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Abstract. Boolean Searchable Symmetric Encryption (BSSE) enables
users to perform retrieval operations on the encrypted data while sup-
porting complex query capabilities. This paper focuses on addressing the
storage overhead and privacy concerns associated with existing BSSE
schemes. While Patel et al. (ASIACRYPT’21) and Bag et al. (PETS’23)
introduced BSSE schemes that conceal the number of single keyword re-
sults, both of them suffer from quadratic storage overhead and neglect
the privacy of search and access patterns. Consequently, an open ques-
tion arises: Can we design a storage-efficient Boolean query scheme that
effectively suppresses leakage, covering not only the volume pattern for
singleton keywords, but also search and access patterns?

In light of the limitations of existing schemes in terms of storage over-
head and privacy protection, this work presents a novel solution called
SESAME. It realizes efficient storage and privacy preserving based on
Bloom filter and functional encryption. Moreover, we propose an en-
hanced version, SESAME+, which offers improved search performance.
By rigorous security analysis on the leakage functions of our schemes,
we provide a formal security proof. Finally, we implement our schemes
and demonstrate that SESAME+ achieves superior search efficiency and
reduced storage overhead.

Keywords: Searchable symmetric encryption · Boolean search · Volume
pattern · Search pattern.

1 Introduction

Amidst the current explosive growth of data, outsourcing data to a cloud server is
considered as a judicious choice for resource-constrained individuals or organiza-
tions. It provides them access to professional, efficient, reliable, and cost-effective
computing and storage services, while also providing ubiquitous data accessibil-
ity. However, a crucial concern is how to effectively protect sensitive information
while maintaining the utility.
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Searchable Symmetric Encryption (SSE) [14,20,32] plays a vital role in se-
cure search over encrypted data and facilitates data outsourcing by individuals
and organizations. It allows users to retrieve interested documents stored on the
cloud server while preserving the privacy of both queries and document con-
tents. Thus far, the SSE research community has proposed many practical ap-
proaches, ranging from efficient and expressive query functionality [6,12,13,15]
to secure searching using privacy-preserving methods capable of withstanding
security threats [9,10,25,31].

One of the most attractive features of SSE functionality is Boolean query. A
naive Boolean query construction can be derived from a single keyword scheme,
where the user receives all single keyword results in a Boolean formula Φ and eval-
uates Φ locally using union and intersection operations. However, such a scheme
has the worst performance in terms of efficiency and leakage. That is, it requires
returning all query results for each single keyword and revealing the result sizes
for all keywords. The Boolean query scheme with sub-linear search complexity
was originally proposed by Cash et al. [12], however, it requires the Boolean
formula to be in a searchable normal form (w1 ∧ Φ(w2, · · · , wq)). Kamara et
al. [21] proposed a non-interactive SSE scheme that enables the processing of
arbitrary Boolean queries with worst-case sub-linear search complexity. Unfortu-
nately, these schemes failed to consider the leakage of some sensitive information,
including the disclosure of volume pattern for some keywords.

Recently, Patel et al. [29] made advancements regarding the security of
Boolean queries by introducing a novel construction that specifically addresses
the protection of the volume pattern for any singleton keywords. Bag et al. [6]
developed a general Boolean query scheme from any conjunctive schemes. But
both of them come with significant storage overhead and do not consider the
potential leakage of search and access patterns.

Leakage-abuse Attacks. Numerous studies have extensively investigated leak-
age abuse attacks in SSE. For instance, access pattern leakage [19,27,30] or search
pattern leakage [24,26,28] has been shown to enable adversaries to infer the un-
derlying keyword based on prior knowledge. Furthermore, when equipped with
knowledge of volume pattern, adversaries can even reconstruct the range query
database [17,18,22]. Although these works primarily concentrate on single key-
word or range queries, it is possible to apply them to Boolean queries as well.

In scenarios where a Boolean query reveals search pattern for certain key-
words, adversaries can potentially employ inference attacks to recover the un-
derlying keywords. For example, in the case of BIEX [21], the search pattern for
each singleton keyword in the first clause can be exposed. Similarly, even in the
case of CNFFilter [29], where tokens are constructed using keyword pairs, the
access pattern could still be exploited to compromise the confidentiality of the
underlying keyword pairs. Furthermore, existing attacks targeting exact or range
queries can also potentially exploit the leakage of access and volume patterns to
infer sensitive information or even the underlying keywords.

This naturally leads us to pose the following question: Can we design a
storage-efficient Boolean query scheme that effectively suppresses leakage, cov-
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ering not only the volume pattern for singleton keywords, but also search and
access patterns?

Challenges. This paper focuses on addressing privacy concerns and storage
overhead related to Boolean queries. Specifically, the proposed construction aims
to prevent the leakage of the result size (i.e., volume pattern) of any single
keyword in a Boolean formula. For example, in the case of the Boolean formula
Φ = (w1 ∧ w2) ∨ (w3 ∧ w4), the volume pattern of any keyword wi in Φ is
protected. We are also concerned about the leakage of access and search patterns,
which are often neglected by existing schemes, yet they pose comparable threats.
Furthermore, the construction should exhibit linear growth in storage overhead
instead of quadratic growth.

Solutions Overview. In order to conceal the volume pattern associated with
any single keyword in a Boolean query, we have to avoid operations that reveal
information about a single keyword within a Boolean query. To accomplish this,
we utilize a forward index based on a vector representation. In particular, each
document is encoded as a Bloom filter, encompassing all the keywords it con-
tains. Each plaintext Boolean query is represented as a Disjunctive Normal Form
(DNF). Such a DNF query consists of a disjunction of several conjunctive queries,
where each conjunctive query can be represented as a Bloom filter as well. In
doing this, Boolean query can be divided into several conjunctive queries where
each conjunctive query can be done by computing the inner product between
two Bloom filters and checking if the result is over a threshold.

To protect the forward indexes, we leverage inner product functional encryp-
tion (IPFE). An IPFE scheme enables a party, who holds a decryption key skx
corresponding to a vector x, to decrypt a ciphertext Enc(y) encrypted from a
vector y and learn the inner product ⟨x,y⟩. We use IPFE to encrypt the forward
indexes and the server stores the encrypted ciphertexts of all documents. Dur-
ing a search, the client generates an IPFE decryption key for the Bloom filter
associated with a conjunctive query and sends the decryption key to the server.
Using the key, the server, for each encrypted forward index, computes the inner
product by decryption and compares it with a threshold to find matches.

It is possible to use a function hiding IPFE to protect the query further,
which reveals no information about the query x at the cost of heavy computing
overhead. In our constructions, we adopt a more practical approach. Our idea is
that the client can add dummy keywords when generating a Bloom filter associ-
ated with a conjunctive query. This approach not only fulfills the aforementioned
security requirements but also circumvents the use of function hiding functional
encryption for the inner product computation.

Our Contribution. We present a novel storage-efficient Boolean searchable
symmetric encryption scheme that effectively mitigates the leakage of volume,
search, and access patterns. Meanwhile, it incurs small communication and lin-
ear storage overheads. Compared with prior works, our scheme demonstrates a
smaller base query set of leakage, which refers to the disclosure of the result set
of Boolean queries, as introduced by Patel et al. [29]. This leakage only includes



4 F. Author et al.

the result set of each clause within the Boolean formula, rather than keywords
or keyword pairs. Specifically, our contributions can be summarized as follows:

– We propose a basic Boolean SSE scheme based on forward indexing struc-
ture of vector representation and inner product functional encryption, which
restricts the base query set of leakage to the clauses within the Boolean for-
mula, and improves the security by introducing dummy keywords.

– We enhance the basic scheme with optimizations. Typically, queries involve
a small number of keywords, but the requirement for token length to match
the index length during computations can introduce substantial computa-
tional overhead without meaningful contributions. To mitigate this issue, we
employ a token pruning technique, improving efficiency by over tenfold.

– We provide a formal security analysis of our proposed scheme and substanti-
ate its superior security compared to existing schemes that support Boolean
queries. Additionally, we implement a series of experiments to empirically
demonstrate the enhanced efficiency of our scheme in terms of search and
storage capabilities.

1.1 Related Works

Curtmola et al. [14] were the first to provide a formal definition of SSE and es-
tablish indistinguishability and simulation-based security definitions in the static
setting. Subsequently, Kamara et al. [20] extended the work of [14] by introduc-
ing the capability of efficient addition and deletion of files, commonly referred to
as dynamic SSE (DSSE). To enhance the query function of SSE, Cao et al. [11]
proposed a scheme based on TF-IDF to support multi-keyword ranking. Wang et
al. [33] introduced multi-keyword fuzzy search that can tolerate minor typos in
keywords. Fu et al. [16] presented a scheme to enable content-aware search by
constructing conceptual graphs. Moreover, Cash et al. [12] designed a general
Boolean query scheme with sub-linear search time complexity.

While [12] efficiently handles queries in searchable normal form, it exhibits
linear time complexity for processing arbitrary Boolean queries. In response to
this limitation, Kamara et al. [21] proposed a generic Boolean query scheme with
worst-case sub-linear search. This scheme constructs a global multi-map and a
dictionary as an index structure, where each multi-map maps each keyword v
that co-occurs with a given keyword w ∈ W to a tuple of DB(w) ∩ DB(v).
However, this scheme inadvertently reveals the result size for each singleton
keyword in the first clause of the Boolean formula. To address this vulnerability,
Patel et al. [29] presented an improved construction with significantly reduced
leakage by building indexes using any combination of two keywords as meta-
keywords. Bag et al. [6] also employed the construction of meta-keywords to
build indexes and allowed any scheme supporting conjunctive queries could be
smoothly scaled to support any Boolean queries. Regrettably, these schemes
entail substantial storage overhead and expose noteworthy information leakages.

The study of access pattern leakage was first initiated by Islam et al. [19] who
proposed inference attacks for recovering the underlying keywords given prior
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knowledge. Pouliot et al. [30] presented a combinatorial optimization problem
based on graph matching to attack access pattern leakage. Ning et al. [27] fur-
ther designed attacks under different types of assumptions. Grubbs et al. [17]
exploited the leakage of volume pattern in range queries to reconstruct the
database. Gui et al. [18] further investigated attacks on volume pattern leakage
and reduced the required prior knowledge. Kornaropoulos et al. [24] exploited
search pattern leakage to develop value reconstruction attacks that succeeded
without any knowledge about the query or data distribution. Oya et al. [28] pro-
posed an attack on SSE against hidden access pattern and leaked search pattern,
which successfully recovered the underlying keywords.

1.2 Organization

This paper is organized as follows. In §2, we introduce the cryptographic primi-
tives that underpin our construction. §3 provides definitions for Boolean search-
able symmetric encryption and security notions. In §4, we present the details of
our constructions, SESAME and SESAME+. Security analysis and experimental
analysis are presented in §5 and §6, respectively. Finally, §7 concludes this paper.

2 Preliminaries

This section presents cryptographic primitives utilized in our constructions. Ta-
ble 1 summarizes commonly used symbols.

2.1 Bloom Filter

Bloom filter is a data structure used to represent a set, which is a bit vector of
length l with a family of hash functions H = {hi |hi : {0, 1}∗ → [l], 1 ≤ i ≤ s}.
Specifically, given a set S = {a1, · · · , an} of elements, initialize a bit vector
of length l and set all positions in the vector to 0. Use s independent hash
functions hi to map each element in the set S to the vector by setting the
corresponding positions to 1. To verify if a given element a exists in the set
S, compute the mapping positions of a using the s hash functions hi. If all
corresponding positions in the vector are 1, then a is possibly in the set (with
some false positive probability), otherwise a is definitely not in the set. The false
positive rate for an l-bit Bloom filter is approximately (1− e−

sn
l )s.

2.2 Functional Encryption for Inner Product

Functional Encryption (FE) [8] extends traditional public key encryption, en-
abling the retrieval of partial information from ciphertexts without the need to
decrypt them entirely. Specifically, by leveraging a decryption key associated
with a designated function F and a ciphertext Enc(x), an authorized user can
retrieve the value of F (x) using a decryption key corresponding to F , without
revealing the underlying message x itself.
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Table 1: Summary of Notations

Notation Description

λ The computational security parameter
l The length of a vector (i.e., Bloom filter)

indi The identifier of the i-th document
Wi The list of keywords for the i-th document
α The number of non-zero elements in the token q
β The positions of all non-zero elements in the token q

w′ Dummy keyword, which satisfies w′ /∈
⋃d

i=1 Wi

skq The decryption key of vector q for functional encryption
R The result set
Q A Boolean query in the disjunctive normal form
vi The Bloom filter (or vector) corresponding to the i-th document
evi The encrypted Bloom filter (or vector) corresponding to the vi

A A matrix consisting of encrypted vectors
q The search token corresponding to the conjunctive query q
r The result vector
R The result matrix
Q A matrix consisting of tokens
U A token set that has been pruned

Functional encryption for inner product [4,5] is a form of functional encryp-
tion that restricts F to the inner product operation, enabling the decryption
key holder with a vector x to decrypt the ciphertext vector Enc(y) and obtain
⟨x,y⟩ without revealing any other information about y. Next, we introduce a
functional encryption for inner product based on the Decisional Diffie-Hellman
(DDH) assumption, which serves as a fundamental building block in our con-
struction. Formally, the cryptographic scheme [5] consists of four algorithms,
denoted as IPFE = (Setup,Keygen,Encrypt,Decrypt), formally defined as follows:

– (msk,mpk)← Setup(1λ, 1l) : Choose a cyclic group G with a prime order p >
2λ and generate two generators g, h← G. Then randomly sample si, ti ← Zp

for each i ∈ {1, · · · , l}, and compute hi = gsi ·hti . The msk and the mpk are
defined as, msk := {(si, ti)}li=1 and mpk := (G, g, h, {hi}li=1), respectively.

– skx ← Keygen(msk,x) : Take the msk and the vector x = (x1, · · · , xl) as

input, where xi ∈ Zq, compute the decryption key skx = (sx, tx) = (
∑l

i=1 si ·
xi,

∑l
i=1 ti · xi) = (⟨s,x⟩, ⟨t,x⟩).

– Cy ← Encrypt(mpk,y) : Given the mpk and a vector y = (y1, · · · , yl) as
input, where yi ∈ Zq, the algorithm randomly samples r ← Zp and encrypts
the vector y as C = gr, D = hr, {Ei = gyi · hr

i }li=1. The resulting ciphertext
is denoted as Cy = (C,D, {Ei}li=1).

– ⟨x,y⟩ ← Decrypt(mpk, skx, Cy) : Given the input of mpk, the decryption
key skx, and the ciphertext Cy, the algorithm proceeds to compute Ex =

(
∏l

i=1 E
xi
i )/(Csx · Dtx). The inner product of the vectors x and y can be

recovered from computing the discrete logarithm of Ex as regards the base g.
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2.3 Pseudorandom Function

A keyed function F : K × X → Z is a two-input function, where the first
input is referred to as the key. If there exists a polynomial time algorithm that
can compute F (k, x) for any given k ∈ K and x ∈ X , and for all probabilistic
polynomial time adversaries A satisfy |Pr[AF (k,·)(1λ) = 1]−Pr[Af(·)(1λ) = 1]| ≤
negl(λ), where negl(λ) is negligible in the security parameter λ, k

$←− K and f is a
random function from X to Z, then it is called Pseudorandom Function (PRF).

3 Boolean Searchable Symmetric Encryption

Boolean Searchable Symmetric Encryption (BSSE) supports arbitrary Boolean
queries on encrypted data. Typically, BSSE involves three entities: the Data
Owner (DO), the Data User (DU)3, and the Cloud Service Provider (CSP). The
DO encrypts the database DB = {(indi,Wi)}di=1 and generates the corresponding
encrypted index. The CSP stores the encrypted data and index and handles
query requests. The DU generates a query request and transmits it to the CSP.
A generic BSSE scheme can be outlined with three algorithms:

– (msk,EDB)← Setup(1λ,DB): The Setup algorithm takes a security parame-
ter 1λ and a database DB as input and produces the master secret key msk
as well as the encrypted database EDB, which encompasses both encrypted
data and index.

– tokQ ← Token(Q,msk): The Token algorithm receives the master secret key
msk and a Boolean query Q as input and generates the search token tokQ.

– R ← Search(tokQ,EDB): This algorithm takes the search token tokQ and
the encrypted database EDB as input. It performs a search on the encrypted
index and retrieves the documents that satisfy the given Boolean query Q.
The results are stored in the result set R and returned as the output.

3.1 Security Notions

We provide a security model for BSSE following the definition of Curtmola et
al. [14]. The adversary’s knowledge of leakage is defined as L = (LSetup, LToken,
LSearch), where the leakage function of LSetup captures the leakage information
of BSSE in the Setup stage, the leakage function of LToken captures the leakage
information from the token learned by the adversary (i.e., the server), and the
leakage function LSearch captures the leakage in the Search stage.

To formally describe the security notion of BSSE, we present a simulation-
based Real-Ideal game against adversaries. In this game, A represents the ad-
versary and S represents the simulator.

– RealBSSE
A (λ): The stateful adversary A chooses a database DB and sends it

to the challenger C. C runs Setup(1λ,DB;msk,EDB) and returns EDB to A.
3 The data owner and the data user can be the same entity.
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Then A randomly selects a series of Boolean queries {Q1, · · · } at once and
sends them to C. For each Qi, C runs the Token(Qi,msk; tokQi

) and returns
tokQi to A. A sends tokQi to C, who performs the Search(tokQi ,EDB;Ri)
and returns the result set Ri to A. Finally, A outputs a bit b ∈ {0, 1}.

– IdealBSSE
A,S (λ): The stateful adversary A chooses a database DB and sends

it to the challenger C. The simulator S runs SimSetup(L;EDB) based on the
leakage information L and returns EDB to A. Subsequently, A randomly se-
lects a series of Boolean queries {Q1, · · · } at once and sends them to C, which
S processes through SimToken(L; tokQi

), returning the corresponding token
tokQi

toA. AfterA forwards the token tokQi
to C, S executes SimSearch(L;Ri)

to obtain the result set Ri, which is returned to A. Finally, A produces a
bit b ∈ {0, 1} to complete the experiment.

The security of BSSE is defined as the advantage of A in distinguishing between
two worlds: in the real world, A interacts with a real BSSE system, and in the
ideal world, A interacts with a stateful simulator S that receives the same input
as A and simulates the response of the ideal functionality. BSSE is L-secure if
for any probabilistic polynomial-time (PPT) adversary A, there exists a PPT
simulator S such that |Pr[RealBSSE

A (λ) = 1]− Pr[IdealBSSE
A,S (λ) = 1]| ≤ negl(λ).

Definition 1. (Search Pattern) The search pattern is a sequence over n queries
Q that can be inferred whether two queries are the same, and is defined as
sp(Qi) = {ui | (ui, Qi) ∈ Q}.

Definition 2. (Access Pattern) The access pattern is a sequence over n queries
Q that reveals the results of the queries (including the number of results, named
volume pattern) and is defined as ap(Qi) = {DB(Qi)}.

4 Constructions

In this section, we present our fundamental scheme, SESAME (Storage-Efficient
Boolean SeArchable SyMmetric Encryption with Suppressed Leakage)4, as well
as its enhancement SESAME+. We first introduce a construction that facilitates
conjunctive queries, and subsequently extend it to support arbitrary Boolean
queries. Finally, we propose an enhanced construction with improved efficiency.

4.1 Overview

Before presenting our constructions, we provide an overview of the core ideas
behind them. As mentioned, the focus of this paper is to balance storage overhead
and privacy protection while maintaining search efficiency and single-keyword
search ability. To achieve linear storage overhead, we utilize the Bloom filter to
represent the forward index structure of the document and protect the number
of single keyword results. To address functional encryption leakage from queries

4 SESAME implies a mystical code that unlocks the treasure.
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and protect the search pattern, we introduce dummy keywords in the token
generation process, which also safeguards the access pattern of the query. Lastly,
to improve search efficiency, we prune tokens as the number of keywords in a
query is usually small.

4.2 Basic Construction

Conjunctive Protocol. We start by describing our building block for con-
junctive queries, which comprises a tuple of algorithms, denoted as ΣConj =
(Setup,Token,Search). The formal description of ΣConj is presented in Alg. 1.
Setup. Given an input database DB, the Setup algorithm initializes and gener-
ates master public key mpk and the master secret key msk, with inputs of the
security parameter λ and the predefined vector length l. Then the algorithm
parses the DB as {(indi,Wi)}di=1.

Algorithm 1: Conjunctive Protocol ΣConj

@ Setup(1λ, 1l, DB; mpk,msk,EDB)
1 Choose a cyclic group G with a prime order p > 2λ and parse DB as

{(indi,Wi)}di=1;
2 Generate two generators g, h← G and randomly sample si, ti ← Zp for each

i ∈ {1, · · · , l} and k ← {0, 1}λ, then compute hi = gsi · hti . Finally, let
msk := (skIPFE = {(si, ti)}li=1, k) and mpk := (G, g, h, {hi}li=1);

3 for i ∈ {1, · · · , d} do
4 Construct a Bloom filter vi by mapping each kwj into vi, where

kwj ← F (k,wj) and wj ∈Wi;
5 Encrypt the Bloom filter vi by using functional encryption for inner

product, evi = IPFE.Encrypt(mpk,vi);

6 Combine all encrypted Bloom filters into a matrix A = {ev1, · · · , evd};
7 Define EDB = A, then output (mpk,msk,EDB).

@ Token(msk, q; q, skq, α)
1 Construct a Bloom filter q by mapping each kwj into q and count the number

of non-zero elements α, where kwj ← F (k,wj) and wj ∈ q;
2 Add an extra kw′ into q, where kw′ ← F (k,w′) and w′ is a dummy keyword;
3 Generate a key for the vector q, skq = IPFE.Keygen(skIPFE, q);
4 Send (q, skq, α) to the server.

@ Search(EDB,mpk, q, skq, α; R)
1 Compute the inner product between the vector q and the matrix A,

r = IPFE.Decrypt(mpk, skq,A);
2 for ei ∈ r do

if ei ≥ α then put corresponding document identifier indi into the result
set R;

3 return query result set R.

For each document indi, the algorithm initializes a Bloom filter vi of length
l by mapping each masked keyword kwj into corresponding bit positions in the
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filter, and then encrypts it using functional encryption. All encrypted Bloom
filters are combined into a matrix A to form the encrypted database EDB. The
output of the algorithm is denoted as (mpk,msk,EDB).

Token. The Token algorithm takes the master secret key msk and a conjunctive
query q = (w1 ∧ · · · ∧wq) as input. To compute the inner product with evi, the
length of the token needs to match that of vi. The algorithm initializes a Bloom
filter of length l, maps each keyword in q to the Bloom filter using the same
method as in the Setup algorithm, and records the number of non-zero elements
in the Bloom filter q. Essentially, the client can generate the decryption key skq
from the vector q and then send it to the server for retrieval.

However, it exposes the q in plaintext during the decryption of the functional
encryption, which requires both the decryption key skq and q. Even though q
is a Bloom filter that does not reveal the underlying keywords to an adversary,
it still leaks the search pattern, allowing the adversary to distinguish whether
the same query is repeated or not. To protect the search pattern, we incorporate
the addition of random dummy keywords during token generation that do not
correspond to any document. It is worth noting that the client has the flexibility
to choose the dummy keyword and its quantity randomly, or has them randomly
generated by the protocol when generating the token, so the protocol does not
explicitly take the dummy keyword as input. Adding more dummy keywords in-
creases query obfuscation but also raises the false positive matching probability;
so, we note there is a trade-off between security and accuracy.

Search. The Search algorithm takes as input the encrypted database EDB, the
master public key mpk, the search token q, the decryption key skq and the num-
ber of non-zero elements α. The server begins by computing the inner product
between the vector q and the matrix A5, resulting in the vector r. It then scans
each element of r and checks whether the value exceeds or equals to a threshold
α. If the condition is satisfied, the corresponding document identifier is added
to the result set R.
Boolean Protocol. We extend conjunctive construction to support arbitrary
Boolean queries. We now give a description of an extended variant that supports
arbitrary Boolean queries and refer to it as SESAME. Alg. 2 provides a more
detailed illustration of the extended version.

Recall that any Boolean query can be written as a DNF query Q = q1 ∨
· · · ∨ qm, where each qi = wi,1 ∧ · · · ∧ wi,mi

is a conjunction. Therefore, for any
Boolean query, the client first parses it as disjunctive normal form, and then
uses ΣConj.Token to generate the token and the decryption key for each qi. To
obtain the resulting matrix R, we treat all tokens as a matrix Q and multiply
them by A6. For each column ri in R, if any element is greater than or equal to
the threshold αj , the corresponding document indi is added to the result set R.

5 Representing all encrypted vectors as a matrix is a matter of convenience for notation
purposes, and the actual computation still relies on the inner product operation of
vectors.

6 Similarly, it is represented as a matrix solely for descriptive purposes.
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Algorithm 2: SESAME

@ Token(msk, Q; Q, skQ,α)
1 for qi ∈ Q do
2 Construct a Bloom filter qi by mapping each kwj into qi and count the

number of non-zero elements αi, where kwj ← F (k,wj) and wj ∈ qi;
3 Add an extra kw′ into qi, where kw′ ← F (k,w′) and w′ is a dummy

keyword;
4 Generate a key for the vector qi, skqi

= IPFE.Keygen(skIPFE, qi);

5 Define Q = {q1, · · · qm}, skQ = {skq1
, · · · , skqm

}, α = {α1, · · · , αm};
6 Send (Q, skQ,α) to the server.

@ Search(EDB,mpk,Q, skQ,α; R)
1 Compute the matrix multiplication between the matrix Q and the matrix A,

R = IPFE.Decrypt(mpk, skQ,A);
2 for ri ∈ R do

if ∃ ej ∈ ri, ej ≥ αj then put document identifier indi into the result
set R;

3 return query result set R.

4.3 Enhanced Construction

We observe that the number of queried keywords is typically much smaller than
the total number of keywords in the universal keyword set, i.e., |qi| ≪ |∪di=1Wi|.
Consequently, a significant amount of unnecessary computational overhead arises
since the 0 elements in the query vector are meaningless for the computation.
Therefore, the primary objective of the SESAME+ enhancement construction
is to improve query efficiency. The extended version of the proposed scheme is
illustrated in more detail in Alg. 3, which depicts the various components and
operations involved in supporting arbitrary Boolean queries.

To improve the efficiency of the scheme, SESAME+ eliminates all the 0 ele-
ments in the vector qi, which is a straightforward yet effective approach. How-
ever, directly removing the 0 elements from the vector qi would render encryption
and decryption infeasible. SESAME+ makes changes to the Token and Search al-
gorithms, where the setup phase remains the same as that of SESAME. In the
Token algorithm, it is necessary to record the number of non-zero elements, de-
noted as αi, for clause qi before adding the dummy keyword w′ and the position
set βi of the non-zero elements for the modified query q′

i = qi ∧w′ after adding
the dummy keyword (line 3, Alg. 3); suppose there are α′

i non-zero elements
after adding the dummy keyword and α′

i ≥ αi, then the server doesn’t know
which αi non-zero elements out of α′

i are introduced by non-dummy keywords,
hence reducing leakage. Then, the 0 elements in qi are removed to obtain the
pruned vector ui and generate the corresponding decryption key. Similarly, in
the Search algorithm, the server needs to prune A according to the received βi

to obtain the matrix A′ corresponding to ui. The inner product ri from ui and
A′ is then computed to filter the documents that satisfy the query condition.
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Algorithm 3: SESAME+

@ Token(msk, Q; U , skU ,α,β)
1 for qi ∈ Q do
2 Construct a Bloom filter qi by mapping each kwj into qi and count the

number of non-zero elements αi, where kwj ← F (k,wj) and wj ∈ qi;
3 Add an extra kw′ into qi, where kw′ ← F (k,w′) and w′ is a dummy

keyword, record the positions of all non-zero elements in qi, denoted as
βi, and then remove the 0s in qi to get a new vector ui with all 1s;

4 Generate a key for the vector ui,

skui = (sui , tui) = (Σ
|ui|
j=1sβi,j · ui,j , Σ

|ui|
j=1 tβi,j · ui,j);

5 Define U = {u1, · · ·um}, skU = {sku1 , · · · , skum}, α = {α1, · · · , αm},
β = {β1, · · · , βm};

6 Send (U , skU ,α,β) to the server.
@ Search(EDB,mpk,U , skU ,α,β; R)

1 for ui ∈ U do
2 Select the corresponding rows from matrix A according to βi to form a

new matrix A′;
3 Compute the inner product between the vector ui and the matrix A′,

ri = IPFE.Decrypt(mpk, skui ,A
′);

4 for ej ∈ ri do
if ej ≥ αi then put corresponding document identifier indj into the
result set R;

5 return query result set R.

5 Security Analysis

We overview the security of our enhanced construction SESAME+. We only
provide the security of SESAME+ since all optimizations in SESAME+ do not
downgrade the security of SESAME. We first present an informal discussion of
the leakage functions, and then show the security of SESAME+ in Theorem 1,
with the proof from Appendix A.

The Setup protocol securely encrypts the input database DB and subse-
quently outsources it to the server for storage. As the adversary only has access
to the stored data, the leakage function LSetup is defined as LSetup = (d, l), where
d denotes the number of vectors and l denotes the length of each vector.

For the Token protocol, the input Boolean query Q is converted into a token
that can be computed on the encrypted database and sent to the server. Hence,
the adversary’s view includes U , skU , α, and β. However, since β reveals the
positions of all non-zero elements and the number of Boolean query clauses, the
leakage function can be defined as LToken = (m,α,β), where m represents the
number of clauses in the query Q.

For Search protocol, the server computes the inner product between the token
and the encrypted database to determine whether a document satisfies the search
criteria, enabling the server to learn this information. The leakage function can
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be defined as LSearch = ({r1, · · · , rm},R), which contains the inner-product
result ri for the i-th clause and the final search result R.

Theorem 1. SESAME+ is an L-secure Boolean Searchable Symmetric Encryp-
tion scheme with non-adaptive security7 that supports arbitrary Boolean queries,
if the inner-product functional encryption is secure.

6 Experimental Evaluation

In this section, we report the implementation and performance of SESAME
and SESAME+. We evaluate the performance on real-world data set and com-
pare the storage overhead and search efficiency of SESAME+ with those of
TWINSSEOXT

8 [6] in conjunctive normal form. Furthermore, we evaluate the
storage overhead of CNFFilter [29] and present an efficiency comparison with
TWINSSEOXT (in CNF and DNF form) and SESAME+.
Data Set and Platform. We utilize the Enron email data set [1], comprising a
total of 515,705 documents (emails). To ensure a more enriched and meaningful
set of keywords in each document, we chose 17,006 documents that are greater
than 10KB in size. The experiments are conducted using Python3 on a system
running macOS Monterey 12.4 with an Intel Core i7 2.9 GHz CPU.
Implementation Details. We extract 500 keywords from the Enron dataset
with a total of 2,553,585 document-keyword pairs. For cryptographic primitives,
we implement PRF and encryption using HMAC and AES algorithms, respec-
tively, as provided by the Crypto library [2]. In our implementation, we set the
prime order p of functional encryption to 256 bits. In the implementation of
scheme TWINSSEOXT, we use the Pairing-Based Cryptography Library [3] and
set both qbits and rbits to 256. Additionally, we set the bucket size to 10, which
is consistent with the configuration used in [6]. For CNFFilter, we take the first
8 bytes for the output of PRFs, which is the same as the setting in [29].

6.1 Evaluation of Our Constructions

We present the performance evaluation of both our basic construction, SESAME,
and its enhanced version, SESAME+, in terms of search efficiency and accuracy.
This evaluation includes various configurations of Bloom filters, where we vary
the filter length and the number of hash functions. The results are summarized
in Table 2. In the experimental setting, we consider Boolean queries of the form
D1 ∨D2, where Di represents a conjunction of three labels.

Within our proposed schemes, alongside the documents that satisfy the query,
the query results also encompass certain erroneous documents, which are evalu-
ated using accuracy as a metric. The occurrence of errors can be attributed to

7 Adaptive security denotes that the adversary can issue queries depending on previous
queries, whereas non-adaptive security means that the adversary must prepare all
the queries at the beginning of the BSSE security game.

8 In this paper, unless explicitly specified, TWINSSEOXT is used to represent a scheme
specifically designed for processing Boolean queries in CNF form.
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Table 2: Performance Comparison: Search Efficiency and Accuracy

1200 1800 2400
SESAME SESAME+ SESAME SESAME+ SESAME SESAME+
time acc time acc time acc time acc time acc time acc

2 78.678 0.942 3.256 0.942 115.477 0.947 3.290 0.947 156.806 0.989 3.326 0.989

3 79.770 0.739 4.157 0.739 118.784 0.957 4.269 0.957 160.209 0.827 4.328 0.827

4 77.025 0.587 5.000 0.587 118.532 0.878 5.105 0.878 163.714 0.844 5.273 0.844

5 73.810 0.503 5.679 0.503 119.807 0.827 6.053 0.827 162.508 0.807 6.174 0.807
1 Search time is measured in seconds and ”acc” stands for ”accuracy”.
2 The leftmost column corresponds to the number of hash functions, while the top
row denotes the length of the Bloom filter.

two factors. Firstly, the utilization of the Bloom filter as an indexing mechanism
inherently introduces errors, which can be adjusted through parameter modifi-
cations. Secondly, to protect access and search patterns, we have incorporated a
dummy keyword, which simultaneously increases the false positive rate.

Based on the empirical findings presented in Table 2, we observe that when
the length of the Bloom filter remains constant, the accuracy of the query re-
sults decreases with an increasing number of hash functions. On the other hand,
increasing the length of the Bloom filter improves the performance of our con-
structions. Therefore, our proposed constructions allow for parameter adjust-
ments within the Bloom filter to achieve the desired level of accuracy.

Through a comparative analysis of SESAME and SESAME+, notable distinc-
tions emerge. SESAME+ demonstrates a search time that is at least ten times
faster than that of SESAME and is unaffected by the length of the Bloom filter. In
contrast, the search time of SESAME escalates with the expansion of the Bloom
filter’s length. The discrepancy arises from SESAME+ selectively computing rel-
evant vector elements, ignoring nonsensical ones, compared to SESAME that
calculates the entire vector regardless of element relevance. This enhancement
in our construction leads to a substantial improvement in search efficiency.

6.2 Performance Comparison

We evaluate and compare the search and accuracy performance of SESAME+
and TWINSSEOXT by varying queries. Each query is composed of two clauses,
with each clause containing 2 or 3 keywords, as depicted in Fig. 1(a) and
Fig. 1(b), respectively. The resulting size is varied by carefully selecting the
keywords. For our implementation, we employ a Bloom filter with a length of
2400 bits and a hash family with two hash functions.

Our proposed construction, SESAME+, exhibits superior performance com-
pared to TWINSSEOXT in terms of both search efficiency and result accuracy.
In terms of search efficiency, SESAME+ achieves a more than tenfold improve-
ment, which remains consistent regardless of the number of results or changes
in query formulas. This is attributed to the linear search nature of our construc-
tion, where the number of elements involved in the computation is typically
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Fig. 1: Search Efficiency and Accuracy Performance

small. In contrast, TWINSSEOXT utilizes meta-keywords that often contain nu-
merous elements, requiring individual verification and resulting in search times
that fluctuate with the number of results or changes in query formula. Our
construction also outperforms in result accuracy, as our scheme allows for en-
hanced accuracy by adjusting the parameters of the Bloom filter. On the other
hand, TWINSSEOXT introduces errors through meta-keywords, which are query-
dependent and consequently limit improvements in accuracy across all queries.
Fig. 2 illustrates the comparison of our scheme with TWINSSEOXT and CNFFilter
in terms of search time. CNFFilter achieves faster search efficiency at the expense
of storage overhead and information leakage.
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Fig. 2: Efficiency Comparison

In addition, we conduct a comparison of storage overhead and token size,
as illustrated in Table 3. The storage overhead is determined by serializing the
encrypted database using the pickle library, while the token size is computed
using the getsizeof() function from the sys library. It is important to note
that the token size solely captures the information transmitted from the client
to the server and does not account for any information returned by the server.
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From the comparison, we observe that SESAME+ demonstrates significantly
lower storage overhead compared to other constructions. This is attributed to the
linear relationship between the storage overhead of SESAME+ and the number
of documents, which is independent of the number of keywords present in each
document. In contrast, the storage overhead of the other two constructions is
influenced by the number of document-key pairs, and the generation of meta-
keywords results in an expansion of storage space.

Table 3: Performance Comparison: Storage Overhead and Token Size

Storage Size
(GB)

Token Size (KB)
1000 2000 3000 4000 5000

SESAME+ 1.55 416 416 416 416 416

TWINSSEOXT 6.69 147816 295264 295264 295264 295264

CNFFilter 23.0 208 208 208 208 208

Furthermore, we observe SESAME+ shows a smaller token size due to its
linear relationship with the number of keywords in the Boolean formula. In
contrast, the token size of CNFFilter is quadratically related to the number of
keywords in the Boolean formula, as it necessitates the generation of double tag
seeds. The search protocol of TWINSSEOXT involves two rounds of interaction,
resulting in a token size that is influenced not only by the number of keywords
in the Boolean formula but also by the number of results in the first clause.

7 Conclusion

This paper further advanced the design of Boolean Searchable Symmetric En-
cryption (BSSE) schemes with a focus on reducing leakage and improving stor-
age efficiency. Our proposed scheme, SESAME+, addresses the issue of volume
leakage and provides enhanced protection for search and access pattern leakage
that previous works have overlooked. Regarding storage overhead, SESAME+
demonstrates superiority over existing schemes, offering a more efficient solu-
tion. Additionally, the token size in SESAME+ exhibits a linear relationship
with the number of keywords in the Boolean formula. These results highlight
the effectiveness of our approach in achieving improved security and efficiency
in BSSE schemes. However, our current constructions do not consider dynamic
aspects, nor forward privacy or backward privacy. The efficiency of these con-
structions is primarily influenced by the functional encryption for inner product
primitive and linear search time. We leave the design of a BSSE scheme with the
same merits and properties meanwhile enhancing its functionality and efficiency,
as our future work.
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Appendix A Proof of Theorem 1

We provide a formal security proof of our construction SESAME+. We consider
a database DB and a sequence of DNF queries Q = {Q1, · · · , Qn}, where Qi =
qi,1 ∨ · · · ∨ qi,m consists of m conjunctions.

The leakage function LSetup captures information that is leaked from the Setup
algorithm. In our construction, we use Bloom filters to represent documents
and encrypt them using functional encryption. As the adversary is restricted to
access only the encrypted vectors, the acquired information is confined to the
total number of encrypted vectors and their respective lengths, represented as d
and l, respectively. Hence, the Setup leakage function is defined as LSetup = (d, l).

The leakage function LToken is a summary of the information that an adver-
sary can acquire in the context of the Token algorithm. It is noteworthy that
both the vector α, which records the number of non-zero elements, and the vec-
tor β, which records the positions of non-zero elements, are sent to the server
as auxiliary query information, thereby making them susceptible to the adver-
sary. Additionally, U can be derived from β, which means that it is not part
of LToken. Furthermore, β discloses the number of clauses in the query Q as m.
Consequently, the Token leakage function is represented as LToken = (m,α,β).

Regarding the information that is leaked in the Search algorithm, it is im-
portant to note that the output from the Token is received by the server, and
this output has already been included in the LToken. During query execution,
the server prunes the matrix A based on βi to derive A′ for each clause in Q,
where A represents the ciphertext vectors encrypted by functional encryption
generated in the Setup, and its security is guaranteed by functional encryption.
Subsequently, the server decrypts A′ to obtain the inner product result ri, which
can be acquired by the adversary. Additionally, the server discloses the query’s
result set R, which constitutes information accessible to the adversary. There-
fore, the Search leakage function is defined as LSearch = ({r1, · · · , rm},R).

Proof. To demonstrate thatRealSESAME+
A (λ) and IdealSESAME+

A,S (λ) are computa-
tionally indistinguishable, we characterize a probabilistic polynomial-time sim-
ulator S capable of simulating the three protocols in our SESAME+ scheme.
The simulator S must be able to regenerate the encrypted database and tokens
from the leakage information L, with the regenerated tokens satisfying the the
dependencies among the leakage functions LSetup, LToken, and LSearch, in order to
prevent the adversary A from distinguishing between the real world and ideal
world scenarios. The adversary A has access to the simulated encrypted database
and can retrieve data using the simulated tokens.

Provided the leakage information L = (LSetup,LToken,LSearch), the simulations
can be formulated as follows:

To simulate the Setup protocol, S selects a cyclic group G of prime order
p > 2λ. Then, S randomly samples si, ti ← Zp for each i ∈ {1, · · · , l}, where l is
determined by LSetup, randomly samples k ← {0, 1}λ and computes hi = gsi ·hti ,
where g and h are two randomly generated generators in G. As a result, S
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simulates the master secret key and master public key as msk := (skIPFE =
{(si, ti)}li=1, k) and mpk := (G, g, h, {hi}li=1), respectively.

For simulating the EDB, S generates d Bloom filters vi of length l. These
vectors are constructed to maintain dependencies with the leakage functions
LToken and LSearch, ensuring that the adversary’s verification using simulated
tokens remains valid. The adversary can only learn the length l of the vectors
and the number of vectors d, as they only have access to the encrypted vectors.
Finally, the simulator S employs functional encryption for inner product with
the mpk to encrypt the vectors and simulate the encrypted database EDB.

In the context of the Setup protocol, given the leakage information L, the
simulator S generates simulated outputs, including the encrypted database EDB,
the master public key mpk, and the master secret key msk. The difference be-
tween the simulated EDB and the real-world scenario lies in the selection of vi.
Instead of obtaining vi based on the document mapping, S selects vi using the
leakage functions LToken and LSearch, followed by its encryption. The advantage
of distinguishing them is negligible if functional encryption is fully secure. The
simulations of the mpk and msk are equivalent with those of the real world.

In the simulation of the Token protocol, S simulates tokens for Boolean
queries based on the leakage function LToken and ensures that these tokens can
operate on the simulated encrypted database EDB. The leakage information pro-
vided by LToken reveals the positions of non-zero elements in the vector for each
Boolean query clause, as well as the number of clauses for each Boolean query.
Consequently, S can generate tokens that are identical to those in the real ex-
periment. For simulating the decryption key, S leverages the leaked positions
information to simulate the decryption key using the Keygen algorithm of func-
tional encryption. The advantage of A in distinguishing between the real world
and the ideal world becomes negligible if the functional encryption is secure.

When simulating the Search protocol, S retrieves documents from the en-
crypted database EDB based on a given Boolean query. Upon receiving the sim-
ulated token tok, S prunes the simulated EDB according to the corresponding β,
then performs the decryption process on the pruned EDB to obtain the identi-
fiers of documents that satisfy the query. Since both EDB and tok are simulated
based on the leakage function L, the search process performed on the simulated
token leaks the same information as LSearch. Consequently, A cannot distinguish
between the real world and the ideal world with more than negligible probability.

In the above proof, we describe a probabilistic polynomial-time simulator S
that simulates the real experiment by using a given leakage information from
L. Assuming that functional encryption for inner product is secure, then our
scheme SESAME+ achieves L-secure, that is

|Pr[RealSESAME+
A (λ) = 1]− Pr[IdealSESAME+

A,S (λ) = 1]| ≤ negl(λ).

Remark. Due to subtle issues from the underlying inner product functional en-
cryption, we prove SESAME+ with non-adaptive security, i.e., the adversary
issues all queries before running the game. Designing an adaptively secure BSSE
scheme with similar properties as SESAME+ seems to require fundamentally
different primitives and proof techniques, for which we leave as a future work.
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