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Abstract The Boolean map χn : Fn2 → Fn2 , x 7→ y defined by yi = xi + (xi+1 +
1)xi+2 (where i ∈ Z/nZ) is used in various permutations that are part of crypto-
graphic schemes, e.g., Keccak-f (the SHA-3-permutation), ASCON (the winner
of the NIST Lightweight competition), Xoodoo, Rasta and Subterranean (2.0).
In this paper, we study various algebraic properties of this map. We consider χn
(through vectorial isomorphism) as a univariate polynomial. We show that it is a
power function if and only if n = 1, 3. We furthermore compute bounds on the
sparsity and degree of these univariate polynomials, and the number of differ-
ent univariate representations. Secondly, we compute the number of monomials of
given degree in the inverse of χn (if it exists). This number coincides with bino-
mial coefficients. Lastly, we consider χn as a polynomial map, to study whether
the same rule (yi = xi + (xi+1 + 1)xi+2) gives a bijection on field extensions of
F2. We show that this is not the case for extensions whose degree is divisible by
two or three. Based on these results, we conjecture that this rule does not give a
bijection on any extension field of F2.
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1 Introduction

In this paper, we consider the Boolean maps χn : Fn2 → Fn2 , x 7→ y that are defined
by yi = xi + (xi+1 + 1)xi+2, with i ∈ Z/nZ. For n = 5, it is used in Keccak-f [2]
(which is part of the NIST standard SHA-3 [22]) and ASCON [14] (the winner of
the NIST lightweight competition [23]). For n = 3, it is used in Xoodoo [10]. Rasta
[13] uses χn where n is the block-length (n is always odd). Lastly, Subterranean
(2.0) ([7] and [11]) uses χ257.

We know, from [8], that χn is invertible if and only if n is odd. Recently, from
[20], we know a direct formula for χ−1

n . The order of χn, and its cycle structure,
are also known, see [28].

As χn is used in so many cryptographic applications, it is important to under-
stand these maps very well. Each of the properties of χn could be exploited in an
attack, or conversely be used to argue for security properties. For instance, in [8]
and [9], the differential and correlation properties (related to differential [3] and
linear [21] cryptanalysis) have been studied.

In this paper, we study some of the algebraic properties. E.g., the map χn
can be represented by a univariate polynomial through an isomorphism Fn2 ∼= F2n .
This representation can be used to attack cryptographic ciphers (see, e.g., [6] and
[15]). We study these univariate representations for χn to give insight in these
representations.

The formula for χ−1
n ([20]) gives rise to a simple question, that we answer in

this paper. How many monomials of a certain degree occur in this formula?

Lastly, we might consider using the rule yi = xi + (xi+1 + 1)xi+2 on field
extensions (of F2) or finite fields of other characteristic.

Our contributions: We have studied the aforementioned algebraic properties and
present the following results.

In Section 4, we discuss univariate polynomial expressions for the maps χn. In
particular, we show that for n 6= 1, 3, they are not power functions. After that,
we compute the number of different representations as a univariate polynomial
with coefficients in the base field χn can take. This number is equal to n · ϕ(n),
where n is the number of normal elements in F2n and ϕ(n) = #(Z/nZ∗). Lastly,
we give upper and lower bounds on the degree and sparsity of χn when given as
a univariate polynomial.

Secondly, based on [20], we considered that there was no formula known for
the number of monomials of a given degree in χ−1

n . We compute those in Section
5. They behave according to binomial coefficients, i.e., the number of monomials

of degree m > 0 in χ−1
n is equal to

(n+1
2
m

)
.

Thirdly, in Section 6, we view χn as a polynomial map (see [16]), and from

that conclude that, if we take the same rule to define a χ
(d)
n over F2d , it cannot be

invertible for some d. We show that for even d and all d with d ≡ 0 (mod 3), the

map χ
(d)
n is not invertible, and conjecture that this holds for any d > 1.

We finalize this section by showing that the same rule will not give an invertible
map in characteristic p > 2.
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2 Notations and conventions

We write F2 for the finite field of two elements and Fm for a (finite) field of m
elements. Additionally, we have the notation Fn2 for the standard n-dimensional
F2-vector space, obtained as the Cartesian product of n copies of F2.

We write 0n for the zero vector of n zeroes, and 1n for the all-one vector of n
ones.

The number of 1s in a sequence or vector x is called the Hamming weight and
is denoted as wt(x).

We write [[ v1, . . . , vn ]] for the (sub-)space spanned by the vectors v1, . . . , vn.
We consider a basis to be an ordered set that is linearly independent and

spanning. Therefore, we write them as tuples.
Thus [[ v1, . . . , vn ]] = [[ v2, v1, v3, . . . , vn ]] give rise to isomorphic vector spaces,

although we do consider the bases (v1, . . . , vn) and (v2, v1, v3, . . . , vn) distinct.
We write lg for the binary logarithm and R∗ for the group of units of the ring

R.
For a polynomial ring in one indeterminate X with coefficients in R, we write

R[X] and likewise for polynomial ring over n indeterminates X1, . . . , Xn, we write
R[X1, . . . , Xn].

3 χn and preliminary results

In this paper we study the maps χn:

Definition 1 (χn) Let n ≥ 1. The map χn : Fn2 → Fn2 , x 7→ y is given by
yi = xi + (xi+1 + 1)xi+2 = xi + xi+1xi+2 + xi+2 where the indices are taken
modulo n.

We see that each χn is a map of (algebraic) degree 2.

3.1 Shift maps and shift-invariant maps

A class of maps that is of interest with respect to χ is the class of shift maps.

Definition 2 (Shift maps) For any n ≥ 1 and any k ≥ 0 we can define two
maps τkn and τ−kn on Fn2 , by iterating

τn : Fn2 → Fn2 , (x0, x1, . . . , xn−1) 7→ (xn−1, x0, x1, . . . , xn−2).

We have τkn = (τn)k and τ−kn = τ
(n−k)
n .

Definition 3 (Shift-invariant maps) A map F : Fn2 → Fn2 is called shift invari-
ant if we have F ◦ τkn = τkn ◦ F for all k ≥ 0.

By induction, we can relax the criterium for shift-invariance:

Lemma 1 Similarly, a map F : Fn2 → Fn2 is shift invariant if we have F ◦ τn =
τn ◦ F .
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Using that τnn = id, one can find the following generalization of Lemma 1.

Lemma 2 Let F : Fn2 → Fn2 be a map, let k ≥ 1 be such that gcd(k, n) = 1 and
τkn ◦ F = F ◦ τkn . Then F is shift invariant.

Proof Since gcd(k, n) = 1, there exists some integers a, l such that ak = 1 + ln.

By induction to a, we know that τakn ◦ F = F ◦ τakn . Hence we have τ
(1+ln)
n ◦ F =

F ◦ τ (1+ln)n . Since τnn = id, we find that τ
(1+ln)
n = τn and we are done by Lemma

1. ut

One immediately finds that all χn are shift invariant.

Lemma 3 For each n, χn : Fn2 → Fn2 is shift invariant.

As an example, we give a graph of χ5 in Figure 1. Since χ5 is shift invariant,
for every input, the output can be deduced from this graph.

00101

��

10111

qq0000099 00001

11

10001

qq

00111

11

11111ee

10101

VV

Fig. 1 Transformation of some binary vectors under χ5.

3.2 Invertibility and order

From [8], we know that χn is invertible if and only if n is odd. Furthermore, we
have a formula for the order of χn in this case.

Theorem 1 (Order of χn ([28])) Let n > 0 be an odd integer. Then ord(χn) =

2dlg(
n+1
2

)e.

In particular, we find that repeating χn for 2dlg(
n+1
2

)e−1 times, then this gives
a way for computing the inverse. A direct formula for the inverse is determined in
[20].

4 Univariate representations of χn

We can choose any isomorphism Fn2
φ∼= F2n and consider χun : F2n → F2n that is

given by χun := φ ◦ χn ◦ φ−1, as depicted in Figure 2.
This χun can be written as a univariate polynomial with coefficients in F2n

by using Lagrange interpolation on all inputs. (See [29] and [19] (Thm 1.71).)
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Fn2

φ

��

χn // Fn2

φ

��
F2n

χun

// F2n

Fig. 2 The schematics for the univariate χn.

With Lagrange interpolation on all pairs (t, ut) one will find a polynomial f(X) ∈
Fqn [X] that satisfies ut = f(t) and has degree < qn. Note that by performing the
interpolation on all inputs, one does not have to compute inverses, as:

f(t) =

2n−1∑
i=0

f(xi) · `i(t), `i(t) =
∏

i=0,...,2n−1
i6=j

t− xi
xj − xi

and we have ∏
i=0,...,2n−1

i 6=j

xj − xi =
∏
β∈F∗

2n

β = γ
∑2n−2
i=0 i = γ

1
2
(2n−2)(2n−1) = 1,

where γ is some generator of F∗2n .

Definition 4 (Permutation polynomial) A polynomial f(X) ∈ Fqn [X] is a
permutation polynomial if its corresponding polynomial functions t 7→ f(t) is a
permutation of Fqn .

Definition 5 (Equivalence of polynomials) Two polynomials f(X), g(X) ∈
Fqn [X] are functionally equivalent if their corresponding polynomial functions t 7→
f(t) and t 7→ g(t) satisfy f(t) = g(t) for all t ∈ Fqn .

It is straightforward that this is an equivalence relation. With a different cri-
terion, we can see that there is always a representative of degree < qn.

Proposition 1 (Equivalence Test ([19] 7.2)) Two polynomials f(X), g(X) ∈
Fqn [X] are functionally equivalent if and only if f(X) ≡ g(X) (mod Xqn −X)

We now give an example where we use Lagrange interpolation to find a poly-
nomial representation of χ3:

Example 1 Consider χ3 : F3
2 → F3

2 and the finite field F23 := F2(α) = F2[X]/(X3+
X + 1). Let (1, α, α2) be an ordered basis, then an isomorphism of vector spaces
can be found as

φ : F3
2 → F23 , (x0, x1, x2) 7→ x0 + α · x1 + α2 · x2.

Then χu3 := ϕ ◦ χ3 ◦ ϕ−1 is given by: 0 7→ 0, 1 7→ α3, α 7→ α4, α2 7→ α6,
α3 7→ 1, α4 7→ α, α5 7→ α5 and α6 7→ α2. By using Lagrange interpolation, we
find χu3 (X) ∈ F23 [X] as

χu3 (X) = α3X6 + α5X5 + α2X4 + α6X3 + αX2 + α2X.
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4.1 Power functions

A special kind of polynomials are those whose representative consists of a single
monomial.

Definition 6 (Power functions) A power function is a polynomial function that
can be represented by a single monomial in Fqn [X]. We write (·)e : Fqn → Fqn for
a power function, here e ≥ 0.

Since F∗qn is cyclic of order qn−1, we find that tq
n−1 = 1 for all t ∈ F∗qn , hence

tq
n

= t for all t ∈ Fqn . Therefore, we only need to consider power functions with
0 ≤ e < qn − 1. A power function is not necessarily a permutation polynomial.

Proposition 2 (Bijectivity ([19] 7.8)) A power function (·)e : Fqn → Fqn is a
permutation polynomial if and only if gcd(e, qn − 1) = 1.

The set of all bijective power functions forms a group of order ϕ(qn − 1),
which we denote as Pow(F2n). It is isomorphic to the automorphism group of F∗qn ,
denoted as Aut(F∗qn) (see [1] or [19] Ex 2.20).

Theorem 2 (Automorphisms are power functions) Let n be a positive in-
teger. Then Pow(Fqn) = Aut(F∗qn).

It is also easy to express the order of a power function.

Proposition 3 (Order of power function) The order of the power function
(·)e is given by the (multiplicative) order of e in Z/(qn − 1)Z.

Proof Note that (·)e ◦ (·)e = (·)e
2

, and similarly for k compositions: (·)e
k

. ut

Example 2 Consider Pow(F29). It has ϕ(29 − 1) = ϕ(511) = 6 · 72 = 24 · 32

elements. There may exist power functions of order 8 in this group. By checking
in Z/(2n − 1)Z, we find that for e ∈ {22, 83, 197, 209, 302, 314, 428, 489} we have
power functions of order 8.

4.2 Normal bases

Definition 7 (Normal basis [25]) Consider Fq ⊂ Fqn . Then β ∈ Fqn is called

a normal element of Fqn over Fq if the set {β, βq, βq
2

, . . . , βq
n−1

} is a linearly
independent set. When considered as a tuple, this tuple is called a normal basis
of Fqn over Fq.

Each element in a normal basis is a normal element. In [17] it is first proven
that every finite extension field has a normal basis. In [25] the result is extended
to giving the number of normal elements. In the following, when we will omit the
over Fq and write β is a normal element of Fqn , or S is a normal basis of Fqn ,
when it is clear that they are considered over Fq.
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Example 3 Consider F2 ⊂ F8, with F8 := F2(α) = F2[X]/(X3 +X + 1). Then α3

is a normal element of F8: α3

α6

α5

 =

 α+ 1
α2 + 1

α2 + α+ 1

 =

 α+ 1
α2 + 1
α2

 =

 α
1
α2


Therefore the tuple (α3, α6, α5) is a normal basis. These normal elements are roots
of X3 +X2 + 1.

With any choice of a normal element (and its corresponding normal basis) one
obtains an isomorphism between Fnq and Fqn , as follows:

ϕβ : Fnq → Fqn , (x0, . . . , xn−1) 7→ x0β + . . .+ xn−1β
qn−1

. (1)

With the isomorphism ϕβ , taking the qth power in Fqn of an element corresponds
to a shift of the coordinates in Fnq in the following way:

Lemma 4 (([27] Lemma 5)) Let β be a normal element of Fqn . Let ϕβ be as
in (1). Then ϕβ(τ(x)) = ϕβ(x)q.

We now give an example of the representation of χ3 as a univariate polynomial.

Example 4 Consider the map χ3. Let α3 be a normal element in F23 as in Example
3. We define χu3 := ϕα3 ◦χ3 ◦ϕ−1

α3 with its inputs and outputs as given in columns

3 and 4 of Table 1. By using Lagrange interpolation we find that χu3 (t) = t6 for
all t.

(a0, a1, a2) χ3(a0, a1, a2) ϕα3 (a0, a1, a2) ϕα3 (χ3(a0, a1, a2))
(0, 0, 0) (0, 0, 0) 0 0
(0, 0, 1) (1, 0, 1) α5 α2

(0, 1, 0) (0, 1, 1) α6 α
(0, 1, 1) (0, 1, 0) α α6

(1, 0, 0) (1, 1, 0) α3 α4

(1, 0, 1) (0, 0, 1) α2 α5

(1, 1, 0) (1, 0, 0) α4 α3

(1, 1, 1) (1, 1, 1) 1 1

Table 1 The maps χ3 and χu3 .

We saw that χu3 (X) ∈ F2[X] in the previous example. We prove the more
general theorem that any shift-invariant map has a univariate representation with
coefficients in the base field.

Theorem 3 Let F : Fnq → Fnq be a shift-invariant map. Let β be a normal element
of Fqn and ϕβ as in (1). Consider the map Fu : Fqn → Fqn defined by Fu :=
ϕβ ◦ F ◦ ϕ−1

β . Then Fu is a polynomial function with Fu(X) ∈ Fq[X].



8 Jan Schoone, Joan Daemen

Proof By Lemma 4 we find that Fu(Xq) = Fu(X)q since F is shift invariant. If
we then write Fu ∈ Fqn [X] as

∑m
i=0 aiX

i for some m, then we have

m∑
i=0

aiX
iq = Fu(Xq) = Fu(X)q =

m∑
i=0

aqiX
iq.

Hence, aqi = ai for all i = 0, . . . ,m and thus Fu(X) ∈ Fq[X]. ut

Since χn is a shift-invariant map, we have the following immediate corollary:

Corollary 1 χun(X) ∈ F2[X].

4.3 The map χun is only a power function for n = 1, 3

The map χ1 is the identity function, hence is equivalent to the power function
with e = 1. We also found that for a suitable choice of normal basis, χu3 (X) = X6,
a power function.

It is easy to see that for even n there is no power function equivalent to χun(X).

Lemma 5 For any even n, there is no normal basis representation such that χun
is a power function.

Proof Suppose that there exists a normal basis representation such that χun is a
power function. Since χn((01)n/2) = 0n, there needs to exist some nonzero α ∈ F2n

with αs = 0 for some integer s, a contradiction. ut

If n > 3 is a Mersenne-exponent, i.e., 2n − 1 is a prime number, then it is also
easy to show that χun is not a power function.

Proposition 4 (Excluding Mersenne-exponents) If n > 3 is such that 2n−1
is a prime number, then there exists no normal basis representation of χn such that
χun is a power function.

Proof Since 2n−1 is a prime number, then ϕ(2n−1) = 2n−2. Therefore, the only
possibilities for the order of a power function are divisors of 2n − 2. By Theorem
1, the order of χn is divisible by 4 for all n > 3. The expression 2n−2 has at most
one factor 2, so there exists no power function that is equivalent to χn. ut

For n = 3, we have 23 − 1 = 7, a prime number. However, ϕ(7) = 2 · 3 and χ3

has order 2, so the proof of Proposition 4 does not hold for χ3.
For the general case, we can prove that χun is not a power function by computing

differential probabilities.

4.3.1 Differential probabilities

In this paragraph, we discuss differential probabilities, and with that show that
χn is only a power function for n = 1, 3. Differential probabilities were studied in
[3] as a way of breaking the cipher DES [24].
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Definition 8 (Differential probability) Let f : G → H be a map between
finite (additive) groups G and H. Let g ∈ G and h ∈ H be arbitrary. Then we
define the differential probability of f at (g, h) as

DPf (g, h) = #{x ∈ G | f(x)− f(x− g) = h}/|G|.

Example 5 (Differential distribution table of χ3) Consider χ3 : F3
2 → F3

2, then we
compute DPχ3(g, h) for all g, h ∈ F3

2 and put them in a table, where the rows are
indexed by g and columns are indexed by h. The dashes represent 0. Each entry
in the table, DDTgh, represents #F3

2 · DPχ3(g, h) (see Table 2). Such a table we
call a differential distribution table.

output difference
χ3 000 001 010 011 100 101 110 111

in
p

u
t

d
iff

er
en

ce

000 8 - - - - - - -
001 - 2 - 2 - 2 - 2
010 - - 2 2 - - 2 2
011 - 2 2 - - 2 2 -
100 - - - - 2 2 2 2
101 - 2 - 2 2 - 2 -
110 - - 2 2 2 2 - -
111 - 2 2 - 2 - - 2

Table 2 Differential distribution table (DDT) of χ3.

In the next proposition we will show that the DDT is an invariant for (Boolean)
functions.

Proposition 5 (Differential probabilities under linear isomorphisms) Let

G
ϕ∼= H be isomorphic groups. Let f : G → G be a map and let f̂ : H → H be the

map induced through the isomorphism. Then DPf̂ (g, h) = DPf (ϕ−1(g), ϕ−1(h))
for all g, h ∈ H.

Proof We have

DPf̂ (g, h) = #{x ∈ H | (ϕ ◦ f ◦ ϕ−1)(x)− (ϕ ◦ f ◦ ϕ−1)(x− g) = h}/|H|

= #{x ∈ H | (f ◦ ϕ−1)(x)− f(ϕ−1(x)− ϕ−1(g)) = ϕ−1(h)}/|H|

= #{y ∈ G | f(y)− f(y − ϕ−1(g)) = ϕ−1(h)}/|G|

= DPf (ϕ−1(g), ϕ−1(h))

for all g, h ∈ H. ut

One can similarly prove the following equalities for differential probabilities:

1. DPf+L(g, h) = DPf (g, h− L(g));
2. DPf◦L(g, h) = DPf (L(g), h);
3. DPA◦f (g, h) = DPf (g,A−1(h)),
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where the L and A are affine maps and A is, moreover, an invertible affine map.
The differential properties of χn have been studied extensively (see [8], [9]). We
say h is compatible with a g if DPχn(g, h) 6= 0.

In the following, we will write a′ and b′ instead of g, h to coincide with the
standard notation, where a′ denotes an input difference, i.e., a′ = a + a∗, and
b′ = b+ b∗ an output difference. We will use the following result:

Proposition 6 (Differential probabilities for χ [8]) Let n > 1 be an arbi-
trary odd integer and a′ ∈ Fn2 . Then for any b′ ∈ Fn2 compatible with a′, we have
DPχn(a′, b′) = 2−w(a′), where

w(a′) =

{
n− 1 if a′ = 1n;

wt(a′) + ra′ else.

where ra′ is the number of 001-subsequences in a′.

Since we have been unable to find a complete proof of this result in the litera-
ture, we include our own proof in Appendix 7.1.

For power functions, the differential probabilities have also been studied, in
e.g., [4]:

Proposition 7 (Differential probabilities for power functions [4]) Let 0 ≤
e ≤ 2n − 1 and let f = (·)e : F2n → F2n be a power function. Then DPf (a′, b′) =
DPf (ya′, yeb′) for all y ∈ F∗2n .

In particular, if we compute DPf (1, b′) for all b′, we can use the above propo-
sition to deduce the remainder of the differential distribution table. As a direct
corollary, we see that the number of occurrences of 0 is the same in every row
(except the first), and the same holds for the number of occurrences of 2, 4, . . ..

Example 6 (Differential distribution table of t 7→ t6) Let F8 be determined by
X3 +X + 1 and consider (·)6 : F8 → F8. Then in Table 3, one sees the differential
distribution table for (·)6.

output difference
(·)6 0 1 x x2 x3 x4 x5 x6

in
p

u
t

d
iff

er
en

ce

0 8 - - - - - - -
1 - 2 - - 2 - 2 2
x - - - 2 - 2 2 2
x2 - - 2 - 2 2 2 -
x3 - 2 - 2 2 2 - -
x4 - - 2 2 2 - - 2
x5 - 2 2 2 - - 2 -
x6 - 2 2 - - 2 - 2

Table 3 The DDT of t 7→ t6.

We can now use what we know about differential properties of χn and power
functions to prove:

Theorem 4 (χn is not a power function for n 6= 1, 3) Let n 6= 1, 3 be a
positive integer. Then there exists no way to write χun as a power function.
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Proof Let n 6= 1, 3 be an arbitrary odd positive integer. (The even case has been
proven in Lemma 5.) Consider any isomorphism from Fn2 to F2n under which
χn would become χun. By Proposition 5, we find that their differential distribu-
tion should be similar. Set a′ = 110n−2 and a′′ = 10n−1. Then we find that
DPχn(a′, b′) = 1

8 and DPχn(a′′, b′) = 1
4 for all b′ that are compatible with a′, a′′

respectively, by Proposition 6. Whereas, by Proposition 7, we have that each row
of the DDT should have the same number of occurrences of 0, 2, 4, . . .. Therefore,
χun cannot be a power function. ut

Example 7 (Two rows in DDTχ5) When computing the rows in DDTχ5 coinciding
with input differences a′11000 and a′′ = 10000 as in the proof of the preceding
theorem, the row coinciding with a′ has sixteen 2s and the row coinciding with a′′

has eight 4s.

Definition 9 (Extended affine equivalence) Let F and G be two Boolean
functions from Fn2 to Fm2 . We say that F and G are extended affine equivalent if
there exist:

– an affine permutation A of Fn2 ;
– an affine permutation B of Fm2 ; and
– an affine map C : Fn2 → Fm2 ,

such that G = (B ◦ F ◦A) + C.

We obtain, by using the properties for differential probability listed after Propo-
sition 5, as a direct corollary to Theorem 4:

Corollary 2 Let n 6= 1, 3 be a positive integer. Let F be any extended affine
equivalent of χn. Then Fu is not a power function.

4.4 Number of different univariate polynomial representations of χn.

A priori, since we make several choices, there could be many different univariate
representations of χn for each n. In this section, we go over the choices we make and
discuss how they affect the outcome of the univariate representation. In order, we
discuss the choice of representation of the field, i.e., the irreducible polynomial of
degree n that defines F2n . After that, we treat how different normal elements may
give rise to different univariate polynomial representations. Each normal element
β has a canonical ordered basis, yielding an isomorphism ϕβ as in Equation 1.
But there might be basis transformations, that shuffle the basis elements. This
will provide a different isomorphism from Fn2 to F2n , and in some cases it will give
a univariate polynomial in the base field.

Choosing an irreducible polynomial to create the field extension It is a well-known
result that for any prime power there exists (up to isomorphism) a unique field with
that many elements. Does this “up to isomorphism” interfere with the univariate
expression of a map? The isomorphism ϕβ is defined by the normal element. This
normal element is defined by being a root of a polynomial. In fact, if the degree
of this polynomial is d, then there are d roots, all of which are normal elements.
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Proposition 8 Let Ff := F2[X]/(f(X)) and Fg := F2[X]/(g(X)) be isomorphic
fields. Let α be a normal element in Ff that is a root of the polynomial h(X) ∈
F2[X]. Then there exists some β ∈ Fg that is a normal element as a root of h(X).

Furthermore, β, β2, . . . , β2deg f−1

are all roots of h(X).

Proof Let ψ : Ff → Fg be an isomorphism. Then since h(α) = 0, we must have
ψ(h(α)) = ψ(0) = 0. Since ψ is a field-homomorphism, we find that ψ(h(α)) =
h(ψ(α)) as a polynomial equation consists solely of additions and multiplications.
Therefore β = ψ(α) is also a root of h(X).

For the second statement we note that (a + b)2
i

= a2
i

+ b2
i

for i ≥ 0 since

we work in a field of characteristic 2. Therefore h(α2i) = h(α)2
i

= 0 for all
i ∈ {0, . . . , deg f − 1}. ut

Since F∗2n is cyclic for any n, we find that any normal element generates the
entire group. As the isomorphism ψ maps normal elements to linear combinations
between powers of the same normal element, we therefore find that the “up to
isomorphism” indeed does not influence the univariate expression of a map.

Choice of the normal element We have a choice on the normal elements that we
make in defining a univariate expression. This choice of normal element influences
the resulting univariate expression, in particular, if β, γ are two distinct normal
elements such that γ is not in any normal basis containing β, then we get different
univariate polynomials.

From [19] (Thm 3.73), or [25], we obtain the following formula for the number
of distinct normal elements:

Theorem 5 (Number of normal elements) Let q be a prime power and m ≥ 1
an integer. There exist precisely Φq(X

m − 1)/m normal elements in Fqm (w.r.t.
Fq).

Here, Φq(f) denotes the number of polynomials in Fq[X] that are coprime to
f and have a smaller degree than deg(f).

We will denote the number of normal elements in F2n (w.r.t. F2) by n. Thus,
n = Φ2(Xn − 1)/n.

(Re-)Ordering the normal basis Given a normal basis (β, βq, . . . , βq
n−1

) of Fqn ,
there are several ways to re-order the elements in this basis. In particular, for
every permutation σ ∈ Sn := Sym({0, . . . , n − 1}) we have a re-ordered basis by

(βσ(0), βσ(1), . . . , βq
σ(n−1)

).
Then we can define the isomorphism

ϕσβ : (x0, . . . , xn−1) 7→
n−1∑
i=0

xiβ
qσ(i) (2)

as the isomorphism corresponding to the one in (1) when the basis is re-ordered.
(Note that the isomorphism given in (1) is the one where σ is the identity permu-
tation.) A priori therefore, there are n! different univariate representations when
the normal basis is fixed.
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We indicate that a left-shift over the basis elements corresponds with the per-

mutation σ =
(
0 1 2 · · · n− 1

)
. We can therefore write ϕσ◦τ

k

β := ϕσβ ◦ τk. In the
case that a map F is shift invariant, we can immediately reduce the number of
representations to (n− 1)!:

Lemma 6 Let β be a normal element in Fqn and F : Fnq → Fnq a shift-invariant
map. Let ϕ := ϕβ be as in (1) and k ∈ {1, . . . , n − 1} be arbitrary. Consider the

isomorphism ψ := ϕτ
k

. Write Fuψ for the corresponding univariate representation
of F . Then Fuψ = Fuϕ .

Proof Using the Lagrange interpolation formula, we get

Fuψ (t) =
∑
v∈Fnq

(ψ ◦ F )(v) · `ψ(v)(t)

=
∑
v∈Fnq

(ϕ ◦ τk ◦ F )(v) · `(ϕ◦τk)(v)(t)

=
∑
v∈Fnq

(ϕ ◦ F ◦ τk)(v) · `(ϕ◦τk)(v)(t)

=
∑
v′∈Fnq

(ϕ ◦ F )(v′) · `ϕ(v′)(t)

= Fuϕ (t)

as required. ut

Remark 1 Since ϕβ ◦ τk : (x0, . . . , xn−1) 7→
∑n−1
i=0 xi+k mod nβ

qi+k mod n

, we find
that the univariate expression is invariant under a shift of the coefficients, as
expected. Thus we can assume, without loss of generality, that σ(0) = 0. The
same result holds when we have a re-ordered normal basis, thus for ϕσβ .

We will now investigate which re-orderings yield univariate expressions with
coefficients in the base field. In the proof of Theorem 3 we use Lemma 4. Therefore
it is prudent to look for ismorphisms under which taking a qth power corresponds
to some shift coprime in length to the dimension of the domain ofF . (See Lemma
2.)

Let gcd(k, n) = 1. We want to solve the equation ϕσβ ◦τk = (·)q ◦ϕσβ for σ ∈ Sn.
We first illustrate this with an example.

Example 8 Let q be an arbitrary prime power, n = 5 and k = 3. We have the
following commuting diagram by hypothesis:

(x0, x1, x2, x3, x4)
_

τ3

��

� ϕσβ // x0β + x1β
qσ(1) + x2β

qσ(2) + x3β
qσ(3) + x4β

qσ(4)

_

(·)q

��
x0β

q + x1β
qσ(1)+1

+ x2β
qσ(2)+1

+ x3β
qσ(3)+1

+ x4β
qσ(4)+1

(x3, x4, x0, x1, x2)
�

ϕσβ

// x3β + x4β
qσ(1) + x0β

qσ(2) + x1β
qσ(3) + x2β

qσ(4)
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From this diagram we find the following equations

0 = σ(3) + 1, σ(1) = σ(4) + 1, σ(2) = 1, σ(3) = σ(1) + 1, σ(4) = σ(2) + 1.

Therefore, we easily obtain σ = (1 3 4 2).

Lemma 7 Consider a finite field extenstion Fqn of Fq with a normal element β.
Let 0 ≤ k ≤ n − 1 be such that gcd(k, n) = 1. Then there exists a unique σ such
that ϕσβ ◦ τk = (·)q ◦ ϕσβ.

Proof Write x for the vector (x0, . . . , xn−1). We have ϕσβ(x) =
∑n−1
i=0 xiβ

qσ(i) and

ϕσβ(τk(x)) =

n−1∑
i=0

xi−k mod nβ
qσ(i) =

n−1∑
j=0

xjβ
qσ(j+k mod n)

.

Then from the hypothesis gcd(k, n), we find that (ϕσβ(x))q = ϕσβ(τk(x)) we find
that, for indices j, j + k modulo n, σ(j + k) = σ(j) + 1. Since by Lemma 6 we can
take σ(0) = 0, we can deduce σ(k) = 1 and σ(n− k) = n− 1. Since k is invertible
in Z/nZ, the entire structure of σ is then uniquely determined. ut

We conclude that given an irreducible polynomial and a normal element, there
are ϕ(n) = #(Z/nZ∗) different univariate polynomial representations with coeffi-
cients in the prime field.

Taking into account the number of different normal elements, we obtain:

Theorem 6 Let n > 0 be an arbitrary odd integer. Then there are n·ϕ(n) different
univariate polynomial representations of χn with coefficients in F2.

Some numbers of different univariate polynomial representations of χn:

n 3 5 7 9 11 13 15 17
n 1 3 7 21 93 315 675 3825
ϕ(n) 2 4 6 6 10 12 8 16
n · ϕ(n) 2 12 42 126 930 3780 5400 61200

Table 4 The number of different univariate polynomial representations of a given shift-
invariant map.

4.5 Bounds on degrees and sparsity

Irrespective of any choices, we can easily show certain facts on upper and lower
bounds on the degree of the univariate expression and the sparsity of the univariate
expressions.

We have various notions of degree. For instance, if we write χ3 as in Definition 1,
we see that χ3 has degree 2. However, if we consider χ3 as a univariate polynomial
as in Example 1, we see that χ3(X) has degree 6. In order to make some sense of
this, we explain the several different notions of degree.
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Definition 10 (Algebraic normal form (ANF) and algebraic degree) Let
F : Fn2 → Fm2 be a (Boolean) map in its algebraic normal form, that is, each Fi
is given as a multivariate polynomial in n variables, that is a sum of monomials.
Then, the degree of a coordinate function Fi is the maximum of the degrees of its
monomials. A monomial Xe1

1 · · ·X
er
r has degree e1 + . . .+ er. Then the algebraic

degree of F , denoted by dega(F ), is the maximum of the degrees of each of the Fi.

When m = 1, the algebraic degree corresponds with the usual degree.

Definition 11 (Two-degree) Let F : F2n → F2n be a map given by a univariate

polynomial. Write F (X) =
∑2n−1
j=0 cjX

j . Then the 2-degree of F is given by

deg2(F ) = max{w2(j) | 0 ≤ j ≤ 2n − 1, cj 6= 0},

where w2(j) is the Hamming-weight of j in its binary expansion.

Example 9 We continue from Example 1. We see that the exponents of X where
there is a non-zero coefficient are 6, 5, 4, 3, 1. The list of their respective w2(j) is
2, 2, 1, 2, 1. Hence we see that the 2-degree of χu3 is 2.

The phenomenon in the previous example is not a one-time occurrence. It holds
in general, as stated in the following proposition.

Proposition 9 (Algebraic degree and 2-degree) Let F : Fn2 → Fn2 be a given
(Boolean) map in its ANF. Let F (X) ∈ F2n [X] be the corresponding univariate
polynomial. Then dega(F ) = deg2(F (X)).

We refer to [5] for the proof of this result.
The bounds that we are going to prove in this section are on the regular degree

of the univariate polynomial. Since we know that χn has algebraic degree 2, we
know that its 2-degree should be 2 as well. This means that the only powers of
t in χun(t) have Hamming-weight at most 2. The largest possible such number is
then 2n−1 + 1, since the powers of t are already bounded by 2n − 1. Likewise the
lowest possible degree for χun(t) is 3.

We list some of these bounds in the following table:

n 3 5 7 9 11 13 15 17
max dega(χun) 6 24 96 384 1536 6144 24576 98304
2n − 1 7 31 127 511 2047 8191 32767 131071

Table 5 Upper bounds on the degree of univariate expressions.

By the same line of reasoning, we have an immediate formula for the sparsity
of χun(t), by the 2-degree. We obtain that the number of monomials in χun(t) is
at most

(
n
1

)
+
(
n
2

)
. Each possible exponent can be written in a binary sequence of

length n. We allow only those where there is one 1, or two 1s.
We list some of these bounds in the following table:
In Appendix 7.2, we give a table of the minimum and maximum sparsity of

(actually occurring) univariate expressions of χn, as well as the minimum and
maximum occurring degrees.

We furthermore list the univariate polynomial representations of χn for n ≤ 7.
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n 3 5 7 9 11 13 15 17
max. mon. in χun 6 15 28 45 66 91 120 153
2n 8 32 128 512 2048 8192 32768 131072

Table 6 Sparsity of univariate expressions.

5 Monomial count of χ−1
n

We find in [20] that the inverse of χ−1
n has a nice expression:

Theorem 7 (χ−1
n ([20])) For odd n > 0, the formula for χ−1

n is given by:

xi = yi +

(n−1)/2∑
j=1

yi−2j+1

(n−1)/2∏
k=j

yi−2k.

The degree of χ−1
n is thus (n+ 1)/2.

For some use-cases, having this formula and its degree is enough as exhibited in
[20]. However, for several cases, like algebraic attacks, one might use the monomial
count, e.g., [12]. In any case, it is an interesting number to compute, and it turns
out to follow a beautiful formula. We investigate in this section the total monomial
count, and the number of monomials of a given degree in any one of the coordinates
of χ−1

n .

Definition 12 (Monomials of certain degree) Let f : Fn2 → Fn2 be a function
expressed as a multivariate polynomial. Any term in this multivariate polynomial
of the form x

ei1
i1
· · ·xeikik for some k is called a monomial. The (algebraic) degree

of this monomial is e = ei1 + . . .+ eik (as in Definition 10). We write Me(fi) for
the set of monomials of degree e in the component fi.

Example 10 Consider χn as in Definition 1. Then each component has the form
yi = xi + (xi+1 + 1)xi+2 = xi + xi+2 + xi+1xi+2. Then M1(χn,i) = {xi, xi+2}
and M2(χn,i) = {xi+1xi+2} for each n > 0 and each 0 ≤ i < n.

From Theorem 7, we can determine the following:

Proposition 10 (Monomial count of χ−1
n ) For each odd n > 0 and each 0 <

m ≤ n+1
2 , we have

#Mm(χ−1
n,i) =

(
n+1
2

m

)
.

For the proof, we use the following combinatorial lemma, which is a repeated
application of Pascal’s Rule [26], and is very similar to the Hockey Stick Identity
([18]):

Lemma 8 Let n be a positive integer. Then for all 0 ≤ k < n we have

k∑
i=0

(
n− i
k − i

)
=

(
n+ 1

k

)
. (3)
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Remark 2 Using the rule
(
n
k

)
=
(
n

n−k
)

we also get the following formula:

n−j∑
i=0

(
n− i
j

)
=

(
n+ 1

j + 1

)
.

Proof (of Proposition 10) Let h = n−1
2 . By working through the summation sym-

bol, we find the numbers as in Table 7.
For instance, to count the number of monomials of degree h− 3 that occur in

the summation when j = 2, we note that we have h−1 terms in the product, where
at each time we have either the 1-term, or the degree-1-term. To get a degree of
h− 3, we need to have precisely two times the 1-term, or - in other words - h− 3
times the degree-1-term. The number of possibilities is then given by

(
h−1
h−3

)
.

Or, to count the number of monomials of degree 3 that occur when j = 4, we
have in the product exactly h − 3 terms. Of those, precisely two times we must
choose, the degree-1-term, or, precisely h− 5 times the constant term.

Finally, mi = #M(χ−1
n,i) is the sum of all numbers in the column of mi.

By Lemma 8, or, equivalently, the formula in the remark after this lemma, we
then find the desired equalities, except for m1, where we need to add the single
degree-1-monomial yi. ut

j mh+1 mh mh−1 mh−2 mh−3 · · · m4 m3 m2 m1

j = 1 1
( h
h−1

) ( h
h−2

) ( h
h−3

) ( h
h−4

)
· · ·

(h
3

) (h
2

) (h
1

)
1

j = 2 - 1
(h−1
h−1

) (h−1
h−2

) (h−1
h−3

)
· · ·

(h−1
3

) (h−1
2

) (h−1
1

)
1

j = 3 - - 1
(h−2
h−1

) (h−2
h−2

)
· · ·

(h−2
3

) (h−2
2

) (h−2
1

)
1

j = 4 - - - 1
(h−3
h−1

)
· · ·

(h−3
3

) (h−3
2

) (h−3
1

)
1

...
...

...
...

...
...

...
...

...
...

...
j = h - - - - - · · · - - 1 1

Table 7 The numbers mi of monomials of degree i, for each summand j. Here h = n−1
2

.

Since we have determined the number of monomials of each degree 1 ≤ m <
n+1
2 , we can immediately deduce the total number of monomials in any coordinate

of χ−1
n .

Corollary 3 (Monomials in χ−1
n ) Let n > 0 be odd, then the total number of

monomials in any coordinate of χ−1
n is equal to 2

n+1
2 − 1.

6 χ as a polynomial map

In the field of affine algebraic geometry, the morphisms between varieties are the
polynomial maps.

Definition 13 (Polynomial map) Let k be an arbitrary ring, and k[X1, . . . , Xn]
be the polynomial ring in n indeterminates. A polynomial map is a map F =
(F1, . . . , Fn) : kn → kn of the form

(x1, . . . , xn) 7→ (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)),

where each Fi ∈ k[X1, . . . , Xn].
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We can observe the related polynomial map of χn in n variables. This is given
by

Ξn(X1, . . . , Xn) = (X1 + (X2 + 1)X3, X2 + (X3 + 1)X4, . . . , Xn + (X1 + 1)X2).

A polynomial map is invertible if there exists a polynomial map G : kn → kn such
that

Xi = Gi(F1, . . . , Fn),

for all 1 ≤ i ≤ n. By checking the determinant of the Jacobian, we can check
whether Ξn is invertible.

For χn we have the following form for the Jacobian:

JacΞn =



1 X3 X2 + 1 0 0 · · · 0
0 1 X4 X3 + 1 0 · · · 0
0 0 1 X5 X4 + 1 · · · 0
...

...
...

...
...

...
Xn + 1 0 0 0 0 · · · X1

X2 X1 + 1 0 0 0 · · · 1


If | JacΞn | = 1, then Ξn is invertible.

Proposition 11 (χn is not invertible as a polynomial map) The polynomial
map Ξn is not invertible on F2.

Proof The determinant | JacΞn | contains a term (−1)n+1X2 · |Mn,1|, where Mn,1

is the minor where the nth row and first column are deleted from the Jacobian.
This factor does not cancel out, as can be seen from the shape of the matrix. ut

Example 11 (| JacΞ3
|) We compute the determinant of Jac(Ξ3):

| Jac(Ξ3)| = 1 ·
∣∣∣∣ 1 X1

X1 + 1 1

∣∣∣∣+ (X3 + 1)

∣∣∣∣ X3 X2 + 1
X1 + 1 1

∣∣∣∣+X2

∣∣∣∣X3 X2 + 1
1 X1

∣∣∣∣
= 1 +X1(X1 + 1) + (X3 + 1)X3 + (X3 + 1)(X2 + 1)(X1 + 1)

+X2X3X1 +X2(X2 + 1)

= X2
1 +X2

2 +X2
3 +X1X2 +X1X3 +X2X3.

Remark 3 The (in)famous Jacobian Conjecture states that a polynomial map is
invertible if and only if the determinant of its Jacobian is invertible. Here, we used
the easy-to-prove necessary condition.

Definition 14 (χn on field extensions) Let F2k be a field extension of F2. We

define χ
(k)
n as the polynomial function indicated by the polynomial map Ξn on

the field F2k .

Note that with this definition χ
(1)
n = χn.

Since Ξn is not invertible, while χn is invertible on Fn2 , for odd n, it means

that for some field extension of F, the polynomial function χ
(k)
n is not invertible.

This is due to the following result:
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Proposition 12 ([16] Thm 4.2.1) Let K be an algebraically closed field. Let
F : Kn → Kn be a polynomial function that is invertible. Then F is invertible as
a polynomial map.

Example 12 (χ3 on F4) Consider the map

χ
(2)
3 : F3

4 → F3
4, (x0, x1, x2) 7→ (x0 + (x1 + 1)x2, x1 + (x2 + 1)x0, x2 + (x0 + 1)x1).

Note that in F4 we have an element α with α2 + α + 1 = 0. Take the elements
(α, 1, α), (α, α, 0), (α2, α, α) and (α2, 0, 1). They all are mapped to (α, 0, 1) under

χ
(2)
3 :

χ
(2)
3 (α, 1, α) = (α+ 0 · α, 1 + (α+ 1)α, α+ (α+ 1) · 1)

= (α, α2 + α+ 1, α+ α+ 1) = (α, 0, 1)

χ
(2)
3 (α, α, 0) = (α+ (α+ 1) · 0, α+ α, 0 + (α+ 1)α)

= (α, 0, α2 + α) = (α, 0, 1)

χ
(2)
3 (α2, α, α) = (α2 + (α+ 1)α, α+ (α+ 1)α2, α+ (α2 + 1)α)

= (α2 + α2 + α, α+ α3 + α2, α+ α3 + α) = (α, 0, 1)

χ
(2)
3 (α2, 0, 1) = (α2 + 1, 0 + 0 · α2, 1 + (α2 + 1) · 0)

= (α, 0, 1).

It is therefore clear that χ
(2)
3 is not invertible.

The previous example generalizes for any odd n > 1. Since χn is not invertible

for even n, we immediately have χ
(k)
n is not invertible either, for any k > 1.

Conjecture 1 (χn is not invertible on any field extensions of F2) Let n, k be inte-

gers, both greater than 1 and n odd. Then χ
(k)
n : Fn2k → Fn2k is not invertible.

We conjecture the above, because we have found proofs for all even k and all k
that are multiples of 3, as below. Note that we have F2m ⊂ F2l if and only if m | l,
hence we only have to check k = 2 and k = 3, as those examples work immediately
in any extension of F22 or F23 .

Proof (for k = 2:) Let n > 1 be odd. We will show a collision under χ
(2)
n . Let

σ1 = (1, α, 1, (1, 0)
n−3
2 ) and σ2 = (0, α, α2, (0, α)

n−3
2 ). Then χ

(2)
n (σ1) = χ

(2)
n (σ2) =

(α, α, 1, (0)n−3). ut

Proof (for k = 3:) Let n > 1 be odd and α3 + α+ 1 = 0. We will show a collision

under χ
(3)
n . Let σ1 = (α3, 1, α, (α3, 1)

n−3
2 ) and σ2 = (α6, α4, α6, (α6, α4)

n−3
2 ). Then

χ
(3)
n (σ1) = χ

(3)
n (σ2) = (α3, α2, 0, (α3)n−3). ut

The remaining cases are open.

It is interesting to see whether for different positive characteristics χ
(k)
n defined

similarly is invertible and for which k, n this would be. It turns out, that χ
(k)
n is

not invertible over characteristic p for any n, k!
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Proposition 13 (χn is not invertible on any field of characteristic p) Let

p > 2 be a prime number. Let n, k be positive integers. Then χ
(k)
n : Fnpk → Fnpk is

not invertible.

Proof Take σ = 0n and σ′ = (p− 2)n. Then for any index i, we have χ
(k)
n (σ′)i =

σ′i + (σ′i+1 + 1)σ′i+2 = p − 2 + (p − 1)(p − 2) = p · (p − 2) ≡ 0 (mod p). Thus

χ
(k)
n (σ′) = 0n = χ

(k)
n (σ) for all n, k, p. ut
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7 Appendix

7.1 Proof of Proposition 6

We include here the proof of Proposition 6, since we have not been able to find
one in the literature.

Proposition 6 (Differential probabilities for χ [8]) Let n > 1 be an arbitrary
odd integer. Let a′ ∈ Fn2 be arbitrary. Then for any compatible b′ ∈ Fn2 we have
DPχn(a′, b′) = 2−w(a′), where

w(a′) =

{
n− 1 if a′ = 1n;

wt(a′) + ra′ else.

where ra′ is the number of 001-subsequences in a′.

Proof We can express b′ in terms of a′ and a (here a is either of the two inputs
that together have input difference a′) as follows (see [8] Section 6.9):

b′ = χn(a′) +



0 a′2 a
′
1 0 · · · 0 0

0 0 a′3 a
′
2 · · · 0 0

0 0 0 a′4 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · a′n−1 a
′
n−2

a′n−1 0 0 0 · · · 0 a′0
a′1 a′0 0 0 · · · 0 0


︸ ︷︷ ︸

=:Da′

·



a0
a1
a2
...

an−3

an−2

an−1


(4)

When the differential probability DP(a′, b′) = 2−w(a′), then the dimension of
the kernel of Da′ is equal to n−w(a′). Therefore the rank of Da′ will be equal to
w(a′).
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We will prove this by induction on the Hamming weight of a′, which we now
denote as k:

P(k) : For all n > k and all a′ ∈ Fn2 such that wt(a′) = k, we have rkDa′ = w(a′).

We start with the base case P(0).
Then for any n > 0, we have rkD0n = 0 since D0n is the zero-matrix.
Indeed, DP(0, b′) = 20 = 1 for all compatible b′ (of which there is only b′ = 0).
The case P(1) is similar, as we may assume that a′0 = 1 and a′i = 0 for i 6= 0.

It is immediate that rkDa′ = 2. When n ≥ 3, we have ra′ = 1 and wt a′ = 1,
hence w(a′) = 2 = rkDa′ .

We now explore how we can extend an input difference a′ ∈ Fn−2
2 with wt a′ =

k to an input difference c′ with wt c′ = k + 1. Consider the largest index i for
which a′i = 1.

By the shift-invariance of χn and the properties of differential probability for
linear maps, we can assume that i = n− 3.

We can concatenate one of the following to a′:

1. 10;
2. 01;
3. 0`1(0).

With (0) we denote that we concatenate another zero if ` is even, and do not
concatenate it if ` is odd. Note that this lists all possibilities to extend an input
difference a′ to a longer sequence c′ with wt c′ = wt a′ + 1.

In each of these three cases we will show that P(k+ 1) is true. Consider some
a′ ∈ Fn−2

2 such that wt a′ = k with a′n−3 = 1.

1. Let c′ = a′‖10 and d′ = a′‖00. Both Dc′ and Dd′ are n × n matrices. By
the induction hypothesis, we know that rkDd′ = wt d′ + rd′ . We make a case
distinction:
a. Either d′ starts with 0l1 for l > 1;
b. or d′ starts with 01;
c. or d′ starts with 1.

We now assume each of these cases separately.
a. We have wt c′ = wt d′ + 1 and rc′ = rd′ . Thus, we have to show that

rkDc′ = rkDd′ + 1. For that, we consider the following submatrix of Da′ :

sub .Da′ :=

a′n−3 a
′
n−4 0 0

0 a′n−2 a
′
n−3 0

0 0 a′n−1 a
′
n−2

0 0 0 a′0

We then note that all other coordinates of Da′ do not change when we go
from Dd′ to Dc′ . We have:

a′n−4 a′n−3 a′n−2 a′n−1 a′0
c′ : ? 1 1 0 0
d′ : ? 1 0 0 0

The given columns are extended upwards and downwards with 0s in the
matrix Da′ . The same holds for the rows, that are extended leftwards with
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0s, except for the last one, which has a′n−1 in its first position. There we,
thus, have

sub .Dd′ :=

1 a′n−4 0 0
0 0 1 0
0 0 0 0
0 0 0 0

sub .Dc′ :=

1 a′n−4 0 0
0 1 1 0
0 0 0 1
0 0 0 0

In this forelying case, a′n−1 = 0, hence this submatrix is independent on
the other blocks in Da′ . It is immediately clear by looking at the first three
rows of the submatrices, that rkDc′ = rkDd′ + 1.

b. This case is identical to 1a.
c. We have wt c′ = wt d′ + 1 and rc′ = rd′ − 1. Thus, we have to show that

rkDc′ = rkDd′ . We have:

a′n−4 a′n−3 a′n−2 a′n−1 a′0
c′ : ? 1 1 0 1
d′ : ? 1 0 0 1

and thus

sub .Dd′ :=

1 a′n−4 0 0
0 0 1 0
0 0 0 0
0 0 0 1

sub .Dc′ :=

1 a′n−4 0 0
0 1 1 0
0 0 0 1
0 0 0 1

wherefrom it is clear that rkDc′ = rkDd′ .
Therefore, case 1. has been shown.

2. Let c′ = a′‖01 and d′ = a′‖00. The case starts similar as case 1:
a. Either d′ starts with 0l1 for l > 1;
b. or d′ starts with 01;
c. or d′ starts with 1.

We now assume each of these cases separately.
a. We have wt c′ = wt d′ + 1 and rc′ = rd′ . Thus, we have to show that

rkDc′ = rkDd′ + 1.
Here we concern ourselves with the ’submatrix’:

sub .Da′ :=

0 0 a′n−3 0
0 0 a′n−1 a

′
n−2

a′n−1 0 0 a′0
a′1 a′0 0 0

We then note that all other coordinates of Da′ do not change when we go
from Dd′ to Dc′ . We have:

a′n−3 a′n−2 a′n−1 a′0 a′1
c′ : 1 0 1 0 0
d′ : 1 0 0 0 0
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We write the ’submatrices’ ofDd′ andDc′ and immediately see that rkDc′ =
rkDd′ + 1:

sub .Dd′ :=

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

sub .Dc′ :=

0 0 1 0
0 0 1 0
1 0 0 0
0 0 0 0

b. We have wt c′ = wt d′ + 1 and rc′ = rd′ − 1. Thus, we have to show
rkDc′ = rkDd′ . We have:

a′n−3 a′n−2 a′n−1 a′0 a′1
c′ : 1 0 1 0 1
d′ : 1 0 0 0 1

We take the same submatrices for Dc′ and Dd′ :

sub .Dd′ :=

0 0 1 0
0 0 0 0
0 0 0 0
1 0 0 0

sub .Dc′ :=

0 0 1 0
0 0 1 0
1 0 0 0
1 0 0 0

We easily see that matrices Dc′ and Dd′ have equal rank.
c. We have wt c′ = wt d′ + 1 and rc′ = rd′ − 1. Thus, we have to show

rkDc′ = rkDd′ . We have:

a′n−3 a′n−2 a′n−1 a′0 a′1
c′ : 1 0 1 1 ?
d′ : 1 0 0 1 ?

Then

sub .Dd′ :=

0 0 1 0
0 0 0 0
0 0 0 1
? 1 0 0

sub .Dc′ :=

0 0 1 0
0 0 1 0
1 0 0 1
? 1 0 0

It is immediately clear that the ranks of the submatrices are equal for Dd′

and Dc′ , hence rkDc′ = rkDd′ .
Therefore, case 2. has been shown.

3. Let c′ = a′‖0`1(0) and d′ = a′‖0`0(0). Both Dc′ and Dd′ are (n+ `)× (n+ `)
matrices. By the induction hypothesis, we know that rkDd′ = wt d′ + rd′ . We
make a case distinction:
a. Either d′ starts with 0l1 for l > 1;
b. or d′ starts with 01;
c. or d′ starts with 1.

We now assume each of these cases separately.
a. We have wt c′ = wt d′ + 1 and rc′ = rd′ + 1. Therefore, we need to show

that rkDc′ = rkDd′ + 2. We make a case distinction for whether ` is even
or odd.
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i. ` is odd, hence we do not need to add the last (0). Set m = ` + n.
Consider the following values:

a′m−3 a′m−2 a′m−1 a′0 a′1
c′ : 0 0 1 0 0
d′ : 0 0 0 0 0

By considering the following submatrix of Da′ ,

sub .Da′ :=

0 a′m−2 a
′
m−3 0

0 0 a′m−1 a
′
m−2

a′m−1 0 0 a′0
a′1 0 0 0

,

and by filling it in, it is immediately clear that rkDc′ = rkDd′ + 2.
ii. Set m = `+ n. We considering the following values:

a′m−4 a′m−3 a′m−2 a′m−1 a′0
c′ : 0 0 1 0 0
d′ : 0 0 0 0 0

By considering the following submatrix of Da′ ,

sub .Da′ :=

a′n−3 a
′
n−4 0 0

0 a′n−2 a
′
n−3 0

0 0 a′n−1 a
′
n−2

0 0 0 a′0

,

it is again immediately clear that rkDc′ = rkDd′ + 2, as required.
b. We have wt c′ = wt d′+ 1. We immediately have to make a case distinction

to whether ` is even or odd. Set m = n+ `.
i. If ` is odd, then a′m−1 flips. We then have r′c = r′d, so we have to show

rkDc′ = rkDd′ + 1. Hence, we consider the following values:

a′m−3 a′m−2 a′m−1 a′0 a′1
c′ : 0 0 1 0 1
d′ : 0 0 0 0 1

We then consider the following submatrix:

sub .Da′ :=

0 a′m−2 a
′
m−3 0

0 0 a′m−1 a
′
m−2

a′m−1 0 0 a′0
a′1 0 0 0

We see that the rank of Dc′ is one higher than the rank of Dd′ , as
required.
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a′m−4 a′m−3 a′m−2 a′m−1 a′0
c′ : 0 0 1 0 0
d′ : 0 0 0 0 0

ii. In this case a′m−1 = 0 in c′ and d′, but a′m−2 changes. Hence we have
rc′ = rd′ + 1, and we need to show that rkDc′ = rkDd′ + 2. Consider
the following values:
By considering the submatrix

sub .Da′ :=

0 a′m−4 0 0
0 a′m−2 a

′
m−3 0

0 0 a′m−1 a
′
m−2

a′m−1 0 0 a′0

,

we immediately obtain that rkDc′ = rkDd′ .
c. We have wt c′ = wt d′ + 1 and rc′ = rd′ . We therefore need to show that

rkDc′ = rkDd′ + 1. As before, we make a case distinction:
i. Let ` be even and consider

a′m−4 a′m−3 a′m−2 a′m−1 a′0
c′ : 0 0 1 0 1
d′ : 0 0 0 0 1

Then, we consider the submatrix

sub .Da′ :=

a′m−3 a
′
m−4 0 0

0 a′m−2 a
′
m−3 0

0 0 a′m−1 a
′
m−2

0 0 0 a′0

and fill in the values for Dd′ and Dc′ :

sub .Dd′ :=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

sub .Dc′ :=

0 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

From this, we see that rkDc′ = rkDd′ + 1.
ii. Assume that ` is odd and consider

a′m−3 a′m−2 a′m−1 a′0 a′1
c′ : 0 0 1 1 ?
d′ : 0 0 0 1 ?

We consider the submatrix of Da′ given by:

sub .Da′ :=

0 a′m−2 a
′
m−3 0

0 0 a′m−1 a
′
m−2

a′m−1 0 0 a′0
a′1 0 0 0
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and fill in the values for Dd′ and Dc′ :

sub .Dd′ :=

0 0 0 0
0 0 0 0
0 0 0 1
? 0 0 0

sub .Dc′ :=

0 0 0 0
0 0 1 0
1 0 0 1
? 0 0 0

From this, we see that, independently of the value of ?, that the rank
increase when going from Dd′ to Dc′ .

Therefore, case 3. has been shown.

By the above case distinction, we have proven half of the proposition by means of
induction.

For the other half, namely that w(a′) = n − 1, when a′ = 1n, we just need
to show that the rank of Da′ = n − 1. This follows by doing elementary row
reductions. The echelon form will consist of an (n − 1) × (n − 1) identity matrix
In−1, with an (n − 1) × 1 all-one column to the right of it, and an all-zero row
below all this: 

1

In−1

...
1

0 · · · 0 0


and the result follows. ut

7.2 Actual sparsity and degree

Here, we list the actual numbers for the minimum sparsity, maximum sparsity,
minimum degree and maximum degree for univariate representations of χn for
several n.

Below those, we also give tables for the exact different univariate representa-
tions for χn.

Min. sparsity Max. sparsity Min. degree Max. degree
n = 3 1 3 6 6
n = 5 5 9 18 24
n = 7 11 19 64 96
n = 9 15 33 258 384

Table 8 The true bounds on sparsity and degree for univariate expressions for χn.

In the following tables for χ3, χ5, χ7, we see Sn := Sym({1, . . . , n}), instead of
{0, . . . , n− 1}.

In Table 11, we write for the normal element a set of non-negative integers.
These denote the exponents of the monomials that have coefficient 1 in the defining
polynomial of the normal element. For instance, {7, 6, 5, 2, 0} denotes β7 + β6 +
β5 + β2 + 1 = 0.

Similarly, we write a tuple of non-negative integers for the resulting polynomi-
als.
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normal element iso. (σ) resulting polynomial

β3 + β2 + 1 = 0
id t6

(2 3) t6 + t4 + t2

Table 9 Univariate representations of χ3.

normal element iso. (σ) resulting polynomial

β5 + β4 + β2 + β + 1 = 0

id t20 + t12 + t8 + t6 + t5 + t4 + t3

(2 3 5 4) t18 + t17 + t10 + t6 + t5

(2 4 5 3) t20 + t16 + t12 + t10 + t5 + t4 + t3 + t2 + t
(2 5)(3 4) t24 + t17 + t9 + t8 + t5 + t4 + t3

β5 + β4 + β3 + β + 1 = 0

id t24 + t18 + t17 + t16 + t4 + t3 + t
(2 3 5 4) t24 + t20 + t16 + t10 + t9 + t8 + t5 + t4 + t2

(2 4 5 3) t20 + t18 + t17 + t10 + t9 + t8 + t2

(2 5)(3 4) t24 + t20 + t12 + t6 + t2

β5 + β4 + β3 + β2 + 1 = 0

id t24 + t10 + t9 + t6 + t5 + t2 + t
(2 3 5 4) t20 + t17 + t12 + t8 + t4 + t3 + t
(2 4 5 3) t24 + t9 + t8 + t6 + t4 + t3 + t
(2 5)(3 4) t18 + t17 + t16 + t10 + t9 + t6 + t4 + t2 + t

Table 10 Univariate representations of χ5.
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normal element iso. (σ) resulting polynomial

{7, 6, 5, 2, 0}

id (96, 80, 68, 48, 40, 34, 33, 32, 24, 18, 16, 12, 9, 8, 2)
(2 3 5)(4 7 6) (80, 66, 48, 40, 33, 32, 24, 20, 12, 10, 9, 4, 1)
(2 4 3 7 5 6) (96, 68, 66, 65, 48, 36, 34, 32, 24, 18, 9, 8, 4)
(2 5 3)(4 6 7) (96, 72, 65, 64, 36, 32, 18, 17, 16, 10, 9, 8, 6, 4, 3)
(2 6 5 7 3 4) (80, 68, 40, 33, 24, 20, 12, 10, 6, 5, 4, 2, 1)

(2 7)(3 6)(4 5) (96, 72, 66, 65, 64, 36, 18, 17, 16, 10, 8, 6, 5, 4, 3)

{7, 6, 4, 2, 0}

id (96, 80, 72, 68, 66, 64, 36, 34, 32, 20, 9, 8, 6, 3, 1)
(2 3 5)(4 7 6) (96, 80, 40, 34, 32, 24, 20, 18, 16, 10, 8, 6, 2)
(2 4 3 7 5 6) (96, 80, 48, 32, 24, 18, 17, 9, 6, 5, 3)
(2 5 3)(4 6 7) (96, 72, 68, 66, 65, 64, 36, 24, 20, 12, 8, 4, 3)
(2 6 5 7 3 4) (64, 48, 40, 20, 17, 12, 10, 9, 8, 5, 3)

(2 7)(3 6)(4 5) (72, 68, 64, 48, 36, 34, 33, 24, 20, 18, 6, 5, 1)

{7, 6, 4, 1, 0}

id (96, 80, 66, 48, 40, 36, 33, 24, 18, 12, 10, 6, 5, 4, 2
(2 3 5)(4 7 6) (96, 68, 66, 65, 48, 40, 36, 34, 32, 24, 20, 18, 12, 4, 3, 2, 1)
(2 4 3 7 5 6) (80, 72, 68, 65, 34, 33, 10, 8, 5, 3, 2)
(2 5 3)(4 6 7) (66, 64, 40, 34, 32, 20, 18, 12, 9, 6, 5, 4, 1)
(2 6 5 7 3 4) (96, 65, 48, 34, 33, 24, 20, 18, 17, 12, 10, 9, 6, 4, 2)

(2 7)(3 6)(4 5) (96, 80, 66, 65, 48, 40, 34, 32, 20, 17, 16, 10, 8, 6, 5, 4, 3, 2, 1)

{7, 6, 3, 1, 0}

id (80, 64, 40, 34, 33, 32, 24, 20, 18, 12, 10, 8, 4, 3, 2)
(2 3 5)(4 7 6) (80, 68, 48, 36, 33, 24, 18, 16, 12, 10, 6, 4, 3)
(2 4 3 7 5 6) (68, 65, 64, 34, 33, 32, 24, 18, 17, 10, 5, 4, 1)
(2 5 3)(4 6 7) (96, 72, 68, 64, 40, 20, 18, 16, 9, 8, 6, 5, 2)
(2 6 5 7 3 4) (80, 65, 64, 40, 34, 24, 18, 16, 12, 9, 8, 6, 5, 4, 3, 2, 1)

(2 7)(3 6)(4 5) (96, 80, 66, 65, 64, 33, 32, 24, 18, 17, 16, 10, 8, 5, 1)

{7, 6, 0}

id (96, 68, 65, 64, 48, 36, 34, 33, 32, 20, 16, 12, 10, 6, 5, 4, 3, 2, 1)
(2 3 5)(4 7 6) (72, 68, 66, 65, 64, 48, 40, 34, 32, 20, 18, 17, 10, 8, 6, 5, 4, 3, 2)
(2 4 3 7 5 6) (80, 68, 48, 40, 36, 33, 32, 24, 20, 17, 16, 8, 5, 3, 2)
(2 5 3)(4 6 7) (96, 80, 68, 66, 65, 33, 32, 20, 18, 17, 12, 5, 4)
(2 6 5 7 3 4) (96, 72, 66, 65, 64, 36, 34, 33, 32, 24, 20, 17, 10, 9, 5, 3, 2)

(2 7)(3 6)(4 5) (96, 80, 48, 40, 36, 34, 33, 32, 24, 18, 16, 12, 10, 6, 3)

{7, 6, 5, 3, 2, 1, 0}

id (80, 64, 48, 40, 36, 32, 24, 20, 16, 12, 10, 8, 5, 4, 3)
(2 3 5)(4 7 6) (68, 65, 36, 34, 33, 24, 20, 18, 17, 12, 9, 6, 5, 4, 3)
(2 4 3 7 5 6) (80, 66, 40, 36, 34, 33, 18, 17, 16, 10, 5, 4, 3, 2, 1)
(2 5 3)(4 6 7) (72, 68, 66, 40, 33, 20, 17, 16, 12, 10, 9, 5, 1)
(2 6 5 7 3 4) (96, 80, 72, 68, 66, 65, 64, 34, 18, 17, 16, 12, 10, 9, 6, 4, 3, 2, 1)

(2 7)(3 6)(4 5) (96, 80, 66, 65, 64, 40, 34, 33, 32, 24, 8, 5, 3)

{7, 6, 5, 4, 2, 1, 0}

id (66, 64, 48, 40, 36, 34, 33, 18, 16, 12, 6, 5, 4)
(2 3 5)(4 7 6) (96, 80, 66, 65, 48, 34, 20, 18, 12, 10, 9, 8, 4, 2, 1)
(2 4 3 7 5 6) (80, 72, 66, 65, 36, 34, 32, 24, 17, 8, 5, 3, 1)
(2 5 3)(4 6 7) (96, 68, 66, 64, 34, 32, 20, 17, 12, 10, 9, 8, 6)
(2 6 5 7 3 4) (96, 68, 48, 40, 33, 24, 17, 16, 10, 9, 6, 5, 2)

(2 7)(3 6)(4 5) (96, 66, 48, 40, 34, 32, 20, 18, 17, 10, 8, 3, 2)

Table 11 Univariate representations of χ7.
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