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ABSTRACT

With the widespread development of database systems, data se-

curity has become crucial when it comes to sharing among users

and servers. A straightforward approach involves using searchable

encryption to ensure the confidentiality of shared data. However,

in certain scenarios, varying user tiers are granted disparate data

searching privileges, and administrators need to restrict the searcha-

bility of ciphertexts to select users exclusively. To address this issue,

public key encryption with authorized keyword search (PEAKS)

was proposed, wherein solely authorized users possess the ability to

conduct targeted keyword searches. Nonetheless, it is vulnerable to

resist quantum computing attacks. As a result, research focusing on

authorizing users to search for keywords while achieving quantum

security is far-reaching. In this paper, we propose a lattice-based

variant of PEAKS (L-PEAKS) that enables keyword dataset autho-

rization for outsourced data management. Unlike existing schemes,

our design incorporates identity-based encryption (IBE) to over-

come the bottleneck of public key management. Besides, we utilize

several lattice sampling algorithms to defend against attacks from

quantum adversaries. Specifically, each authorized user must obtain

a search privilege from an authority. The authority distributes an

authorized token to the user within a specific time period, and the

user generates a trapdoor for any authorized keywords. Our scheme

is proven to be secure against IND-sID-CKA and T-EUF security in a

quantum setting. We also conduct comprehensive evaluations on a

commodity machine to assess completeness and provide theoretical

complexity comparisons with existing state-of-the-art schemes.
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1 INTRODUCTION

In the big data era, outsourced data retrieval and sharing have been

widely used due to its well-understood benefits, i.e. convenient

storage, and on-demand access [38]. Meanwhile, it also brings seri-

ous data security issues, such as private information disclosure [7],

[20], [35]. In order to ensure the security for outsourced data man-

agement [37], the concept of public key encryption with keyword

search (PEKS) scheme was proposed, which allows for searching

encrypted data [6]. Specifically, a sender uploads encrypted data

with searchable ciphertext. Then, a user sends a trapdoor associated

with a specific keyword to the server for searching. If the keyword

in the trapdoor matches it in the ciphertext, the server will return

the corresponding encrypted data to the receiver [34].

However, in traditional PEKS schemes, a ciphertext is generated

through a user’s public key and only one corresponding secret

key can search it, which will cause inconvenience in real-world

scenarios, particularly in enterprises where multiple employees are

required to hold the search right for encrypted keywords based on

the enterprises’ public keys. Additionally, each user must obtain

the enterprise’s secret key to generate the trapdoor. This trivial

protocol not only suffers from the abuse of secret keys but also

results in casual access for users. For instance, each user may be at

a different access level and can only search for limited keywords.

To get around this issue, Jiang et al. proposed a PEAKS scheme

where an administrator holds the enterprise’s secret key and grants

search privileges to users [18]. In their scheme, the administrator

sets up an authorized dataset for each user, who can only search

for authorized datasets. Then, it distributes authorization tokens

for each authorized keyword, which are only valid for a short time

interval to ensure security. Once the time expires, the administrator

must re-authorize a token for the user and thereby keep the timeli-

ness of signatures. Nevertheless, all existing PEAKS schemes [18],

[29], [13], [16], [19], [21], [14] are based on the discrete logarithmic

(DL) assumptions, which have been proven vulnerable to attacks

by quantum computers [28], [31].

In this paper, we aim to design a post-quantum PEAKS scheme

that supports user-authorization for outsourced data management.

A straightforward approach is to adopt the conventional PEKS

scheme, that is, treating identities as keywords and utilizing IBE

for equality testing [6], [1]. However, directly implementing lattice-

based PEKS can lead to significant complexity in key management

[27], [11]. Specifically, when considering identities as keywords,

the system parameter and master secret key need to be treated as

the user’s public and secret keys, respectively [33]. In the context of

lattice-based instantiations, simply using identity-based encryption
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(IBE) schemes (e.g. [2], [9]) will result in a considerable compu-

tational overhead for generating public and secret keys, as they

consist of numerous large matrices and lattice basis.

To address the above-mentioned issues, we propose a lattice-

based PEAKS scheme for outsourced data management, realizing a

searchable encryption scheme supporting user-authorization in a

quantum setting. Specifically, we incorporate a lattice-based signa-

ture into the PEKS to realize the authorization, achieved by defining

two different datasets and utilizing lattice basis extension algo-

rithms. Each authorized user needs to apply for a search privilege

from an authority. The authorization process is carried out by the

authority, which issues a token to the user and updates it in a timely

manner. We highlight our threefold contributions as follows:

• We design a lattice-based public key encryption with autho-

rized keyword search (L-PEAKS) scheme, enabling an authority

to authorize users to search for specific sets of keywords while

resisting to quantum attack. To reduce the storage overhead

of public key certificates, we employ an IBE structure and

leverage the users’ identities as their public keys.

• Moreover, we formalize and prove the security of L-PEAKS,

including indistinguishability against selective identity and

chosen keywords attack (IND-sID-CKA), and trapdoor existen-

tial unforgeability (T-EUF). We further compare our scheme

with prior art to showcase our superiority.

• Ultimately, we implement our scheme in twomoderate security

parameter settings (𝑛 = 256 and 𝑛 = 320) and open-source the

code. Besides, we conduct a theoretical analysis of the space

and computational complexities in comparison to five other

mechanisms. The results indicate that our scheme’s secret key

and ciphertext sizes outperform those of the other mechanisms,

while the size of the trapdoor is also relatively prominent.

2 RELATEDWORKS

Jiang et al. initialized a PEAKS scheme, in which the authority can

assign tokens with valid time limits to each authorized keyword

[18]. Following this work, Cui et al. formalized attribute-based en-

cryption with an expressive and authorized keyword search scheme,

namely ABE-EAKS, which allows the expressive keyword search

and fine-grained access control in the cloud computing [13]. In 2019,

Xu et al. presented a scheme that enables keyword search by the

authority and authorized users [32]. Recently, Liu et al. proposed

a public key encryption with a hierarchical authorized keyword

search (PEHAKS) scheme to render authorization more flexible in

real scenarios [21]. After that, Wang et al. proposed a novel autho-

rized keyword search protocol over encrypted data with metadata,

achieving a secure and flexible mechanism to simultaneously pro-

cess different fields of metadata [29]. To our best knowledge, none of

the existing searchable encryption with user-authorization schemes

can resist quantum computing attacks.

3 PRELIMINARIES

3.1 Lattice and Sampling Algorithms

Definition 1. [3] Suppose that b1, b2, · · · , bn ∈ R𝑚 are𝑛 linearly
independent vectors. The𝑚-dimensional lattice Λ is generated by a set
of linear combinations, denoted asΛ = {𝑥1 ·b1+𝑥2 ·b2+· · ·+𝑥𝑛 ·bn |𝑥𝑖 ∈
Z}, where B = {b1, b2, · · · , bn} ∈ R𝑚×𝑛 is the basis of Λ.

Definition 2. Given a center c ∈ Z𝑚 , a positive parameter 𝑠 ∈
R+, and any x ∈ Z𝑚 , we define Dc,𝑠 = 𝜌c,𝑠 (𝑥)/𝜌c,𝑠 (Λ) for ∀𝑥 ∈ Λ
as the Discrete Gaussian Distribution over Λ with a center c, where
𝜌c,𝑠 (𝑥) = exp(−𝜋 ∥x−c∥

2

s
2
) and 𝜌c,𝑠 (Λ) =

∑
𝑥∈Λ 𝜌c,𝑠 (𝑥). Specially,

we say D0,𝑠 abbreviated as D𝑠 when c = 0.

Lemma 1. [24] Given parameters 𝑛,𝑚,𝑞 ∈ Z, this PPT algorithm
returnsA ∈ Z𝑛×𝑚𝑞 andTA ∈ Z𝑚×𝑚𝑞 , whereTA is a basis ofΛ⊥𝑞 (A) s.t.
{A : (A,TA) ← TrapGen(1𝑛, 1𝑚, 𝑞)} is statistically close to {A :

A
$← Z𝑛×𝑚𝑞 }. We say TA is a trapdoor of A.

Lemma 2. [15] Given a matrix A ∈ Z𝑛×𝑚𝑞 and its trapdoor TA ∈
Z𝑚×𝑚𝑞 , a vector u ∈ Z𝑛𝑞 , and the parameter 𝑠 > ∥ ˜TA∥ · 𝜔 (

√︁
log(𝑚)),

where𝑚 ≥ 2𝑛⌈log𝑞⌉, the SamplePre(A,TA, u, 𝑠) algorithm publishes
a sample e ∈ Z𝑚𝑞 statistically distributed in DΛu

𝑞 (A),𝑠 s.t. Ae = u
mod 𝑞.

Lemma 3. [8] Given a matrix A ∈ Z𝑛×𝑚𝑞 and its corresponding
trapdoor TA ∈ Z𝑚×𝑚𝑞 , a matrixM ∈ Z𝑛×𝑚1

𝑞 , a vector u ∈ Z𝑛𝑞 , and a
parameter 𝑠 ≤ ∥ ˜TA∥·𝜔 (

√︁
log(𝑚 +𝑚1)), the SampleLeft(A,M,TA, u, 𝑠)

algorithm will output a sample t ∈ Z𝑚+𝑚1 from the distribution sta-
tistically close to DΛu

𝑞 ( [A |M] ),𝑠 s.t. [A|M] · t = u mod 𝑞.

Lemma 4. [8] Given a matrix A ∈ Z𝑛×𝑘𝑞 , a matrix B ∈ Z𝑛×𝑚𝑞 and
its corresponding trapdoor TB ∈ Z𝑚×𝑚𝑞 , a matrix R ∈ Z𝑘×𝑚𝑞 , a vector
u ∈ Z𝑛𝑞 , and a parameter 𝑠 ≤ ∥ ˜TB∥ · 𝑠𝑅 · 𝜔 (

√︁
log(𝑚 +𝑚1)), where

𝑠𝑅 = sup∥x∥=1
∥Rx∥, the SampleRight(A,B,R,TB, u, 𝑠) algorithm will

output a sample t ∈ Z𝑚+𝑘 from the distribution statistically close to
DΛu

𝑞 ( [A |AR+B] ),𝑠 s.t. [A|AR + B] · t = u mod 𝑞.

Lemma 5. [9] Given a matrix A ∈ Z𝑛×𝑚𝑞 , a basis S ∈ Z𝑚×𝑚𝑞 of
Λ⊥ (A), and a matrix A′ ∈ Z𝑛×𝑚′𝑞 , the ExtBasis(A′′,S) algorithm
outputs a basis S′′ of Λ⊥ (A′′) ⊆ Z𝑚×𝑚′′𝑞 s.t. ∥S̃∥ = ∥ ˜S′′∥, and
A′′ = A| |A′,𝑚′′ =𝑚 +𝑚′.

3.2 The LWE and SIS Hardness Assumptions

Definition 3. [27] Suppose there exists an integer 𝑞 = 𝑞(𝑛) and
an error distribution Ψ̄𝛼 in Z𝑞 , the (Z𝑞, 𝑛, Ψ̄𝛼 )-LWE contributes to
distinguishing the distribution (u𝑖 , 𝑣𝑖 ) = (u𝑖 , u⊤𝑖 s + 𝑥𝑖 ) ∈ Z

𝑛
𝑞 × Z𝑞

where s← Z𝑛𝑞 randomly and uniform distribution on Z𝑛𝑞×Z𝑞 . Among
that, Ψ̄𝛼 is the distribution of ⌊𝑞𝑋 ⌉ mod 𝑞 over Z𝑞 , where𝑋 is normal
variable with mean 0 and standard deviation 𝛼/

√
2𝜋 .

Definition 4. [27] Given a prime 𝑞, a parameter 𝛼 ∈ (0, 1),
we denote Ψ̄𝛼 as the distribution over Z𝑞 of the random variable
⌊𝑞𝑋 ⌉ mod 𝑞, where 𝑋 is a normal random variable with mean 0 and
standard deviation 𝛼/

√
2𝜋 .

Lemma 6. [2] Given a vector e ∈ Z𝑚 and a uniformly random

vector y
$← Ψ̄

𝑚
𝛼 , the parameter |e⊤y| is deemed as an integer in

{0, 𝑞 − 1}, satisfying |e⊤y| ≤ ∥𝑒 ∥
√
𝑚
2
+ ∥𝑒 ∥𝑞𝛼 · 𝜔 (

√︁
log𝑚), except

with negligible probability negl(𝑚).

Definition 5. [26] Suppose a matrix A ∈ Z𝑛×𝑚𝑞 and a bound
parameter 𝛽 > 0, (𝑞, 𝑛,𝑚, 𝛽)-SIS contributes to finding a vector v ∈
Z𝑚\{0} such that Av = 0 and ∥v∥ ≤ 𝛽 . Among that, in order to
ensure the existence of vector v, we set 𝛽 ≥

√
𝑚𝑞𝑛/𝑚 .



Post-Quantum Searchable Encryption Supporting User-Authorization for Outsourced Data Management CIKM ’24, October 21–25, 2024, Boise, Idaho, USA

Definition 6. [26] Given 𝐻 := {ℎ : 𝑋 → 𝑌 } be a hash function
family from 𝑋 to 𝑌 , we define that 𝐻 is a (𝑞𝑡 , 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ) abort-
resistant function, if the non-abort probability of 𝑥 satisfies 𝑝 (𝑥) =
Pr[ℎ(𝑥0) = 0 ∧ ℎ(𝑥1) ≠ 0 ∧ ℎ(𝑥2) ≠ 0 ∧ · · · ∧ ℎ(𝑥𝑞𝑡 ) ≠ 0] ∈
[𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ], where the input is 𝑥 = (𝑥0, 𝑥1, · · · , 𝑥𝑞𝑡 ) with 𝑥0 ∉

{𝑥1, 𝑥2, · · · , 𝑥𝑞𝑡 } and the probability is over the selection of ℎ ∈ 𝐻 .

3.3 Rejection Sampling Technique

Lemma 7. [23] Given a positive integer𝑚, for any 𝑠 > 0, we have
Pr[𝑥 ← D1

𝑠 : |𝑥 | > 𝜔 (𝑠
√︁

log𝑚)] = 2
−𝜔 (log𝑚) , Pr[𝑥 ← D1

𝑠 : |𝑥 | >
12𝑠] < 2

−100, and Pr[x← D𝑚
𝑠 : ∥x∥ > 2𝑠

√
𝑚] < 2

−𝑚 .

Lemma 8. [23] Given a positive real number 𝛼 , for any vector 𝑐 ∈
Z𝑚 , if 𝑠 = 𝜔 (∥v∥

√︁
log𝑚), we have Pr[x← D𝑚

𝑠 : D𝑚
𝑠 (x)/D𝑚

𝑠,c (x) =
𝑂 (1)] = 1 − 2

𝜔 (log𝑚) , and if 𝑠 = 𝛼 ∥c∥, we have Pr[x ← D𝑚
𝑠 :

D𝑚
𝑠 (x)/D𝑚

𝑠,c (x) < 𝑒12/𝛼+1/(2𝛼2 ) ] > 1 − 2
−100 .

The core idea of the rejection sampling technique for signature

protocols is to make the distribution of output signatures indepen-

dent of the signing key. Concretely, to sign a message 𝜇, a signer

with its secret key 𝑠𝑘 initially selects a random parameter 𝑦. Then,

it computes the signature 𝜎 which is a combination of 𝑦 and 𝑠𝑘 .

Let the final signature distribution be 𝑓 , which is independent of

𝑠𝑘 , and let the whole candidate signatures distribution be 𝑔, which

may be related to 𝑠𝑘 . If 𝑓 and 𝑔 are both probability distributions

and it satisfies 𝑓 (𝑥) ≤ 𝑀𝑔(𝑥) for all 𝑥 and positive number 𝑀 ,

then the candidate signature parameter 𝜎 can be published with

𝑓 (𝜎)/(𝑀𝑔(𝜎)). In this way, the resulting distribution is 𝑓 , and the

expected number of this process outputs a sample is𝑀 [25].

4 FRAMEWORK DESCRIPTION

4.1 System Architecture

The basic system model of our proposed scheme is illustrated in

Fig. 1, which involves four entities, that is, sender, server, authority,

and users. We introduce their specific workflows below.

• Sender: It uploads the ciphertext and encrypted keyword to

the server for storage, allowing the data to be accessed by all

users.

• Authority: It serves as a system manager and authorizes users

in a timely manner by issuing a unique authorization token.

Note that the master secret key is kept confidential.

• User: It calculates the trapdoor for the authorized dataset and

submits it to the server for searching operation. Note that only

authorized users can obtain a valid trapdoor.

• Server: It performs authorization verification and keyword

matching operations to determine whether to provide the cor-

responding data to the user. The server is honest but curious,

meaning it performs search operations honestly but may try

to infer keywords from encrypted keywords.

The proposed scheme offers data indexing services to authorized

users and ensures that there is no collaboration among users. When

a sender uploads the data, it includes encrypted data CT for sharing

and encrypted keywords for indexing. The authority grants differ-

ent users access to specific datasets of keywords, and each user is

authorized to use its respective dataset. During the authorization

process at time period 𝑡 , the authority generates an authorization

Authority

(System Manager)

Ciphertext

Users

Server

Sender

Authorized User 

Unauthorized User 

T
Token

Unauthorized User 

..
.

..
.

Figure 1: Architecture overview of the proposed scheme

token for the user. The authorized user then generates a trapdoor

by the token and a keyword kw from the dataset KS𝑊 , and sub-

mits the trapdoor Trap to the server. Upon the server received the

trapdoor, if the authorization is fresh and CT is valid, then it returns

the corresponding encrypted data to the user.

4.2 Algorithm Descriptions

Our L-PEAKS scheme consists of six algorithms, Π = (Setup,
KeyGen, Authorize, Encrypt, Trapdoor, Test).
• Setup(𝜆): Given a security parameter 𝜆, this PPT algorithm

outputs a public parameter 𝑝𝑝 and a master secret keyMSK.
• KeyGen(𝑝𝑝,MSK, ID): Given a public parameter 𝑝𝑝 , a master

secret keyMSK, and a user ID, this PPT algorithm outputs a

secret key skID for the user ID.
• Authorize(pp, skID,KSW , t): Given a public parameter 𝑝𝑝 , a

secret key skID of user ID, an authorized dataset KS𝑊 , and

the authorized time 𝑡 , this PPT algorithm outputs an authorized

token 𝑡𝑜𝑘𝑒𝑛.

• Encrypt(pp, ID, kw): Given a public parameter 𝑝𝑝 , a user ID,
and a keyword kw, this PPT algorithm outputs a ciphertext

CT.

• Trapdoor(pp, ID, token, kw′): Given a public parameter 𝑝𝑝 , a

user ID, an authorized token 𝑡𝑜𝑘𝑒𝑛, and a keyword kw′ ∈
KS𝑊 , this PPT algorithm outputs a trapdoor Trap.

• Test(pp, ID,CT,Trap, t′): Given a public parameter 𝑝𝑝 , a user

ID, a searchable ciphertextCT, a trapdoorTrap, and the trapdoor-

received time 𝑡 ′, this deterministic algorithm outputs 1 or 0

based on judgment conditions.

Correctness. The correctness of our proposed scheme must satisfy

that for system initialization (𝑝𝑝,MSK) ← Setup, user registra-
tion skID ← KeyGen, dataset authorization 𝑡𝑜𝑘𝑒𝑛 ← Authorize,
ciphertext generation CT ← Encrypt, and trapdoor generation

Trap← Trapdoor, we have Test = 1.

4.3 Security Models

We now define two games from terms of indistinguishability against

selective identity and chosen keywords attack (IND-sID-CKA) as

well as trapdoor existential unforgeability (T-EUF) below.
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4.3.1 IND-sID-CKA Game. In this game, an adversary A has the

permission to launch chosen keyword attacks and it plays this game

with a challenger C as below.

• Setup. The adversaryA announces a challenge datasetKS∗
𝑊
⊆

KS𝑈 . Then, the challenger C executes Setup algorithm to gen-

erate (𝑝𝑝,MSK) and sends 𝑝𝑝 to A. After that, A chooses a

challenge user ID∗.
• Phase 1.A performs a polynomially bounded number of queries.

– KeyGenQuery. A enquires the secret key of a user ID ≠

ID∗. C executes KeyGen algorithm to generate skID and

responds it to A.

– AuthorizationQuery.A sends the datasetKS𝑊 = KS𝑈 −
KS∗

𝑊
and an authorized time 𝑡 to C. Then, C executes

Authorize algorithm to generate the authorized token 𝑡𝑜𝑘𝑒𝑛

and responds it to A.

– TrapdoorQuery. A sends a keyword kw ∈ KS𝑊 and an

authorized time 𝑡 to C. C executes Trapdoor algorithm to

generate Trap and responds it to A .

• Challenge.A generates and sends two equal length keywords

kw0, kw1 on which it wishes to be challenged. The restrictions

are thatA did not query the authorized token forKS∗
𝑊
, or the

trapdoor for kw0, kw1. C selects a random bit 𝑏 ∈ {0, 1} and
calculates a searchable ciphertext CT

∗
for kw𝑏 with user ID∗.

After that, C responds CT
∗
to A as the challenge ciphertext.

• Phase 2. A continues to perform the AuthorizationQuery
andTrapdoorQuery for any keyword kw excepts for kw0, kw1.
• Guess. Ultimately, A outputs a guess bit 𝑏′ = {0, 1} and it

wins the game if 𝑏′ = 𝑏. We call this kind of adversary A as

IND-sID-CKA adversary. The advantage for A in attacking

this scheme is defined as a function related to the security

parameter 𝜆: 𝐴𝑑𝑣 IND-sID-CKA

A (𝜆) := | Pr[𝑏 = 𝑏′] − 1

2
|.

Definition 7 (IND-sID-CKA security). Our lattice-based
PEAKS scheme is IND-sID-CKA secure, if for any PPT adversaryA,

the advantage 𝐴𝑑𝑣 IND-sID-CKA

A (𝜆) is negligible.

4.3.2 T-EUF Game. In the T-EUF game, an adversary A has the

permission to launch impersonation attack. Markedly, if A has

been authorized, it is difficult to prevent the impersonation attack.

A plays this game with a challenger C as below.

• Setup. The adversaryA announces a challenge datasetKS∗
𝑊
⊆

KS𝑈 . Then, the challenger C executes Setup algorithm to gen-

erate (𝑝𝑝,MSK) and sends 𝑝𝑝 to A. After that, A chooses a

challenge user ID∗.
• Query.A performs a polynomially bounded number of queries.

– HashQuery. C maintains a list 𝐿(SKID, 𝑡, ℎ), which is ini-

tially empty. When A queries about (SKID, 𝑡), C searches

the list 𝐿 and then responds the answer to A.

– KeyGenQuery. A enquires the secret key of a user ID ≠

ID∗. C executes KeyGen algorithm to generate skID and

responds it to A.

– AuthorizationQuery.A issues a dataset and an authorized

time 𝑡 to C. Then, C executes Authorize algorithm to gener-

ate the authorized token 𝑡𝑜𝑘𝑒𝑛 and responds it to A.

– TrapdoorQuery. A sends a keyword kw ∈ KS𝑊 and an

authorized time 𝑡 to C. C executes Trapdoor algorithm to

generate Trap and responds it to A .

• Forgery.A outputs a trapdoor tuple for datasetKS𝑊 ∗ , which

has not been queried before.

Definition 8 (T-EUF security). Our lattice-based PEAKS scheme
is T-EUF secure, if there is no PPT adversaryA who has the ability

to forge a valid trapdoor with a correct signature and authorized

time with a non-negligible advantage.

5 THE PROPOSED SCHEME

In this sector, we illustrate the concrete PEAKS scheme from the

lattice hardness. It allows an administrative authority to authorize

users to search different datasets of keywords. Users without the

corresponding secret keys must be authorized by the authority

to search the keywords. Besides, considering the troublesome cer-

tificate management of public key encryption, we leverage IBE to

simplify the key management and encrypt the data directly through

its identity, which is more suitable for practical scenarios.

5.1 System Initialization

The initialization stage of our scheme is conducted by the authority,

which takes a security parameter 𝜆 as input and then sets several

parameters 𝛼 = [𝑚2𝑘2𝜔 (log𝑛)]−1

, 𝑞 > 2

√
𝑛/𝛼 ,𝑚 = ⌈6𝑛 log𝑞⌉, 𝑠 =

𝑘𝑚𝜔 (
√︁

log𝑛) , 𝑞 ≥ 𝑚2.5𝜔 (
√︁

log𝑛), 𝑀 ≈ exp ( 12𝜅
√
𝑚

𝑠 + ( 𝜅
√
𝑚

2𝑠 )
2

).
Each user has its own identity vector ID. Then it generates and

outputs the public parameters 𝑝𝑝 to other entities and keeps MSK
in secret, as described in Algorithm 1. As mentioned in Lemma

1, TrapGen(𝑛,𝑚,𝑞) is run to generate a matrix A ∈ Z𝑛×𝑚𝑞 with a

short basis TA ∈ Z𝑚×𝑚𝑞 .

Algorithm 1 Setup(𝜆): Initialize the system parameters

Input: Security parameter 𝜆, system parameters𝑛,𝑚, 𝑠 , prime num-

ber 𝑞, and Gaussian distribution parameter 𝑠 .

Output: Public parameter 𝑝𝑝 and master secret key MSK.
1: Define 𝑙 as the bit length of ID and a a universal datasetKS𝑈 ;

2: Invoke (A,TA) ← TrapGen(𝑛,𝑚,𝑞) algorithm to obtain a ma-

trix A and its basis TA for Λ⊥𝑞 (A).
3: Select two uniformly random matrices B ∈ Z𝑛×2𝑚

𝑞 and U ∈
Z𝑛×𝑘𝑞 , where 𝑘 is the bit length of keyword kw;

4: Select 𝑘 uniformly random matrices M1,M2, · · · ,Mk ∈ Z𝑛×2𝑚
𝑞 ,

and 𝑘 uniformly random vectors m1,m2, · · · ,mk ∈ Z𝑚𝑞 ;

5: Select a uniformly random vector u ∈ Z𝑛𝑞 ;
6: Select four collision-resistant hash functions: 𝐻1 : {−1, 1}𝑙 →
Z𝑛𝑞 , 𝐻2 : Z𝑛𝑞 × {0, 1}∗ → {ℎ : ℎ ∈ Z𝑞, |ℎ | ≤ 𝜅}, 𝐻3 : Z𝑚𝑞 →
Z𝑚×𝑚𝑞 , 𝐻4 : {−1, 1}𝑙 → Z𝑛×𝑚𝑞 ;

7: Return 𝑝𝑝 = (A,B,U,M1,M2, · · · ,Mk,m1,m2, · · · ,mk, u, 𝐻1,

𝐻2, 𝐻3, 𝐻4, 𝑠),MSK = TA.

5.2 User Registration

In this function, the authority computes secret keys for users reg-

istration. Note that a user’s identity ID is unique in the system

and also serves as its public key. Once a user ID submits its reg-

istration, the authority takes the master secret key and the user’s

identity as input, and returns the corresponding secret key skID
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to the user. As described in Algorithm 2, the authority runs the

SamplePre(A,TA, 𝐻1 (ID), 𝑠) algorithm to sample skID.

Algorithm 2 KeyGen(𝑝𝑝,MSK, ID): Register the user’s key
Input: Public parameter 𝑝𝑝 , master secret key MSK, and user ID.
Output: Secret key skID of user ID.
1: Parse ID = (id1, id2, · · · , idl) ∈ {−1, 1}𝑙 as the identity (public

key) of a user;

2: Sample a vector skID ← SamplePre(A,TA, 𝐻1 (ID), 𝑠), where
skID ∈ Z𝑚𝑞 , and skID s.t. A · skID = 𝐻1 (ID) mod 𝑞;

3: Return skID as a secret key of the user ID.

5.3 User Authorization

For the valid user, the authority would authorize the user to ac-

cess the dataset KS𝑊 (KS𝑊 ⊆ KS𝑈 ) and the concrete steps are

specified in Algorithm 3. It firstly set a polynomial 𝑓 (skID, kw) =
skID +

∑𝑘
𝑖=1

𝑘𝑤𝑖m𝑖 ∈ Z𝑚𝑞 , where kw = (𝑘𝑤1, 𝑘𝑤2, · · · , 𝑘𝑤𝑘 ), and
𝑘𝑤𝑖 ∈ {0, 1} is each bit of kw. After that, the authority defines two

polynomials 𝑓1 (skID) and 𝑓2 (skID) corresponding to the different

keyword datasets, and then subtract them to set another polyno-

mial 𝐹 (skID). Accordingly, the authority calculates the signature 𝜎 ,

which involves a time period 𝑡 . With time updates, the authority

will re-authorize the user with a novel authorization token to ensure

the signature timeliness. Finally, the authority sends an authorized

token 𝑡𝑜𝑘𝑒𝑛 to the user through a secure communication channel.

Algorithm 3 Authorize(𝑝𝑝, skID,KS𝑊 , t): Authorize the user
Input: Public parameter 𝑝𝑝 , secret key skID of user ID, and an

authorized dataset KS𝑊 with the authorized time 𝑡 .

Output: Authorized token 𝑡𝑜𝑘𝑒𝑛.

1: Set a polynomial as 𝑓 (skID, kw) = skID +
∑𝑘
𝑖=1

𝑘𝑤𝑖m𝑖 ∈ Z𝑚𝑞 ;

2: Set three polynomials as: 𝑓1 (skID) =
∑
kw∈KS𝑈 𝑓 (skID, kw) ∈

Z𝑚𝑞 , 𝑓2 (skID) =
∑
kw∈KS𝑊 𝑓 (skID, kw) ∈ Z𝑚𝑞 , and 𝐹 (skID) =

𝑓1 (skID) − 𝑓2 (skID) ∈ Z𝑚𝑞 ;

3: Calculate an authorized key SKID = 𝐻3 (𝐹 (skID)) ∈ Z𝑚×𝑚𝑞 ;

4: Select a random vector y ∈ Z𝑚𝑞 ;

5: Calculate a parameter ℎ = 𝐻2 (Ay, SKIDy, 𝑡) ∈ Z𝑞 , and a vector

z = skID · ℎ + y ∈ Z𝑚𝑞 ;

6: Calculate a signature 𝜎 of an authorized key SKID as 𝜎 =

(ℎ, z) = (𝐻2 (Ay, SKIDy, 𝑡), skIDℎ + y) with probability

min(1, Dm
s (z)

MDm
skIDh,s (z)

);
7: Return an authorized token 𝑡𝑜𝑘𝑒𝑛 = (SKID, 𝜎, y, 𝑡).

5.4 Ciphertext Generation

In this part, we show how to construct searchable ciphertext for the

keyword kw in the datasetKS𝑈 . The concrete steps are illustrated

in Algorithm 4. For a given keyword kw with user ID, the data

sender firstly calculates two matrix Akw =
∑𝑘
𝑖=1

𝑘𝑤𝑖M𝑖 + B ∈
Z𝑛×2𝑚
𝑞 , and AID = (A | 𝐻4 (ID)) ∈ Z𝑛×2𝑚

q , where 𝑘𝑤𝑖 ∈ {0, 1} is
each bit of kw. Then, it sets a new matrix AID,kw as a combination

of Akw and AID. After that, it generates a matrix Rkw and selects

several noise parameters. Ultimately, the authority computes two

ciphertexts c0 = u⊤r + noi, and c1 = A⊤ID,kw · r + (noi,R
⊤
kw · noi)

and uploads the ciphertext tuple CT = (c0, c1) to the server.

Algorithm 4 Encrypt(𝑝𝑝, ID, kw): Generate the ciphertext
Input: Public parameter 𝑝𝑝 , user ID, and keyword kw in the

dataset KS𝑈 .

Output: Ciphertext tuple CT.

1: Calculate a matrix Akw =
∑𝑘
𝑖=1

𝑘𝑤𝑖M𝑖 + B ∈ Z𝑛×2𝑚
𝑞 ;

2: Calculate a matrix AID = (A | 𝐻4 (ID)) ∈ Z𝑛×2𝑚
q ;

3: Set a matrix AID,kw = (AID |Akw) ∈ Z𝑛×4𝑚
𝑞 ;

4: for all 𝑖 = 1, 2, · · · , 𝑘 do

5: Uniformly random select 𝑘 matrices R𝑖
$← {−1, 1}2𝑚×2𝑚

;

6: end for

7: Calculate a matrix Rkw =
∑𝑘
𝑖=1

𝑘𝑤𝑖 · R𝑖 ;

8: Uniformly random select a noise value 𝑛𝑜𝑖
$← Ψ̄𝛼 ∈ Z𝑞 and a

noise vector noi
$← Ψ̄

2𝑚
𝛼 ∈ Z2𝑚

𝑞 ;

9: Uniformly random select a vector r ∈ Z𝑛𝑞 ;
10: Calculate two ciphertexts c0 = u⊤r + noi ∈ Zq , and c1 =

A⊤ID,kw · r + (noi,R
⊤
kw · noi) ∈ Z

4m
q ;

11: Return a ciphertext tuple CT = (c0, c1).

5.5 Trapdoor Generation

In this function, a user ID generates a trapdoor tuple Trap for some

authorized keyword kw in the datasetKS𝑊 and then submits it to

the server for searching, where only authorized user can generate a

valid trapdoor. The detailed procedures are depicted in Algorithm

5. Initially, The user calculates two matrices Akw and AID. Then,
it invokes the ExtBasis(AID,TA) algorithm to calculate TAID ∈
Z2𝑚×2𝑚
𝑞 . Subsequently, it calculates two vectors trap1 and trap2

by multiplication operation and SampleLeft(AID,Akw,TAID , u, 𝑠)
algorithm mentioned in Lemma 3, respectively. Eventually, the user

sends a trapdoor Trap = (trap1, trap2, 𝜎, t) to the server.

Algorithm 5 Trapdoor(𝑝𝑝, ID, 𝑡𝑜𝑘𝑒𝑛, kw): Generate the trapdoor
Input: Public parameter 𝑝𝑝 , user ID, authorized token 𝑡𝑜𝑘𝑒𝑛, and

keyword kw in the dataset KS𝑊 .

Output: Trapdoor tuple Trap.

1: Calculate a matrix Akw =
∑𝑘
𝑖=1

𝑘𝑤𝑖M𝑖 + B ∈ Z𝑛×2𝑚
𝑞 ;

2: Calculate a matrix AID = (A | 𝐻4 (ID)) ∈ Z𝑛×2𝑚
q ;

3: Sample a basis TAID ← ExtBasis(AID,TA) for AID;
4: Calculate a vector trap1 = SKIDy ∈ Z𝑚𝑞 ;

5: Sample a vector trap2 ← SampleLeft(AID,Akw,TAID , u, 𝑠),
where trap2 ∈ Z4𝑚

𝑞 ;

6: Return a trapdoor tuple Trap = (trap1, trap2, 𝜎, t).

5.6 Matching Phase

The server checks whether the parameters are matched properly

and then returns the corresponding results, in which the specific

steps are as follows. After taking public parameter 𝑝𝑝 , user ID, ci-
phertextCT, trapdoorTrap, and 𝑡 ′ as input, the Test(𝑝𝑝, ID,CT,Trap,
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t′) algorithm judges the validity of the above parameters. Note that

𝑡 ′ refers to the time when the server received the trapdoor Trap.

• The server initially checks whether 𝑡 ′ ≤ 𝑡 . If it satisfies this

condition, the trapdoor is in the authorized time.

• After that, the server checks if ℎ = 𝐻2 (Az −𝐻1 (ID)ℎ, trap1, 𝑡)
and ∥z∥ ≤ 2𝑠

√
𝑚. If this equation holds, the trapdoor is actually

from an authorized user and processes the following step.

• Finally, the server checks the error term |c0−trap⊤2 c1 | ≤ ⌊q/4⌋.
If this equation holds, it outputs 1 and the server publishes the

corresponding encrypted data to the authorized user; Other-

wise, it outputs 0 and returns an error.

6 SECURITY ANALYSIS

In this section, we illustrate that the lattice-based PEAKS construc-

tion satisfies the correctness, IND-sID-CKA and T-EUF security.

Correctness analysis. We start by proving that the signature in

Trapdoor algorithm is issued by an authority correctly:Az−𝐻1 (ID)ℎ
= 𝐻1 (ID)ℎ + Ay − 𝐻1 (ID)ℎ = Ay. Thus, we obtain that ℎ =

𝐻2 (Ay, SKIDy, 𝑡) = 𝐻2 (Az −𝐻1 (ID)ℎ, trap1, 𝑡). We also know the

distribution z is close to D𝑚
𝑠 according to the rejection sampling

technique and Lemma 3 and then we say ∥z∥ ≤ 2𝑠
√
𝑚 with proba-

bility of over 1 − 2
−𝑚

due to Lemma 2 .

Furthermore, we illustrate that the error term computed by a

matched trapdoor and keyword ciphertext in Trapdoor and Test
algorithms is less than ⌊q/4⌋ with overwhelming probability.

We parse the trapdoor as trap2 = (trap12, trap
2
2) ∈ Z

2𝑚
𝑞 × Z2𝑚

𝑞 .

Then, by the triangle inequality, the error term is bounded as:

|u⊤r + 𝑛𝑜𝑖 − (AID,kw · trap2
)⊤r − trap⊤

2
(noi,R⊤kw · noi) |

= |𝑛𝑜𝑖 −
(
trap12

⊤

trap22
⊤

)
(noi,R⊤kw · noi) |

= |𝑛𝑜𝑖 − (trap12 + Rkw · trap
2
2)
⊤noi|

≤ |𝑛𝑜𝑖 | + |(trap12 + Rkw · trap
2
2)
⊤noi|

According to theGaussian tail bound, we get |𝑛𝑜𝑖 | < 𝑞𝛼𝜔 (
√︁

log𝑚)
+1/2. Then, from Lemma 6, we have | (trap12 + Rkw · trap

2
2)
⊤noi| <

𝑠 (𝑘𝑚 +
√
𝑚) (𝑞𝛼 · 𝜔 (log𝑚) +

√
𝑚/2), with negligible probability.

Hence, we conclude that the error term is bounded by

|c0 − trap⊤2 c1 | ≤ 𝑂 (𝑠𝑚1.5) + 𝑠 (
√
𝑚 + 𝑘𝑚) (𝑞𝛼 · 𝜔 (

√︁
log𝑚) +

√
𝑚/2)

≤ 𝑂 (𝑠𝑚1.5) + 𝑞𝑠𝑘𝑚𝛼 · 𝜔 (
√︁

log𝑚)

≤ 𝑂 (𝑚2.5 · 𝜔 (
√︁

log𝑚)) := 𝑞/5,

with overwhelming probability. It also shows that 𝑞 > 2

√
𝑛/𝛼 ,

ensuring the LWE assumption is as hard as the worst-case SIVP
and GapSVP hardness [27].

We introduce a hash family and a lemma for later proof 𝐻 : {ℎ𝜃 :

Z𝑘𝑞/{0𝑘 } → Z𝑞} as ℎ(kw) = 1 + ∑𝑘
𝑖=1

𝜃 · 𝑘𝑤𝑖 ∈ Z𝑞 , where kw =

(𝑘𝑤1, 𝑘𝑤2, · · · , 𝑘𝑤𝑘 ) ∈ {0, 1}𝑘 and 𝜃 = (𝜃1, 𝜃2, · · · , 𝜃𝑘 ) ∈ Z𝑘𝑞 .

Lemma 9. [2] Given a prime number 𝑞 and 0 ≤ 𝑞𝑡 ≤ 𝑞, then we
say the hash family 𝐻 defined above satisfies (𝑞𝑡 , 1/𝑞(1−𝑞𝑡/𝑞), 1/𝑞)
abort-resistant.

Theorem 1. The proposed scheme is IND-sID-CKA secure as-
suming that the (Z𝑞, 𝑛, Ψ̄𝛼 )-LWE hardness holds. For a polynomial
(𝑞𝑘 , 𝑞𝑎, 𝑞𝑡 , 𝜖) adversary A, if A has the ability to win the game

with advantage 𝜖 by performing at most 𝑞𝑘 KeyGen queries, 𝑞𝑎
Authorization queries, and 𝑞𝑡 Trapdoor queries, then a challenger C
can solve the LWE hardness.

Proof. We adopt a sequence of games to prove this theorem

and also illustrate that it does not exist a polynomial (𝑞𝑘 , 𝑞𝑎, 𝑞𝑡 , 𝜖)
adversary A can distinguish these games.

Game 0: This is a real game, the same as shown in Definition 7.

Game 1: This game is identical toGame 0, except that calculate

M𝑖 = AID∗ ·R∗𝑖 +𝜃𝑖 ·B instead of choosing is uniformly random from

Z𝑛×2𝑚
𝑞 , where R∗

𝑖

$← {−1, 1}2𝑚×2𝑚
and 𝜃𝑖

$← Z𝑞 . As for the chal-
lenge keyword kw, let Rkw =

∑𝑘
𝑖=1

𝑘𝑤𝑖R∗𝑖 and (R∗kw)
⊤ · noi ∈ Z2𝑚

𝑞

to construct a challenge ciphertext CT
∗
. In this way, if A can dis-

tinguish Game 0 and Game 1, then there exists a challenger 𝐶

who can distinguish between M𝑖 and a matrix chosen uniformly

random in Z𝑛×2𝑚
𝑞 . In the view of A, Game 0 and Game 1 are sta-

tistically indistinguishable due to the fact thatM𝑖 for 𝑖 = 1, 2, · · · , 𝑘
are statistically close to uniform distribution. Hence, we acquire:

Pr[Game0 (1𝜆) = 1] = Pr[Game1 (1𝜆) = 1] .
Game 2: This game is identical to Game 1, except except for

the addition of an artificial abort. The difference between these

two games is reflected in the initial and final parts. On the one

hand, C selects a hash function ℎ ∈ 𝐻 at random and keeps it

secret. When C receives the secret key of user ID ≠ ID∗ and Trap-

door queries of keywords set kw1, kw2, · · · , kw𝑞𝑡 (the selected key-

word is not in it) from adversary A, it will respond the Trapdoor

queries and the challenge ciphertext same as in Game 1. On the

other hand, given a user ID∗ and a keyword kw∗, A sends the

final guess to C. After that, C checks the guess if ℎ(kw𝑖 ≠ 0) for
𝑖 = 1, 2, · · · , 𝑞𝑡 and ℎ(kw∗ = 0). If the conditions are not fulfilled,
C re-selects a random bit 𝑏′ ∈ {0, 1} and then aborts the game.

Furthermore, C randomly chooses a bit 𝛽 ∈ {0, 1} s.t. Pr[𝛽 = 1] =
𝜏 (kw∗, kw1, kw2, · · · , kw𝑞𝑡 ), where 𝜏 (·) is a function in [30]. As a

result, the above-mentioned changes are independent for A, we

conclude that: Pr[Game1 (1𝜆) = 1] ≤ 1

4𝑞 Pr[Game2 (1𝜆) = 1] .
Game 3: This game is identical to Game 2, except that change

the calculation methods of A and B. In this game, C uniformly

selectsA← Z𝑛×𝑚𝑞 at random. Then, C calls the TrapGen algorithm

to generate the matrix B and its basis TB ∈ Z2𝑚×2𝑚
𝑞 . In this way, the

response for KeyGen queries of C are the same as those inGame 2.

As for the Trapdoor query, a user ID sets AID,kw = (AID |Akw) =
(AID |

∑𝑘
𝑖=1

𝑘𝑤𝑖M𝑖 + B) = (AID |AID · Rkw + ℎ(kw) · B), where
Rkw =

∑𝑘
𝑖=1

𝑘𝑤𝑖R∗𝑖 and ℎ(kw) = 1 + ∑𝑘
𝑖=1

𝑘𝑤𝑖 · 𝜃𝑖 . After that,
sample trap

2
← SampleRight(AID, ℎ(kw)B,Rkw,TB, u, 𝑠) ∈ Z4𝑚

𝑞

as the output of the Trapdoor query. In this way, trap
2
is close

to the distribution D𝜆u𝑞 (AID,kw ) in Game 2. Accordingly, for the

view ofA, Game 2 and Game 3 are statistically indistinguishable.

Therefore, we have: Pr[Game2 (1𝜆) = 1] = Pr[Game3 (1𝜆) = 1] .
Game 4: This game is identical toGame 3, except thatC chooses

the challenge ciphertext CT = (c0, c1) ∈ Z𝑞 × Z4𝑚
𝑞 at random. In

this way, A cannot win the game since CT is calculated from a

random ciphertext space. We define a simulator to illustrate the

computational indistinguishability between Game 3 and Game 4

from the perspective of A.
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Reduction from LWE: Suppose that there exists an adversary

A and a PPT challenger C has the ability to solve the LWE hardness

over 𝜖′ probability for a target user ID∗.
Setup: For 𝑖 = 0, 1, · · · , 2𝑚, C randomly samples the entries of a

LWE hardness as (u𝑖 , 𝑣𝑖 ) ∈ Z𝑛𝑞 × Z𝑞 . Afterward, C performs these

operations. (1) Assume AID∗ = (u1, u2, · · · , u𝑚). (2) Calculate the
matrix A same as Game 0 and matrices (B, M1, M2, · · · , M𝑘 ) same

as Game 2. (3) Respond the new public parameter 𝑝𝑝=(A, B, M1,

M2, · · · ,M𝑘 , u0) to A.

Phase 1: In this phase, A enquires the secret key of a user ID.
C responds the queries as below.

• KeyGenQuery. With regard to the 𝑞𝑡 queries for the secret

key of a user ID ≠ ID∗, C responds to the following an-

swer. (1) Calculate AID = (A | 𝐻4 (ID)). (2) Perform the

SamplePre(A,TA, 𝐻1 (ID), 𝑠) algorithm to generate skID and

then respond it to A.

• AuthorizationQuery. A queries an authorized token for the

dataset KS𝑈 − KS𝑊 ∗ on time 𝑡 . For each keyword kw ∈
KS𝑈 −KS𝑊 ∗ , and each user ID ≠ ID∗, calculate SKID, where
𝐹 (skID) = 𝑓1 (skID) − 𝑓2 (skID) After that, C chooses a random

vector y ∈ Z𝑚 and calculates ℎ = 𝐻2 (Ay, SKID · y, 𝑡) and
z = skID ·ℎ+y to obtain the signature𝜎 = (ℎ, z) with probability
min(1, Dm

s (z)
MDm

skIDh,s (z)
), where 𝑡 is the authorized time. Finally, C

responds 𝑡𝑜𝑘𝑒𝑛 = (SKID, 𝜎, y, 𝑡) to A.

• TrapdoorQuery.A queries a trapdoor of keyword kw for user

ID∗. If ℎ(kw) = 0, abort this game and return a bit 𝑏′ ∈ {0, 1}
at random. Otherwise, operate the steps below.

– If kw ∈ KS𝑈 − KS𝑊 ∗ , A can calculate the authorized

token according to access the AuthorizationQuery and then
generate the trapdoor by itself.

– If kw ∈ KS𝑊 ∗ , C responds the query as follows. (1) Perform

the TrapGen algorithm to generate B ∈ Z𝑛×2𝑚
𝑞 together

with its trapdoor TB. (2) For 𝑖 = 1, 2, · · · , 𝑘 , randomly select

R∗
𝑖

$← {−1, 1}2𝑚×2𝑚
and 𝑘 random parameters 𝜃𝑖 ∈ Z𝑞 . (3)

Then, computeM𝑖 = AID∗ · R∗𝑖 + 𝜃𝑖 · B ∈ Z
𝑛×2𝑚
𝑞 . In this case,

AID,kw = (AID |Akw) = (AID |
∑𝑘
𝑖=1

𝑘𝑤𝑖M𝑖+B) = (AID |AID ·
Rkw+ℎ(kw)B), where Rkw =

∑𝑘
𝑖=1

𝑘𝑤𝑖R∗𝑖 ∈ Z
2𝑚×2𝑚
𝑞 . (4) Af-

ter that, compute trap1 = SKID · y ∈ Z𝑚𝑞 . (5) Further, invoke

the SampleRight(AID∗ , ℎ(kw)B,Rkw,TB, u, 𝑠) algorithm to

generate trap2 ∈ Z4𝑚
𝑞 of user ID∗ on the keyword kw. (6) Ul-

timately, respond a trapdoor tuple Trap = (trap1, trap2, 𝜎, t)
to A .

Challenge: When the queries end, A publishes kw0 and kw1 to

C, C checks if ℎ(kw∗) = 0.

• If the above equation holds, C will abort the game and respond

a bit 𝑏′ ∈ {0, 1} at random.

• Otherwise, C calculates the challenge ciphertext for a target

user ID∗ through the following procedures. (1) Calculate a

vector v∗ = [𝑣1 · · · 𝑣2𝑚]⊤ ∈ Z2𝑚
𝑞 and a scalar c

∗
0
= v0 ∈ Z𝑞 . (2)

Select a challenge keyword kw∗ ∈ {kw1, kw2} at random, and

for 𝑖 = 1, 2, · · · , 𝑘 , compute Rkw∗ =
∑𝑘
𝑖=1

𝑘𝑤∗
𝑖
R∗
𝑖
. (3) Calculate

c∗1 =

[
v∗

(Rkw∗ )⊤ · v∗
]
∈ Z4𝑚

𝑞 and select a bit 𝑏 ∈ {0, 1}. (4) If

𝑏 = 0, respond CT
∗ = (c∗

0
, c∗1) to A. If 𝑏 = 1, randomly select

CT = (c0, c1) ∈ Z𝑞 × Z4𝑚
𝑞 and send it to A .

Phase 2: In this phase, the simulator repeats the same proce-

dures as inPhase 1with forbidden to query the challenge keywords

kw0 and kw1 .
Guess: The challenger C processes the artificial abort opera-

tion at the outset. For 𝑖 = 1, 2, · · · , 𝑞𝑡 , C determines that if both

ℎ(kw∗) = 0 and ℎ(kw𝑖 ) ≠ 0 are satisfied, where kw∗ is the target
keyword and kw∗ ∉ {kw1, kw2, · · · , kw𝑞𝑡 }. If the conditions are
met, C publishes the guess as the response for solving the LWE

hardness problem. Otherwise, C outputs a random bit 𝑏′ from {0,1}

and then aborts this game. At the end of all queries, A outputs a

guess 𝑏′ .
On the one hand, if the LWE hardness is a pseudo-random oracle,

we haveAkw∗ = (AID∗ |Rkw∗ ) due toℎ(kw∗) = 0. As for the random

noise noi
$← Ψ̄

2𝑚
𝛼 ∈ Z2𝑚

𝑞 , we have v∗ = A⊤ID∗ · r + noi. We obtain:

c∗1 =

[
A⊤ID∗r + noi

(AID∗Rkw∗ )⊤r + (Rkw∗ )⊤noi

]
= A⊤kw∗r +

[
noi

(R∗kw)
⊤noi

]
.

Under this circumstances, CT
∗ = (c∗

0
, c∗1) is a valid challenge ci-

phertext since both c
∗
0
= u⊤r+ 𝑛𝑜𝑖 and c∗1 are valid.

On the other hand, if the LWE hardness is a purely random oracle,

we have 𝑣0

$← Z𝑞 , and v∗
$← Z2𝑚

𝑞 . In this context, the challenge

ciphertext CT
∗
is uniform in Z𝑞 × Z4𝑚

𝑞 .

Now, we assume [𝑝min, 𝑝max] be the probability interval of arti-

ficial abort which does not address in the Trapdoor query. Based on
the above discussion and Lemma 9, we obtain that |𝑝max − 𝑝min | ≥
𝑞𝑡
𝑞2
, where 𝑞𝑡 ≤ 𝑞

2
and 𝑝min ≥ 1

2𝑞 . As a result, we need to ensure

that the parameter 𝑞 is large enough to construct negl(𝑛) to be a

negligible function.

Thus, the advantage for C to solve the LWE hardness is sum-

marized as: 𝐴𝑑𝑣LWE

C ≥ 1

2
((𝑝max − 𝑝min) + 𝑝min | Pr[𝑏′ = 𝑏] − 1

2
|) ≥

𝑝
4𝑞 + negl(𝑛). In a nutshell, we conclude: | Pr[Game3 (1𝜆) = 1] −
Pr[Game4 (1𝜆) = 1] | ≤ 𝐴𝑑𝑣LWE

C .

□

Theorem 2. The proposed scheme is T-EUF secure assuming that
the (𝑞, 𝑛,𝑚, 𝛽)-SIS hardness holds, where 𝛽 ≈ �̃� (∥z∥). For a poly-
nomial (𝑞ℎ, 𝑞𝑘 , 𝑞𝑎, 𝑞𝑡 , 𝜖) adversary A, if A can win the game with
advantage 𝜖 by performing at most 𝑞ℎ Hash queries, 𝑞𝑘 KeyGen
queries, 𝑞𝑎 Authorization queries, and 𝑞𝑡 Trapdoor queries, and A
can break the signature generation process ofAuthorization algorithm
with advantage 𝛿 , then a challenger C can solve the SIS hardness.

Proof. If there is an adversary A who can attack the trapdoor

existential unforgeability with a non-negligible advantage, then it

can also solve the (𝑞, 𝑛,𝑚, 𝛽)-SIS assumption. A initially sets the

challenge user ID∗. We simulate the interaction between A and a

challenger C as follows.

Setup: The adversaryA announces a challenge datasetKS∗
𝑊
⊆

KS𝑈 . Then, C performs these procedures. (1) Calculate several

matrices (A, B,M1,M2, · · · ,M𝑘 ) same as the original T-EUF Game

in Section 3.2. (2) Select a challenge user ID∗ and calculate a matrix

AID∗ = (A | 𝐻4 (ID∗)) ∈ Z𝑛×2𝑚
q . (3) Respond a public parameter

𝑝𝑝=(A, B,M1,M2, · · · ,M𝑘 ) to A.
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Figure 2: Performance Evaluation of L-PEAKS Scheme.

Query: A performs the queries, and C responds them to A.

• HashQuery. C maintains a list 𝐿(SKID, 𝑡, ℎ), which is initially

empty. When A queries about (SKID, 𝑡), C searches the list

𝐿. If the tuple (SKID, 𝑡, ℎ) exists, C will return ℎ to A. Oth-

erwise, C randomly selects a vector y and calculates ℎ =

𝐻2 (Ay, SKIDy, t). After that, C returns ℎ to A and adds the

tuple (SKID, 𝑡, ℎ) to list 𝐿.

• KeyGenQuery. With regard to the 𝑞𝑡 queries for the secret

key of a user ID ≠ ID∗, C responds to the following answer. (1)

Calculate AID = (A | 𝐻4 (ID)). Assume that the 𝑖-th bit of the

user ID∗ and ID are different due to ID∗ ≠ ID. (2) Perform the

SamplePre(A,TA, 𝐻1 (ID), 𝑠) algorithm to generate skID and

then respond it to A.

• AuthorizationQuery. A queries an authorized token for a

dataset on time 𝑡 . For each keyword kw and each user ID ≠

ID∗, compute SKID, where 𝐹 (skID) = 𝑓1 (skID) − 𝑓2 (skID) =∑
kw∈{KS𝑈 −KS𝑊 } 𝑓 (skID,kw). After that, C chooses a ran-

dom vector y ∈ Z𝑚 and calculates ℎ = 𝐻2 (Ay, SKID · y, 𝑡) and
z = skID ·ℎ +y to obtain the signature 𝜎 = (ℎ, z) with probabil-

itymin(1, Dm
s (z)

MDm
skIDh,s (z)

), where 𝑡 is the authorized time. Finally,

C responds 𝑡𝑜𝑘𝑒𝑛 = (SKID, 𝜎, y, 𝑡) to A.

• TrapdoorQuery. A queries a trapdoor of kw. Then, A cal-

culates the authorized token by asking for the Authorization
Query and generates the trapdoor itself.

Forgery: Assume there exists a signature 𝜎 = (ℎ, z). For kw ∈
KS𝑊 ∗ , A executes the Trapdoor algorithm to generate a trap-

door tuple Trap
∗ = (trap∗1, trap

∗
2, 𝜎
∗, t∗) = (trap∗1, trap

∗
2, h
∗, z∗, t∗).

Since Trap
∗
is a valid trapdoor, we obtain that 𝜎∗ = (ℎ∗, z∗) is a

forged signature and the tuple (SK∗ID, 𝑡
∗, ℎ∗) is in the list 𝐿. Thus, we

have𝐻2 (Az∗−𝐻1 (ID)h, SK∗IDy, t) = H2 (Az−H1 (ID)h, SKIDy, t) . If
SKID ≠ SK∗ID or Az∗ −𝐻1 (ID)h ≠ Az − H1 (ID)h, it meansA finds

the pre-image of the hash function. Therefore, we have SKID =

SK∗ID and Az∗ −𝐻1 (ID)h = Az − H1 (ID)h and so A(z − z∗) = 0. In

addition, we notice that z − z∗ ≠ 0 due to the fact that 𝜎∗ is not
equal to the old signature 𝜎 . Also, because of ∥z∥, ∥z∗∥ ≤ 2𝑠

√
𝑚, we

have ∥z − z∗∥ ≤ 4𝑠
√
𝑚. Consequently, ∥z − z∗∥ is a solution of the

(𝑞, 𝑛,𝑚, 𝛽)-SIS assumption.

According to Lemma 5.3 and 5.4 in [23], the probability for

finding a solution of the (𝑞, 𝑛,𝑚, 𝛽)-SIS assumption is 𝜖 = ( 1
2
−

2
−100) (𝛿 − 2

−100) ( 𝛿−2
−100

𝑞ℎ+𝑞𝑎 − 2
−100) ≈ 𝛿2

2(𝑞ℎ+𝑞𝑎 ) . Thus, C can solve

the (𝑞, 𝑛,𝑚, 𝛽)-SIS assumption with probability 𝜖 .

□

7 PERFORMANCE EVALUATION AND

COMPARISONWITH PRIOR ARTS

In this section, we give a comprehensive performance evaluation

of our scheme at the beginning. Then, we conduct a comparative

analysis of the proposed L-PEAKS scheme with other state-of-the-

art PEKS and PEAKS schemes with regard to three aspects, security

properties, space complexity, and computation complexity.

All the experiments
1
of our scheme is accomplished on a Win-

dows 10 Laptop with Core i7-11800H CPU 2.30 GHz and 24 GB

RAM. We use Python to implement our scheme and set two differ-

ent types of security parameters as 𝑛 = 256,𝑚 = 9728, 𝑞 = 4093 and

𝑛 = 320,𝑚 = 12800, 𝑞 = 8191 following the existing works [4, 5, 33].

Our comprehensive performance evaluations are illustrated in Fig.

2 under two security parameter settings (𝑛 = 256 and 𝑛 = 320).

To be more specific, we depict the performance of User Registra-

tion, Ciphertext Generation and Trapdoor Generation & Matching

phases in Fig. 2(a), Fig. 2(b), and Fig. 2(c), respectively.

Subsequently, we compare our L-PEAKS scheme with existing

PEKS and PEAKS schemes [6], [34], [18], [19], [17], [33], [29], [10],

[22], [36], [21] in terms of five aspects, including identity-based,

quantum-safe, authorize, IND-CKA, T-EUF. This comparison is

elaborated in Table 1. From this table, it is evident that schemes [6],

[33], [29], [36] as well as our scheme incorporates the concept of

identity-based encryption. Moreover, schemes [34], [33], [36], [22]

along with our scheme demonstrate resistance against quantum

computing attacks. For the authorize property, scheme [18], [19],

[29], [21] and our scheme meets the requirement. The security

property IND-CKA is essential and is not satisfied by only one

scheme [17] among the existing schemes. As for the T-EUF security,

it is achieved by schemes [18],[19] and our scheme out of the eleven

existing schemes we compared. In summary, our L-PEAKS scheme

is the only one that effectively addresses all the security concerns.

1
Note that since the running time of the program will vary depending on the state

of the machine at the time of each measurement, the trend and speed ratios should

be consistent with those in this paper. The source code is published at https://github.

com/BatchClayderman/LB-PEAKS.

https://github.com/BatchClayderman/LB-PEAKS
https://github.com/BatchClayderman/LB-PEAKS
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Table 1: Security properties comparison with other existing PEKS and PEAKS schemes

Schemes Identity-based Quantum-safe Authorize IND-CKA T-EUF

Boneh et al. [6] ✓ × × ✓ ×
Xu et al. [34] × ✓ × ✓ ×
Jiang et al. [18] × × ✓ ✓ ✓
Jiang et al. [19] × × ✓ ✓ ✓
Huang et al. [17] × × × × ×
Xu et al. [33] ✓ ✓ × ✓ ×
Wang et al. [29] ✓ × ✓ ✓ ×
Chen et al. [10] × × × ✓ ×
Liu et al. [22] × ✓ × ✓ ×
Zhang et al. [36] ✓ ✓ × ✓ ×
Liu et al. [21] × × ✓ ✓ ×
Our scheme ✓ ✓ ✓ ✓ ✓

Table 2: Space complexity comparison

Schemes Secret key Size Ciphertext Size Trapdoor Size

Cheng et al. [12] |Z𝑚×𝑚 | |Z8𝑚×ℓ𝑆
𝑞 | |Z8𝑚×ℓ𝑅

𝑞 |
Xu et al. [33] |Z(𝑚+𝑚

′ )×(𝑚+𝑚′ )
𝑞 | |Z2(𝑚+𝑚′ )

𝑞 | |Z2(𝑚+𝑚′ )
𝑞 |

Xu et al. [34] |Z𝑚+𝜅𝑞 | |Z𝜌 ( (𝑑+3)𝑚+2)𝑞 | |Z(𝑑+3)𝑚𝑞 |
Liu et al. [22] |Z𝑚+𝑛𝜅+𝑚×𝑚𝑞 | |Z𝜌 (2𝑚+2)𝑞 | |Z2𝑚

𝑞 |
Zhang et al. [36] |Z𝑚×𝑚 | |Z(𝑚+1)×𝜌𝑞 | |Z𝑚𝑞 |
Our scheme |Z𝑚𝑞 | |Z4𝑚+1

𝑞 | |Z5𝑚+2
𝑞 |

Table 3: Computation complexity comparison

Schemes Encrypt Comp. Trapdoor Comp. Search Comp.

Cheng et al. [12] 𝑂 (𝜌𝑚ℓ𝑆 ) 𝑂 (𝜌𝑚ℓ𝑅) 𝑂 (𝑛2)
Xu et al. [33] 𝑂 (𝑛3) 𝑂 (𝜌 (𝑚 +𝑚′)) 𝑂 (𝑛2)
Xu et al. [34] 𝑂 (𝜅𝑛3) 𝑂 (𝑛3) 𝑂 (𝜅𝑛2)
Liu et al. [22] 𝑂 (𝜅𝑛3) 𝑂 (𝑛3) 𝑂 (𝜅𝑛2)
Zhang et al. [36] 𝑂 (𝑛2) 𝑂 (𝜌𝑚2) 𝑂 (𝑛2)
Our scheme 𝑂 (𝑛3) 𝑂 (𝜌𝑚) 𝑂 (𝑛2)

We also demonstrate the comparison analysis of space complex-

ity and computation complexity with other five schemes [12], [33],

[34], [22], [36] in Tables 2 and 3, respectively. To ensure a fair

comparison, the schemes we compare are all based on the lattice

hardness. Specifically, we give a comparison of the secret key size,

ciphertext size, and trapdoor size with others in Table 2. As for

Table 3, we analyze the computation complexity of the encryption,

trapdoor, and search algorithms, respectively. From Table 2 and

Table 3, it is evident that our L-PEAKS scheme guarantees excellent

security performance without introducing additional space and

computation overheads in general. Especially for the secret key size

and ciphertext size in Table 2 as well as trapdoor computation and

search computation in Table 3, our scheme offers more security

properties while still remaining the overhead minimal compared

with prior arts.

8 CONCLUSION

In this paper, we propose a L-PEAKS scheme from the LWE and

SIS hardness. It allows an authority to authorize users to search dif-

ferent datasets and maintains quantum resistance for the first time.

In particular, we leverage the philosophy of lattice sampling algo-

rithms and basis extension algorithms to achieve these properties.

We also introduce the IBE to support users encrypting data directly

via their identities to reduce the storage overhead. Furthermore, we

conduct a detailed security analysis and give a comprehensive per-

formance evaluation of our proposed scheme. Finally, we provide

security properties comparison and theoretical comparisons with

regard to space and computation complexity. For future work, it

would be interesting to design a PEAKS scheme supporting multi-

user scenarios and resist secret key leakage problem.
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