
Breaking two PSI-CA protocols in polynomial
time

Yang Tan1[0000−0003−1015−5279] and Bo Lv2

1 Xinxindigits, Qianhai, Shenzhen, Guangdong, China
t.yang03@mail.scut.edu.cn

2 Huizhou University, Huizhou, Guangdong, China
lvbo@hzu.edu.cn

Abstract. Private Set Intersection Cardinality(PSI-CA) is a type of
secure two-party computation. It enables two parties, each holding a pri-
vate set, to jointly compute the cardinality of their intersection without
revealing any other private information about their respective sets.
In this paper, we manage to break two PSI-CA protocols by recovering
the specific intersection items in polynomial time. Among them, the PSI-
CA protocol proposed by De Cristofaro et al. in 2012 is the most popular
PSI-CA protocol based on the Google Scholar search results and it is still
deemed one of the most efficient PSI-CA protocols.
In this paper, we also propose several solutions to these protocols’ secu-
rity problems.

Keywords: PSI-CA · PSI · DDH · Bloom Filter.

1 Introduction

1.1 A Subsection Sample

Private Set Intersection Cardinality (PSI-CA) is an important primitive of secure
two-party computation. It enables two parties, each holding a private set, to
jointly compute the cardinality of their intersection without revealing any other
private information about their respective sets.

PSI-CA is a useful tool for privacy protection. For example, on social media
(such as Facebook, WhatsApp), two users can determine whether they should
become friends based on the number of common connections without leaking any
private contact. Other applications include DNA sequence similarity comparison,
anonymous authentication, etc. Moreover, it has wide applications in Federated
Learning where parties can train a machine learning model together without
sharing their private data. In Federated Learning, PSI/PSI-CA protocol is used
as a basic tool to determine participants overlapped samples or the cardinality
of these samples without leaking any other information.

In the existing PSI-CA protocols, the most efficient ones require linear com-
putation and communication complexity. Early PSI-CA protocols are usually
based on Public Key Cryptography [1, 7]. Recent works [9, 10, 12, 15] have tried



2 Y. Tan et al.

to introduce more mechanisms such as bloom filters, homomorphic encryption
and oblivious transfer to improve efficiency, but their complexity levels are stil-
l linear. Dong and Loukides [11] developed an approximate PSI-CA protocol
based on multiple Flajolet-Martin(FM) sketches (space efficient data structure
for cardinality estimation). With some sacrifice on accuracy, it claims it can
achieve logarithmic complexity.

In this paper, we will try to break two PSI-CA protocols [7,8] in polynomial
time. Both of their securities are based on the DDH assumption. Among them, [7]
is the most popular PSI-CA protocol based on the Google Scholar search results.

The content of this paper is as follows: Firstly, we give a background in-
troduction. Secondly, we describe some basic definitions involved in this paper.
Thirdly, we describe the two targeted PSI-CA protocols and how to break them
in polynomial time. Fourthly, we run some attack simulations. Fifthly, we pro-
pose some solutions to their security problems. Finally, we make a conclusion.

2 Definitions

In this section, we introduce some basic definitions involved in this paper.

Definition 1. Private Set Intersection Cardinality(PSI-CA). A protocol
involving Server, on input a set of w items Y = {y1, ..., yw}, and Client, on input
a set of v items X = {x1, ..., xv}. It outputs I, where: I = |X ∩ Y |.

For PSI-CA protocol, the following privacy requirements should be met:

– Server Privacy. Client learns no information beyond: (1) cardinality of set
intersection and (2) upper bound on the size of Y .

– Client Privacy. No information is leaked about client set X, except an
upper bound on its size.

– Unlinkability. Neither party can determine if any two instances of the
protocol are related, i.e., executed on the same input by Client or Server,
unless this can be inferred from the actual protocol output.

There are two common types of security models for general secure multi-party
computation:

– Semi-honest Model. The adversary in this model is called a semi-honest
adversary. It follows the protocol. However, it will try to gain extra informa-
tion out of the protocol.

– Malicious Model. In this model, the adversary is called a malicious ad-
versary. It will try to gain extra information by any kind of method, for
example, changing the inputs and outputs, aborting the protocol, etc.

Other notations:

– Two hash functions modeled as random oracles, H1 : {0, 1}∗ → G in which
G is a cyclic subgroup of Zp of order q and H2 : {0, 1}∗ → {0, 1}k given the
security parameter k.



Breaking two PSI-CA protocols in polynomial time 3

– Two random permutations:
∏

,
∏ ′.

– Throughout the paper, the notations a ←− A, x � X are, respectively,
used to represent a is the output of the procedure A, variable x is chosen
uniformly at random from set X.

Definition 2. Discrete Logarithm Assumption. Let G be a cyclic group
and g be its generator. The discrete logarithm problem(DLP) is called (t, ε) hard
relative to G if for all algorithms A runs in time t there exists a negligible function
ε of security parameter k such that

Pr[A(g, ga) = a] ≤ ε

Definition 3. DDH assumption. Let G be a cyclic group of order q and
g is its generator and l is the bit-length of the group size. The following two
distributions are computationally indistinguishable

(1)gx, gy, gxy

(2)gx, gy, gz

given x, y, z are randomly and independently chosen from Zq. To put it in
a more formal way, DDH problem is (t, ε) hard if for all algorithms A runs in
time t there exists a negligible function ε.

|Pr[x, y ← {0, 1}l : A(g, gx, gy, gxy) = 1]−Pr[x, y ← {0, 1}l : A(g, gx, gy, gz) = 1]| ≤ ε

Definition 4. Bloom Filter. A Bloom filter(BF) [2] is a data structure that
represents a set X = {x1, ..., xv} by an array of m bits and use k independent
uniform hash functions: {h1, h2, ..., hk} where hi : {0, 1}∗ → m. These hash
functions are used to insert elements or check the existence of the elements in
Bloom Filter.

A bloom filter may render false positives, i.e., an element not in set X may
pass its Bloom Filter’s membership test. In practice, we need to adjust the
parameters: k, m [5] to make the false positive rate stays less than a certain
value(e.g. 2−80).

In this paper, we use a variant of the Bloom Filter(this Inverted Bloom filter
can be referred to as IBF) which includes the following operations:

– Initialization Set all the bits of the m-bit array of IBF to 1.

– Add(x) To insert an element x ∈ X into the Bloom filter, calculate the
following k indices: {h1(x), ..., hk(x)}, and set the bits with positions in these
indices to 0. Repeat this process till all the members inX are inserted into the
Bloom Filter. Then the Bloom Filter of X is represented as IBFX ∈ {0, 1}m.

– Check(x’) to check whether x′ ∈ X, calculate the following k indices:
{h1(x′), ..., hk(x′)} and check IBFX ’ bits with positions in these indices.
If they are all 0, x′ is probably in X, otherwise, x′ is not in X.



4 Y. Tan et al.

3 Break the PSI-CA protocol from [7]

In 2012, De Cristofaro et al. proposed an efficient PSI-CA protocol with linear
complexity in computation and communication [7].

In this article, the authors claimed their PSI-CA protocol was secure un-
der the DDH assumption [3] in the random oracle model against semi-honest
adversaries.

However, the original protocol made a small mistake: the authors seem to
forget to map the hashes of the private inputs to the chosen cyclic group G.
Without this operation, DDH assumption won’t stand and computations like
stripping off an exponent Rc by exponentiating with Rc’s inverse modular q
won’t work.

This mistake is pointed out and corrected in [18]. The corrections to this
protocol are made by mapping the hashes of the private inputs to the chosen
cyclic group.

3.1 Description of the Protocol.

In Table 1, we present you this protocol.

Table 1. PSI-CA Protocol from [7].

Client, on input
C = {c1, ..., cv}

Common inputs
p, q, g,H1, H2

Server, on input
S = {s1, ..., sw}

Rc ← Zq
∀i 1 ≤ i ≤ v :
hci = H1(ci)
ai = (hci)

Rc

(ŝ1, ..., ŝw)←
∏

(S)
∀j 1 ≤ j ≤ w :
hsj = H1(ŝj)

a1,...,av−−−−−→
Rs ← Zq

∀i 1 ≤ i ≤ v : a
′
i = (ai)

Rs

(a
′
l1
, ..., a

′
lv ) =

∏ ′(a′
i, ..., a

′
v)

∀j 1 ≤ j ≤ w :
bsj = (hsj)

Rs ;
∀j 1 ≤ j ≤ w : tsj = H2(bsj)

{a
′
l1
,...,a

′
lv
}

←−−−−−−−−
{ts1,...,tsw}

∀i 1 ≤ i ≤ v :

bci = (a
′
li

)1/Rc mod q

∀i 1 ≤ i ≤ v :
tci = H2(bci)
Output:|{ts1, ..., tsw}

⋂
{tc1, ..., tcv}|

One thing to note, the original paper made a little mistake by simply defining
H1 : {0, 1}∗ → Zp. For this protocol to work, H1 should map the private input



Breaking two PSI-CA protocols in polynomial time 5

to a random element in the cyclic subgroup G. This mistake is also pointed out
in [18].

In Table 1, the common inputs p, q are prime numbers. All computations are
mod p and q is G’s order.

The intuition behind this protocol is straightforward. In the end, all the
private inputs go through the same computations: x → H2(H1(x)Rs). If two
input numbers are equal, their outputs should be equal as well. In this case, the
cardinality of the private intersection pluses one.

Also, due to the DL and DDH assumptions, the Client and the Server can’t
recover any private input from the intermediate results.

Furthermore, to prevent the Client from recovering intersection set by data’s
order, this protocol applies two random permutations

∏
,
∏ ′ to shuffle on the

Server side.

3.2 Correctness.

For any ci held by Client and sj held by Server, if ci = sj , hence, hci = hsj , we
obtain:

|{ts1, . . . , tsw} ∩ {tc1, . . . , tcv}| → |{bs1, . . . , bsw} ∩ {bc1, . . . , bcv}|
→ |{(hs1)Rs , . . . , (hsw)Rs} ∩ {(hc1)Rs , . . . , (hcv)

Rs}|
→ |{hs1, . . . , hsw} ∩ {hc1, . . . , hcv}|
→ |S ∩ C|

(1)

3.3 Recovering Intersection Items in Polynomial time

Idea Behind the Attack It is true that due to the hardness of DLP, without
the knowledge of Rs, a

′

li
is indistinguishable from a random value and the Client

adversary can’t tell a
′

li
comes from which ai. It looks like {bci} is as far as the

adversary can get. Also, because of the random permutations, the Client can’t
recover the intersection set by items’ order.

However, the authors omit one fact: an invariable Rs is involved in process of
generating tci and tsj . If the Client adversary can recover something invariable
related to Rs from the intersection of {tci} and {tsj}, and link it to {hci}, it is
possible to recover the private intersection set.

Simulations and Instantiations of the Random Oracles In the security
proof part (section 4.1, Server Privacy) of [7], it defines a simulator SIM which
interacts with a distinguisher D. SIM simulates random oracles H1 and H2.
SIM responds to H1(x) queries from D with grhi for a random rhi ∈ Zq, and
stores (x, grhi) in table TH for consistency and to queries H2(x) with a random
string, using TH′ to store queries-response for consistency.



6 Y. Tan et al.

In the ideal world, the random oracle could be performed like a trusted third-
party or a black-box. Client can simply issue queries and get responses from H1.
It has no access to the random rhi, nor the Table TH .

However, the random oracle is an imaginary object, to implement the proto-
col [7] in real world, it has to be instantiated. In the instantiation of a random
oracle like H1, a random number rhi has to be generated for every distinc-
t query. In common practice, it uses a concrete, possibly keyed, cryptographic
hash function, such as SHA functions, or hash functions constructed by utilizing
indistinguishability obfuscation [14].

In this paper, we just assume rhi is already random and we focus on whether
Client has access to rhi. For the following attack to work, the Client needs
access to this random value. In practice, to implement this PSI-CA protocol
in the two-party setting, the Client has to generate rhi on its side. It couldn’t
issue H1 queries to the Server or other parties. Otherwise, private inputs will be
revealed. Ergo, we could assume the Client generates the random value rhi by
itself and has access to it.

How to Perform the Attack In the following parts of this section, we will
show you how to recover an invariable from the intersection of {tci} and {tsj}
and based on this invariable, recover the private intersection set in polynomial
time.

– Assume the intersection cardinality is k, and the intersection of {tci} and
{tsj} is {tcf1

, ..., tcfk}.
– Pick one value from the intersection: tcfi , Client can get the correspond-

ing bcfi . Because of the random shuffle on the Server side, we assume bcfi
comes from hcm and hcm = grhm , then we have: bcfi = (a

′

lfi
)1/Rc mod q =

(hcm
Rc·Rs)1/Rc mod q = (hcm)Rs = grhm·Rs where 1 ≤ m ≤ v.

– With hcj = grhj , Client can perform an exhaustive search by computing:

bcfi
1/rhj mod q = grhm·Rs·1/rhj mod q = grhm/rhj ·Rs mod q for ∀j 1 ≤ j ≤ v.

When j = m, the result of this computation is exactly gRs and gRs is the
invariable we try to recover.

– For every element tcfi in {tcf1
, ..., tcfk}, repeat the above exhaustive search

on its corresponding bcfi , and record the one hcj = grhj that can make

bcfi
1/rhj mod q equals gRs .

– In the end, {hcj}’s corresponding {cj} is the intersection set the Client
adversary tries to recover. Ergo, by the definition of PSI-CA protocol, this
protocol is compromised.

One thing to note, before the attack, the Client adversary doesn’t know the
exact value of gRs in advance, so it has to repeat the exhaustive search at least
twice to determine the value of gRs .

Complexity Analysis Assume the intersection cardinality is k, one time ex-
haustive search for an intersection element needs v exponentiations. Thereby, the



Breaking two PSI-CA protocols in polynomial time 7

overall complexity of recovering all the intersection elements is O(k × v) which
is a quadratic polynomial. Consequently, we break the protocol in polynomial
time.

4 Break the PSI-CA protocol from [8]

In [8], the authors proposed two PSI-CA protocols in the presence of malicious
adversaries: one with Bloom Filter [2], one without Bloom Filter.

Both protocols are based on the DDH assumption [4] and the protocol with
Bloom Filter is more efficient in communication.

In both protocols, Zero-Knowledge Proof(ZKP) is used to prevent Malicious
adversaries from misbehaving. ZKP can be viewed as some extra processes of
challenge, response, and verification to make sure that all the intermediate re-
sults are not tampered by a malicious adversary. Since our attack targets the
protocols themselves and has nothing to do with whether the intermediate re-
sults be tampered or not, for the simplicity of the illustration of the attack, we
will leave out the ZKP parts in the description of the Protocol.

In this section, we will show the attack against the PSI-CA protocol without
Bloom Filter, and the attack against the PSI-CA protocol with Bloom Filter is
nearly the same.

4.1 ElGamal Encryption

This protocol uses ElGamal encryption [13] to encrypt Client’s private inputs.
The ElGamal encryption is multiplicative homomorphic and it is defined as

follows:

– Setup (1κ) - On security parameter input 1κ, a trusted authority outputs a
public parameter par = (p, q, g),where p, q are prime numbers such that q
divides p− 1 and g is a generator of the cyclic subgroup G of Zp of order q.

– KeyGen (par) - User U chooses x� Zq, computes h = gx, reveals pkU = h
as his public key and keeps secret skU = x to himself.

– Enc (m, pkU , par, r) - The encryptor encrypts a message m ∈ G using the
public key pkU = h by computing ciphertext tuple EpkU (m) = (α, β) =
(gr,mhr), where r � Zq.

– Dec (EpkU (m), skU ) - On receiving ciphertext tuple EpkU (m) = (α, β) =
(gr,mhr), the decryptor U decrypts it using the secret key skU = x by

computing β
αx = m(gx)r

(gr)x = m.

The ElGamal encryption is semantically secure provided the DDH problem
is hard in G.



8 Y. Tan et al.

4.2 Description of the Protocol.

The PSI-CA Protocol without Bloom Filter is shown in Table 2.

Table 2. PSI-CA Protocol from [8].

Client, on input
X = {x1, · · · , xv}

Public:
(p, q, g)

Server, on input
Y = {y1, . . . , yw}

(pkC , skC)← KeyGen(par)
(i) chooses rx1 , . . . , rxv � Zq,
EpkC (xi) = (cxi , dxi) = (grxi , xih

rxi )
(ii)R1 = {EpkC (x1) , . . . , EpkC (xv)}

R1−−→
(i)r � Zq,

Ŷ = {t1 = (y1)r , . . . , tw = (yw)r}
(ii) for i = 1, . . . , v,

(EpkC (xi))
r = (ĉxi , d̂xi) = (crxi , d

r
xi)

(iii)X̄ =
Perm {(EpkC (x1))r , . . . , (EpkC (xv))r}
= {(EpkC (x̄1))r , . . . , (EpkC (x̄v))r};
(iv)R2 =

〈
Ŷ = {t1, . . . , tw} , X̄

〉
R2←−−

For i = 1, . . . , v,
si = (x̄i)

r ← Dec ((EpkC (x̄i))
r , skC);

|X ∩ Y | = |{s1, . . . , sv} ∩ {t1, . . . , tw}|

4.3 Intuition

From Table 2, we can see that the Client encrypts his private data set X =
{x1, ..., xv} with ElGamal encryption and then sends it to Server. Because El-
Gamal encryption is multiplicative homomorphic, the Server can exponentiate
these encrypted values with its private input r and generate:

(EpkC (xi))
r

= (ĉxi , d̂xi) = (crxi
, drxi

), i = 1, . . . , v (2)

Server randomly shuffles them and sends them back to Client. Client can decrypt
these values and get:

si = (x̄i)
r ← Dec((EpkC (x̄i))

r, skC) (3)

Server also encrypts its own private data set Y = {y1, ..., yw} by exponenti-
ating them with exponent r and generates:

Ŷ = {t1 = (y1)r, . . . , tw = (yw)r} (4)

and sends Ŷ to the Client.



Breaking two PSI-CA protocols in polynomial time 9

In the end, the Client gets all private inputs’ exponentiations with r as the ex-
ponent. Thereby, the Client can get the intersection cardinality by |{s1, . . . , sv}∩
{t1, . . . , tw}|. Also, because of the DL and DDH assumptions, Client and Server
can’t recover any private input from the intermediate results.

Furthermore, similar to the previous PSI-CA protocol, because of the random
permutation: Perm, the Client adversary can’t recover the intersection set by
data’s order.

4.4 Recovering Intersection Items in Polynomial time

The Idea Behind the Attack This protocol made the same mistakes as the
previous PSI-CA protocol.

In the processes of generating {s1, . . . , sv} and {t1, . . . , tw}, an invariable r
introduced by Server is involved.

Even though the Client can’t recover x̄i from si due to the hardness of the
DLP, if the Client adversary can recover something invariable related to r from
the intermediate results and link this invariable to the private input, it’s possible
to recover the intersection set.

How to Perform the Attack Assume the intersection cardinality is k, then
we have {s1, . . . , sv} ∩ {t1, . . . , tw} = {sl1, . . . , slk}.

Now, let’s try to recover an invariable from sli’s corresponding (EpkC (x̄li))
r

for i = 1, ..., k.

– Extract (cx̄li
)r from (EpkC (x̄li))

r = ((cx̄li
)r, (dx̄li

)r), and (cx̄li
)r = (grx̄li )r =

gr×rx̄li .
– Client adversary performs an exhaustive search attack on (cx̄li

)r by com-

puting: ((cx̄li
)r)1/rxj

mod q = (grx̄li
/rxj

mod q)r for ∀j 1 ≤ j ≤ v. When
rx̄li

= rxj , the result is exactly gr.
– As rxj

has a one-to-one mapping relation with xj , the Client can be certain
that xj ∈ X ∩ Y .

– Client repeat this process for ∀i 1 ≤ i ≤ k till the whole intersection set is
recovered.

Similar to the previous attack, the Client adversary doesn’t know the exact
value of gr in advance. It has to repeat the exhaustive search at least 2 times to
determine this value.

As to the PSI-CA protocol with Bloom filter, its main difference from the PSI-
CA protocol without Bloom filter is: Instead of transmitting Ŷ , it transmits the
bloom filter of Ŷ to reduce the communication costs. The intersection cardinality
can be computed by counting the number of si that passes the membership test
of Ŷ ’s Bloom Filter.

Obviously, this new construction won’t affect us performing the same attack:
using sli’s corresponding (EpkC (x̄li))

r to recover invariable gr provided that sli
passes the membership test of Ŷ ’s Bloom Filter. Thereby, we won’t elaborate on
this protocol’s specific construction and the attack against it.



10 Y. Tan et al.

Complexity Analysis Assume the intersection cardinality is k, one time ex-
haustive search attack for an intersection item needs v inverses modular q and
exponentiations. Thereby, the overall complexity of recovering the whole inter-
section set is O(k× v) which is a quadratic polynomial. Consequently, we break
the protocol in polynomial time.

5 Attack Simulations

In the previous section, we discussed two PSI-CA protocols and how to break
them in polynomial time. In this section, we will run some experiments to sim-
ulate the attacks.

For the rest of this paper, we will refer to the PSI-CA protocol from [7] as
PSI-CA protocol 1 and the PSI-CA protocol from [8] as PSI-CA protocol 2.

In these experiments, we use Python 3.6.8 for protocol implementations and
attack simulations. We run these simulations on a Linux Red Hat 4.8.5-44 server
with Intel Cure2 Duo T7700(2.4GHz) as CPU.

We choose two sets of parameters from [17] for protocols’ Zp and its cyclic
subgroup G: 1024-bit MODP Group with 160-bit Prime Order Sub-
group, 2048-bit MODP Group with 224-bit Prime Order Subgroup.
They have 80-bit and 112-bit security levels, respectively.

For each protocol and each set of parameters, we run three groups of test.
In Group 1, we have v = 1000, w = 25000 and k = 500 which means Client’s
private data set is of size 1000, Server’s private data set is of size 2500, and their
intersection cardinality is 500. Similarly, in Group 2, we have v = 2000, w = 5000
and k = 1000. In Group 3, we have v = 10000, w = 25000 and k = 5000.

In these attacks, to determine the values of the invariables, we randomly
pick two bcfi for PSI-CA protocol 1 and two (cx̄li

)r for PSI-CA protocol 2 and
perform the exhaustive search two times at first. In the end, we record the total
time of recovering the intersection set for these protocols.

The experiment results of breaking PSI-CA protocol 1 and PSI-CA protocol
2 are shown in Table 3 and Table 4, respectively.

Table 3. Time of breaking PSI-CA Protocol 1.

Group 1 Group 2 Group 3

1024-bit Group 63.093s 263.533s 6468.485s
2048-bit Group 328.924s 1312.951s 32808.890s

From these tables, we can see that, these protocols can be broken in a short
time period. Furthermore, for both protocols, Group 2 is about 4 times the
attack time of Group1, and Group 3 is about 10 times the attack time of Group
1. Results verify the correctness of the complexity analyses of these attacks:
quadratic polynomials linear to k × v.



Breaking two PSI-CA protocols in polynomial time 11

Table 4. Time of breaking PSI-CA Protocol 2.

Group 1 Group 2 Group 3

1024-bit Group 68.634s 263.834s 6434.539s
2048-bit Group 336.421s 1325.594s 32981.475s

6 Security Solutions

In this section, we focus on the solutions to the security problems of the PSI-CA
protocols we broke in previous section.

In our solutions, we don’t consider solutions by introducing a semi-honest
third party. It would be meaningless since we could easily come up with a much
more efficient PSI-CA protocol. For example, in [16], by introducing a semi-
honest third-party, they came up with an highly efficient PSI protocol than
these protocols in a two-party setting.

Thereby, we will also propose 2 security solutions for each protocol without
introducing a third party.

One thing to note, the second security solution of PSI-CA protocol 1 is
derived from the intersection size protocol in [1]. It’s similar to PSI-CA protocol
1 and can resist our attack. For readers’ reference, we point it out and make a
few adjustments to make it more similar to PSI-CA protocol 1.

6.1 Two Security Solutions for PSI-CA protocol 1

First Solution The first solution we come up with is to discard the subgroup
G with prime order q.

The reason that the Client adversary can recover the invariable gRs is that
in the chosen cyclic subgroup G, the Client can successfully strip off tcfi ’s ex-

ponent rhm by an exhaustive search: bcfi
1/rhj mod q = grhm·Rs·1/rhj mod q =

grhm/rhj ·Rs mod q for ∀j; 1 ≤ j ≤ v. When j = m, the exponent rhm is stripped
off.

In this solution, we discard the cyclic subgroup G, and simply do all the
computations mod p. We represent mod p as MODP group P . Hash function
H1 modeled as random oracle is redefined as: H1 : {0, 1}∗ → Zp. This time, the
Client adversary won’t be able to strip off the exponent to recover an invariable.

The fixed protocol is shown in Table 5.
According to the Fermat’s little theorem [19], group P is of order p − 1, In

this construction, we choose p as a safe prime (both p and q = (p − 1)/2 are
primes) and Rc to be coprime with p − 1 so that the Client can still strip off
exponent RC to generate bci.

How this solution solves the security problem If the Client adversary wants to
perform the previous exhaustive search attack to recover an invariable, he has to
strip off some exponents. The generator of group P is unknown, we assume it’s g1

and a targeted bci comes from cj , then bci = (a
′

li
)1/Rc mod (p−1) = aj

Rs = hcj
Rs .



12 Y. Tan et al.

Table 5. First Security Solution for PSI-CA Protocol 1.

Client, on input
C = {c1, ..., cv}

Server, on input
S = {s1, ..., sw}

pick Rc ← Zp
with gcd(Rc, p− 1) = 1
∀i 1 ≤ i ≤ v :
hci = H1(ci)
ai = (hci)

Rc

(ŝ1, ..., ŝw)←
∏

(S)
∀j 1 ≤ j ≤ w :
hsj = H1(ŝj);

a1,...,av−−−−−→
Rs ← Zp

∀i 1 ≤ i ≤ v : a
′
i = (ai)

Rs

(a
′
l1
, ..., a

′
lv ) =

∏ ′(a′
i, ..., a

′
v)

∀j 1 ≤ j ≤ w : bsj = (hsj)
Rs ;

∀j 1 ≤ j ≤ w : tsj = H2(bsj)

{a
′
l1
,...,a

′
lv
}

←−−−−−−−−
{ts1,...,tsw}

∀i 1 ≤ i ≤ v :

bci = (a
′
li

)1/Rc mod (p−1)

∀i 1 ≤ i ≤ v :
tci = H2(bci)
Output:|{ts1, ..., tsw}

⋂
{tc1, ..., tcv}|

Further assume hcj = gx1 , then bci = gx·Rs
1 . To perform the previous attack to

recover an invariable, e.g., gRs
1 or Rs, the Client has to gain access to x and

g1. However, when p is large (e.g. 2048-bit), both x and g1 are hard to obtain.
Even if we assume g1 is known to the Client, because of the hardness of DLP,
x still can’t be accessed by the Client adversary. Moreover, since p − 1 is a
composite number, the inverse of x modular p− 1 which is necessary to strip off
the exponent x and extract the invariable, doesn’t always exist.

Second Solution We notice the intersection size protocol in [1] is similar to
the PSI-CA protocol 1 and it’s secure from our attack.

In this construction, it also discards the cyclic subgroup G. Furthermore, it
doesn’t need to choose Rc to be coprime with p− 1 since it doesn’t need to strip
off exponent Rc.

We modify this construction a little bit on some notations and symbols etc to
make it more similar to PSI-CA protocol 1. The modified construction is shown
in Table 6.

In this construction, hash function H1 is also defined as: H1 : {0, 1}∗ → Zp
and p is a safe prime number.

This construction is correct as long as exponentiations over modular p are
commutative, i.e., (yRs)Rc = (yRc)Rs .

This construction is also secure from our attack, the reason is the same as
our previous construction: In order to recover an invariable, e.g., Rs or gRs

1 , the
adversary has to break the DLP to strip off some exponents which is infeasible.



Breaking two PSI-CA protocols in polynomial time 13

Table 6. Second Security Solution for PSI-CA Protocol 1.

Client, on input
C = {c1, ..., cv}

Server, on input
S = {s1, ..., sw}

Rc ← Zq
∀i 1 ≤ i ≤ v :
hci = H1(ci)
ai = (hci)

Rc

(ŝ1, ..., ŝw)←
∏

(S)
∀j 1 ≤ j ≤ w :
hsj = H1(ŝj);

a1,...,av−−−−−→
Rs ← Zq

∀i 1 ≤ i ≤ v : a
′
i = (ai)

Rs

(a
′
l1
, ..., a

′
lv ) =

∏ ′(a′
i, ..., a

′
v)

∀j 1 ≤ j ≤ w :
bsj = (hsj)

Rs ;

{a
′
l1
,...,a

′
lv
}

←−−−−−−−−
{bs1,...,bsw}

∀j 1 ≤ i ≤ w :

tsj = bsRc
j

Output:∣∣∣{ts1, ..., tsw}⋂{a′
l1
, ..., a

′
lv}
∣∣∣

More details of this protocol and its formal security proof can be found in
the original paper.

6.2 Two Security Solutions for PSI-CA protocol 2

First Solution The first solution to PSI-CA protocol 2’s security problem is
to inject randomness to each member of X̄.

The original protocol’s vulnerability comes from the invariable in each mem-
ber of X̄. If we can inject randomness to each member of X̄, the invariable
will become variable and there will be no invariable for the Client adversary to
recover.

As to how to inject randomness to each member of X̄, we introduce the
following pair:

σxi
= (gσi , hσi)

in which σi is randomly chosen from Zq. This pair could be viewed as ElGamal
encryption of 1. Since ElGamal encryption is multiplicative homomorphic, we
could multiply this pair by xi

r’s cipher-text: (EpkC (xi))
r = (ĉxi

= (cxi
)r, d̂xi

=

(dxi)
r), where i = 1, . . . , v and generateAi =

(
ĉxi = grxi

r+σi , d̂xi = xi
rhrxi

r+σi

)
.

The decryption of Ai will remain the same: xi
r.

Besides the randomness injection, the rest parts of the protocol are the same
as the original protocol.

The complete fixed protocol flow is shown in Table 7. For randomness injec-
tion, check out steps (ii) and (iii) on the Server side.



14 Y. Tan et al.

Table 7. Security Solution for PSI-CA Protocol 2.

Client, on input
X = {x1, · · · , xv}
(pk, sk) = (h = gα, α)← KGen(par)

Public:
(p, q, g)

Server, on input
Y = {y1, . . . , yw}

(i) chooses rx1 , . . . , rxv � Zq,
Epk (xi) = (cxi = grxi , dxi = xih

rxi )
(ii)R1 = 〈{Epk (x1) , . . . , Epk (xv)}〉

R1−−→
(i)chooses r � Zq, computes

Ŷ = {t1 = (y1)r , . . . , tw = (yw)r};
(ii)for every ciphertext in R1,
chooses σi � Zq, i = 1, . . . , v, computes

(1)(Epk (xi))
r = ((cxi)

r , (dxi)
r)

(2)σxi = (gσi , hσi)
(iii)multiply σxi with (Epk (xi))

r to get Ai

Ai =
(
ĉxi = grxi

r+σi , d̂xi = xi
rhrxi

r+σi
)

(iv) Perm{A1, . . . , Av} =
{
(
c̄x1 , d̄x1

)
, . . . ,

(
c̄xv , d̄xv

)
} =

{Ā1, . . . , Āv} = X̄

(v)R2 =
〈
Ŷ = {t1, . . . , tw} , X̄

〉
.

R2←−−
decrypt Ai = (c̄xi , d̄xi) for i = 1, . . . , v :

si = (x̄i)
r =

d̄xi
(c̄xi)

α

|X ∩ Y | = |{s1, . . . , sv} ∩ {t1, . . . , tw}|



Breaking two PSI-CA protocols in polynomial time 15

Table 8. Second Security Solution for PSI-CA Protocol 2.

Client, on input
X = {x1, · · · , xv}
(pk, sk) = (h = gα, α)← KGen(par)

Public :
{h1, ..., hk}
pk = h, g

Server, on input
Y = {y1, . . . , yw}

(i) Generate IBFX for X
(ii) chooses rc1 , . . . , rcm � Zq,
Epk (IBFc) = (C1, ..., Cm)

where Ci =
(
grci , gIBFX [i]hrci

)
(iii)R1 = {C1, . . . , Cm}

R1−−→
(i)On receive Epk (IBFX) = (C1, ..., Cm):
For each yl where 1 ≤ l ≤ w,
evaluate its hashes:
J = {h1(yl), . . . , hk(yl)}
(ii)Extract {Ch1(yl), . . . , Chk(yl)} from R1.
(iii)Multiply all these k ciphertexts:

Sl =
k∏
t=1

Cht (yl)

=

(
g

∑
j∈J

rcj
, g

∑
j∈J

IBFX [j]

h

∑
j∈J

rcj
)

= Encpk

(
k∑
t=1

IBFX [ht(yl)]

)
With random σl, where 1 ≤ l ≤ w
We compute Ŝl = Sl × (gσl , hσl)

=

(
g

∑
j∈J

rcj+σl
, g

∑
j∈J

IBFX [j]

h

∑
j∈J

rcj+σl
)

{S̄l} = Shuffle{Ŝl}, R2 =
{
S̄l
}

R2←−−
Sets |X ∩ Y | = 0, For 1 ≤ l ≤ w,
|X ∩ Y |+ = 1 if Dec(S̄l) = 0
Outputs |X ∩ Y |



16 Y. Tan et al.

Second Solution Using Bloom Filter and Homomorphic Encryption to con-
struct PSI-CA protocol is common in recent researches [9], [6], [10]. With Homo-
morphic Encryption, we can perform bit operations on encrypted Bloom Filter.

Since the ElGamal encryption used in PSI-CA protocol 2 is already homo-
morphic, in this solution, we will try to bring in the Bloom Filter. Moreover, to
prevent the Client from performing the exhaustive search attack, we will apply
the injection of randomness as well.

Although the original ElGamal encryption is multiplicative homomorphic,
to use it on Bloom Filter, it needs modification. The reason lies in that Bloom
Filter is of the form {0, 1}m and the ElGamal encryption of 0 is of the form:
(gr, 0) in which r � Zq. Thereby, an attacker can easily recover a Bloom Filter
from an encrypted Bloom filter.

In our construction, we introduce a variant of ElGamal encryption [13]. Its
encryption is: Epk(m) = (α, β) = (gr, gmhr) in which r � Zq and its decryption

is: β
αx = gm(gx)r

(gr)x = gm. m can be recovered by running an exhaustive search

provided the input of m has low-entropy. The rest parts of this variant are the
same as the original ElGamal.

The complete protocol flow of this solution is shown in Table 8.
To sum up, compared to the original PSI-CA protocol 2, we make the fol-

lowing changes in this solution:

– Replace ElGamal encryption with its variant which is additive homomorphic
i.e., Epk(m1)× Epk(m2) = Epk(m1 +m2).

– Instead of encrypting X, the Client generates the Inverted Bloom filter of
X: IBFX and encrypts it.

– Perform bit operations (bit add) on encrypted Bloom filter and generate Sl
based on Server’s private input yl’s hash indices: h1(yl), ..., hk(yl). If yl is a
member of private set intersection, the decryption of Sl should be 0.

– Inject randomness: this part is necessary, otherwise, the Client can still per-

form the exhaustive search attack on Sl’s first element:g

∑
j∈J

rcj
by using its

input: xi’s corresponding rci1 , . . . , rcik and recover an invariable: g. As to how
to inject randomness, we introduce the following pair:(gσl , hσl) in which σl
is random. This could be viewed as an encryption 0, thus, we could ho-
momorphically add this to Sl and it won’t affect the decryption result of
Sl.

From Table 8, we can see that, compared to the first solution, we made more
obvious changes to the original protocol in this solution since we used Bloom
Filter.

7 Conclusion

In this paper, we managed to break two PSI-CA protocols in polynomial time.
The vulnerabilities of these protocols come from the invariable introduced by

the Server. The Client can recover this invariable from the intermediate results



Breaking two PSI-CA protocols in polynomial time 17

by an exhaustive search attack. This invariable is further exploited to recover
the intersection set. Ergo, by the definition of the PSI-CA, these protocols are
broken.

We also ran some attack simulations to prove the viabilities of these attacks.
The experiment results also proved the complexity analyses of these attacks.

Furthermore, to solve the security problems of these protocols, we proposed
several solutions. Since this paper is mainly about the attack, due to the page
limit, we can only cover these solutions’ basic constructions and ideas behind
these constructions and how they can resist our attacks.

In our following work, we plan to cover more details of these solutions’ imple-
mentations and formal security proofs. Furthermore, we will try to break more
PSI-CA protocols.

References

1. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private
databases. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 86–97, 2003.

2. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

3. D. Boneh. The decision diffie-hellman problem. In International Algorithmic Num-
ber Theory Symposium, pages 48–63. Springer, 1998.

4. D. Boneh. The decision diffie-hellman problem. In J. P. Buhler, editor, Algorithmic
Number Theory, pages 48–63, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

5. P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid,
and Y. Tang. On the false-positive rate of bloom filters. Information Processing
Letters, 108(4):210–213, 2008.

6. A. Davidson and C. Cid. An efficient toolkit for computing private set operations.
In Australasian Conference on Information Security and Privacy, pages 261–278.
Springer, 2017.

7. E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation of car-
dinality of set intersection and union. In International Conference on Cryptology
and Network Security, pages 218–231. Springer, 2012.

8. S. K. Debnath and R. Dutta. Efficient private set intersection cardinality in the
presence of malicious adversaries. In M.-H. Au and A. Miyaji, editors, Provable
Security, pages 326–339, Cham, 2015. Springer International Publishing.

9. S. K. Debnath and R. Dutta. Secure and efficient private set intersection cardinality
using bloom filter. In International Conference on Information Security, pages
209–226. Springer, 2015.

10. S. K. Debnath, P. Stnic, N. Kundu, and T. Choudhury. Secure and efficient mul-
tiparty private set intersection cardinality. Advances in Mathematics of Commu-
nications, 15(2):365, 2021.

11. C. Dong and G. Loukides. Approximating private set union/intersection cardinality
with logarithmic complexity. IEEE Transactions on Information Forensics and
Security, 12(11):2792–2806, 2017.

12. R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker, and J. Tillmanns. Pri-
vately computing set-union and set-intersection cardinality via bloom filters. In
Australasian Conference on Information Security and Privacy, pages 413–430.
Springer, 2015.



18 Y. Tan et al.

13. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

14. S. Hohenberger, A. Sahai, and B. Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 201–220. Springer,
2014.

15. M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth, M. Raykova,
D. Shanahan, and M. Yung. On deploying secure computing: Private intersection-
sum-with-cardinality. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 370–389. IEEE, 2020.

16. S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. Scaling private set inter-
section to billion-element sets. In International conference on financial cryptogra-
phy and data security, pages 195–215. Springer, 2014.

17. M. Lepinski and S. Kent. Additional diffie-hellman groups for use with ietf stan-
dards. Technical report, RFC 5114, January, 2008.

18. Y. Tan and B. Lv. Mistakes of a popular protocol calculating private set intersec-
tion and union cardinality and its corrections. arXiv preprint arXiv:2207.13277,
2022.

19. E. W. Weisstein. Fermat’s little theorem. https://mathworld. wolfram. com/, 2004.


