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Abstract. Public key encryption with keyword search (PEKS), formalized by Boneh et al.
[EUROCRYPT’ 04], enables secure searching for specific keywords in the ciphertext. Never-
theless, in certain scenarios, varying user tiers are granted disparate data searching privileges,
and administrators need to restrict the searchability of ciphertexts to select users exclusively.
To address this concern, Jiang et al. [ACISP’ 16] devised a variant of PEKS, namely public
key encryption with authorized keyword search (PEAKS), wherein solely authorized users
possess the ability to conduct targeted keyword searches. Nonetheless, it is vulnerable to re-
sist quantum computing attacks. As a result, research focusing on authorizing users to search
for keywords while achieving quantum security is far-reaching.
In this work, we present a novel construction, namely lattice-based PEAKS (L-PEAKS),
which is the first mechanism to permit the authority to authorize users to search different
keyword sets while ensuring quantum-safe properties. Specifically, the keyword is encrypted
with a public key, and each authorized user needs to obtain a search privilege from an author-
ity. The authority distributes an authorized token to a user within a time period and the user
will generate a trapdoor for any authorized keywords. Technically, we utilize several lattice
sampling and basis extension algorithms to fight against attacks from quantum adversaries.
Moreover, we leverage identity-based encryption (IBE) to alleviate the bottleneck of public
key management. Furthermore, we conduct parameter analysis, rigorous security reduction,
and theoretical complexity comparison of our scheme and perform comprehensive evalua-
tions at a commodity machine for completeness. Our L-PEAKS satisfies IND-sID-CKA and
T-EUF security and is efficient in terms of space and computation complexity compared to
other existing primitives. Finally, we provide two potential applications to show its versatility.

Keywords: PEKS · Authorization · Lattice-based cryptography · LWE and SIS hardness.

1 Introduction

With the advent of security and privacy in the big data era, efficient data retrieval and sharing
have become more challenging. Boneh et al. proposed the concept of public key encryption with
keyword search (PEKS) primitive, which allows for searching encrypted data [1]. PEKS involves
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three entities: data sender, data user, and cloud server [2]. Specifically, a sender uploads encrypted
data with searchable ciphertext. Then, a user sends a trapdoor associated with a specific keyword
to the server for searching. If the keyword in the trapdoor matches it in the ciphertext, the server
will return the corresponding encrypted data to the receiver.

However, a searchable ciphertext is generated through a user’s public key and only one corre-
sponding secret key can search it. This will cause inconvenience in real-world scenarios, particularly
in enterprises where multiple employees are required to hold the search right for encrypted keywords
based on the enterprises’ public keys. Moreover, each user must obtain the enterprise’s secret key
to generate the trapdoor. This trivial protocol not only suffers from the abuse of secret keys but
also limits access control privileges. For instance, each user may be at a different access level and
can only search for limited keywords.

To address this issue, Jiang et al. proposed a solution where an administrator holds the en-
terprise’s secret key and grants search privileges to users [3]. In their scheme, the administrator
sets up an authorized keyword set for each user, who can only search for authorized keyword sets.
Then, the administrator distributes authorization tokens for each authorized keyword, which are
only valid for a short time interval to ensure security. Once the time expires, the administrator
must re-authorize a token for a user and thereby keep the timeliness of signatures.

The aforementioned scheme presents a promising variant of PEKS. Nevertheless, its security is
based on the discrete logarithmic (DL) assumptions, which have been proven vulnerable to attacks
by quantum computers [4,5]. In response to this, lattice-based cryptography has emerged as a rapidly
developing alternative [6, 7]. In addition, traditional PEKS schemes typically require computing a
public key for each user, resulting in significant storage overhead. To get around this, identity-based
encryption (IBE) seems to be a proper approach [8], where the public key can be an arbitrary string
(e.g. a user’s identity number or email address). It reduces the storage overhead of the public key
certificate effectively.

A straightforward approach is to adopt the conventional PEKS scheme, that is, treating iden-
tities as keywords and utilizing IBE for equality testing [1, 9]. However, directly implementing this
methodology can lead to significant complexity in key management. Specifically, when considering
identities as keywords, the system parameter and master secret key need to be treated as the user’s
public and secret keys, respectively [10]. In the context of a lattice-based instantiation, using IBE
primitives (e.g. [11, 12]) will result in a considerable computational overhead for generating public
and secret keys, as they consist of numerous large matrices and lattice basis. Consequently, this
methodology is not suitable for real-world scenarios.

Based on the above-mentioned discussions, the following question arises:

Can we construct an efficient PEKS primitive that can effectively authorize the keyword search
while maintaining quantum-safe security?

1.1 Our Contribution

We resolve the above question affirmatively and summarize our fourfold contributions as follows.

– We propose a novel primitive, namely lattice-based public key encryption with authorized key-
word search (L-PEAKS), which enables an authority to authorize users to search for specific
sets of keywords while also providing resistance against quantum computing. In L-PEAKS, key-
words are encrypted by a public key, and users who do not possess the corresponding secret keys
must be authorized by the authority. To reduce the storage overhead of public key certificates,
we employ an IBE structure and leverage the users’ identities as their public keys.
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– We incorporate a lattice signature into the PEKS to realize the authority, for the first time.
We accomplish this by defining two different keyword sets and utilizing lattice basis extension
algorithms. Specifically, the keyword is encrypted with a public key, and each authorized user
needs to apply for a search privilege from an authority. The authorization process is carried out
by the authority, which issues a token to the user and updates it in a timely manner.

– Moreover, we formalize and prove the security of L-PEAKS, including indistinguishability
against selective identity and chosen keywords attack (IND-sID-CKA), and trapdoor existen-
tial unforgeability (T-EUF). We further compare our L-PEAKS scheme to eleven other PEKS
primitives, evaluating their relative strengths across five security properties, and showcasing
our superiority in security and privacy.

– Ultimately, we implement our scheme in two moderate security parameter settings (n = 256 and
n = 320). Besides, we conduct a theoretical analysis of the space and computational complexities
in comparison to five other mechanisms. The results indicate that our scheme’s secret key and
ciphertext sizes outperform those of the other mechanisms, while the size of the trapdoor is
also relatively prominent. Subsequently, we present two potential applications to demonstrate
its practicality in real-world scenarios.

1.2 Technique Overview

In this part, we provide a concise technical overview. Firstly, we offer a high-level idea of our scheme.
Then, we present a thorough and step-by-step description of the techniques we utilized.

Technical Roadmap. To commence, we
present an overall structure, with a detailed tech-
nical roadmap in Fig. 1. We construct a novel
primitive L-PEAKS through three steps, that is,
L-PEKS, L-ID-PEKS, and L-PEAKS. We first
utilize the lattice sampling algorithms to trans-
form the PEKS into a lattice version. In addi-
tion, we introduce the notation of IBE into L-
PEKS to obtain L-ID-PEKS for the sake of ef-
ficiency. Furthermore, we incorporate the lattice
basis extension algorithm into the lattice signa-
ture for authorization. Eventually, we present L-
PEAKS, which is expressible as the concatena-
tion of L-ID-PEKS and lattice signature.
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Fig. 1. Technical Roadmap.

Step 1. How to construct appropriate lattice-based PEKS. Traditional PEKS schemes
use the TrapGen and SamplePre algorithms to calculate public-secret keys and a trapdoor, respec-
tively [13, 14]. We adopt the SamplePre algorithm to generate the secret key of users. We do not
consider TrapGen algorithm since we have utilized it to obtain the master secret key MSK. Addi-
tionally, our trapdoor is obtained by invoking trap2 ← SampleLeft(AID,Akw,SKID,u, s).

Step 2. Why and how to construct appropriate lattice-based ID-PEKS. In the conven-
tional PEKS scheme, the storage overhead of public key certificates is significant, which is unsuitable
for practical applications. Therefore, we leverage the concept of IBE and utilize the user’s identity
ID as the public key. To begin with, we utilize (A,TA)← TrapGen(n,m, q) algorithm to calculate
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a master secret key MSK = TA. Next, we employ a hash function H1 : {−1, 1}l → Zn
q to con-

vert the ID into a vector format, and then calculate the secret key of a user with identity ID as
skID ← SamplePre(A,TA, H1(ID), s).

Step 3. How to construct L-PEAKS. Informally speaking, constructing an L-PEASK prim-
itive is a combination of our designed ID-PEKS and lattice signature for authorization. Tech-
nically, we begin by defining two keyword sets, that is, a universal keyword set KSU and an
authorized keyword set KSW , where KSW ⊆ KSU . Moreover, we devise a mapping relationship
f(skID,kw) = skID +

∑k
i=1 kwimi ∈ Zm

q to realize a combination between one keyword kw and
a secret key skID. Subsequently, when it comes to all the keywords in KSU and KSW , we need to
construct a new approach to realize a combination between multi-keywords and a secret key skID.
Our intuition is to sum the above function f to get f1(skID) =

∑
kw∈KSU

f(skID,kw) ∈ Zm
q

and f2(skID) =
∑

kw∈KSW
f(skID,kw) ∈ Zm

q , corresponding to the KSU and KSW , respec-
tively. After that, we use the unauthorized keywords set (KSU − KSS) to compute a polynomial
F (skID) = f1(skID) − f2(skID) =

∑
kw∈{KSU−KSW } f(skID,kw) ∈ Zm

q for latter use. Now, we
show how to compute the authorize key SKID. Since we need a matrix to be an authorized key,
and the polynomial F (skID) is a vector, where its dimensions do not match. Therefore, we need
to invoke the RandBasis algorithm to calculate SKID ← RandBasis(F (skID), s1), which serves as a
stepping stone toward our goal. Finally, we can obtain the signature by processing several steps as
described in the remainder (Section 4).

1.3 Related Works

Jiang et al. initialized a PEAKS primitive, in which the authority can assign tokens with valid time
limits to each authorized keyword [3]. Following this work, Liu et al. proposed a public key en-
cryption with a hierarchical authorized keyword search (PEHAKS) scheme to render authorization
more flexible in real scenarios [15]. However, they cannot resist quantum computing attacks.

The concept of authorized keyword search has been widely used. In particular, Cui et al. formal-
ized attribute-based encryption with an expressive and authorized keyword search scheme, namely
ABE-EAKS, which allows the expressive keyword search and fine-grained access control in the cloud
computing [16]. In 2019, Xu et al. presented a scheme that enables keyword search by the author-
ity and authorized users [17]. After that, Wang et al. proposed a novel authorized keyword search
protocol over encrypted data with metadata (MD-AKS) in 2022, achieving a secure and flexible
mechanism to simultaneously process different fields of metadata [18].

1.4 Outline

The remainder of this paper is organized as follows. Section 2 covers the preliminary knowledge.
In section 3, we present the syntax and security models of lattice-based PEAKS primitive. The
construction will be elaborated on Section 4, while its correctness and parameter setting will be
specified in Section 5. In Section 6, we give the security reduction proofs. Section 7 specifies the
performance evaluation and comparison. Finally, we conclude this paper.

2 Preliminaries

2.1 Public Key Encryption with Keyword Search Scheme

A standard PEKS primitive consists of four polynomial algorithms:
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– (pk, sk)← KeyGen(λ): Given a security parameter λ, this probabilistic-polynomial time (PPT)
algorithm outputs pk and sk as a public key and secret key, respectively.

– ct← PEKS(pk, kw): Given a public key pk and a keyword kw, this PPT algorithm will output
a ciphertext ct.

– Trap ← Trapdoor(sk, kw′): Given a secret key sk and a keyword kw′, this PPT algorithm
outputs a trapdoor Trap.

– (1 or 0)← Test(ct,Trap): Given a ciphertext ct and a trapdoor Trap, this deterministic algorithm
outputs 1 if kw = kw′; Otherwise, it outputs 0.

2.2 Integer Lattice and Sample Algorithms

Definition 1 (Lattice). [19] Suppose that b1,b2, · · · ,bn ∈ Rm are n linearly independent vectors.
The m-dimensional lattice Λ is generated by a set of linear combinations, denoted as Λ = Λ(B) =
{x1 · b1 + x2 · b2 + · · ·+ xn · bn |xi ∈ Z}, where B = {b1,b2, · · · ,bn} ∈ Rm×n is the basis of Λ.

Definition 2 (q-ary Lattices). [20] Given n,m, q ∈ Z, and A ∈ Zn×m
q , we define the following

q-ary Lattices and a coset: Λq(A) := {e ∈ Zm|∃s ∈ Zn
q ,A

⊤s = e mod q}, Λ⊥
q (A) := {e ∈ Zm|Ae =

0 mod q}, and Λu
q (A) := {e ∈ Zm|Ae = u mod q}.

Definition 3 (Gaussian Distribution). Given a center c ∈ Zm, a positive parameter s ∈ R+,
and any x ∈ Zm, we define Dc,s = ρc,s(x)/ρc,s(Λ) for ∀x ∈ Λ as the Discrete Gaussian Distribution
over Λ with a center c, where ρc,s(x) = exp(−π ∥x−c∥2

s2 ) and ρc,s(Λ) =
∑

x∈Λ ρc,s(x). Specially, we
say D0,s abbreviated as Ds when c = 0.

Lemma 1 (TrapGen(n,m, q)). [21] Given parameters n,m, q ∈ Z, this PPT algorithm returns
A ∈ Zn×m

q and TA ∈ Zm×m
q , where TA is a basis of Λ⊥

q (A) s.t. {A : (A,TA)← TrapGen(1n, 1m, q)}
is statistically close to {A : A

$← Zn×m
q }. In this way, we say TA is a trapdoor of A.

Lemma 2 (SamplePre(A,TA,u, s)). [22] Given a matrix A ∈ Zn×m
q and its trapdoor TA ∈

Zm×m
q , a vector u ∈ Zn

q , and the parameter s ≤ ∥T̃A∥ · ω(
√
log(m)), where m ≥ 2n⌈log q⌉, this

PPT algorithm publishes a sample e ∈ Zm
q statistically distributed in DΛu

q (A),s s.t. Ae = u mod q.

Lemma 3 (SampleLeft(A,M,TA,u, s)). [23] Given a matrix A ∈ Zn×m
q and its corresponding

trapdoor TA ∈ Zm×m
q , a matrix M ∈ Zn×m1

q , a vector u ∈ Zn
q , and a parameter s ≤ ∥T̃A∥ ·

ω(
√
log(m+m1)), this PPT algorithm will output a sample t ∈ Zm+m1 from the distribution

statistically close to DΛu
q ([A|M]),s s.t. [A|M] · t = u mod q.

Lemma 4 (SampleRight(A,B,R,TB,u, s)). [23] Given a matrix A ∈ Zn×k
q , a matrix B ∈

Zn×m
q and its corresponding trapdoor TB ∈ Zm×m

q , a matrix R ∈ Zk×m
q , a vector u ∈ Zn

q , and
a parameter s ≤ ∥T̃B∥ · sR · ω(

√
log(m+m1)), where sR = sup∥x∥=1∥Rx∥, this PPT algorithm

will output a sample t ∈ Zm+k from the distribution statistically close to DΛu
q ([A|AR+B]),s s.t.

[A|AR+B] · t = u mod q.

Lemma 5 (RandBasis(T, s1)). [12] Given a trapdoor T of an m-dimensional integer lattice
Λ, a parameter s1 ≥ ∥T̃0∥ · ω(

√
log n), this PPT algorithm will output a trapdoor T′ of Λ, where

∥T′∥ ≤ s1
√
m with overwhelming probability. Moreover, given two lattice trapdoors T0, T1 and

a parameter s1 ≥ max{∥T̃0∥, ∥T̃1∥} · ω(
√
log n), the statistical distance between two outputs of

RandBasis(T0, s1) and RandBasis(T1, s1) algorithms is within negl(n).
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Lemma 6. [23] Suppose there is a random matrix A ∈ Zn×m, a short trapdoor TA of lattice
Λ⊥
q (A) (where m > n and q > 2), and a parameter s > ∥T̃A∥ · ω(

√
logm). After that, for any

c ∈ Rm and u ∈ Zn
q , we obtain Pr[x← DΛ⊥

q (A),s : ∥x∥ > s
√
m] ≤ negl(n).

2.3 The LWE and SIS Hardness Assumptions

Definition 4 (LWE Assumption). [6] Suppose there exists an integer q = q(n) and an error
distribution Ψ̄α in Zq, (Zq, n, Ψ̄α)-LWE contributes to distinguishing the distribution (ui, vi) =
(ui,u

⊤
i s + xi) ∈ Zn

q × Zq where s ← Zn
q randomly and uniform distribution on Zn

q × Zq. Among
that, Ψ̄α is the distribution of ⌊qX⌉ mod q over Zq, where X is normal variable with mean 0 and
standard deviation α/

√
2π.

Definition 5. [6] Given a prime q, a parameter α ∈ (0, 1), we denote Ψ̄α as the distribution over
Zq of the random variable ⌊qX⌉ mod q, where X is a normal random variable with mean 0 and
standard deviation α/

√
2π.

Lemma 7. [6] Given q > 2
√
n/α, if there exists a quantum algorithm for Zq, (Zq, n, Ψ̄α)-LWE

hardness, then it has a quantum algorithm for approximating the SIVP and GapSVP hardness to
within Õ(n/α) in the Euclidean norm for the worst case.

Lemma 8. [11] Given a vector e ∈ Zm and a uniformly random vector y
$← Ψ̄m

α , the parameter
|e⊤y| is deemed as an integer in {0, q − 1}, satisfying |e⊤y| ≤ ∥e∥

√
m
2 + ∥e∥qα · ω(

√
logm), except

with negligible probability negl(m).

Definition 6 (SIS Assumption). [20] Suppose a matrix A ∈ Zn×m
q and a bound parameter

β > 0, (q, n,m, β)-SIS contributes to finding a vector v ∈ Zm\{0} such that Av = 0 and ∥v∥ ≤ β.
Among that, in order to ensure the existence of vector v, we set β ≥

√
mqn/m.

Based on the above definition, we define the search (q, n,m, β)-SIS hardness as follows. Given a
matrix A ∈ Zn×m

q , a vector t ∈ Zn and a parameter d << qn/m, the search (q, n,m, β)-SIS hardness
contributes to finding a vector v ∈ {−d, · · · , 0, · · · , d}m such that Av = t.

Definition 7 ((qt, pmin, pmax) abort-resistant function). [20] Suppose H := {h : X → Y } be
a hash functions family from variable X to Y , we define that H is a (qt, pmin, pmax) abort-resistant
function, if the non-abort probability of x satisfies p(x) = Pr[h(x0) = 0 ∧ h(x1) ̸= 0 ∧ h(x2) ̸= 0 ∧
· · · ∧ h(xqt) ̸= 0] ∈ [pmin, pmax], where the input is x = (x0, x1, · · · , xqt) with x0 /∈ {x1, x2, · · · , xqt}
and the probability is over the selection of h ∈ H.

2.4 Rejection Sampling Technique

Lemma 9. [24] Given a positive integer m, for any s > 0, we have Pr[x ← D1
s : |x| >

ω(s
√
logm)] = 2−ω(logm), Pr[x← D1

s : |x| > 12s] < 2−100, and Pr[x← Dm
s : ∥x∥ > 2s

√
m] < 2−m.

Lemma 10. [24] Given a positive real number α, for any vector c ∈ Zm, if s = ω(∥v∥
√
logm),

we have Pr[x ← Dm
s : Dm

s (x)/Dm
s,c(x) = O(1)] = 1 − 2ω(logm), and more specifically, if s = α∥c∥,

we have Pr[x← Dm
s : Dm

s (x)/Dm
s,c(x) < e12/α+1/(2α2)] > 1− 2−100.
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The core idea of the rejection sampling technique for signature protocols is to make the distri-
bution of output signatures independent of the signing key. Normally, this technique works in the
following way. To sign a message µ, a signer with her secret key sk initially selects a random param-
eter y according to some distribution. Then, she computes the signature σ which is a combination
of y adding to a function of sk. Let the final signature distribution be f , which is independent of
sk, and also let the whole candidate signatures distribution be g, which may be related to sk. If f
and g are both probability distributions and it satisfies f(x) ≤Mg(x) for all x and positive number
M , then the candidate signature parameter σ can be published with f(σ)/(Mg(σ)). In this way,
the resulting distribution is f , and the expected number of this process outputs a sample is M [25].

We show an example of how to utilize the rejection sampling technique in signatures [24]. To
sign a message µ, a signer initially selects a random vector y ∈ Zm

q according to some distribution
D. After that, she computes a signature z = y+Sc, where matrix S is a secret key and vector c is a
hash value on the input of y and µ. The final signature is (z, c), which its distribution is independent
of S. By Lemma 10, and the distribution of z is Dm

s,Sc, we obtain that Dm
s (y)/Dm

s,Sc(y) ≈ e. As a
result, we know that there exists a real M(≈ e) such that if we output the signature (z, c) with
possibility min(1,

Dm
s (z)

MDm
skIDh,s(z)

). Then, according to Lemma 9, we have ∥z∥ ≤ 2s
√
m with high

probability. Therefore, the expected amount of running this process does not exceed M . Selecting
the output time of (z, c) can be seen as a kind of rejection sampling .

3 Syntax and Security Models

3.1 Syntax

A lattice-based PEAKS (L-PEAKS) scheme consists of five PPT algorithms and one deterministic
algorithm, Π = (Setup, KeyGen, Authorize, Encrypt, Trapdoor, Test).

– Setup(λ): Given a security parameter λ, this PPT algorithm outputs a public parameter pp and
a master secret key MSK.

– KeyGen(pp,MSK, ID): Given a public parameter pp, a master secret key MSK, and a user with
identity ID, this PPT algorithm outputs a secret key skID for the user ID.

– Authorize(pp, skID,KSW , t): Given a public parameter pp, a secret key skID of user with iden-
tity ID, an authorized keyword set KSW , and the authorized time t, this PPT algorithm outputs
an authorized token token.

– Encrypt(pp, ID,kw): Given a public parameter pp, a user with identity ID, and a keyword kw,
this PPT algorithm outputs a searchable ciphertext CT.

– Trapdoor(pp, ID, token,kw′): Given a public parameter pp, a user with identity ID, an au-
thorized token token, and a keyword kw′ ∈ KSW , this PPT algorithm outputs a trapdoor
Trap.

– Test(pp, ID,CT,Trap, t ′): Given a public parameter pp, a user with identity ID, a searchable
ciphertext CT, a trapdoor Trap, and the trapdoor-received time t′, this deterministic algorithm
outputs 1 or 0 based on judgment conditions.

Correctness. We say a lattice-based PEAKS primitive is correct if the following conditions hold:

Pr

Test(pp, ID,CT,Trap, t ′) = 1

∣∣∣∣∣∣∣∣∣∣
(pp,MSK)← Setup(λ);

skID ← KeyGen(pp,MSK, ID);
token← Authorize(pp, skID,KSW , t);

CT← Encrypt(pp, ID,kw);
Trap← Trapdoor(pp, ID, token,kw′)

 = 1− negl(λ). (1)
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3.2 Security Models

We now define two games from terms of indistinguishability against selective identity and chosen
keywords attack (IND-sID-CKA) as well as trapdoor existential unforgeability (T-EUF) below.

IND-sID-CKA Game of Lattice-based PEAKS The IND-sID-CKA game follows the original
IND-CKA model proposed by Boneh et al. [1]. In this game, an adversary A has the permission to
launch chosen keyword attacks and she plays this game with a challenger C as below.

– Setup. The adversary A announces a challenge keyword set KS∗W ⊆ KSU . Then, the challenger
C executes Setup algorithm to generate (pp,MSK) and sends pp to A. After that, A chooses a
challenge user with identity ID∗.

– Phase 1. A performs a polynomially bounded number of queries below.
• KeyGen Query. A enquires the secret key of a user with identity ID ̸= ID∗. C executes
KeyGen algorithm to generate skID and responds it to A.

• Authorization Query. A sends the keyword set KSW = KSU −KS∗W and an authorized
time t to C. Then, C executes Authorize algorithm to generate the authorized token token
and responds it to A.

• Trapdoor Query.A sends a keyword kw ∈ KSW and an authorized time t to C. C executes
Trapdoor algorithm to generate Trap and responds it to A.

– Challenge. A generates and sends two equal length keywords kw0,kw1 on which it wishes
to be challenged. The restrictions are that A did not query the authorized token for KS∗W ,
or the trapdoor for kw0, kw1. C selects a random bit b ∈ {0, 1} and calculates a searchable
ciphertext CT∗ for kwb with user’s identity ID∗. After that, C responds CT∗ to A as the
challenge ciphertext.

– Phase 2. A continues to perform the Authorization Query and Trapdoor Query for any
keyword kw excepts for kw0,kw1.

– Guess. Ultimately, A outputs a guess bit b′ = {0, 1} and she wins the game if b′ = b. We call
this kind of adversary A as IND-sID-CKA adversary. The advantage for A in attacking this
scheme is defined as a function related to the security parameter λ:

AdvIND-sID-CKA
A (λ) := |Pr[b = b′]− 1

2
|. (2)

Definition 8 (IND-sID-CKA secure of Lattice-based PEAKS). We say that our lattice-based
PEAKS scheme is IND-sID-CKA secure, if for any PPT adversaryA, the advantage AdvIND-sID-CKA

A
(λ) is negligible.

T-EUF Game of Lattice-based PEAKS In the T-EUF game, an adversary A has the permis-
sion to launch impersonation attack. Markedly, if A has been authorized, it is difficult to prevent
the impersonation attack. A plays this game with a challenger C as below.

– Setup. The adversary A announces a challenge keyword set KS∗W ⊆ KSU . Then, the challenger
C executes Setup algorithm to generate (pp,MSK) and sends pp to A. After that, A chooses a
challenge user with identity ID∗.

– Query. A performs a polynomially bounded number of queries below.
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• Hash Query. C maintains a list L(SKID, t, h), which is initially empty. When A queries
about (SKID, t), C searches the list L and then responds the answer to A.

• KeyGen Query. A enquires the secret key of a user with identity ID ̸= ID∗. C executes
KeyGen algorithm to generate skID and responds it to A.

• Authorization Query. A issues a keyword set and an authorized time t to C. Then, C
executes Authorize algorithm to generate the authorized token token and responds it to A.

• Trapdoor Query.A sends a keyword kw ∈ KSW and an authorized time t to C. C executes
Trapdoor algorithm to generate Trap and responds it to A.

– Forgery. A outputs a trapdoor tuple for keyword set KSW∗ , which has not been queried before.

Definition 9 (T-EUF secure of Lattice-based PEAKS). We say that our lattice-based PEAKS
scheme is T-EUF secure, if there is no PPT adversaryA who has the ability to forge a valid trapdoor
with a correct signature and authorized time with a non-negligible advantage.

4 Lattice-based Public Key Encryption with Authorized Keyword
Search

In this sector, we illustrate the concrete PEAKS scheme from lattice hardness. We start with a
brief overview of the techniques. We construct a lattice-based PEAKS primitive that allows an
administrative authority to authorize users to search different sets of keywords. In this scheme, the
keywords are encrypted with a public key, and users without the corresponding secret key must
be authorized by the authority to search the keywords. In addition, considering the troublesome
certificate management of traditional public key encryption, we combine with identity-based en-
cryption to simplify the key management and encrypt the user’s data directly through her identity,
which is more suitable for practical scenarios. Meanwhile, our scheme is designed to resist quantum
computing attacks.

– Setup(λ): After inputs a security parameter λ and sets several system parameters q, n,m, s, s1,
where q is a prime, s is the Gaussian distribution parameter, s1 is related to RandBasis algorithm,
and also defines a universal keyword space KSU , this algorithm processes the following steps.
• Invoke (A,TA)← TrapGen(n,m, q) algorithm to obtain a uniformly random n×m-matrix
A ∈ Zn×m

q and its basis TA ∈ Zm×m
q for Λ⊥

q (A).
• Select l uniformly random n×m-matrices A1,A2, · · · ,Al ∈ Zn×m

q , where l is the bit length
of identity vector ID.

• Select two uniformly random matrices B ∈ Zn×m
q and U ∈ Zn×k

q , where k is the bit length
of keyword kw.

• Select k uniformly random matrices M1,M2, · · · ,Mk ∈ Zn×m
q , and k uniformly random

vectors m1,m2, · · · ,mk ∈ Zm
q .

• Select a uniformly random vector u ∈ Zn
q .

• Select two collision-resistant hash functions:

H1 : {−1, 1}l → Zn
q ;H2 : Zn

q × {0, 1}∗ → {h : h ∈ Zq, |h| ≤ κ}; (3)

• Set and output a public parameter and master secret key as

pp = (A,A1,A2, · · · ,Al,B,U,M1,M2, · · · ,Mk ,m1,m2, · · · ,mk ,u, H1, H2, s, s1),MSK = TA.
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– KeyGen(pp,MSK, ID): Taking a public parameter pp, a master secret key MSK, and a user with
identity ID as input, this algorithm executes the following procedures.
• Set ID = (id1, id2, · · · , idl) ∈ {−1, 1}l as the identity (public key) of a user.
• Sample a vector skID ∈ Zm

q as

skID ← SamplePre(A,TA, H1(ID), s), (4)

where skID s.t. A · skID = H1(ID) and skID is statistically distributed in D
Λ

H1(ID)
q (A),s

.
• Output skID as a secret key of the user with identity ID.

– Authorize(pp, skID,KSW , t): After inputs a public parameter pp, a secret key skID of user with
identity ID and defines the authorized keyword set KSW (KSW ⊆ KSU ) together with the
authorized time t, this algorithm processes the following steps.
• Set a polynomial as

f(skID,kw) = skID +

k∑
i=1

kwimi ∈ Zm
q , (5)

where kw = (kw1, kw2, · · · , kwk), and kwi ∈ {0, 1} is each bit of kw.
• Set three polynomials as

f1(skID) =
∑

kw∈KSU

f(skID,kw) ∈ Zm
q , (6)

f2(skID) =
∑

kw∈KSW

f(skID,kw) ∈ Zm
q , (7)

F (skID) = f1(skID)− f2(skID) =
∑

kw∈{KSU−KSW }

f(skID,kw) ∈ Zm
q . (8)

We then involve a time period t in the signature σ. With time updates, the authority will
re-authorize the user with a novel authorization token to ensure the signature timeliness.
The authority generates the authorized key with its signature as below.

• Calculate an authorized key SKID ∈ Zm×m
q as

SKID ← RandBasis(F (skID), s1). (9)

• Select a random vector y ∈ Zm
q .

• Calculate a parameter h = H2(Ay,SKIDy, t) ∈ Zq, and a vector z = skID · h+ y ∈ Zm
q .

• Calculate a signature σ of an authorized key SKID as

σ = (h, z) = (H2(Ay,SKIDy, t), skIDh+ y) (10)

with probability min(1,
Dm

s (z)
MDm

skIDh,s(z)
), where t is the authorized time.

• The authority distributes an authorized token token = (SKID, σ,y, t) to the user through
a secure communication channel.

– Encrypt(pp, ID,kw): Taking a public parameter pp, a user with identity ID, and a keyword
kw ∈ KSU as input, this algorithm performs the following operations.
• Calculate a matrix Akw =

∑k
i=1 kwiMi+B ∈ Zn×m

q , where kwi ∈ {0, 1} is each bit of kw.
• Calculate a matrix AID =

∑l
i=1(idi +Ai) +B ∈ Zn×m

q .
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• Set a matrix AID,kw = (AID|Akw) ∈ Zn×2m
q .

• For i = 1, 2, · · · , k, uniformly random select k matrices Ri
$← {−1, 1}m×m.

• Calculate a matrix Rkw =
∑k

i=1 kwi ·Ri.

• Uniformly random select a noise value noi
$← Ψ̄α ∈ Zq and a noise vector noi $← Ψ̄m

α ∈ Zm
q .

• Uniformly random select a vector r ∈ Zn
q .

• Calculate two ciphertexts as

c0 = u⊤r+ noi ∈ Zq , and c1 = A⊤
ID,kw · r+ (noi,R⊤

kw · noi) ∈ Z2m
q . (11)

• Output a ciphertext tuple CT = (c0, c1).

– Trapdoor(pp, ID, token,kw): Given a public parameter pp, a user with identity ID, an autho-
rized token token, and a keyword kw ∈ KSW , this algorithm executes these operations below.

• Calculate a matrix Akw =
∑k

i=1 kwiMi +B ∈ Zn×m
q , where kwi ∈ {0, 1}.

• Calculate a matrix AID =
∑l

i=1(idi +Ai) +B ∈ Zn×m
q .

• Calculate a vector trap1 = SKIDy ∈ Zm
q .

• Sample a vector trap2 ∈ Z2m
q as

trap2 ← SampleLeft(AID,Akw,SKID,u, s). (12)

• Output a trapdoor tuple Trap = (trap1, trap2, σ, t).

– Test(pp, ID,CT,Trap, t ′): After input a public parameter pp, a user with identity ID, a cipher-
text CT, a trapdoor Trap, and t′ refers to the time when the server received the trapdoor Trap,
this algorithm will judge the validity of the above parameters.

• The server initially checks whether t′ ≤ t. If it satisfies this condition, the trapdoor is in
the authorized time.

• After that, the server checks h
?
= H2(Az−H1(ID)h, trap1, t) and ∥z∥

?
≤ 2s

√
m.

If this equation holds, the trapdoor is actually from an authorized user and processes the
following step.

• Finally, the server checks the error term |c0 − trap⊤
2 c1| ≤ ⌊

q
4⌋.

If this equation holds, it outputs 1 and the server publishes the corresponding encrypted
data to the authorized user; Otherwise, it outputs 0 and returns an error.

5 Correctness and Parameters

5.1 Parameters Setting

We need to make sure that these parameters are well set for our scheme to work properly: α =

[m2k2ω(log n)]
−1, q > 2

√
n

α , m = ⌈6n log q⌉, s = kmω(
√
log n) , q ≥ m2.5ω(

√
log n), κ s.t. 2κ ·(

512
κ

)
≥ 2100, M ≈ exp ( 12κ

√
m

s + (κ
√
m

2s )
2
).
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5.2 Correctness

We demonstrate that our scheme satisfies the correctness requirements we described previously.

Theorem 1. The proposed lattice-based PEAKS primitive is correct with overwhelming probability
if the above parameters are set properly.

Proof. We start by proving that the signature in Trapdoor algorithm is issued by an authority
correctly:

Az−H1(ID)h = A(skID · h+ y)−H1(ID)h

= A · skID · h+Ay −H1(ID)h

= H1(ID)h+Ay −H1(ID)h

= Ay

(13)

Thus, we obtain that h = H2(Ay,SKIDy, t)
?
= H2(Az−H1(ID)h, trap1, t). We also know the

distribution z is close to Dm
s according to the rejection sampling technique and Lemma 3 and then

we say ∥z∥ ≤ 2s
√
m with probability of over 1− 2−m due to Lemma 2 .

Furthermore, we illustrate that the error term computed by a matched trapdoor and keyword
ciphertext in Trapdoor and Test algorithms is less than ⌊ q4⌋ with overwhelming probability.

To begin with, we parse the trapdoor as trap2 = (trap1
2, trap

2
2) ∈ Zm

q ×Zm
q . After that, through

the triangle inequality, the error term is bounded by:

|c0 − trap⊤
2 c1| = |u⊤r+ noi− trap⊤

2 (A
⊤
ID,kw · r+ (noi,R⊤

kw · noi))|
= |u⊤r+ noi− (AID,kw · trap2)

⊤r− trap⊤
2 (noi,R

⊤
kw · noi)|

= |u⊤r+ noi− u⊤r− trap⊤
2 (noi,R

⊤
kw · noi)|

= |noi−

(
trap1

2
⊤

trap2
2
⊤

)
(noi,R⊤

kw · noi)|

= |noi− (trap1
2
⊤
+ trap2

2
⊤ ·R⊤

kw)noi|
= |noi− (trap1

2 +Rkw · trap2
2)

⊤noi|
≤ |noi|+ |(trap1

2 +Rkw · trap2
2)

⊤noi|

(14)

According to the standard Gaussian tail bound, we obtain |noi| < qαω(
√
logm) + 1

2 . Then,
according to Lemma 8, we have

|(trap1
2 +Rkw · trap2

2)
⊤noi| < s(km+

√
m)(qα · ω(logm) +

√
m

2
), (15)

with negligible probability negl(n). Hence, we now conclude that the error term is bounded by

|c0 − trap⊤
2 c1| ≤ O(sm1.5) + s(

√
m+ km)(qα · ω(

√
logm) +

√
m

2
)

≤ O(sm1.5) + qskmα · ω(
√
logm)

≤ O(m2.5 · ω(
√
logm)) :=

q

5
,

(16)

with overwhelming probability 1− negl(n). This is the end of correctness proof. In this way, it also
realizes that the inequality q > 2

√
n/α, ensuring the LWE assumption is as hard as the worst-case

SIVP and GapSVP hardness [6].
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6 Security Analysis

This section illustrates that the lattice-based PEAKS construction satisfies IND-sID-CKA and T-
EUF security. We analyze two security theorems and reduced them to the (Zq, n, Ψ̄α)-LWE and
(q, n,m, β)-SIS hardness, respectively.

We introduce a hash family and a lemma for later proof H: {hθ : Zk
q/{0k} → Zq} as h(kw) =

1 +
∑k

i=1 θ · kwi ∈ Zq, where kw = (kw1, kw2, · · · , kwk) ∈ {0, 1}k and θ = (θ1, θ2, · · · , θk) ∈ Zk
q .

Lemma 11. [11] Given a prime number q and 0 ≤ qt ≤ q, then we say the hash family H defined
above satisfies (qt,

1
q (1−

qt
q ),

1
q ) abort-resistant.

Theorem 2. The proposed lattice-based PEAKS primitive is IND-sID-CKA secure assuming that
the (Zq, n, Ψ̄α)-LWE hardness holds. For a polynomial (qk, qa, qt, ϵ) adversary A, if A has the ability
to win the game with advantage ϵ by performing at most qk KeyGen queries, qa Authorization queries,
and qt Trapdoor queries, then a challenger C can solve the (Zq, n, Ψ̄α)-LWE hardness.

Proof. We adopt a sequence of games to prove this theorem and also illustrate that it does not exist
a polynomial (qk, qa, qt, ϵ) adversary A can distinguish these games.

Game 0: This is the real game, which is the same as described in Definition 8.
Game 1: This game is identical to Game 0, except that calculate Mi = AID∗ · R∗

i + θi · B
instead of choosing is uniformly random from Zn×m

q , where R∗
i

$← {−1, 1}m×m and θi
$← Zq. As

for the challenge keyword kw, let Rkw =
∑k

i=1 kwiR
∗
i and (R∗

kw)⊤ · noi ∈ Zm
q to construct a

challenge ciphertext CT∗. In this way, if A can distinguish Game 0 and Game 1, then there
exists a challenger C who can distinguish between Mi and a matrix chosen uniformly random in
Zn×m
q . In the view of A, Game 0 and Game 1 are statistically indistinguishable due to the fact

that Mi for i = 1, 2, · · · , k are statistically close to uniform distribution. Hence, we acquire:

Pr[Game0(1
λ) = 1] = Pr[Game1(1

λ) = 1].

Game 2: This game is identical to Game 1, except except for the addition of an artificial
abort. The difference between these two games is reflected in the initial and final parts. On the one
hand, C selects a hash function h ∈ H at random and keeps it secret. When C receives the secret
key of user with identity ID ̸= ID∗ and Trapdoor queries of keywords set kw1,kw2, · · · ,kwqt

(the selected keyword is not in it) from adversary A, she will respond the Trapdoor queries and
the challenge ciphertext same as in Game 1. On the other hand, given a user with identity ID∗

and a keyword kw∗, A sends the final guess to C. After that, C checks the guess if h(kwi ̸= 0)
for i = 1, 2, · · · , qt and h(kw∗ = 0). If the conditions are not fulfilled, C re-selects a random
bit b′ ∈ {0, 1} and then aborts the game. Furthermore, C randomly chooses a bit β ∈ {0, 1} s.t.
Pr[β = 1] = τ(kw∗,kw1,kw2, · · · ,kwqt), where τ(·) is a function presented in [26]. As a result,
the above-mentioned changes are independent for A, we conclude that:

Pr[Game1(1
λ) = 1] ≤ 1

4q
Pr[Game2(1

λ) = 1].

Game 3: This game is identical to Game 2, except that change the calculation methods of
A and B. In this game, C uniformly selects A ← Zn×m

q at random. Then, C calls the TrapGen
algorithm to generate the matrix B and its basis TB. In this way, the response for KeyGen
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queries of C are the same as those in Game 2. As for the Trapdoor query, a user with iden-
tity ID sets AID,kw = (AID|Akw) = (AID|

∑k
i=1 kwiMi + B) = (AID|AID · Rkw + h(kw) ·

B), where Rkw =
∑k

i=1 kwiR
∗
i and h(kw) = 1 +

∑k
i=1 kwi · θi. After that, sample trap2 ←

SampleRight(A, h(kw)B,Rkw,TB,u, s) ∈ Z2m
q as the output of the Trapdoor query. In this way,

trap2 is close to the distribution Dλu
q (AID,kw) in Game 2. Accordingly, for the view of A, Game 2

and Game 3 are statistically indistinguishable. Therefore, we have:

Pr[Game2(1
λ) = 1] = Pr[Game3(1

λ) = 1].

Game 4: This game is identical to Game 3, except that C chooses the challenge ciphertext
CT = (c0, c1) ∈ Zq×Z2m

q at random. In this way, A cannot win the game since CT is calculated from
a random ciphertext space. We define a simulator to illustrate the computational indistinguishability
between Game 3 and Game 4 from the perspective of A.

Reduction from LWE: Suppose that there exists an adversary A and a PPT challenger C has
the ability to solve the LWE hardness over ϵ′ probability for a target user with identity ID∗.

Setup: For i = 0, 1, · · · ,m, C randomly samples the entries of a LWE hardness as (ui, vi) ∈
Zn
q×Zq. Afterward, C performs these operations. (1) Assume AID∗ = (u1,u2, · · · ,um). (2) Calculate

several matrices (A, A1, A2, · · · , Al) same as Game 0 and matrices (B, M1, M2, · · · , Mk) same
as Game 2. (3) Respond the new public parameter pp=(A, A1, A2, · · · , Al, B, M1, M2, · · · , Mk,
u0) to A.

Phase 1: In this phase, A enquires the secret key of a user with identity ID. C responds the
queries as below.

– KeyGen Query. With regard to the qt queries for the secret key of a user with identity ID ̸= ID∗,
C responds to the following answer. (1) Calculate AID =

∑l
i=1(idi +Ai) +B. (2) Perform the

SamplePre(A,TA, H1(ID), s) algorithm to generate skID and then respond it to A.
– Authorization Query. A queries an authorized token for the keyword set KSU −KSW∗ on time

t. For each keyword kw ∈ KSU − KSW∗ , and each user with identity ID ̸= ID∗, perform the
RandBasis(F(skID), s1) algorithm to calculate SKID, where F (skID) = f1(skID)− f2(skID) =∑

kw∈{KSU−{KSU−KSW∗}} f(skID,kw) =
∑

kw∈{KSU−{KSU−KSW∗}} f(skID +
∑k

i=1 kwi · mi).
After that, C chooses a random vector y ∈ Zm and calculates h = H2(Ay,SKID · y, t) and
z = skID · h+ y to obtain the signature σ = (h, z) with probability min(1,

Dm
s (z)

MDm
skIDh,s(z)

), where

t is the authorized time. Finally, C responds token = (SKID, σ,y, t) to A.
– Trapdoor Query. A queries a trapdoor of a keyword kw for a user with identity ID∗. If h(kw) =

0, abort this game and return a bit b′ ∈ {0, 1} at random. Otherwise, operate the steps below.
• If kw ∈ KSU − KSW∗ , A can calculate the authorized token according to access the
Authorization Query and then generate the trapdoor by herself.

• If kw ∈ KSW∗ , C responds the query as follows. (1) Perform the TrapGen algorithm to
generate B ∈ Zn×m

q together with its trapdoor TB of Λ⊤
q (B). (2) For i = 1, 2, · · · , k,

randomly select R∗
i

$← {−1, 1}m×m and k random parameters θi ∈ Zq. (3) Then, compute
Mi = AID∗ ·R∗

i +θi ·B ∈ Zn×m
q . In this case, AID,kw = (AID|Akw) = (AID|

∑k
i=1 kwiMi+

B) = (AID|AID · Rkw + h(kw)B), where Rkw =
∑k

i=1 kwiR
∗
i ∈ Zm×m

q . (4) After that,
compute trap1 = SKID · y ∈ Zm

q . (5) Further, invoke the SampleRight(AID∗ , h(kw)B)
algorithm to generate trap2 of user with identity ID∗ on the keyword kw. (6) Ultimately,
respond a trapdoor tuple Trap = (trap1, trap2, σ, t) to A.
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Challenge: When the queries end, A publishes kw0 and kw1 to C, C checks if h(kw∗) = 0.

– If the above equation holds, C will abort the game and respond a bit b′ ∈ {0, 1} at random.
– Otherwise, C calculates the challenge ciphertext for a target user with identity ID∗ through

the following procedures. (1) Calculate a vector v∗ =

 v1...
vm

 ∈ Zm
q and a scalar c∗0 = v0 ∈ Zq.

(2) Select a challenge keyword kw∗ ∈ {kw1,kw2} at random, and for i = 1, 2, · · · , k, compute

Rkw∗ =
∑k

i=1 kw
∗
iR

∗
i . (3) Calculate c∗1 =

[
v∗

(Rkw∗)⊤ · v∗

]
∈ Z2m

q and select a bit b ∈ {0, 1}.

(4) If b = 0, respond CT∗ = (c∗0, c
∗
1) to A. If b = 1, randomly select CT = (c0, c1) ∈ Zq × Z2m

q

and send it to A.

Phase 2: In this phase, the simulator repeats the same procedures as in Phase 1 with forbidden
to query the challenge keywords kw0 and kw1.

Guess: The challenger C processes the artificial abort operation at the outset. For i = 1, 2, · · · , qt,
C determines that if both h(kw∗) = 0 and h(kwi) ̸= 0 are satisfied, where kw∗ is the target key-
word and kw∗ /∈ {kw1,kw2, · · · ,kwqt}. If the conditions are met, C publishes the guess as the
response for solving the LWE hardness problem. Otherwise, C outputs a random bit b′ from {0,1}
and then aborts this game. At the end of all queries, A outputs a guess b′.

On the one hand, if the LWE hardness is a pseudo-random oracle, we have Akw∗ = (AID∗ |Rkw∗)

due to h(kw∗) = 0. As for the random noise noi
$← Ψ̄m

α ∈ Zm
q , we have v∗ = A⊤

ID∗ · r + noi.
Consequently, we obtain:

c∗1 =

[
A⊤

ID∗r+ noi

(AID∗Rkw∗)⊤r+ (Rkw∗)
⊤
noi

]
=

[
AID∗

Rkw∗

]
r+

[
noi

(Rkw∗)
⊤
noi

]
= A⊤

kw∗r+

[
noi

(R∗
kw)

⊤
noi

]
.

Under this circumstances, CT∗ = (c∗0, c
∗
1) is a valid challenge ciphertext since both c∗0 = u⊤r+ noi

and c∗1 are valid.
On the other hand, if the LWE hardness is a purely random oracle, we have v0

$← Zq, and

v∗ $← Zm
q . In this context, the challenge ciphertext CT∗ is uniform in Zq × Z2m

q .
Now, we assume [pmin, pmax] be the probability interval of artificial abort which does not address

in the Trapdoor query. Based on the above discussion and Lemma 11, we obtain that |pmax−pmin| ≥
qt
q2 , where qt ≤ q

2 and pmin ≥ 1
2q . As a result, we need to ensure that the parameter q is large enough

to construct negl(n) to be a negligible function.
Thus, the advantage for C to solve the LWE hardness is summarized as:

AdvLWE
C ≥ 1

2
((pmax − pmin) + pmin|Pr[b′ = b]− 1

2
|) ≥ p

4q
+ negl(n).

In a nutshell, we conclude: |Pr[Game3(1
λ) = 1]− Pr[Game4(1

λ) = 1]| ≤ AdvLWE
C .

Up to this point, we have verified that the above theorem holds.

Theorem 3. The proposed lattice-based PEAKS primitive is T-EUF secure assuming that the
(q, n,m, β)-SIS hardness holds, where β ≈ Õ(∥z∥). For a polynomial (qh, qk, qa, qt, ϵ) adversary A,
if A can win the game with advantage ϵ by performing at most qh Hash queries, qk KeyGen queries, qa
Authorization queries, and qt Trapdoor queries, and A can break the signature generation process of
Authorization algorithm with advantage δ, then a challenger C can solve the (q, n,m, β)-SIS hardness.
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Proof. If there is an adversary A who can attack the trapdoor existential unforgeability with a
non-negligible advantage, then she can also solve the (q, n,m, β)-SIS assumption. A initially sets
the challenge user with identity ID∗. We simulate the interaction between A and a challenger C as
follows.

Setup: The adversary A announces a challenge keyword set KS∗W ⊆ KSU . Then, C performs
these procedures. (1) Calculate several matrices (A, A1, A2, · · · , Al) and matrices (B, M1, M2,
· · · , Mk) same as the original T-EUF Game in Section 3.2. (2) Select a challenge user with identity
ID∗ and calculate a matrix AID∗ =

∑l
i=1(id

∗
i +Ai) +B ∈ Zn×m

q . (3) Respond a public parameter
pp=(A, A1, A2, · · · , Al, B, M1, M2, · · · , Mk) to A.

Query: A performs the following queries, and C responds the queries to A.

– Hash Query. C maintains a list L(SKID, t, h), which is initially empty. When A queries about
(SKID, t), C searches the list L. If the tuple (SKID, t, h) exists, C will return h to A. Otherwise,
C randomly selects a vector y and calculates h = H2(Ay,SKIDy, t). After that, C returns h to
A and adds the tuple (SKID, t, h) to list L.

– KeyGen Query. With regard to the qt queries for the secret key of a user with identity ID ̸= ID∗,
C responds to the following answer. (1) Calculate AID =

∑l
i=1(idi +Ai)+B. Assume that the

i-th bit of the user with identity ID∗ and ID are different due to ID∗ ̸= ID. (2) Perform the
SamplePre(A,TA, H1(ID), s) algorithm to generate skID and then respond it to A.

– Authorization Query.A queries an authorized token for a keyword set on time t. For each keyword
kw and each user with identity ID ̸= ID∗, perform the RandBasis(F(skID), s1) algorithm to
compute SKID, where F (skID) = f1(skID) − f2(skID) =

∑
kw∈{KSU−KSW } f(skID,kw) =∑

kw∈{KSU−KSW } f(skID+
∑k

i=1 kwi ·mi). After that, C chooses a random vector y ∈ Zm and
calculates h = H2(Ay,SKID ·y, t) and z = skID ·h+y to obtain the signature σ = (h, z) with
probability min(1,

Dm
s (z)

MDm
skIDh,s(z)

), where t is the authorized time. Finally, C responds token =

(SKID, σ,y, t) to A.

– Trapdoor Query. A queries a trapdoor of a keyword kw. Then, A calculates the authorized token
by asking for the Authorization Query and generates the trapdoor herself.

Forgery: Assume there exists a signature σ = (h, z). For kw ∈ KSW∗ , A executes the Trapdoor
algorithm to generate a trapdoor tuple Trap∗ = (trap∗

1, trap
∗
2, σ

∗, t∗) = (trap∗
1, trap

∗
2, h

∗, z∗,
t∗). Since Trap∗ is a valid trapdoor, we obtain that σ∗ = (h∗, z∗) is a valid forged signature and
the tuple (SK∗

ID, t∗, h∗) is in the list L. In this way, we have H2(Az∗ − H1(ID)h,SK∗
IDy, t) =

H2 (Az−H1 (ID)h,SKIDy, t). If SKID ̸= SK∗
ID or Az∗−H1(ID)h ̸= Az−H1 (ID)h, it means A

finds the pre-image of the hash function. Therefore, we have SKID = SK∗
ID and Az∗−H1(ID)h =

Az−H1 (ID)h and so A(z− z∗) = 0. In addition, we notice that z−z∗ ̸= 0, and due to ∥z∥, ∥z∗∥ ≤
2s
√
m, we have that ∥z− z∗∥ ≤ 4s

√
m. Consequently, ∥z− z∗∥ is a solution of the (q, n,m, β)-SIS

assumption.

According to Lemma 5.3 and 5.4 [24], the probability for finding a solution of the (q, n,m, β)-SIS
assumption is ϵ = ( 12 − 2−100)(δ − 2−100)( δ−2−100

qh+qa
− 2−100) ≈ δ2

2(qh+qa)
. Therefore, C can solve the

(q, n,m, β)-SIS assumption with probability ϵ.
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7 Performance Evaluation and Comparison

All the experiments4 for our primitive is accomplished on a Windows 10 Laptop with Core i7-
11800H CPU 2.30 GHz and 24 GB RAM. We use Matlab to implement our scheme and set the
security parameter as n = 256,m = 9753, q = 4093 and n = 320,m = 13133, q = 8191 following the
existing works [10,27,28]. Our comprehensive performance evaluations are illustrated in Fig. 2. As
for 2(a), we obtain the time cost for the MSK generation algorithm ten times under two security
parameter settings (n = 256 and n = 320). In addition, we indicate the performance of KeyGen,
Encrypt, and Trapdoor & Test algorithms in Fig. 2(b), 2(c), and 2(d), respectively.

(a) MSK generation (b) KeyGen algorithm

(c) Encrypt algorithm (d) Trapdoor and Test algorithms

Fig. 2. Performance Evaluation of L-PEAKS Scheme.

Subsequently, we compare our L-PEAKS primitive with existing schemes [1–3,10,14,15,18,29–33]
in three aspects: security properties, space complexity, and computation complexity.

4 Note that since the running time of the program will vary depending on the state of the machine at the
time of each measurement, the trend and speed ratios for each run should be consistent with those in
this paper.
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A comparative security analysis of our L-PEAKS scheme and existing PEKS and PEAKS mech-
anisms is elaborated in Table 1. From the table, it is evident that schemes [1, 10, 14, 18] as well as
our scheme incorporates the concept of identity-based encryption. Moreover, schemes [2, 10, 14, 32]
along with our scheme demonstrate resistance against quantum computing attacks.

For the authorized property, scheme [3, 15, 18, 29] and our scheme meets the requirement. The
security property IND-CKA is essential and is not satisfied by only one scheme [30] among the
existing schemes. As for the T-EUF security, it is achieved by schemes [3,29] and our scheme out of
the eleven existing schemes we compared. In summary, our L-PEAKS scheme is the only one that
effectively addresses all the security concerns.

Table 1. Security properties comparison with other existing PEKS and PEAKS schemes

Schemes ID QR Authorize IND-CKA T-EUF

Boneh et al. [1] ✓ × × ✓ ×
Xu et al. [2] × ✓ × ✓ ×
Jiang et al. [3] × × ✓ ✓ ✓
Jiang et al. [29] × × ✓ ✓ ✓
Huang et al. [30] × × × × ×
Xu et al. [10] ✓ ✓ × ✓ ×
Wang et al. [18] ✓ × ✓ ✓ ×
Chen et al. [31] × × × ✓ ×
Liu et al. [32] × ✓ × ✓ ×
Zhang et al. [14] ✓ ✓ × ✓ ×
Liu et al. [15] × × ✓ ✓ ×
Our scheme ✓ ✓ ✓ ✓ ✓

Notes. ID: Identity-based scheme. QR: Quantum-resistance.

Table 2. Space complexity comparison

Schemes Secret key Size Ciphertext Size Trapdoor Size

Cheng et al. [33] |Zm×m| |Z8m×ℓS
q | |Z8m×ℓR

q |
Xu et al. [10] |Z(m+m′)×(m+m′)

q | |Z2(m+m′)
q | |Z2(m+m′)

q |
Xu et al. [2] |Zm+κ

q | |Zρ((d+3)m+2)
q | |Z(d+3)m

q |
Liu et al. [32] |Zm+nκ+m×m

q | |Zρ(2m+2)
q | |Z2m

q |
Zhang et al. [14] |Zm×m| |Z(m+1)×ρ

q | |Zm
q |

Our scheme |Zm
q | |Z2m+1

q | |Z4m+2
q |

We also demonstrate the comparison analysis of space complexity and computation complexity
with other five primitives [2, 10, 14, 32, 33] in Tables 2 and 3, respectively. In Table 2, we compare
the secret key size, ciphertext size, and trapdoor size with others. As for Table 3, we analyze the
computation complexity of the encryption, trapdoor, and search algorithms. From Table 2 and
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Table 3. Computation complexity comparison

Schemes Encrypt Comp. Trapdoor Comp. Search Comp.

Cheng et al. [33] O(ρmℓS) O(ρmℓR) O(n2)
Xu et al. [10] O(n3) O(ρ(m+m′)) O(n2)
Xu et al. [2] O(κn3) O(n3) O(κn2)
Liu et al. [32] O(κn3) O(n3) O(κn2)
Zhang et al. [14] O(n2) O(ρm2) O(n2)
Our scheme O(n3) O(ρm) O(n2)

Table 3, it is evident that our L-PEAKS scheme guarantees excellent security performance without
introducing additional space and computation overheads.

8 Potential Applications

We show two applications in a novel context of utilizing the proposed scheme.
Application in the cloud-assisted IoT scenario. Cloud-assisted IoT combines the advantages
of cloud computing and IoT to facilitate data collection from the real world, data sharing, and data
analysis [34,35]. While traditional PEKS schemes can support ciphertext search over cloud-assisted
IoT. However, sometimes it may be necessary to manage the authority of searchers hierarchically. For
instance, in an enterprise, ordinary employees can only search for authorized information authorized
by the managers. Our L-PEAKS scheme features quantum resistance, ciphertext search, and search
privilege control, which is suitable for cloud-assisted IoT scenarios.
Application in the flexible metadata scenario. Metadata plays a crucial role in organizing,
finding, and comprehending data [18, 36]. However, it also holds a large amount of sensitive infor-
mation. In addition to the requirement for ciphertext search, it is also important to consider the
search privilege over metadata. For instance, when it contains commercial attributes, we should
appropriately label them as private or public for different scenario needs. Therefore, our proposed
L-PEAKS not only ensures a secure and flexible mechanism for handling metadata search privileges
but also enjoys quantum security.

9 Conclusion

In this paper, we propose an L-PEAKS primitive from LWE and SIS hardness. It allows an authority
to authorize users to search different keyword sets and maintains quantum resistance for the first
time. In particular, we leverage the philosophy of lattice sampling algorithms and basis extension
algorithms to achieve these properties. We also introduce the IBE notation to support users to
encrypt data directly via their identities to reduce the storage overhead of public key certificates.
After that, we conduct a detailed security reduction and comprehensive performance evaluation
of our scheme. Finally, we provide theoretical comparisons with regard to space and computation
complexity and show two application scenarios.
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