rest of our argument then applies. On the other hand, for a secure sketch, one
can easily bound the size of the set of points{

w

∣∣∣∣{w′|Rec(w′, p) = w ∧ dis(w,w′)}
{w′|dis(w,w′)}

≥ 1− δ
}
,

this set forms a Shannon error correcting code [FRS20, Lemma 7.3]. This is the viable set in the secure
sketch case.
Differences from prior work Our fuzzy extractor result requires that |r| = ω(log(n)). This is in
contrast to Fuller, Reyzin, and Smith [FRS20] who showed an impossibility for a key length of 3.2 This
change comes because advice can supply a lot of information about a small number of points in Wz,
allowing Gen to ensure that some Viabler,p are nonempty. Furthermore, all bounds are weaker than
those of Fuller, Reyzin, and Smith. The core of the difference is that in WFRS the adversary received
entirely new information by the leftover hash lemma [HILL93, BDK+11]. In our setting, we argue
about the expected number of points in the support of Wz that are included in the Viable region.

Our secure sketch result also considers an object that retains smooth conditional min-entropy [RW05].
Smooth conditional min-entropy is the necessary and sufficient condition for privacy amplification using
a randomness extractor.

Organization The rest of this work is organized as follows, Section 2 covers preliminaries including
the relevant definitions of fuzzy extractors and secure sketches. Section 3 presents the negative result
for fuzzy extractors including a proof outline, and Section 4 presents the negative result for secure
sketches.

2Our result for secure sketches requires them to retain at least 5 bits of min-entropy about the input in comparison with
[FMR20] which required the sketch to maintain 3 bits of entropy.

6



2 Preliminaries

For distributions X,Y over the same discrete domain χ,

∆(X,Y )
def
=

1

2

∑
x∈χ
|Pr[X = x]− Pr[Y = y]| .

For a metric space (M, dis) let Bt(x) = {y|dis(x, y) ≤ t}. If the size of Bt(x) is the same for all points
x we use |Bt| to denote this quantity. This is the case for the Hamming metric. All logarithms are
base 2. For a set X, let UX denote the uniform distribution over that set. For a distribution W , let
Supp(W ) denote the support of the distribution.

Indexing and sampling from a family of distributions This work considers the possibility
of constructing fuzzy extractors from a finite family of distributions that we will call W. Throughout,
we will need the ability to describe a particular value in this family. We let Z be an index for the family
W. Each string z ∈ Z describes a distribution Wz ∈ W. We use Z to describe the uniform distribution

UZ , that is WZ
d
= UW . We use w ← Wz to denote a sample from Wz where w ∈ {0, 1}n. Where

appropriate we use w ← WZ to denote the two-stage process of sampling z ← Z and then sampling
w ←Wz.

2.1 Notions of Entropy

For a random variable X whose outcomes are in {0, 1}, let Pr[X = 1] = p. The binary entropy of X
is h2(X) := H(X) = −p · log(p)− (1− p) · log(1− p) . For a discrete random variable X, min-entropy
is H∞(X) := −log(maxxi Pr(X = xi)).

Definition 1 (Average Min Entropy). Let X be a discrete random variable and let Y be a random
variable. The average min-entropy of X|Y is

H̃∞(X|Y ) := −log
(

E
y←Y

[
max
x

Pr[X = x | Y = y]
])

.

Definition 2 (Smooth Conditional Min Entropy). The smooth conditional min entropy, denoted
H̃ε
∞(X|Y ) for two random variables X and Y is

H̃ε
∞(X|Y ) := max

(X′,Y ′)|∆((X′,Y ′),(X,Y ))≤ε
H̃∞(X ′|Y ′) .

The above definition combines prior definitions [RW05, DORS08, Rey11, GW11]. Renner and
Wolf’s definition considers the worst case Y . We focus on the average case Y . We also replace the
condition when considering statistical distance similar to Gentry and Wichs [GW11].

2.2 Fuzzy Min-Entropy and Hamming Balls

Definition 3 (Fuzzy min-entropy [FRS20]). For a distribution W and a distance parameter t, the
fuzzy min-entropy of W , denoted Hfuzz

t,∞ (W ) is

Hfuzz
t,∞ (W ) := −log

(
max
w∗

(∑
w

Pr[W = w|dis(w,w∗) ≤ t]

))
.

Proposition 3. For all distributions W over a metric space (M, dis), Hfuzz
t,∞ (W ) ≤ log(|M|)−log(|Bt|) .
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ForM = {0, 1}n and the binary Hamming metric, Using Ash [Ash65, Lemma 4.7.2, Equation 4.7.5, p.
115] one has

nh2(t/n)− 1/2log(n)− 1/2 ≤ log(|Bt|) ≤ nh2(t/n). (1)

and thus,

Hfuzz
t,∞ (W ) ≤ log(|M|)− log(|Bt|) ≤ n

(
1− h2

(
t

n

))
+

log(n)

2
+ 1/2.

We now introduce the notion of β-density which measures the size of a Hamming ball in comparison
to the whole metric space.

Definition 4. Let (M, dis) be a metric space where the size of balls is center independent. The β
density is

β := log

(
|M| − |Bt|
|Bt|

)

Claim 1. For n, t ∈ Z+ with t < n/2 for the Hamming metric over {0, 1}n

β ≥ n
(

1− h2

(
t

n

))
− 1.

Proof. By Equation 1 one has:

β ≥ log
(

2n(1−h2( tn )) − 1
)
≥ log

(
2n(1−h2( tn ))−1

)
≥ n(1− h2(t/n))− 1.

2.3 Fuzzy Extractors and Secure Sketches

Definition 5 (Secure Sketch [DORS08]). For metric space (M, dis) and distribution Wz, a (M, m̃, t, ε, `, δ)-
secure sketch is a pair of algorithms (SSz,Recz) with the following properties

1. Correctness For all w,w′ such that dis(w,w′) ≤ t, then Prss←SS(w)[Recz(w
′, ss) = w] ≥ 1− δ.

2. Security H̃ε
∞(Wz|SSz(Wz)) ≥ m̃.

3. Space Bounded The circuits SSz and Recz require at most ` bits to describe. That is, |SSz| +
|Recz| ≤ `.

The use of smooth min-entropy In the above definition, the secure sketch retains smooth conditional
min-entropy of Wz. Many definitions consider ε = 0 or average min-entropy. The ε-smooth min-entropy
can be used to bound the average min-entropy [DORS08, Appendix B].

Definition 6 (Fuzzy Extractor [DORS08]). For metric space (M, dis) and probability distribution Wz,
a (M, κ, t, ε, `)-fuzzy extractor is a pair of algorithms (Genz,Repz) with the following properties

1. Correctness For all w,w′ such that dis(w,w′) ≤ t, then Prr,p←Gen(w)[Rep(w′, p) = r] = 1.

2. Security Let R,P ← Genz(Wz) and Uκ be a uniformly distributed random variable over {0, 1}κ,
∆((R,P ), (Uκ, P )) ≤ ε.

3. Space Bounded The circuits Genz and Repz require ` bits to describe. That is, |Gen|+ |Rec| ≤ `.

We now define fuzzy extractors and secure sketches with advice. This is an intermediate definition that
will be used in proofs throughout. Let Wn,k be a family of distributions. As we show in Lemmas 4
and 5, the impossibility of building a fuzzy extractor (resp. secure sketch) with advice for the uniform
distribution of Wn,k,Z from family Wn,k implies the impossibility of building a fuzzy extractor (resp.
secure sketch) for a constant fraction of Wz ∈ Wn,k.
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Definition 7 (Secure Sketch with distributional advice). Let W be a family of distributions indexed
by z and let Z denote the set of such z. Let Z be a random variable describing the uniform selection of
a Wz ∈ W. For metric space ({0, 1}n, dis), a ({0, 1}n,W, m̃, t, ε, `, δ)-secure sketch with distributional
advice is a triplet of algorithms (Gen,Rep,Advice) with the following properties:

1. Correctness For all w,w′ such that dis(w,w′) ≤ t, let Prss←SS(w)[Rec(w
′, ss) = w] ≥ 1− δ.

2. Security Let Advice be a function with output in {0, 1}`. For all distributions Wz ∈ W, define
advicez := Advice(z) and let SS ← SS(Wz, advicez). Then, Ez←Z [H̃ε

∞(Wz|SS,Z = z)] ≥ m̃.

Definition 8 (Fuzzy Extractor with distributional advice). Let W be a family of distributions indexed
by z. Let Z be a random variable describing the uniform selection of a Wz ∈ W. For metric space
({0, 1}n, dis), a ({0, 1}n,W, κ, t, ε, `)-fuzzy extractor with distributional advice is a triplet of algorithms
(Gen,Rep,Advice) with the following properties:

1. Correctness For all w,w′ such that dis(w,w′) ≤ t, Pr(r,p)←Gen(w)[Rep(w′, p) = r] = 1.

2. Security Let Advice be a function with output in {0, 1}`. For a distribution Wz ∈ W, define
advicez := Advice(z), let (Rz, Pz) ← Gen(W, advicez) and Uκ be a uniformly distributed random
variable over {0, 1}κ it holds that

∆((RZ , PZ , Z), (Uκ, PZ , Z)) = E
z←Z

∆((Rz, Pz, z), (Uκ, Pz, z) ≤ ε.

Lemma 4. Let W be a distribution family indexed by set Z. Suppose that no (M,W, κ, t, ε, `)-fuzzy
extractor with distributional advice exists. For all familiesW ′ ⊆ W indexed by Z ′ ⊆ Z where |Z ′|/|Z| ≤
1 − ζ. There is some z ∈ Z ′ such that there is no ({0, 1}n, κ, t, (ε − ζ))/(1 − ζ), `) fuzzy extractor
(Genz,Repz).

Proof of Lemma 4. We proceed by contrapositive. Let W ′ be some subset of W with relative size at
least 1− ζ where for every Wz ∈ W ′ there exists an ({0, 1}n, κ, t, (ε− ζ)/(1− ζ), `)-fuzzy extractor. We
denote these algorithms by (Genz,Repz) respectively. We now describe how to build the fuzzy extractor
(Gen,Rep, advice) with distributional advice. Let

advice(z) =

{
(Genz,Repz) z ∈ Z ′

⊥ otherwise.

In both cases, advice(z) has length at most `. Then define Gen(x,C) as follows: if C =⊥ sample a
random key r output (r, r), otherwise interpret C as two circuits Gen′,Rep′ and output Gen′(x). Define
Rep(x, p, C) interpret C if C =⊥ output p, otherwise parse C as two circuits Gen′,Rep′ and output
Rep′(x′, p). Then

∆((RZ , PZ , Z), (Uκ, PZ , Z)) = ∆((RZ , PZ , Z), (Uκ, PZ , Z)|Z ∈ Z ′) Pr[Z ∈ Z ′]
+ ∆((RZ , PZ , Z), (Uκ, PZ , Z)|Z 6∈ Z ′) Pr[Z 6∈ Z ′]

≤ ε− ζ
1− ζ

∗ (1− ζ) + 1 ∗ ζ = ε.

Recall that Z denotes the uniform random variable over the set Z. (Gen,Rep, advice) is a (M,W, κ, t, ε, `)
fuzzy extractor with distributional advice.

Interpretation In the setting when ε = Θ(1) then setting ζ = ε/2 implies that for all subsetsW ′ ⊆ W
where Pr[Z ∈ Z ′] ≥ 1 − ε/2 = 1 − Θ(1) there is no ({0, 1}n, κ, t, ε/(2 − ε), `)-fuzzy extractor for
some element of W ′. This shows that at least ε/2 = Θ(1) fraction of elements in W do not have
({0, 1}n, κ, t, ε/(2− ε), `)-fuzzy extractors.
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Lemma 5. Let W be a distribution family indexed by Z and suppose that no ({0, 1}n,W, m̃, t, ε, δ, `)-
secure sketch with distributional advice exists. For all families W ′ ⊆ W indexed by Z ′ ⊆ Z where
|Z ′|/|Z| ≥ 1−2−ζ there is some z′ ∈ Z ′ for which no ({0, 1}n, m̃+1, t, ε, δ, `)-secure sketch (SSz′ ,Recz′)
exists if ζ ≥ m̃+ 1.

Proof. The proof of Lemma 5 follows the structure of the proof of Lemma 4. That is,

advice(z) =

{
(Genz,Repz) z ∈ Z ′

⊥ otherwise.

SS(w,C) =

{
(w,w) C =⊥
SS′(w) C = SS′,Rec′.

Rec(w′, p, C) =

{
p C =⊥
Rec′(w′, p) C = SS′,Rec′.

Then consider the following equation for computing the remaining smooth conditional min-entropy.

E
z←Z

[H̃ε
∞(Wz|SS(Wz), z)] = −log

(
Pr[Z ∈ Z ′]E

Z
2−H̃ε∞(WZ |ss,Z∈Z′) + Pr[Z 6∈ Z ′]E

Z

[
2−H̃ε∞(WZ |ss,Z 6∈Z′])

])
≤ −log

(
1 · 2−m̃ + 2−ζ · 1

)
≤ min{m̃+ 1, ζ} − 1 ≤ m̃.

Interpretation Setting ζ = max{m̃, 1} shows that at least 2−m̃ of the distributions have no secure
sketch. Later in this work, we consider m̃ = Θ(1) which suffices to that show that a constant fraction
of distributions have no secure sketch.

3 Fuzzy Extractors

Before introducing our main theorem we introduce two families of distributions that are used for our
negative results. Consider the following index sets:

Zn,k =
{
z ⊆ {0, 1}n

∣∣|z| = 2k
}
,

Zn,k,t,γ =
{
z ⊆ {0, 1}n

∣∣|z| = 2k,Hfuzz
t,∞ (Uz) ≥ γ

}
.

That is, Zn,k,t,γ and Zn,k are sets of sets. Throughout, we use α := log
((

2n

2k

))
= |Zn,k|. In either case,

one can specify the particular choice of z by listing the 2k points. We use the notation

Wn,k = {Wz|z ∈ Zn,k ∧ ∀w ∈Wz,Pr[Wz = w] = 1/2k},
Wn,k,t,γ = {Wz|z ∈ Zn,k,t,γ ∧ ∀w ∈Wz,Pr[Wz = w] = 1/2k}.

Wn,k is the family of uniform distributions Wz over a set z, |z| = 2k. Wn,k,t,γ adds the requirement
that Hfuzz

t,∞ (Wz) ≥ γ. We use Zn,k to denote the uniform distribution over Zn,k and Wn,k,Z to denote
the uniform choice of some Wz where z ← Zn,k, similarly, we use Zn,k,t,γ to denote the uniform
distribution over Zn,k,t,γ andWn,k,t,γ,Z to denote the uniform choice of some Wz where z ←Wn,k,t,γ,Z .
For z = (z1, ..., z2k) let wz1 , ..., wz2k denote the support of Wz. We also summarize notation in Table 1.

Theorem 6. Let γ, n, κ, t, `, ν, γ ∈ Z+ be parameters where t < n/2. Denote α := log
((

2n

2k

))
, µ :=

n · h2

(
1
2 −

t
n

)
. For a 1/4 of the values z ∈ Zn,k,t,γ there is no ({0, 1}n,Wz, κ, t, ε, `)-fuzzy extractor for
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Notation Meaning

k log size support of input distribution
` Length of advice and circuit size of fuzzy extractor
m̃ Residual min-entropy of fuzzy extractor conditioned on helper
n Dimension of input points
t Distance for correction

Bt Hamming Ball of radius t
U Uniform distribution

ε
Statistical Distance Parameter for fuzzy extractor,
Smoothness parameter for min-entropy of secure sketch

α = log
((

2n

2k

))
Log size of number of distributions in Wn,k.

β Ratio of Metric Space Size to Size of Hamming Ball (Def 4)
γ lower bound on fuzzy min-entropy of distributions
κ key length of fuzzy extractor
ν Number of points that adversary “describes” in advice

µ = n · h2
(
1
2 −

t
n

)
Bound on log of maximum number of viable points (Lem 8)

Wn,k Set of all distributions with k points
Zn,k Set of indices for Wn,k

Zn,k Uniform choice of z ← Zn,k
Wn,k,Z Uniform choice of Wz from Wn,k

Wn,k,t,γ Restriction of Wn,k to distributions Wz with Hfuzz
t,∞ (Wz) ≥ γ

Zn,k,t,γ Set of indices for Wn,k,t,γ

Zn,k,t,γ Uniform choice of z from Zn,k,t,γ
Wn,k,t,γ,Z Uniform selection of Wz from Wn,k,t,γ

Table 1: Summary of notation.

ε < 1/3− (ε1 + ε2 + ε3)/3. For

log(ε1) := −
(
κ+

α− `
2k
− µ− 2k + log(ν)

)
,

ε2 :=
ν + 1

2κ−1
,

ε3 :=
(
e2γ−β

)2k−γ
2n−1.

Lemma 4 states that to show the hardness of building an efficient fuzzy extractor (Definition 6)
for a constant fraction of Wz ∈ Wn,k,t,γ it suffices to show the hardness of building a fuzzy extractor
with distributional advice (Definition 8) for the family Wn,k,t,γ . The proof of Theorem 6 focuses on
the distributional advice setting using the following structure:

1. We show that few elements in Zn,k are not in Zn,k,t,γ . Lemma 7 shows that the statistical distance
betweenWn,k,Z andWn,k,t,γ,Z is small. This shows that the hardness of building a fuzzy extractor
with distributional advice for the family Wn,k implies hardness for Wn,k,t,γ . For the remainder
of the proof, we consider Wn,k.

2. Lemma 9 shows one cannot build a fuzzy extractor with distribution advice for Wn,k. Proving
this requires several steps

11



(a) Lemma 8 which bounds the number of “viable” points for most public values p. This lemma
bounds the total number of points and holds even if Gen,Rep have access to an arbitrary
advice string. We switch to considering a fixed value of advice. At the end of the proof we
average across the distribution of advice.

(b) Claim 3 shows the majority of the support of Zn,k|Advice = advice is difficult to predict and
thus unlikely to be included in the set of viable points. We call such points Hard Points.
There are some points that the adversary has a large amount of information on that we call
Free Points.

(c) Corollary 10 puts together the above two steps to show that the adversary includes a small
number of points from the particular distribution Wz in the viable set.

Since the construction cannot align the viable points with the distribution there exists a distin-
guisher that can distinguish a uniform triple from a key triple.

The rest of this section is organized as follows:

Section 3.1 We present and prove Lemmas 7 and 9,

Section 3.2 We present the proof of Theorem 6 combining Lemmas 7 and 9, and

Section 3.3 We present our preferred setting of parameters.

3.1 Main Technical Lemmas and Proofs

Lemma 7. Fix n, t, k, γ ∈ Z+ where t < n/2, then ∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤
(
e2γ−β

)2k−γ
2n.

Proof of Lemma 7. We first show the fraction of items in Zn,k that are not in Zn,k,t,γ is at most(
e2γ−β

)2k−γ
2n. A string z ∈ Zn,k \ Zn,k,t,γ if and only if there exists some point y such that there are

at least 2−γ2k = 2k−γ points within distance t of y. Fix some arbitrary y∗. The point y∗ defines a set
Ay∗ of all points within distance t and note that |Ay∗ | = |Bt|. We now show that the probability that
a value in z ← Zn,k has a large intersection with Ay∗ is small.

Claim 2. Let n, k, a ∈ Z+ where log(a) < k. Let a∗ = a/(1 − a2−k). Let Zn,k be the uniform
distribution over Zn,k. Let A be a fixed subset of size a · 2n−k. Then E[|Zn,k ∩A|] = a and any ζ > 0,

Pr[|Zn,k ∩A| ≥ a∗(1 + ζ)] ≤
[

eζ

(1 + ζ)1+ζ

]a∗
.

Proof. For the purposes of bookkeeping, arrange the elements of A in an arbitrary order and note that
|A| = a2n−k < 2k2n−k = 2n so A ⊂ {0, 1}n, and let

X1, . . . , Xa2n−k

be indicator random variables so that Xi = 1 if and only if the ith element of A lies in Zn,k. Note
that for any individual i, Pr[Xi = 1] = a2n−k/2n = a2−k and thus E[|Zn,k ∩ A|] =

∑
i E[Xi] =

2k E[Xi] = 2k(a2−k) = a by linearity of expectation. Observe that under any conditioning on the
variables X1, . . . , Xt,

Pr[Xt+1 = 1] ≤ 2k

2n − a2n−k
=

2k

2n(1− a2−k)
.

Let Yi be a sequence of i.i.d. random variables (with the same index set) for which

Pr[Yi = 1] =
2k

2n(1− a2−k)
.

It follows that the random variable
∑
iXi is stochastically dominated by the random variable

∑
i Yi.

Observe that E[
∑
Yi] = a∗. Applying a standard Chernoff upper tail bound to the Yi then yields the

result. This completes the proof of Claim 2.
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We now continue using the notation of Claim 2, let

a∗ =
2k|Bt|

2n − |Bt|
= 2k−β .

Fix the value of ζ such that

1 + ζ =
2−γ(2n − |Bt|)

|Bt|
≥ 2β−γ .

then the probability Zn,k intersects with Ay∗ in at least 2k−γ places is at most

Pr[|Zn,k ∩Ay∗ | ≥ a∗(1 + ζ)] ≤

Pr[|Zn,k ∩Ay∗ | ≥ 2k−γ ] ≤
((
e2γ−β

)2β−γ)2k−β

=
(
e2γ−β

)2k−γ
Now we consider a union bound across all y∗. That is

Pr
z←Zn,k

[Hfuzz
t,∞ (Wz) ≥ γ] =

(
e2γ−β

)2k−γ
2n.

The difference between Wn,k,Z and Wn,k,t,γ,Z is exactly the set of z ∈ Zn,k that are not present in
Zn,k,t,γ . This probability mass is uniformly distributed in both cases, thus

∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤
(
e2γ−β

)2k−γ
2n.

completing the proof of Lemma 7.

Fuller, Reyzin, and Smith [FRS16, FRS20] bound the number of points that could have produced
the output of a fuzzy extractor. Such points are called viable. We present a stronger version of their
lemma that is contained in their proof. The difference is we bound the union of viable points across
different values of key while they only bound the size of a single key corresponding to the true point.
Their argument is purely geometric, so it also applies to fuzzy extractors with distributional advice.
We state the stronger version of [FRS20, Lemma 5.2].

Lemma 8. For n ∈ Z+, suppose M is {0, 1}n with the Hamming Metric and κ ≥ 2, 0 ≤ t ≤ n/2,
ε > 0, ` ∈ Z+. Suppose (Gen,Rep) is a (M,W, κ, t, `, ε)-fuzzy extractor with distributional advice for
some distribution family W over M. For any fixed p, for any value advice ∈ {0, 1}`, there is a set
GoodKeyp ⊆ {0, 1}κ of size at least 2κ−1 such that,

µ :=
∑

key∈GoodKeyp

(log(|{v ∈M|(key, p) ∈ supp(Gen(v, advice))} |)) ≤ n · h2

(
1

2
− t

n

)
.

We now present our main technical lemma and its proof.

Lemma 9. Suppose M is {0, 1}n with the Hamming Metric, κ ≥ 2, 0 ≤ t ≤ n/2, ε > 0, ` ∈ Z+. For
the family Wn,k there is no (Gen,Rep) that is a (M,Wn,k, κ, t, `, ε)-fuzzy extractor with distributional
advice for

ε < 1/2− (ε1 + ε2)
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where

ε1 = 2−κ−
α−`
2k

+1+µ+2k−log(ν),

ε2 =
ν + 1

2κ
,

µ ≤ n · h2

(
1

2
− t

n

)
,

α = log

((
2n

2k

))
.

Furthermore, there exists an algorithm D that always outputs 1 when given samples of the form r, p, z
that are correctly generated by the fuzzy extractor.

Proof of Lemma 9. Before proceeding we introduce some additional notation. Let (Gen,Rep,Advice)
be a fuzzy extractor with distributional advice. Let a be some string. For a tuple (v, p, r, a) define

Viable(v, p, r, a) =

{
1 Pr[Gen(v, a) = (r, p)] > 0

0 otherwise
.

Recall that |Zn,k| = 2α =
(

2n

2k

)
. Let A be a random variable denoting Advice(Zn,k). Thus,

H∞(Zn,k) = α,

H̃∞(Zn,k|A) ≥ α− `.

Define

2−αa,w : = Pr
z←Zn,k|A=a

[w ∈ Supp(Wz)],

2−αa : = 2−H̃∞(Zn,k|A=a) = max
W⊆{0,1}n||W |=2k

( ∏
w∈W

2−αa,w

)
.

Note that
−log

(
E

a←A

(
2−αa

))
= H̃∞(Zn,k|A) ≤ α− `.

Define the notation HViable(w, p, key, a, E) :

1. 0 if w ∈ E or ∀z ∈ Supp(Zn,k|A = a), w 6∈ Supp(Wz),

2. Prz←Zn,k|A=a [Viable(w, p, key, a) = 1 ∧ w ∈ Supp(Wz)] otherwise.

Claim 3 bounds how much information a fixed a contains about the points in the distribution (we
consider the expectation across a ∈ A after Corollary 10).

Claim 3. Let µ and GoodKey be defined as in Lemma 8. Let A be a distribution and let a be a fixed
value such that H∞(Wn,k|A = a) = αa. Fix some value w and some value p. Define GoodKeyp as in
Lemma 8. Each value w∗ ∈ {0, 1}n defines a set Ea,w∗ where |Ea,w∗ | ≤ ν + 1 such that

log

 ∑
key∈GoodKeyp

HViable(w, p, key, a, Ea,w∗)

 ≤ −αa
2k

+ 1 + µ+ k − log(ν) .
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Proof of Claim 3. Let A be an random variable over {0, 1}`. Fix some value a. Let w1,a, ..., w2k,a

denote an arbitrary subset of {0, 1}n of size 2k. Then

2k∑
i=1

αa,wi,a ≤ αa.

Then one has that
E

i←U{0,1}k

(
αa,wi,a

)
≤ αa

2k
.

We need an elementary lemma which states that not too many of αa,wi are much larger than αa/2
k:

Claim 4. Define Ea ⊂ {w1,a, ..., w2k,a} as

Ea =
{
w
∣∣∣αa,w ≥ αa

2k
− (k − log(ν))

}
.

Then
|Ea| ≤ ν.

Proof of Claim 4. By Markov’s inequality

Pr
i←U{0,1}k

[
Pr

z←Zn,k|A=a
[wi,a ∈ Supp(Wz)] ≥ β E

i
Pr

z←Zn,k|A=a
[wi,a ∈ Supp(Wz)]

]
=

Pr
i←U{0,1}k

[
Pr

z←Zn,k|A=a
[wi,a ∈ Supp(Wz)] ≥ β2−αa,w

]
≤ 1/β.

Setting β = 2k/ν implies the statement of the Claim.

We now continue with the proof of Claim 3. By Claim 4 it is true that there exists a set Ea ⊆ {0, 1}n
of size at most ν where such that for all w 6∈ Ea is true that αa,w < αa/2

k + (k− log(ν)). Let w∗ denote
the point that will be given to Gen that is (key, p)← Gen(w∗, a). We define the set Ea,w∗ = Ea ∪ {w∗}.
Then,

Pr
z←Zn,k|A=a∧key∈GoodKey,p

[w ∈ Supp(Wz)|w 6∈ Ea,w∗ ] ≥

Pr
z←Zn,k|A=a∧w∗∈Supp(Wz)

[w ∈ Supp(Wz)|w 6∈ Ea,w∗ ] ≥ 2−(αa
2k
−k+log(ν)−1).

This is because conditioning on a single bit that w∗ ∈ Supp(Wz) increases the predictability of an
random variable by at most a factor of 2. We now proceed to bounding HViable(w, p, key, a, Ea,w∗).
By Lemma 8 we know that there are at most 2µ points in Viable(w, p, key, a). Thus, by union bound
over the set of viable points,

HViable(w, p, key, a, Ea,w∗) ≤ 2−
αa
2k

+1+µ+k−log(ν).

This completes the proof of Claim 3.

Corollary 10. Let µ and GoodKey be defined as in Lemma 8. Fix an arbitrary point w∗ ∈ {0, 1}n
and some a and define Ea,w∗ as in Claim 3. By Claim 3 on average across z ← Zn,k|A = a (by union
bound across the points in Wz) one has that:

E
z←Zn,k|A=a

∣∣∣∣∣∣∣
w

∣∣∣∣∣∣∣
w ∈ Supp(Wz)

w 6∈ Ea,w∗
∃key ∈ GoodKeyp, Viable(w, p, key, a)


∣∣∣∣∣∣∣ ≤ 2−

αa
2k

+1+µ+2k−log(ν).
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Then on average across a ∈ A (using the fact that Ea←A (2−αa) = 2−(α−`)) one has

E
a←A

 E
z←Zn,k|A=a

∣∣∣∣∣∣∣
w

∣∣∣∣∣∣∣
w ∈ Supp(Wz)

w 6∈ Ea,w∗
∃key ∈ GoodKeyp, Viable(w, p, key, a)


∣∣∣∣∣∣∣
 ≤ 2−

α−`
2k

+1+µ+2k−log(ν).

And finally,

E
a←A

(
E

z←Zn,k|A=a

∣∣∣∣∣
{
w

∣∣∣∣∣ w ∈ Supp(Wz)

∃key ∈ GoodKeyp, Viable(w, p, key, a)

}∣∣∣∣∣
)
≤ 2−

α−`
2k

+1+µ+2k−log(ν) + ν + 1.

With Corollary 10 in hand we are ready to prove Lemma 9. Consider the following distinguisher D for
triples of the form r, p, z:

1. If r 6∈ GoodKeyp output 1,

2. If
∑
w∈Supp(Wz) Viable(w, r, p, advice(z)) = 0 output 0,

3. Else output 1.

First note that by perfect correctness it is always the case that when given key, p, z that D outputs 1.
We proceed to bound the probability that D outputs 1 when given Uκ, p, z. Note that the probability
that Pr[Uκ ∈ GoodKeyp] ≥ 1/2 by the definition of GoodKeyp.

We bound the number of parts with at least one point in viable. We begin by assuming that all
points in viable are in different values r so the bound on the size of{

w

∣∣∣∣∣ w ∈ Supp(Wz)

∃key ∈ GoodKeyp, Viable(w, p, key, a)

}
gives a bound on the number of keys for which D could output 1. By Corollary 10

E
a←A

(
E

z←Zn,k|A=a

∣∣∣∣∣
{
w

∣∣∣∣∣ w ∈ Supp(Wz)

∃key ∈ GoodKeyp, Viable(w, p, key, a)

}∣∣∣∣∣
)
≤ 2−

α−`
2k

+1+µ+2k−log(ν) + ν + 1.

Thus, the fraction of non-empty parts in Goodkeyp on average is at most

2−
α−`
2k

+1+µ+2k−log(ν) + ν + 1.

Thus, the probability that D outputs 0 when given Uκ, p, z is at least 1/2− (ε1 + ε2) where

ε1 : = 2−κ−
α−`
2k

+2+µ+2k−log(ν),

ε2 : =
ν + 1

2κ−1
.

This completes the Proof of Lemma 9.

3.2 Proof of Theorem 6

Proof of Theorem 6. Define the pair of random variables (RZn,k , PZn,k) ← Gen(Wn,k,Z , advice(Zn,k)).
Restating Lemma 9 one has that

∆((RZn,k , PZn,k , Zn,k, (Uκ, PZn,k , Zn,k)) ≥ 1/2− (ε1 + ε2).

Let D be one distinguisher that always outputs 1 on any value key, p, z for any distribution Wz, then

Pr[D((RZn,k , PZn,k , Zn,k)) = 1] = 1

Pr[D(Uκ, PZn,k , Zn,k) = 1] ≤ 1/2 + (ε1 + ε2).
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Recall that ∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤ ε3 by Lemma 7 . Define the pair of random variables

(RZn,k,t,γ , PZn,k,t,γ )← Gen(Wn,k,t,γ,Z , advice(Zn,k,t,γ)).

by the information processing lemma it is thus true that

Pr[D(RZn,k,t,γ , PZn,k,t,γ , Zn,k,t,γ) = 1] = 1,

Pr[D(Un, PZn,k,t,γ , Zn,k,t,γ) = 1] ≤ 1/2 + (ε1 + ε2 + ε3).

Finally, the theorem follows by application of Lemma 4 with the setting of ζ = 1/4.

3.3 Analysis of parameters

We separately consider ε1, ε2 and ε3. We refer to these three terms as hard points, free points, and
distributional closeness respectively. This is because ε1 describes how much information the advice has
about hard points in Wz, ε2 considers a small number of points that are more thoroughly described by
advice, and ε3 controls the statistical distance between Wn,k and Wn,k,t,γ . We consider parameters in
order of simplicity.

3.3.1 Free Points - ε2

For ε2 to be negligible it suffices that ν/2κ = ngl(λ). Meaningful security requires κ = ω(log(n)). We
set

Condition 1 ν = 2cκκ for some constant 0 < cκ < 1 yielding

ε2 =
ν + 1

2κ−1
= 2(cκ−1)κ−κ+1 = ngl(n).

3.3.2 Distributional Closeness - ε3

Recall that ε3 :=
(
e2γ−β

)2k−γ
2n+1. Consider the following settings:

Condition 2 That γ ≤ β − log(2e), which implies 2γ−β ≤ 1
2e , and

Condition 3 For constant 0 < c|k| < 1, we set k = γ + c|k|n which implies 2k−γ ≥ n+ 1 + ω(log(n)).

Together, these settings imply that

ε3 =
(
e2γ−β

)2k−γ
2n+1 ≤

(
1

2

)n+ω(log(n))+1

2n+1 = 2−ω(log(n)) = ngl(n).

Discussion By Proposition 3 for any W in {0, 1}n it is true that

Hfuzz
t,∞ (W ) ≤ n

(
1− h2

(
t

n

))
+

log(n)

2
+ 1/2.

Thus, the additional constraint that

Hfuzz
t,∞ (W ) := γ ≤ β − log(2e) ≤ n

(
1− h2

(
t

n

))
+

log(n)

2
+

1

2
− log(2e) .

imposes an additive log(2e) impact on the maximal fuzzy min-entropy that can be supported.
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3.3.3 Hard Points - ε1

We now turn to our analysis of ε1. Recall log(ε1) := −
(
κ+ α−`

2k
− µ− 2k + log(ν)

)
and that

(n/k)k ≤
(
n

k

)
< ((ne)/k)k

µ ≤ nh2(1/2− t/n),

α = log

((
2n

2k

))
≥ log

(
2n2k/2k2k

)
= (n− k)2k,

Recall that ν = 2cκκ. This implies that

−log(ε1) = κ+
α− `

2k
− µ− 2k + log(ν)

≥ κ+
α− `

2k
− nh2(1/2− t/n)− 2k + log(ν) ,

≥ κ+
(n− k)2k − `

2k
− nh2(1/2− t/n)− 2k + cκκ,

≥ (1 + cκ)κ+
(n− k)2k − 2k2k − `

2k
− nh2(1/2− t/n)

> (1 + cκ)κ+
(n− 3k)2k − `

2k
− nh2(1/2− t/n).

We now focus on parameters when ψ := (n−3k)2k−`
2k

− nh2(1/2− t/n) ≥ 0.

Condition 4 Let 0 < c` < 1 be a parameter such that ` ≤ 3c`n2k,

Condition 5 Suppose that

γ ≤
n(1− 3c|k| − c` − h2(1/2− t/n))

3
.

Then it holds that

ψ : =
(n− 3k)2k − `

2k
− nh2(1/2− t/n)

≥ (n− 3k)2k − c`n2k

2k
− nh2(1/2− t/n)

≥
n(1− 3(γ/n+ c|k|)− c`2k)

2k
− nh2(1/2− t/n)

≥ n(1− 3c|k| − c`)− 3γ − nh2(1/2− t/n) ≥ 0

which suffices to ensure that

log(ε1) ≤ − ((1 + cκ)κ+ ψ) ≤ −(1 + cκ)κ = −ω(log(n)).
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3.3.4 Overall Parameters

Combining Conditions 2 and 5 one obtains a negligible statistical distance as long as for constants
cκ, c|k|, c` ∈ (0, 1) one has:

ν = 2cκκ,

k = γ + c|k|n,

` ≤ 3c`n2k,

0 ≤ γ

n
≤ min

{
(1− h2(t/n)) +

log(n) + 1− 2log(2e)

2n
,

1− 3c|k| − c` − h2(1/2− t/n)

3

}
.

4 Secure Sketches

This section creates an upper bound on the quality of efficient secure sketches. This bound is stronger
than Theorem 6 due to the stronger geometry established by the secure sketch correctness requirement.

Theorem 11. Let n, t, `, γ, ν, m̃ ∈ Z+, ε, δ ∈ [0, 1] be parameters where t < n/2 and denote µ :=
(n(1 − h2(t/n)) + h2(2δ))/(1 − 2δ). For a 2−m̃ fraction of the distributions in the family Wn,k,t,γ

(indexed by z ∈ Zn,k,t,γ) there is no ({0, 1}n,Wz, m̃, t, ε
′, δ, `)-secure sketch for

m̃ ≥ 2− log(1− 2ε) + 2 max

{
−α− `

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}
.

where ε′ = ε−
(
e2γ−β

)2k−γ
2n.

Proof of Theorem 11. Good secure sketches are bounded in size as they imply good Shannon error
correcting codes [FRS20, Lemma 7.3]. This is true if one considers a secure sketch that retains smooth
min-entropy with no loss in parameters because it only relies on the correctness of the secure sketch
(not the security property).

Lemma 12. Let n, t, m̃ ∈ Z+, ε, δ ∈ [0, 1] be parameters where t < n/2 and denote µ := (n(1 −
h2(t/n)) + h2(2δ))/(1− 2δ). Let Wn,k be a family indexed by set Zn,k and let Zn,k denote the uniform
distribution over Zn,k. Suppose (SS,Rec,Advice) is a ({0, 1}n,Wn,k, m̃, t, εSS, `, δ)-secure sketch with
distribution advice. For every v ∈ {0, 1}n and any value a ∈ {0, 1}` there exists a set GoodSketchv,a
where Pr[SS(v, a) ∈ GoodSketchv,a] ≥ 1/2 and for any fixed ss,

µ := log(|{v ∈ {0, 1}n|ss ∈ GoodSketchv,a}|) ≤
n− log(|Bt|) + h2(2δ)

1− 2δ
≤ n(1− h2(t/n)) + h2(2δ)

1− 2δ
.

Define α := H∞(Zn,k) and note that H̃∞(Zn,k|A) ≥ α − ` and define αa := H̃∞(Zn,k|A = a). Note
that

E
a←A

(
2−αa

)
= 2−H̃∞(Zn,k|A) ≥ 2−(α−`).

For a triplet (v, ss, a) define Viable(v, ss, a, z) = 1 if

1. Pr[SS(v, a) = ss] > 0,

2. ss ∈ GoodSketchv,a, and

3. v ∈ Supp(Wz).

Otherwise set Viable(v, ss, a, z) = 0. Define Viable(v, ss, a) = Prz←Zn,k|A=a[Viable(v, ss, a, z) = 1].
Define HViable(v, ss, a, E) = Viable(v, ss, a) if v 6∈ E and 0 otherwise. We present an analog of Claim 3
adapted to the secure sketch setting.
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Claim 5. Let µ and GoodSketch be defined as in Lemma 12. Let A be a distribution and let a be a
fixed value such that H∞(Wn,k|A = a) = αa. Fix some value v. Each value w∗ ∈ {0, 1}n defines a set
Ea,w∗ where |Ea,w∗ | ≤ ν + 1 such that

log

(∑
ss

HViable(v, ss, a, Ea,w∗)

)
≤ −αa

2k
+ 1 + µ+ k − log(ν) .

The proof of Claim 5 follows the structure of the proof of Claim 3 and is omitted. Claim 5 suffices
to bound how many points are “viable” from the output of the secure sketch.

Corollary 13. Let µ be defined as in Lemma 12. Fix an arbitrary point w∗ ∈ {0, 1}n, some ss and
some a. Define Ea,w∗ as in Claim 5. By Claim 5 on average across z ← Zn,k|A = a (by union bound
across the points in Wz) one has that:

log

(
E

z←Zn,k|A=a

∣∣∣∣∣
{
w

∣∣∣∣∣ w 6∈ Ea,w∗
Viable(w, ss, a, z)

}∣∣∣∣∣
)
≤ −αa

2k
+ 1 + µ+ 2k − log(ν) .

Then on average across a ∈ A (using the fact that Ea←A (2−αa) = 2−(α−`)) one has

log

(
E

a←A

(
E

z←Zn,k|A=a

∣∣∣∣∣
{
w

∣∣∣∣∣ w 6∈ Ea,w∗
Viable(w, ss, a, z)

}∣∣∣∣∣
))
≤ −α− `

2k
+ 1 + µ+ 2k − log(ν) .

And finally,

E
a←A

(
E

z←Zn,k|A=a
|{w|Viable(w, ss, a, z)}|

)
≤ 2−

α−`
2k

+1+µ+2k−log(ν) + ν + 1.

Lemma 14. Let all parameters be as in Corollary 13 with ν ∈ Z+. For the family Wn,k,Z there is no
({0, 1}n,Wn,k,Z , m̃, t, ε, `, δ)-secure sketch with distributional advice if

m̃ > −log(1− 2ε) + 1 + 2 max

{
−α− |advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}
.

Furthermore, there exists an algorithm D that always outputs 1 when given samples of the form w, ss, z
that are correctly generated by the secure sketch.

Proof of Lemma 14. First recall for every v ∈ {0, 1}n and advice string a there exists a set GoodSketchv,a
where Pr[SS(v, a) ∈ GoodSketchv,a] ≥ 1/2. We first need an elementary claim which says that just
predicting w when the sketch is in good sketch implies a predictor for the full setting with only a single
bit of loss.

Claim 6. Let (X,Y ) be a pair of random variables and, S(X,Y ) be a set, let f be a randomized
function taking inputs on the domain of (X,Y ). Then

H̃ε
∞(X|Y, f(X,Y ) ∈ S(X,Y )) ≥ H̃ε

∞(X|Y ) + log(Pr[f(X,Y ) ∈ S(X,Y )]) .

Proof of Claim 6. Let X ′, Y ′ be a distribution such that ∆((X,Y ), (X ′, Y ′)) ≤ ε. By [FRS20, Lemma
7.8] for any event η

H̃∞(X ′|Y ′, η) ≥ H̃∞(X ′|Y ′) + log(Pr[η]) .

Let η denote the event that f(X,Y ) ∈ S(X,Y ). The proof completes by noting that ∆((X,Y ), (X ′, Y ′)) ≤
ε implies that

∆((X,Y, f(X,Y )
?
∈ S(X,Y )), (X ′, Y,′ f(X ′, Y ′)

?
∈ S(X ′, Y ′))) ≤ ε
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by the information processing lemma. This is turn implies that

H̃ε
∞(X|Y, f(X,Y ) ∈ S(X,Y )) ≥ H̃ε

∞(X|Y ) + Pr[f(X,Y ) ∈ S(X,Y )].

This completes the proof of Claim 6.

We now proceed with the proof of Lemma 14. Define D(v, ss, z) = 1 if ss 6∈ GoodSketchv or
Viable(v, ss,Advice(z), z) = 1. D outputs 0 otherwise. Note that for w, ss, z correctly generated as
the output of SS D always outputs 1. Denote

A := advice(Zn,k)

X :=Wn,k,Z ,

Y := SS(Wn,k,Z , A).

By Claim 6:
H̃ε
∞(X|Y,Z) ≤ H̃ε

∞(X|Y, Z,X ∈ GoodSketchY,A) + 1.

In the above note that A and thus GoodSketchWn,k,A are computable from the pairWn,k, Z since Advice
is a function. Let X ′, Y ′, Z ′ be a triple of random variables where

∆((X,Y, Z), (X ′, Y ′, Z ′)) ≤ ε.

Our goal is to bound the min-entropy of X ′, Y ′, Z ′|X ′ ∈ GoodSketchY ′,Advice(Z′) by Claim 6 the smooth
min-entropy without conditioning on this event increases by at most 1. First note that

Pr
(x,y,z)←X′,Y ′,Z′

[D(x, y, z) = 1|X ′ ∈ GoodSketchY ′,Advice(Z′)] ≥ 1− 2ε.

Let A′ := Advice(Z ′). When X ′ ∈ GoodSketchY ′,Advice(Z′) in order for D to output 1 it must be the
case that Viable(x′, y′,Advice(z′), z′) = 1. That is, the support of x′ must be drawn from points in
W ′z. For any fixed value of y ∈ Y and arbitrary random variable A′ of length at most ` by Corollary 13

the number of such x′ is at most 2−
α−`
2k

+1+µ+2k−log(ν) + ν + 1. For any fixed support the min-entropy
is maximized by considering the uniform distribution over such points.

H̃∞(X ′|Y ′, Z ′, X ′ ∈ GoodSketchY ′,Advice(Z′),D(X ′, Y ′, Z ′) = 1)

≤ log
(

2−
α−|advice|

2k
+1+µ+2k−log(ν) + ν + 1

)
≤ 2 max

{
−α− |advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}
.

One then has,

2−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′))

≥ Pr
x,y,z←(X′,Y ′,Z′)

[D(x, y, z) = |X ′ ∈ GoodSketchY ′,Advice(Z′)]2
−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′),D(X′,Y ′,Z′)=1)

+ Pr
x,y,z←(X′,Y ′,Z′)

[D(x, y, z) = 0|X ′ ∈ GoodSketchY ′,Advice(Z′)]2
−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′),D(X′,Y ′,Z′)=0)

≥ (1− 2ε)2−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′),D(X′,Y ′,Z′)=1)

And thus,

H̃∞(X ′|Y ′, Z ′, X ′ ∈ GoodSketchY ′,Advice(Z′)) ≤ −log(1− 2ε) + H̃∞(X ′|Y ′, X ′ ∈WZ).

Define

m̃ := −log(1− 2εSS) + 1 + 2 max

{
−α+−|advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}
.

This implies that H̃ε
∞(Wn,k,Z |SS(Wn,k,Z , A), Zn,k) ≤ m̃. This completes the Proof of Lemma 14.
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We now proceed to the proof of Theorem 11. Let

m̃ := −log(1− 2εSS) + 1 + 2 max

{
−α+−|advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}
.

Restating Lemma 14 one has that

H̃εSS
∞ (Wn,k,Z |SS(Wn,k,Z , A), Zn,k) ≤ m̃.

Define

A′ := Advice(Zn,k,t,γ),

SS′ := SS(Wn,k,t,γ,Z , A
′),

εWn,k,Z
:=
(
e2γ−β

)2k−γ
2n.

By Lemma 7, ∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤ εWn,k,Z
and thus H̃εSS−εPCode

∞ (Wn,k,t,γ,Z |SS′, Zn,k,t,γ) ≤ m̃. Sup-
pose not, then there exists some E,F,G where

∆((E,F,G), (PCode∗n,k,t,α,SS(PCode∗n,k,t,α), ZPCode∗n,k,t,α
)) ≤ εSS − εPCode.

and H̃∞(E|F,G) > m̃. Thus,

∆((E,F,G), (Wn,k,Z ,SS(Wn,k,Z , A), Zn,k))

≤ ∆((E,F,G), ((Zn,k,t,γ , SS
′,Wn,k,t,γ,Z)) + ∆(Zn,k, Zn,k,t,γ)

≤ εSS − εPCode + εPCode = εSS.

This contradicts the fact that H̃εSS
∞ (Wn,k,Z |SS(Wn,k), Zn,k)) ≤ m̃. Finally, Theorem 11 follows by

application of Lemma 5 with setting ζ = χ and noting that χ ≥ 1.

4.1 Analysis of parameters

We assume that ε ≤ 1/8 and δ < 1/4. As before for
(
e2γ−β

)2k−γ
2n to be negligible it suffices that

Condition 1 That γ ≤ β − log(2e) .3

Condition 2 Let 0 < ck < 1 be some arbitrary constant and suppose that k = γ + ckn which implies
that k ≥ γ + log(n+ ω(log(n))).

These two conditions imply that −log(1− 2ε) ≤ 1 and ε′ ≥ 1/8− ngl(λ).

Condition 3 That ν = 1.

Define

χ := −α− `
2k

+ 1 + µ+ 2k − log(ν)

We now turn to our analysis of χ. Recall that (n/k)k ≤
(
n
k

)
< ((ne)/k)k. Recalling parameters:

µ ≤ (n(1− h2(t/n)) + h2(2δ))

(2δ)
,

α = log

((
2n

2k

))
≥ log

(
2n2k/2k2k

)
= (n− k)2k,

3As in Section 3.3 the additional constraint that γ ≤ β− log(2e) imposes an additive log(2e) impact on the maximal fuzzy
min-entropy that can be supported.
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This implies that

χ = −α− `− k
2k

+ µ+ 2k + 1

≤ −α+ log(ν)− `− k
2k

+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 2k + 1,

≤ − (n− k)2k + log(ν)− `− k
2k

+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 2k + 1,

≤ − (n− 3k)2k − `− k
2k

+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 1.

We consider two settings for δ one when δ < 1/4 and another when δ = 0.

Constant error, δ < 1/4 As long as for constants ck, c` one has

` ≤ 3c`n2k,

δ < 1/4,

0 ≤ γ

n
≤ min

{
(1− h2(t/n)) +

log(n) + 1− 2log(2e)

2n
,

2

3
h2(t/n)− 1

3
− 4ck + c`

3
− 2

3n

}
.

then

χ ≤ − (n− 3k)2k − `− k
2k

+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 1

≤ − (n− 3k)2k − `− k
2k

+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 1

≤ − (n− 3k)2k − `− k
2k

+ 2n(1− h2(t/n)) + 2

≤ −(n− (4ck + c`)n− 3γ) + 2n(1− h2(t/n)) + 2

≤ −n+ (4ck + c`)n+ 3γ + 2n(1− h2(t/n)) + 2

≤ n+ (4ck + c`)n+ 3γ − 2nh2(t/n)) + 2 ≤ 0

then m̃ ≤ 3 + 2 max{χ, log(2)} ≤ 5 which implies that 1/32 of the distributions have no secure sketch.

No error, δ = 0 One has

` ≤ 3c`n2k,

δ < 1/4,

0 ≤ γ

n
≤ min

{
(1− h2(t/n)) +

log(n) + 1− 2log(2e)

2n
,

1

3
h2(t/n)− 4ck + c`

3
− 2

3n

}
.

yielding m̃ ≤ 5 which implies that 1/32 of the distributions have no secure sketch.
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