
BaseFold: Efficient Field-Agnostic Polynomial Commitment

Schemes from Foldable Codes

Hadas Zeilberger∗1, Binyi Chen†2, and Ben Fisch‡1

1Yale University
2Espresso Systems

February 22, 2024

Abstract

This works introduces BaseFold, a new field-agnostic Polynomial Commitment
Scheme (PCS) for multilinear polynomials that hasO(log2(n)) verifier costs andO(n log n)
prover time. An important application of a multilinear PCS is constructing Succinct
Non-interactive Arguments (SNARKs) from multilinear polynomial interactive oracle
proofs (PIOPs). Furthermore, field-agnosticism is a major boon to SNARK efficiency
in applications that require (or benefit from) a certain field choice.

Our inspiration for BaseFold is the Fast Reed-Solomon Interactive-Oracle Proof of
Proximity (FRI IOPP), which leverages two properties of Reed-Solomon (RS) codes
defined over “FFT-friendly” fields: O(n log n) encoding time, and a second property
that we call foldability. We first introduce a generalization of the FRI IOPP that works
over any foldable linear code in linear time. Second, we construct a new family of linear
codes which we call random foldable codes, that are a special type of punctured Reed-
Muller codes, and prove tight bounds on their minimum distance. Unlike RS codes,
our new codes are foldable and have O(n log n) encoding time over any sufficiently
large field. Finally, we construct a new multilinear PCS by carefully interleaving our
IOPP with the classical sumcheck protocol, which also gives a new multilinear PCS
from FRI.

BaseFold is 2-3 times faster than prior multilinear PCS constructions from FRI

when defined over the same finite field. More significantly, using Hyperplonk (Euro-
crypt, 2022) as a multilinear PIOP backend for apples-to-apples comparison, we show
that BaseFold results in a SNARK that has better concrete efficiency across a range
of field choices than with any prior multilinear PCS in the literature. Hyperplonk with
BaseFold has a proof size that is more than 10 times smaller than Hyperplonk with

∗hadas.zeilberger@yale.edu
†binyi@cs.stanford.edu
‡ben.fisch@yale.edu

1

Brakedown and its verifier is over 30 times faster for circuits with more than 220 gates.
Compared to FRI, Hyperplonk with BaseFold retains efficiency over any sufficiently
large field. For illustration, with BaseFold we can prove ECDSA signature verification
over the secp256k1 curve more than 20 times faster than Hyperplonk with FRI and the
verifier is also twice as fast. Proofs of signature verification have many useful applica-
tions, including offloading blockchain transactions and enabling anonymous credentials
over the web.

1 Introduction

A polynomial commitment scheme (PCS) [50, 58] is a powerful cryptographic primitive that
allows a prover to commit to a polynomial f ∈ F[x] of degree d using a short commitment
and later, given α, β ∈ F, create a proof that it knows the committed polynomial f of
degree at most d satisfying β = f(α). The concept was first introduced in the seminal
paper by Kate, Zaverucha, and Goldberg (KZG) [50] for univariate polynomials and was
later extended to multivariate polynomials [58]. A PCS is an integral building block for
many important cryptographic applications including verifiable secret sharing [37], succinct
non-interactive arguments of knowledge (SNARKs) [35, 30, 33, 60, 42, 11, 41], proofs of
retrievability [49], data availability sampling [48]1, and other authenticated data structures.

SNARKs enable a prover to convince a resource-constrained verifier (with input x)
that it knows a witness w ∈ {0, 1}∗ such that a circuit C is satisfiable with respect to
(x,w) (i.e. C(x,w) = 0). Plonk [41] is a widely-used SNARK that combines a univariate
polynomial commitment scheme with an information-theoretic protocol called polynomial
interactive oracle proofs (PIOPs) [30, 35]. In a Plonk circuit, each gate is represented as
an algebraic formula of the input/output wires and some preprocessed constant values.
The degree of a gate is its total degree as a multivariate polynomial (e.g., a multiplication
gate a · b = c with input wires a, b and output wire c has degree 2). High-degree gates
can be used to express the same computation in significantly fewer gates than with only
multiplication and addition gates [1, 66]. (For example, Xiong et. al. [66] achieved a
50× reduction in the number of gates required for a specific application by incorporating
a customized gate with a maximum degree of 6.) However, for a Plonk circuit with n
degree-d gates, the corresponding PIOP prover would need to evaluate the gate formula at
nd points and run a few Fast Fourier Transforms (FFTs) of degree nd, which have time
complexity O(nd(d + log nd)). When n and d are large (e.g., n = 220), this becomes a
dominating cost in prover complexity. STARKs [11] face similar efficiency challenges. In
contrast, Hyperplonk [32] and SuperSpartan [61] use multivariate PIOPs that avoid these
expensive high-degree FFTs and bring down the cost to O(nd log2 d). These protocols
require a PCS for multilinear polynomials in order to compile the multivariate PIOP into a
SNARK. Moreover, the efficiency of this multilinear PCS is critical to the prover efficiency

1A planned improvement to Ethereum uses the KZG PCS for “data availability sampling”, which is
related to proofs of retrievability, https://www.eip4844.com/.

2

of the resulting SNARK.

Field-Agnosticism

A field-agnostic PCS is a PCS that works over any sufficiently large finite field. To see
why field-agnosticism is important, suppose an application is confined to the finite field Fp

but the SNARK is defined over a finite field Fq. In this case, the “modulo p” operation
is explicitly encoded into the circuit and needs to be invoked for each multiplication gate.
For ECDSA verification circuits, for instance, this is the difference between a circuit having
214 constraints versus a circuit having 220 constraints (see Section 6 for more details). A
field-agnostic multilinear PCS is therefore ideal as it enables the SNARK prover to avoid
this large constant overhead.

1.1 Polynomial Commitment Schemes from Error Correcting Codes

Interactive Oracle Proofs of Proximity (IOPP) were introduced independently by both [15]
and [59]. An IOPP is a special proof system for proving that a committed vector over
a field F is close to a codeword in some linear error-correcting code C ⊆ F. Polynomial
commitment schemes with efficient provers can be constructed from IOPPs [52, 43, 27, 33,
53].

There are two known families of IOPP-based polynomial commitment schemes that offer
fast provers and tolerable verifier and communication costs; an IOPP for Reed-Solomon
codes called Fast Reed Solomon Interactive Proof of Proximity (FRI [10]) and an IOPP
from tensor codes [26]. This second family of constructions is based on ideas first presented
in Ligero [3], and was most recently improved upon in Brakedown [43]. While both families
of IOPP-based PCS are practical, they present a rather limiting set of tradeoffs. Without
relying on proof recursion (which adds significant efficiency overhead), Brakedown achieves
field-agnosticism and has linear-time provers, but it has relatively slow verifier and large
proof (i.e., O(

√
n)). On the other hand, FRI achieves polylogarithmic proof size and verifier

times but with a slower prover (i.e., O(n log n)) and lacks field-agnosticism.
Recently, in ECFFT2 [12], the authors present a method for using FRI over any finite

field, however to use it within a multilinear PCS, the runtime of their prover is asymp-
totically O(n log2 n). Bordage, Lhotel, Nardi, and Randriam [28] also generalize FRI to a
wide class of polynomial codes, i.e., codes that consist of evaluations of multivariate poly-
nomials. They also present an IOPP for punctured Reed-Muller codes, which they call
“Short Reed-Muller Codes”. However they use a different “puncturing” (i.e., a different
evaluation domain) and their verifier is linear in the message size. The IOPP constructed
in this work has a verifier that runs in logarithmic time in the message size.

1.2 Our Contributions

We have three main contributions, each of independent interest.

3

First, we formalize the notion of a foldable code and introduce a generalization of the
FRI IOPP (which we refer to as the BaseFold IOPP) that can be used with any foldable
code.

Our second contribution is a new linear code family, which we call Random Foldable
Code (RFCs). This is a special case of punctured Reed-Muller codes (see Appendix D
for more details) over which messages can be encoded with approximately n log n field
additions and 0.5n log n field multiplications. We prove tight bounds on the minimum
distance of RFCs. For instance, an RFC with message length 225 and rate 1

8 over a 256-bit
finite field has a relative minimum distance of 0.728 with overwhelming probability (See
Table 1 and Appendix C for more details on concrete bounds). It is well-known that the
highest possible minimum relative distance for a code with rate 1

8 is approximately 0.875
(see Definition 3). Beyond its practicality, this result also implies that with overwhelming
probability, a uniformly sampled foldable code (which enables efficient PCS provers) also
has good relative minimum distance (which enables efficient PCS verifiers). An open
question is to find an explicit construction of field-agnostic foldable linear codes with a
high minimum relative distance.

Our final contribution is a construction of a multilinear polynomial commitment scheme
based on interleaving the BaseFold IOPP (using any foldable linear code) with the classical
sumcheck protocol [56]. There are two key insights behind the construction. First, sum-
check can be used to transform an arbitrary multilinear evaluation claim into a random
evaluation claim. Secondly, the BaseFold IOPP (where the verifier makes Oλ(log n) random
queries) can be understood as an interactive protocol for proving the multilinear evaluation
of a polynomial at a random point. Thus we can use this random evaluation to answer the
last query of the verifier in the sumcheck protocol to enable proving arbitrary multilinear
evaluation statement, so long as we interleave the IOPP and the sum-check together with
shared verifier randomness. The prover time of this PCS is O(n) with a small leading
constant.2 The prover of the BaseFold PCS is 2−3 times faster than the existing multilinear
FRI construction, derived from [53], which we benchmark in Section 6.

1.2.1 Improvements in Concrete Performance

In addition to the above, we also report the following concrete performance improvements
of the BaseFold PCS. As mentioned earlier, BaseFold can be defined over any (sufficiently
large) finite field, maintains polylogarithmic verifier costs and has a prover that runs in
time O(n log n). In Section 6, we show that Hyperplonk[Basefold] can prove an ECDSA
signature verification 23 times faster than HyperPlonk[ZeromorphFri] [53]. Compared to
Hyperplonk[Brakedown] (which has comparable proving time to Hyperplonk[Basefold]),
the proof size is 5.15 times smaller and the verifier is 33 times faster. We also compare
the BaseFold code to the ECFFT2 code. ECFFT2 has encoding time O(n log2(n)) when

2The committing complexity is O(n logn) as the prover needs to compute the encoding of the message.
After that, the prover can generate PCS evaluation proofs in linear time.

4

used within a multilinear PCS. For n = 220, it is about 16 times slower than BaseFold’s
encoding algorithm.

Finally, we find that when instantiated with the same 256-bit finite field, the prover time
of the BaseFold PCS is 2–3 times faster compared to ZeromorphFri [53], while the proof
size is 2–3 times larger. We provide more detailed performance comparisons of BaseFold,
Brakedown, ZeromorphFri, and ECFFT2 in Section 6.

1.3 Overview

Foldable Linear Codes and BaseFold IOPP. Let d ∈ Z and let Cd be a linear code
with rate 1

c that encodes messages of length kd = 2d into codewords of length nd = ckd.
We consider Cd to be foldable if its generator matrix, Gd is a kd × nd matrix that is equal
up to row permutation to [

Gd−1 Gd−1
Gd−1 · Td Gd−1 · T ′d

]
(1)

where Gd−1 is a foldable linear code that encodes messages of length kd
2 into codewords of

length nd
2 and Td, T

′
d are both

nd
2 ×

nd
2 diagonal matrices. For instance, Reed-Solomon codes

are foldable when defined over a cyclic group H such that |H| is a power of 2 (we discuss
this further in Appendix E). In Section 4 we will present the BaseFold IOP of Proximity
(IOPP), which can be used with any foldable linear code with adequate minimum distance,
(and is in fact equivalent to FRI when instantiated with Reed-Solomon codes).

Random Foldable Linear Codes. Armed with the general IOPP for foldable linear
codes, our goal is to design a linear code that is foldable and efficiently encodable regardless
of its finite field. We accomplish this by setting Ti to a diagonal matrix whose entries
are each a uniform random sample from F× and setting T ′i = −Ti. We show that with
overwhelming probability over choice of (T1, .., Td), this code has relative minimum distance
equal to

1−

(
ϵdF
c

+
ϵF

log |F|

d∑
i=1

(ϵF)
d−i

(
0.6 +

2 log(ni/2) + λ

ni

))

where c is the inverse of the rate of the code, ϵF = log |F|
log |F|−1.001 , ni is the block-length of the

code, and d is the logarithm of the message length. For instance, if we set |F| to be equal
to 261, c = 16, and d = 15, then the relative mininum distance is 0.572. If we set |F| to be
2256, c = 8, and d = 15, then the minimum distance is .76.

The Basefold Multilinear Polynomial Commitment Scheme. It is known that by
using the classic sum-check protocol with a multilinear extension, we can transform the
evaluation check of a multilinear polynomial f ∈ F[X1, . . . , Xd] at a point z ∈ Fd into
an evaluation check of f at a random point r ∈ Fd. Interestingly, the BaseFold (and

5

FRI-based) IOPP has a similar structure. Given an input oracle that is an encoding of
a polynomial f , the last oracle sent by the honest prover in the IOPP protocol is exactly
an encoding of a random evaluation f(r). Thus a natural way to build a PCS is to set
the commitment as the Merkle commitment of the encoding of f . During the evaluation
phase, the prover and verifier run an IOPP protocol and a sumcheck protocol in parallel
using the same set of round challanges r = (r1, . . . , rd) ∈ Fd. Finally the verifier checks
that the claimed evaluation y ∈ F in the last round of the sumcheck protocol is consistent
with the last prover message of the IOPP protocol.

Proving that this construction satisfies evaluation binding and knowledge soundness,
however, is non-trivial. Recall that the IOPP soundness only states that to pass the
verification with high probability, the committed oracle should be close to a codeword.
But it does not rule out the possibility that at some round, the prover message may shift
from the folding of the previous message to the encoding of a different message. It is
therefore not straightforward to argue evaluation binding, i.e. that the last prover message
in the IOPP protocol is an encoding of the evaluation of the committed polynomial f .
Moreover, even if the protocol is evaluation binding, it is still non-trivial to recover the
polynomial f and obtain knowledge soundness if the linear code we use is not efficiently
decodable. We solve these issues by constructing an extractor that obtains a sufficient
number of correct evaluations of f from the PCS prover. Via a careful analysis, we argue
that with high probability, the extractor can recover the polynomial f from the set of
evaluations obtained. We provide more technical details in Sect. 5.1.

1.4 Other Related Work

1.4.1 Error Correcting Codes

Reed-Muller codes with uniformly random puncturings were proven to have good list de-
coding properties in [45]. However, a uniformly sampled puncturing is unlikely to have the
recursive structure that enables efficient encoding. An efficiently list-decodable puncturing
of Reed-Muller codes was discovered in [44]. However, this code is not efficiently encod-
able. An interrsting direction is to investigate whether techniques from [44] can be used to
explicitly construct a field-agnostic foldable punctured Reed-Muller code.

1.4.2 Polynomial Commitment Schemes

Orion [65] presents a SNARK that has a linear-time prover and polylogarithmic proof
size, but it is not field-agnostic, and the verifier runs in linear time in the non-interactive
setting [39].

The KZG [50] PCS has very short evaluation proofs but can only be used to commit
to polynomials (of degree at most d) over a (pairing-friendly) prime field Fp and requires
Θ(d) scalar multiplication operations over an elliptic curve group G. Moreover, p needs to

6

be exponentially large in some security parameter λ so that the t-Diffie-Hellman inversion
(t-DHI) and related assumptions holds in G.

See Appendix A for a summary of other prior work on Interactive Oracle Proofs and
Polynomial Commitment Schemes.

1.5 Roadmap

The remainder of this paper proceeds as follows. In Section 2, we present definitions and
statements that will be useful for the remainder of the paper. In Section 3, we present
our new error-correcting code and state and prove its minimum distance. In Section 4,
we describe the BaseFold IOPP, and prove its correctness and soundness. In Section 5,
we compile the BaseFold IOPP into a multilinear polynomial commitment scheme using
the sumcheck protocol and prove its knowledge soundness. In Section 6, we analyze the
performance of BaseFold and compare it with other multilinear polynomial commitment
schemes.

2 Preliminaries

Notation. A diagonal matrix, T is a square matrix that only has non-zero entries along
the diagonal. For a diagonal matrix, T , denote the vector of diagonal entries as diag(T)
and denote the matrix with diagonal entries −1 ·diag(T) as −T . For a matrix G, G⊤ is the
transpose of G. For a vector v ∈ F2n, we write vl as the first n components of v and vr

as the last n components of v. We will sometimes write v as (vl,vr) or (vl||vr). ◦ denotes
the Hadamard product of two vectors. For a finite field F, we use F× to denote F \ {0}.

Definition 1 (Linear Code). A linear error-correcting code with message length k and
codeword length n is an injective mapping from Fk to a linear subspace C ⊆ Fn. C is
associated with a generator matrix, G ∈ Fk×n such that the rows of G are a basis of C
and the encoding of a vector v ∈ Fk is v · G. The minimum Hamming distance of a code
is the minimum on the number of different entries between any two different codewords
c1, c2 ∈ C. If C has a minimum distance d ∈ [0, n], we say that C is an [n, k, d] code and
use ∆C to denote d/n—the relative minimum distance.

Next, as in [9], we define a slightly altered version of relative minimum distance, called
coset relative minimum distance, denoted as ∆∗. We will use this definition in our proofs
of IOPP and PCS soundness.

Definition 2 (Coset Relative Minimum Distance). Let n be an even integer and let C be
a [n, k, d] error-correcting code. Let v ∈ Fn be a vector and let c ∈ C be a codeword. The
coset relative distance ∆∗(v, c) between v and c is

∆∗(v, c) =
2|{j ∈ [1, n/2] : v[j] ̸= c[j] ∨ v[j + n/2] ̸= c[j + n/2]}|

n
.

7

The relative minimum distance of v ∈ Fn to the code, C, which we denote as ∆∗(v, C) is
defined as follows:

∆∗(v, C) = min
c∈C

∆∗(v, c) .

Definition 3 (Maximum Distance Seperable Code). Let C be an [n, k, d] code. Then C is
Maximum Distance Seperable (MDS) if d = n− k + 1.

A list-decodable code is one where for a certain radius around a codeword, there is an
upper bound on the number of other neighboring codewords that can be contained inside
that radius. The Johnson bound gives a radius around every code in terms of its minimum
distance, within which it is list-decodable. This will be useful in the soundness analysis of
the BaseFold IOPP.

Definition 4 (Johnson Bound). For every γ ∈ (0, 1], define Jγ : [0, 1] → [0, 1] as the
function Jγ(λ) := 1−

√
1− λ(1− γ).

Foldable codes. We define foldable linear codes that generalize Reed-Solomon codes
used in FRI [9].

Definition 5 ((c, k0, d)-foldable linear codes). Let c, k0, d ∈ N and let F be a finite field.

A linear code Cd : Fk0·2d → Fck0·2d with generator matrix Gd is called foldable if there
exists a list of generator matrices (G0, . . . ,Gd−1) and diagonal matrices (T0, . . . , Td−1)
and (T ′0, . . . , T

′
d−1), such that for every i ∈ [1, d], (i) the diagonal matrices Ti−1, T

′
i−1 ∈

Fck0·2i−1×ck0·2i−1
satisfies that diag(Ti−1)[j] ̸= diag(T ′i−1)[j] for every j ∈ [ck0 · 2i−1]; and

(ii) the matrix Gi ∈ Fk0·2i×ck0·2i equals (up to row permutation)

Gi =

[
Gi−1 Gi−1

Gi−1 · Ti−1 Gi−1 · T ′i−1

]
.

2.1 Interactive Oracle Proofs and Polynomial Commitments

Interactive oracle proofs (IOPs). We briefly recall the definition of interactive oracle
proofs (IOPs) [20, 59, 4]. A k-round public coin IOP, IOP = (P,V), for a relation R runs
as follows: Initially, P sends an oracle string π0. In each round i ∈ [1, k], the verifier
samples and sends a random challenge αi, and the prover replies with an oracle string πi.
After k rounds of communications, the verifier V queries some entries of the oracle strings
π0, π1, . . . , πk and outputs a bit b.

Definition 6 (IOPs). Let IOP = (P,V) be a k-round public coin IOP protocol for a relation
R. We say that IOP is complete if for every (x,w) ∈ R,

Pr
α1,...,αk

 Vπ0,π1,...,πk(x, α1, . . . , αk) = 1

∣∣∣∣∣∣∣∣
π0 ← P(x,w)

π1 ← P(x,w, α1)
. . .

πk ← P(x,w, α1, . . . , αk)

 = 1 .

8

We say that IOP has soundness error ν if for any x /∈ L(R) and any unbounded adversary
A,

Pr
α1,...,αk

 Vπ0,π1,...,πk(x, α1, . . . , αk) = 1

∣∣∣∣∣∣∣∣
π0 ← A(x)

π1 ← A(x,w, α1)
. . .

πk ← A(x, α1, . . . , αk)

 ≤ ν .

IOPs of proximity. IOP of proximity (IOPP) is similar to IOP with the specialty that
the witness w is also sent as an oracle string. The verifier can query w as an oracle but
will only query qw ≪ |w| entries of w. The soundness states that if w is far from any valid
witness, then the verifier rejects with high probability.

Definition 7 (IOPPs). A public coin IOP IOP = (P,V) for relation R is an IOP of
proximity if it satisfies IOP completeness, and the ν(·)-IOPP soundness holds for some
function ν(·): for every (x,w) where w is δ-far (in relative Hamming distance) from any
w′ such that (x,w′) ∈ R, it holds that for any unbounded adversary A,

Pr
α1,...,αk

 Vw,π0,...,πk(x, α1, . . . , αk) = 1

∣∣∣∣∣∣∣∣
π0 ← A(x,w)

π1 ← A(x,w, α1)
. . .

πk ← A(x,w, α1, . . . , αk)

 ≤ ν(δ) .

Let C be any linear code. In this paper, we consider the relation RC where (x,w) is in
the relation RC if and only if x is the code parameters and w ∈ C is a valid codeword.

Polynomial commitment schemes. We recall the definition from [43, 30].

Definition 8 (Polynomial commitment scheme). A multilinear polynomial commitment
scheme PC over a field F consists of a tuple of algorithms (Setup,Commit,Open,Eval):

• Setup(1λ, d)→ pp takes security parameter λ and d ∈ N (i.e. the number of variables
in a polynomial), outputs public parameter pp.

• Commit(pp, f) → C takes a multilinear polynomial f ∈ F[X1, . . . , Xd] and outputs a
commitment C.

• Open(pp, C, f)→ b takes a commitment C and a multilinear polynomial f ∈ F[X1, . . . , Xd],
outputs a bit b.

• Eval(pp, C, z, y; f) is a protocol between the prover P and the verifier V with public
input a commitment C, an evaluation point z ∈ Fd and a value y ∈ F. P additionally
knows a multilinear polynomial f ∈ F[X1, . . . , Xd] and P wants to convince V that
f is an opening to C and f(z) = y. The verifier outputs a bit b at the end of the
protocol.

9

The scheme PC satisfies completeness if for any bound d ∈ N, for any multilinear poly-
nomial f ∈ F[X1, . . . , Xd] and any point z ∈ Fd

Pr

[
Eval(pp, C, z, f(z); f) = 1

∣∣∣∣ pp← Setup(1λ, d)
C ← Commit(pp, f)

]
= 1 .

PC is binding if for any d ∈ N and PPT adversray A,

Pr

 b0 = b1 = 1 ∧ f0 ̸= f1

∣∣∣∣∣∣∣∣
pp← Setup(1λ, d)
(C, f0, f1)← A(pp)
b0 ← Open(pp, C, f0)
b1 ← Open(pp, C, f1)

 ≤ negl(λ) .

PC satisfies knowledge soundness if Eval is an argument of knowledge for the relation

REval,pp = {[(C, z, y); f] : f(z) = y ∧ Open(pp, C, f) = 1}

where pp← Setup(1λ, d). That is, for any d ∈ N and any PPT algorithms A and P∗, there
is an expected polynomial-time extractor Ext such that for any randomness r,

Pr

 pp← Setup(1λ, d)
(C, z, y)← A(pp, r)

Eval(pp, C, z, y)⟨P∗(r),V⟩ = 1

 ≈ Pr


pp← Setup(1λ, d)
(C, z, y)← A(pp, r)

f ← Ext(pp, r)
((C, z, y); f) ∈ REval,pp

 .

3 Fast Linear Code from Foldable Distributions

In this section, we present a novel random linear code, which is foldable, and efficiently
encodable over any sufficiently large finite field. We present its encoding algorithm and
analyze its relative minimum distance.

We first define a family of random foldable distributions.

Definition 9 ((c, k0)-foldable distributions). Fix finite field F and c, k0 ∈ N. Let G0 ∈
Fk0×ck0 be the generator matrix of a [ck0, k0]-linear code that is maximum distance separable
(MDS) 3, and let D0 be the distribution that outputs G0 with probability 1. For every i > 0,
we define inductively the distribution Di that samples generator matrices (G0,G1, . . . ,Gi)
where Gi ∈ Fki×ni and ki := k0 · 2i, ni := cki:

1. Sample (G0, . . . ,Gi−1)← Di−1.

2. Sample diag(Ti−1)←$ (F×)ni−1 and define Gi as

Gi =

[
Gi−1 Gi−1

Gi−1 · Ti−1 Gi−1 · −Ti−1

]
.

3We require this code to be MDS in order to make the distance analysis more straightforward but it is
not strictly necessary. The analysis works for any linear codes.

10

Encoding algorithms for linear foldable codes. Let {Di}i∈N be a family of (c, k0)-
foldable distributions. For a d ∈ N, let (G0, ..,Gd)← Dd be the sampled generator matrices
with associated diagonal matrices (T0, .., Td−1). Denote as Cd the (c, k0, d)-foldable linear
code4 with generator matrix Gd ∈ Fkd×nd where kd = k02

d and nd = ckd. Next, we
describe an encoding algorithm Encd for Cd which takes dnd

2 field multiplications and dnd

field additions.

Protocol 1 Encd : BaseFold Encoding Algorithm

Input : m ∈ Fkd

Output : w ∈ Fnd such that w = m ·Gd

Parameters: G0 and diagonal matrices (T0, T1, . . . , Td−1)

1. If d = 0 (i.e. m ∈ Fk0):

(a) return Enc0(m)

2. else

(a) parse m := (ml,mr)

(b) set l := Encd−1(ml), r := Encd−1(mr) and t = diag(Td−1)

(c) return (l+ t ◦ r, l− t ◦ r)

Figure 1: The encoding algorithm for BaseFold.

Lemma 1 (Correctness). Let c, k0, d ∈ N and let (G0, ..,Gd)← Dd be the sampled gener-

ator matrices with associated diagonal matrices (T0, .., Td−1). Then for all m ∈ Fk0·2d, we
have Encd(m) = m ·Gd.

Proof. We proceed by induction on i ≤ d. Fix c, k0 ∈ N. Let i = 0. Then Protocol 1 returns
Enc0(m), which by definition equals to m ·G0. Now suppose, by inductive hypothesis, that
Enci(m) = m ·Gi for all m ∈ Fk0·2i . We now consider the execution of Enci+1: on Line
2.b of the (i+1)-th recursion of Protocol 1, we can replace calls to Enci(ml) and Enci(mr)
with ml ·Gi and mr ·Gi respectively. Therefore,

l+ t ◦ r = ml ·Gi + diag(Ti) ◦ (mr ·Gi) = ml ·Gi +mr ·Gi · Ti

l− t ◦ r = ml ·Gi − diag(Ti) ◦ (mr ·Gi) = ml ·Gi −mr ·Gi · Ti ,

hence for all m := (ml,mr) ∈ Fk0·2i+1
,

Enci+1(m) = (l+ t ◦ r, l− t ◦ r) = (ml,mr) ·
[

Gi Gi

Gi · Ti Gi · (−Ti)

]
= m ·Gi+1

4Note that Cd is foldable as we set T ′
i := −Ti for every i ∈ [0, d− 1].

11

where the last equality holds by definition of Gi+1.

3.1 Proof of Relative Minimum Distance

In this section, we analyze the relative minimum distance of the BaseFold code Cd. We
start with an overview of the proof techniques and then formally state and prove our main
theorem. Finally, we demonstrate concrete bounds for typical instantiations of the code.

Before proving the result, we first recall the famous Rank-Nullity Theorem.

Theorem 1 (Rank-Nullity Theorem). For any matrix M with m columns over a field F,
the rank and the nullity (i.e., the dimension of the kernel) of M sums to m, that is,

rank(M) + nullity(M) = m.

Next, we overview the techniques for analyzing the relative minimum distance of the
random foldable code.

Technical overview. It is well known that the minimum distance of a linear code is
identical to the minimum Hamming weight of non-zero codewords. Thus it is sufficient to
prove that for any nonzero message m, the encoding Encd(m) does not have many zeros.

We start with a strawman idea using induction. Suppose by induction hypothesis that
with overwhelming probability (over diagonal matrices T0, . . . , Ti−1), for all m ∈ Fki \{0ki},
the encoding Enci(m) has at most ti zeros (for some ti ∈ N to be clear later). Now fix any
non-zero message m = (ml,mr) ∈ F2ki , it holds that Enci+1(m) = (Ml||Mr) where

Ml = Enci(ml) + Enci(mr) ◦ diag(Ti) , Mr = Enci(ml)− Enci(mr) ◦ diag(Ti) .

By induction hypothesis, there are at most ti indices j ∈ [ni] where Enci(ml)[j] = Enci(mr)[j] =
0. For each index j′ in the rest of ni − ti entries, i.e. in entries such that Enci(ml[j

′] ̸= 0
or Enci(mr)[j

′] ̸= 0, the event that one5 of Ml[j], Mr[j] equals zero is an independent
Bernoulli trial with success probability O(1/|F|) (where the randomness is over diag(Ti)[j]).
Thus the probability that Enci+1(m) has at least 2ti+ℓi zeros is approximatelyO(ni2

ni/|F|ℓi).
Unfortunately, to argue that (with high probability over diag(Ti)) the encoding Enci+1(m)
has no more than 2ti + ℓi zeros for any nonzero m ∈ F2ki , we need to take a union bound
over all non-zero messages in F2ki , which is meaningful only when ℓi ≫ 2ki. This leads to
a really weak bound.

Looking more deeply, the bound is loose because we treat every nonzero message m =
(ml,mr) ∈ F2ki equally and always assume the worst case where for exactly ti indices
j ∈ [ni], it holds that Enci(ml)[j] = Enci(mr)[j] = 0. However, for many messages
m ∈ F2ki , Enci(ml) and Enci(mr) actually have significantly fewer zeros and we can obtain
a much better bound on the number of zeros in Enci+1(m).

5Note that it’s impossible for both of Ml[j
′] and Mr[j

′] to be zeros as that implies Enci(ml)[j
′] =

Enci(mr)[j
′] = 0, which we ruled out, or diag(Ti)[j] = 0, contradicts the definition of Ti.

12

We have the following key observation for obtaining a tighter bound: suppose Enci(m)
has less than ti zeros for all non-zero m ∈ Fki , then for any subset S ⊆ [ni] where |S| ≤ ti,
the kernel of Enci[S] has size at most Fti−|S|. Here the kernel of Enci[S] denotes the set of
messages in Fki whose encoding equals zeros on set S. Intuitively, for a larger set S, there
will be fewer messages whose encodings equal zeros on S. To prove it, observe that if T is
a subset [ni] that is larger than ti, the kernel of Enci[T] must be 0ki , as by assumption, 0ki

is the only message whose encoding has at least ti zeroes. Note that the partial encoding
Enci[T] is essentially a linear map represented by a submatrix, G′, of the generator matrix
and Enci[S] is a linear map represented by a submatrix of G′. Thus by the rank-nullity
theorem, the kernel of Enci[S] has size at most |F|ti−|S|. We refer to Lemma 2 for more
proof details.

Given the above, for any nonzero message m = (ml,mr) in F2ki , let S ⊆ [ni] be the
maximal set where both ml and mr are in the kernel of Enci[S]. Using the same argument
as in the strawman idea, the probability that Enci+1(m) has 2ti+ ℓi zeros is approximately
O(ni2

ni/|F|2ti+ℓi−2|S|)). Note that there are only 2ni choices of set S and for each S there
are at most |F|2(ti−|S|) messages m ∈ F2ki with the maximal set being S. By taking the
union bound, so long as ℓi is large enough (e.g., |F|ℓi ≫ 2ni), with overwhelming probability,
for every nonzero m ∈ F2ki , the number of zeros in Enci+1(m) is at most 2ti + ℓi.

Theorem 2. Fix any field F where |F| ≥ 210 and let λ ∈ N be the security parameter. For
a vector v with elements in F, denote nzero(v) as the number of zeroes in v. For every
d ∈ N, let Dd be a (c, k0)-foldable distribution and let ki = k02

i, ni = cki for every i ≤ d.
Then,

Pr
(G0,...,Gd)←Dd

[
∃m ∈ Fkd \ {0}, nzero(Encd(m)) ≥ td

]
≤ d · 2−λ . (2)

Here t0 = k0 and ti = 2ti−1 + ℓi for every i ∈ [d], where

ℓi :=
2(d− 1) log n0 + λ+ 2.002td−1 + 0.6nd

log |F| − 1.001
.

Proof. We prove the theorem by induction.

Case d = 0: G0 is the generator matrix of a maximum distance seperable linear code
(Definition 3).6 Therefore, the Hamming weight of any non-zero codeword in C0 is at least
ck0−k0+1 and thus the number of zeros in the codeword is at most ck0− (ck0−k0+1) =
k0 − 1 < k0 = t0.

Case d > 0: Assuming that Inequality 2 holds for all i ≤ d − 1, we prove that the
inequality also holds for d. As before, we denote by ki := k02

i and by ni := cki for all

6The analysis still works if G0 is not maximum distance separable, in which case we change the minimum
Hamming weight according to the minimum distance of C0.

13

i ∈ N. We say that a sampled matrix Gd−1 is “good” if Gd−1 is a generator matrix where
the encoding of any non-zero message m ∈ Fkd−1 has fewer than td−1 zeros. By induction
hypothesis, the probability that Gd−1 is not “good” (over distribution Dd−1) is at most
(d−1)2−λ. Thus, to prove that Gd is not “good” (over distribution Dd) with probability at
most d2−λ, it is sufficient to prove that conditioned on Gd−1 being “good”, the probability
(over diag(Td−1)) that exists non-zero message m ∈ Fkd where m ·Gd has at least td zeros
is at most 2−λ.

Next, we prove the above statement. Fix any “good” matrix Gd−1, we start by defining
set md(S) ⊆ Fkd for every S ⊆ [1, nd−1]. Namely, md(S) is the set of non-zero vectors
m = (ml,mr) ∈ Fkd such that

{i ∈ [1, nd−1] : Encd−1(ml)[i] = 0 ∧ Encd−1(mr)[i] = 0} = S .

In other words, if m ∈ md(S) then (i) for all i ∈ S, both Encd−1(ml)[i] = 0 and
Encd−1(mr)[i] = 0 and (ii) for any j /∈ S, at least one of Encd−1(ml)[j] and Encd−1(mr)[j]
is non-zero. We first bound the size of md(S).

Lemma 2. Fix any generator matrix Gd−1 where the encoding of any non-zero message
m ∈ Fkd−1 has fewer than td−1 zeros. For any subset S ⊆ [1, nd−1], if |S| < td−1 then
|md(S)| ≤ |F|2td−1−2|S| and if |S| ≥ td−1 then |md(S)| = 1.

Proof. For brevity we denote G := Gd−1 and let G⊤ denote the transpose of G. Let
G⊤[S] := {G⊤[i][·] : i ∈ S} denote the submatrix of G⊤ with rows being the subset of
rows in G⊤ according to the index set S ⊆ [1, nd−1]. For a matrix M ∈ Fk×n, we define
kernel(M⊤) as the set of vectors m ∈ Fk such that (mM)⊤ = M⊤m⊤ = 0n. Observe that
by definition of linear codes (i.e., Encd−1(m) := mG), md(S) is a subset of

{m ∈ Fkd : ml ∈ kernel(G⊤[S]) ∧mr ∈ kernel(G⊤[S])} (3)

where m = (ml,mr). Therefore,

|md(S)| ≤ |kernel(G⊤[S])|2 . (4)

Next, we will show that if |S| < td−1 then |kernel(G⊤[S])| ≤ |F|td−1−|S| and if |S| ≥ td−1
then |kernel(G⊤[S])| = 1, from which the lemma statement follows.
Case |S| < td−1: Pick an index subset T ⊂ [1, nd−1] such that |T | = td−1−|S| and T ∩S =
∅. Consider the matrix G⊤[T ∪S]. Then rank(G⊤[T ∪S]) ≤ rank(G⊤[S]) + rank(G⊤[T]).7

The rank of a matrix is at most the number of its rows. Therefore, rank(G⊤[T]) ≤ td−1−|S|
and thus

rank(G⊤[T ∪ S]) ≤ rank(G⊤[S]) + (td−1 − |S|) . (5)

7This follows directly from the fact that the dimension of the sum of two finite dimensional subspaces
is less than or equal to the sum of the dimensions of those subspaces.

14

Recall that if m ∈ kernel(G⊤[T ∪S]), then Encd(m) has at least |T ∪S| = |T |+ |S| = td−1
zeroes. But by the assumption of the lemma, the number of zeroes in the encoding of any
non-zero v ∈ Fkd−1 is less than td−1 and therefore kernel(G⊤[T ∪ S]) = {0kd−1} and thus
nullity(G⊤[T ∪ S]) = 0. Therefore, because the number of columns in G⊤[T ∪ S] is kd−1,
the rank-nullity theorem implies that kd−1 = rank(G⊤[T ∪ S]) + 0. Therefore, by Eqn 5,

rank(G⊤[S]) ≥ kd−1 − (td−1 − |S|) .

Invoking the rank-nullity theorem on G⊤[S] again (which also has kd−1 columns), we have
that

nullity(G⊤[S]) = kd−1 − rank(G⊤[S]) ≤ kd−1 − (kd−1 − (td−1 − |S|)) = td−1 − |S|

and thus |kernel(G⊤[S])| ≤ |F|td−1−|S|.
Case |S| ≥ td−1: As mentioned in the previous case, the kernel of G⊤[S] must be {0kd−1}
because otherwise there exists a non-zero message m ∈ Fkd−1 such that the encoding of
m has more than td−1 zeroes, which contradicts the premise of the lemma. Therefore
|kernel(G⊤[S])| = 1.

Next, we prove that for every non-zero m ∈ md(S), the probability that m ·Gd has at
least td zeros is small.

Lemma 3. Let F be a finite field such that |F| ≥ 210. Fix any generator matrix Gd−1 ∈
Fkd−1×nd−1 where the encoding of any non-zero message m ∈ Fkd−1 has fewer than td−1
zeros. Define matrix

Gd :=

[
Gd−1 Gd−1

Gd−1 ·Td−1 Gd−1 · −Td−1

]
where diag(Td−1) ←$ (F×)nd−1. For every S ⊆ [1, nd−1] and any non-zero message m ∈
md(S),

Pr
diag(Td−1)←$(F×)nd−1

[nzero(m ·Gd) ≥ td] < nd−1 · 2nd−1−|S| ·
(
2.002

|F|

)td−2|S|
. (6)

Proof. The lemma follows from a probability analysis for about nd−1 − |S| independent
Bernoulli trials. See Appendix B.1 for the full proof.

Note that ∪S⊆[1,nd−1]md(S) covers the entire set of messages in Fkd . From Lemma 2,
Lemma 3 and by taking union bound over sets S ⊆ [1, nd−1] and messages in md(S), we
obtain the following lemma which completes the proof.

Lemma 4. Fix any generator matrix Gd−1 where the encoding of any non-zero message
m ∈ Fkd−1 has fewer than td−1 zeros. Define matrix Gd as in Lemma 3. The probability
(over diag(Td−1)) that exists non-zero message m ∈ Fkd where m ·Gd has at least td zeros
is at most 2−λ.

15

Proof. See Appendix B.2 for the proof.

Concrete bounds. We list the relative minimum distances of the BaseFold codes for
typical instantiations of parameters. The calculation of the relative minimum distances is
explained in Appendix C.

Minimum Relative Distance of a random foldable code

k0 kd c |F| ∆Cd

25 220 16 231 .5044

1 220 16 261 .484

1 225 8 2128 .557

1 225 8 2256 .728

Table 1: The relative minimum distances of random foldable codes.

Remark 1 (Encoding Messages in Extension Fields). For soundness bootstrapping in PCS
and IOPP, sometimes it is useful to lift a random foldable code over message space (Fp)

kd

to a code over message space (Fpm)
kd where Fpm is the degree-(m − 1) extension field of

a prime field Fp. In this case, we can understand the encoding Encd(m) of m ∈ (Fpm)
kd

as Encd(m) :=
∑r−1

j=0 Encd(mj)X
j where m =

∑r−1
j=0 mjX

j and mj ∈ Fkd
p for every j ∈

[0, r − 1]. Hence for any t ∈ N, Encd(m) has t zeros implies that Encd(mj) has at least
t zeros for every j ∈ [0, r − 1]. Since m is non-zero implies that at least one of mj is
non-zero, the relative minimum distance of the encoding over message space (Fpm)

kd is at
least that of the encoding over Fkd

p . Moreover, for a message m ∈ (Fp)
kd, the encoding of

m over the small field Fp is exactly the encoding of m over the extension field Fpm.

4 BaseFold : IOPPs for Foldable Codes

In this section, we present the BaseFold IOPP, which generalizes the FRI IOPP to any
foldable linear code. Recall Definition 5 that for some d ∈ Z, a foldable linear code Cd is
specified by a list of generator matrices (G0, . . . ,Gd) where for every i ∈ [1, d], Gi ∈ Fki×ni

satisfies that

Gi =

[
Gi−1 Gi−1

Gi−1 · Ti−1 Gi−1 · T ′i−1

]
where Ti−1, T

′
i−1 ∈ Fni−1×ni−1 are some diagonal matrices. We also require that diag(Ti−1)[j] ̸=

diag(T ′i−1)[j]) for every j ∈ [ni−1]. For example, in the random foldable code described in
Sect. 3, we sample the diagonal of Ti−1 as diag(Ti−1)←$ (F×)ni−1 and set T ′i−1 = −Ti−1.

16

In the BaseFold IOPP, the goal of the verifier is to check that an oracle πd ∈ Fnd sent
by the prover is close to a codeword in Cd. As shown in Fig. 2, the protocol is split into two
phases where in the first phase, commit, the prover generates a list of oracles (πd, . . . , π0)
given the verifier’s folding challenges αi ∈ F (0 ≤ i < d); in the second phase, query, the
verifier samples a query index µ ∈ [1, nd−1] to check the consistency between oracles. We
use interpolate((x1, y1), (x2, y2)) to denote the unique degree-1 polynomial Q(X) such that
Q(x1) = y1 and Q(x2) = y2. Recall that for each i ∈ [0, d], ki is the message length and ni

is the blocklength of the code with generator matrix Gi.

Protocol 2 IOPP.commit

Input oracle: πd ∈ Fnd

Output oracles: (πd−1, . . . , π0) ∈ Fnd−1 × · · · × Fn0

• For i from d− 1 downto 0:

1. The verifier samples and sends αi ←$ F to the prover

2. For each index j ∈ [1, ni], the prover

(a) sets f(X) := interpolate((diag(Ti)[j], πi+1[j]), (diag(T
′
i)[j], πi+1[j + ni]))

(b) sets πi[j] = f(αi)

3. The prover outputs oracle πi ∈ Fni .

Protocol 3 IOPP.query

Oracles: (πd, .., π0)

• The verifier samples an index µ←$ [1, nd−1]

• For i from d− 1 downto 0, the verifier

1. queries oracle entries πi+1[µ], πi+1[µ+ ni]

2. computes p(X) := interpolate((diag(Ti)[µ], πi+1[µ]), (diag(T
′
i)[µ], πi+1[µ+ ni]))

3. checks that p(αi) = πi[µ]

4. if i > 0 and µ > ni−1, update µ← µ− ni−1.

• If π0 is a valid codeword w.r.t. generator matrix G0, output accept, otherwise output
reject

Figure 2: The IOPP protocol for foldable codes.

17

Lemma 5 (Completeness). If πd is a codeword in Cd, then the verifier always outputs
accept in the query phase given the oracles (πd, . . . , π0) output by the honest prover in the
commit phase.

Proof. Note that the checks p(αi) = πi[µ] at step 3 of query always pass as p is computed in
the same way as the polynomial f is computed by the honest prover in the commit phase.
It remains to argue that π0 is a valid codeword. Let md ∈ Fkd denote the decoded word
underlying πd. It suffices to show that for i from d− 1 downto 0, πi is the encoding (w.r.t.
generator matrix Gi) of message mi := mi+1,l+αimi+1,r (where (mi+1,l||mi+1,r) = mi+1).
This implies that π0 is a codeword and thus the verifier outputs accept.

To show πi is the encoding of mi := mi+1,l + αimi+1,r, we first note that

πi+1 = mi+1 ·Gi+1

= mi+1 ·
[

Gi Gi

Gi · Ti Gi · T ′i

]
(definition of Gi+1)

=
[
Enci(mi+1,l) + Enci(mi+1,r) ◦ diag(Ti−1) ||Enci(mi+1,l) + Enci(mi+1,r) ◦ diag(T ′i−1)

]
where the last equality holds given that Ti and T ′i are diagonal and Gi is the generator
matrix of encoding Enci. Hence for every index j ∈ [1, ni],

πi+1[j] = Enci(mi+1,l)[j] + Enci(mi+1,r)[j] · diag(Ti−1)[j] ,

πi+1[j + ni] = Enci(mi+1,l)[j] + Enci(mi+1,r)[j] · diag(T ′i−1)[j] .

Thus πi+1[j], πi+1[j+ni] are the evaluation of fj(X) = Enci(mi+1,l)[j]+Enci(mi+1,r)[j] ·X
at points diag(Ti−1)[j], diag(T

′
i−1)[j]. By step 2.(b) of the commit phase, for every index

j ∈ [1, ni],

πi[j] = Enci(mi+1,l)[j] + αi · Enci(mi+1,r)[j] = Enci(mi+1,l + αi ·mi+1,r)[j]

where the last equality holds by linearity of the code. Thus πi is the encoding of mi :=
mi+1,l + αi ·mi+1,r which completes the proof.

Next, we analyze the proximity error of the IOPP protocol. We adapt the statement
and the proof of improved soundness of FRI stated in [23] to the case of general foldable
linear codes.

Theorem 3 (IOPP Soundness For Foldable Linear Codes). Let Cd be a (c, k0, d)-foldable
linear code with generator matrices (G0, . . . ,Gd). We use Ci (0 ≤ i < d) to denote the code
with generator matrix Gi and assume the relative minimum distance ∆Ci ≥ ∆Ci+1 for all
i ∈ [0, d−1]. Let γ > 0 and set δ := min(∆∗(πd, Cd), Jγ(Jγ(∆Cd

))) where ∆∗(πd, Cd) is the
relative coset minimum distance between v and Cd, (Definition 2). Then with probability
at least 1− 2d

γ3|F| (over the challenges (α0, . . . , αd−1) in IOPP.commit), for any (adaptively

chosen) prover oracles πd−1, .., π0, the verifier outputs accept in all of the ℓ repetitions of
IOPP.query with probability at most (1− δ + γd)ℓ.

18

Proof. The proof is similar to the proof of Theorem 7.2 in [23]. For completeness, we
present the proof in Appendix B.3.

5 Multilinear Polynomial Commitments From BaseFold

In this section, we present a commitment scheme for multilinear polynomials with fast
provers and polylogarithmic proof size and verification time. Moreover, the scheme works
for polynomials over any (sufficiently large) fields. The scheme combines the Basefold
IOPP with the sum-check protocol [55].

Notation. Let d ∈ N, for every v ∈ [0, 2d), we use bit(v) ∈ {0, 1}d to denote the d-bit-
decomposition of v, that is, v =

∑d
j=1 bit(v)[j] · 2j−1. For a multilinear polynomial f ∈

F[X1, . . . , Xd], we use vector f ∈ F2d to denote the coefficients of f , that is, f(X1, . . . , Xd) =∑
v∈[0,2d) f [v+ 1]

∏d
j=1X

bit(v)[j]
j . For a vector z ∈ Fd, we use f(z) to denote the evaluation

of f at point z = (z1, . . . , zd). Let d′ ∈ N and let Cd′ be a (c, k0, d
′)-foldable linear code.

We use Encd′ to denote the encoding algorithm for Cd′ with message length kd′ = k02
d′

and blocklength nd′ = ckd′ .

Remark 2 (Field Choices). In the following context, we assume that F is a large field
such that d/|F| = negl(λ). This is without loss of generality: given some polynomial f ∈
Fp[X1, . . . , Xd] over a small field Fp, as explained in Remark 1, we can lift the encoding of

the coefficient vector f ∈ F2d
p to an encoding over the message space F2d

pm where F := Fpm

is the extension field of Fp. Looking ahead, for any evaluation claim f(z) = y where
f ∈ Fp[X1, . . . , Xd], z ∈ Fd

p and y ∈ Fp, we can understand it as a claim over the extension
field Fpm, and run IOPP and sum-check protocols over the extension field and reduces the
claim to a random evaluation claim over the extension field.

Commitment phase. Given multilinear polynomial f ∈ F[X1, . . . , Xd] with coefficients

f ∈ F2d , let πf := Encd(f) be the encoding of f . In the IOP setting, the commitment to f
is simply the oracle πf that the verifier can make point queries. The derived commitment
in the random oracle model is the root of the Merkle tree with leaves being the vector
πf ∈ Fc2d .

Opening phase. The prover opens a polynomial commitment C by sending a multilinear
polynomial f ∈ F[X1, . . . , Xd] and a word πf to the verifier. The verifier checks that (i) the
Merkle commitment of πf equals C, and (ii) the relative distance between πf and Encd(f)
is less than ∆Cd

/2, where ∆Cd
is the relative minimum distance of Cd.

The sum-check protocol. Before presenting the PCS evaluation protocol, we briefly
review the famous sum-check protocol [55]. Given a multivariate polynomial oracle f ∈

19

F≤c[X1, . . . , Xd] where the individual degree of each variable is c ∈ N, the verifier wants
to check that

∑
b∈{0,1}d f(b) = y for some value y. A naive approach is for the verifier to

query f at every point in the Boolean hypercube {0, 1}d and sum the evaluation values,
which involves 2d polynomial queries. Lund et. al. [55] introduced an elegant sum-check
protocol that reduces the verifier’s work to a single polynomial query at a random point.

The protocol runs in d rounds where in each round, the prover sends a univariate
polynomial of degree c and the verifier replies with a random field element as a challenge.
At the end of the protocol, the verifier makes a single query to f at a random point to
decide whether the sumcheck claim holds. Specifically,

• The prover sends a univariate polynomial gd(X) :=
∑

b∈{0,1}d−1 f(b, X), the verifier
checks that gd(0) + gd(1) = y, and samples rd−1 ←$ F. Then the sumcheck claim is
reduced to

∑
b∈{0,1}d−1 f(b, rd−1) = gd(rd−1).

• For round i from d− 1 to 1, the prover sends a univariate polynomial

gi(X) :=
∑

b∈{0,1}i−1

f(b, X, ri, . . . , rd−1) ,

the verifier checks that gi(0) + gi(1) = gi+1(ri), and samples ri−1 ←$ F. Then the
sumcheck claim is reduced to

∑
b∈{0,1}i−1 f(b, ri−1, . . . , rd−1) = gi(ri−1).

• The verifier queries f(r0, . . . , rd−1) and accept if f(r0, . . . , rd−1) = g1(r0).

It is easy to see that the protocol is perfectly complete. Lund et. al. also showed that if∑
b∈{0,1}d f(b) ̸= y, for any unbounded malicious prover, the verifier outputs accept with

probability at most cd/|F|.

Evaluation protocol. Next, we describe the evaluation protocol in Fig. 3. Given a com-
mitment C, a point z ∈ Fd and value y ∈ F, the prover wants to convince the verifier that
it knows an opening f ∈ F[X1, . . . , Xd] of C such that f(z) = y. Our scheme interleaves
sumcheck with BaseFold IOPP. Before describing the protocol, recall that by the multi-
linear extension, a multilinear polynomial f ∈ F[X1, . . . , Xd] can be uniquely expressed as
the following sum

f(X1, . . . , Xd) =
∑

b∈{0,1}d
f(b) · ẽqb(X1, . . . , Xd)

where the polynomial ẽqb(X1, . . . , Xd) :=
∏d

i=1[b[i]Xi + (1− b[i])(1−Xi)], thus checking
f(z) = y is equivalent to checking the sum-check claim y =

∑
b∈{0,1}d f(b) · ẽqb(z). In

Fig. 3, we describe a protocol for this claim in the language of IOPs. We require that the
multilinear extension, hd(X) orders the coefficients of f so that they are consistent with
the ordering used in the Encoding of f (Protocol 1). (Note that Ben-Sasson et. al. [20]

20

Protocol 4 PC.Eval

Public input: oracle πf := Encd(f) ∈ Fnd , point z ∈ Fd, claimed evaluation y ∈ F
Prover witness: the polynomial f with coefficients f ∈ F2d

Code parameters: G0 and diagonal matrices (T0, . . . , Td−1) and (T ′0, . . . , T
′
d−1)

1. The prover sends hd(X) :=
∑

b∈{0,1}d−1 f(b, X) · ẽqz(b, X) to the verifier

2. For i from d− 1 to 0

(a) Verifier samples and sends ri ←$ F to the prover

(b) For each j ∈ [1, ni], the prover

i. sets gj(X) := interpolate(diag(Ti[j], πi+1[j])), (diag(T
′
i)[j], πi+1[j + ni]))

ii. sets πi[j] := gj(ri)

(c) The prover outputs oracle πi ∈ Fni

(d) If i > 0, the prover sends verifier

hi(X) =
∑

b∈{0,1}i−1

f(b, X, ri, . . . , rd−1) · ẽqz(b, X, ri, . . . , rd−1)

3. The verifier checks that

• IOPP.query(πd,...,π0) outputs accept

• hd(0) + hd(1) = y and for every i ∈ [1, d− 1], hi(0) + hi(1) = hi+1(ri)

• Enc0(h1(r0)/ẽqz(r0, . . . , rd−1)) = π0

Figure 3: The evaluation protocol for the BaseFold PCS.

showed how to generically transform an IOP that satisfies round-by-round soundness into
a non-interactive argument of knowledge in the random oracle model). For simplicity, we
assume that the scheme is instantiated with a (c, k0, d)-foldable code where k0 = 1. In
Remark 3 we will explain how to adapt the protocol to the case where k0 > 1. Again, for
every i ∈ [0, d], we set ki = k0 · 2i and ni = cki.

Remark 3 (The case of k0 > 1). The BaseFold IOPP can also be instantiated with a
(c, k0, d

′)-foldable code where k0 = 2κ for some integer κ ≥ 1 and d′ := d−κ. In Protocol 4,

21

we replace d with d′, and after d′ rounds, the sum-check claim is reduced to

h1(r0) =
∑

b∈{0,1}κ
f(b, r0, . . . , rd′−1) · ẽqz(b, r0, . . . , rd′−1) . (7)

To check this, the prover additionally sends a vector m ∈ F2κ which is the coefficient vector
for polynomial f(X1, . . . , Xκ, r0, . . . , rd′−1), then the verifier checks that Enc0(m) = π0 and
Equation 7 holds. Note that the evaluations of f(X1, . . . , Xκ, r0, . . . , rd′−1) on set {0, 1}κ
can be computed in time O(κ2κ) given the coefficients m.

Next, we analyze the running time of the prover and verifier when executing Protocol 4.

Prover time. The prover runs the prover algorithms of IOPP.commit and the sum-check
protocol. The sumcheck prover cost is dominated by 5kd finite field multiplications and
the cost of running IOPP.commit is O(nd) field operations and hashes. In sum, the prover
complexity is O(nd) field operations and hashes.

Verifier time. Note that the evaluation ẽqz(r0, . . . , rd−1) can be computed in O(d) field
operations, thus the verifier time is dominated by ℓ runs of IOPP.query, with total cost of
O(ℓd) field operations and Merkle path checkings (where each Merkle path checking takes
at most O(d) hash computations).

Remark 4 (Efficiency comparison to the FRI-based univariate PCS.). Recall that in the
evaluation proof of the FRI-based univariate PCS [51], two polynomials are committed,

f(x) ∈ F[X] and f(x)−f(v)
x−v . FRI IOPP is only executed over the latter one, but deriving the

second polynomial takes 4ckd finite field multlications using Montgomery’s trick for batch
inversion. For example, when c = 8, the FRI PCS additionally performs 32kd finite field
multiplications, while in the BaseFold PCS the extra overhead is 5kd field multiplications
for running the sumcheck protocol.

5.1 Security Proofs

Completeness and binding. Completeness holds as an honest prover can always pass
the evaluation check. To argue binding, suppose for contradiction that the adversary can
output valid openings for two different polynomials f1, f2 ∈ F[X1, . . . , Xd], that is, there
exists π1, π2 where Merkle.commit(π1) = Merkle.commit(π2) and ∆∗(Encd(fi), πi) < ∆Cd

/2
for every i ∈ {1, 2}. Then either π1 = π2 or the adversary finds a hash collision. The first
case (i.e., π1 = π2) never happens as otherwise by definition of minimum distance ,triangle

22

inequality, and Lemma 6,

∆Cd
≤ ∆(Encd(f1),Encd(f2))

≤ ∆(Encd(f1), π1) + ∆(Encd(f2), π2)

< ∆∗(Encd(f1), π1) + ∆∗(Encd(f2), π2)

< 2(∆Cd
/2) ,

which is a contradiction. The second case happens with negligible probability by the
collision resistance of the hash function.

Soundness. Before showing knowledge soundness, we prove a useful lemma arguing the
soundness of the PCS, that is, if a prover can pass the check in Protocol 4 with non-
negligible probability, then the oracle πf is close to a unique codeword Encd(f) in Cd

and the corresponding polynomial f satisfies f(z) = y. Note that in order to securely
instantiate the Fiat-Shamir transform from [18] to BaseFold, we need to prove BaseFold

satisfies round-by-round soundness. In this section, we prove that BaseFold satisfies the
traditional notion of soundness (Definition 6) but we believe it will be straightforward to
prove using techniques from [24]. Before proving the PCS soundness, we state a useful fact
about the coset relative distance (Definition 2).

Lemma 6. Let C be an [n, k, d] code and let v ∈ Fn. Then

∆(v, C) ≤ ∆∗(v, C)

Proof. Let c, c′ ∈ C satisfy ∆(v, C) = ∆(v, c′) and ∆∗(v, C) = ∆∗(v, c). It suffices to show
that ∆(v, c′) ≤ ∆∗(v, c). By definition of relative minimum distance, ∆(v, c′) ≤ ∆(v, c).
Moreover, the absolute distance between c and v is at most twice the number of pairs
included in the coset distance between c and v. Thus, ∆(v, c′) ≤ ∆(v, c) ≤ (2 ·∆∗(v, c) ·
n/2)/n = ∆∗(v, c), which completes the proof.

Lemma 7 (Soundness). Let γ, δ ∈ (0, 1) satisfy δ < Jγ(Jγ(∆Cd
)) and ∆Ci+1 ≤ ∆Ci for

every i ∈ [0, d − 1]. Assume that 3δ − dγ < ∆Cd
and 2d

γ3|F| + (1 − δ + γd)ℓ ≤ negl(λ).

In the evaluation protocol 4 with instance (πf , z, y) (πf is the input oracle), if the prover
P∗ passes the verification with non-negligible probability, then exists unique polynomial
f ∈ F[X1, . . . , Xd] (with coefficients f ∈ F2d) such that ∆∗(πf ,Encd(f)) ≤ δ (Definition 2)
and f(z) = y. Moreover, the probability that P∗ passes the verification but f(r0, . . . , rd−1) ̸=
h1(r0)/ẽqz(r0, . . . , rd−1) is negligible (where h1(r0)/ẽqz(r0, . . . , rd−1) is the claimed evalua-
tion in sumcheck).

Proof. By soundness of IOPP (Theorem 3) and by Lemma 6, it holds that ∆(πf , Cd) ≤
∆∗(πf , Cd) ≤ δ < ∆Cd

/2. Thus there exists a unique multilinear polynomial f ∈ F[X1, . . . , Xd]

23

such that ∆(πf ,Encd(f)) ≤ δ. It remains to argue that f(z) = y. Assume for contradiction
that f(z) ̸= y, that is,

f(z) =
∑

b∈{0,1}d
f(b) · ẽqb(z) =

∑
b∈{0,1}d

f(b) · ẽqz(b) ̸= y .

By soundness of the sum-check protocol, f(r) · ẽqz(r) = h1(r0) with probability at most
2d/|F | over the random choice of r ∈ Fd (as f ′(X) := f(X) · ẽqz(X) is a polynomial with
total degree 2d). Here h1(X) is the last univariate polynomial sent by the prover in the
sumcheck protocol. Next, we argue that with probability more than 2d/|F | over r, we
actually have f(r) · ẽqz(r) = h1(r0), which leads to a contradiction and completes the
proof. WLOG we assume that P∗ is deterministic. We start by defining two bad events.

• Event B1: IOPP.query
(πd,...,π0) outputs accept with probability less than (1− δ + γd)

(over the choice of sampled index µ ∈ [nd−1]).

• Event B2: There exists i ∈ [0, d], such that the success probability of the IOPP partial
execution on transcript prefix (πd, rd−1, . . . , πi+1, ri, πi) (instead of πd) is negligible,
where the randomness is over freshly sampled challenges (r′i−1, . . . , r

′
0) in the commit

phase and the sampled indices in the query phase. For brevity, we use IOPPπi⟨P∗,V⟩
to denote the execution where P∗ is the malicious prover.

Claim 1. The probability that P∗ succeeds while at least one of the events B1, B2 happens
is negligible.

Proof. Note that if event B1 happens, P∗ succeeds with probability at most (1−δ+dγ)ℓ =
negl(λ) (over the sampled index in IOPP.query). On the other hand, by definition of event
B2, only a negligible portion of P∗’s success probability will fall into the case where B2

happens. By union bound, the probability that P∗ succeeds and B1 or B2 happens is
negligible, and the claim holds.

Next, we show that f(r) · ẽqz(r) = h1(r0) for “good” r (i.e., bad events do not happen).

Lemma 8. Let γ, δ ∈ (0, 1) satisfy the conditions as in Lemma 7. Let f ∈ F[X1, . . . , Xd]
be the unique multilinear polynomial such that ∆∗(πf ,Encd(f)) ≤ δ. For any challenge set
r = (r0, . . . , rd−1) and corresponding oracles (πd, . . . , π0) output by P∗ such that events B1,
B2 do not happen and Enc0(h1(r0)/ẽqz(r)) = π0, it holds that f(r) · ẽqz(r) = h1(r0) where
h1(X) is the last univariate polynomial sent by the prover in the sumcheck protocol.

Proof. For every i ∈ [0, d], we use fi ∈ F2i to denote the coefficient vector for the i-
variate multilinear polynomial f(X1, . . . , Xi, ri, . . . , rd−1). For every i ∈ [0, d−1], denote by
fi+1 = (fi+1,l, fi+1,r), we have fi = fi+1,l+ ri · fi+1,r by definition of multilinear polynomials.

Assume for contradiction that h1(r0)/ẽqz(r) ̸= f(r). By the premise of the lemma that
event B2 does not happen, for every i ∈ [0, d], the probability that IOPPπi⟨P∗,V⟩ = 1 is

24

non-negligible (i.e., larger than 2i
γ3|F|+(1−δ+γi)ℓ = negl(λ)). Thus by the IOPP soundness

(Theorem 3), it holds that ∆∗(πi, Ci) ≤ δ for every i ∈ [0, d]. Since ∆∗(πd,Encd(f) ≤ δ
but π0 = Enc0(h1(r0)/ẽqz(r)) ̸= Enc0(f0), there exists a round k ∈ [0, d − 1], such that
∆∗(πk,Enck(gk)) ≤ δ for some coefficient vector gk ̸= fk; while in the previous round, it
holds that ∆∗(πk+1,Enck+1(fk+1)) ≤ δ. Denote δ′ := δ − γd. Next, we argue that

∆(πk,Enck(fk)) ≤ δ′ +∆∗(πk+1,Enck+1(fk+1)) . (8)

Recall that by assumption, both ∆∗(πk+1,Enck+1(fk+1)) and ∆∗(πk,Enck(gk)) are no more
than δ. If Eqn. 8 holds, by triangle inequality and by definition of minimum relative
distance, it implies

∆Ck
≤ ∆(Enck(gk),Enck(fk))

≤ ∆(Enck(gk), πk) + ∆(πk,Enck(fk))

≤ ∆∗(Enck(gk), πk) + ∆(πk,Enck(fk)) (Lemma 6)

≤ δ + δ′ +∆∗(πk+1,Enck+1(fk+1)) (Eqn 8)

≤ δ + δ′ + δ = 3δ − γd ,

Note that we have 3δ − γd < ∆Ck
by the premise of the statement, which leads to a

contradiction and completes the proof.
Next, we prove Eqn. 8. Let δ′ := δ − γd and denote πd := πf . Recall that IOPP.query

outputs accept for more than (1− δ′)nd−1 (out of nd−1) sampled indices µ ∈ [1, nd−1]. Our
goal is to show that for every round i ∈ [0, d−1], there are at least (1−δ′)ni indices µ ∈ [ni]
such that πi[µ] is consistent with πi+1[µ] and πi+1[µ+ni] in terms of the folding operation
(defined in Eqn. 27). Actually, we prove an even stronger statement: For every i ∈ [0, d−1],
we show that there are at least (1 − δ′)ni entries µ ∈ [ni] such that in IOPP.query, if the
verifier’s query position for πi is µ, then the verifier’s checks for oracles π0, . . . , πi are all
passing. We prove by induction. It holds when i = d − 1 as event B1 does not happen
by the claim statement. Suppose by induction hypothesis that the number of bad query
positions for πi is at most δ′ni. For i − 1, we note that for every µ ∈ [ni−1], πi−1[µ] is a
good query position so long as one of the query entries πi[µ] and πi[µ+ni−1] for πi is good
(i.e. the verifier’s checks to π0, . . . , πi are all passing). Therefore, πi−1[µ] is a bad query
entry only if both µ and µ+ ni−1 are bad query positions for πi. Hence the number of bad
query positions µ ∈ [ni−1] for πi−1 is at most δ′ni/2 = δ′ni−1.

Given above, it follows that ∆(foldrk(πk+1), πk) < δ′ as we’ve proved that πk[µ] is
consistent with πk+1[µ] and πk+1[µ+ nk] for more than (1− δ′)nk entries of µ. Moreover,
recall fk = fk+1,l + rk · fk+1,r and we’ve shown in Lemma 5 that

Enck(fk) = Enck(fk+1,l + rk · fk+1,r) = foldrk(Enck+1(fk+1)) , (9)

25

where the fold operation is defined in Eqn. 27. Thus we have

∆(πk,Enck(fk))

=∆(πk, foldrk(Enck+1(fk+1))) (Eqn. 9)

≤∆(πk, foldrk(πk+1)) + ∆(foldrk(πk+1), foldrk(Enck+1(fk+1))) (triangle inequality)

≤δ′ +∆(foldrk(πk+1), foldrk(Enck+1(fk+1))) (∆(πk, foldrk(πk+1)) < δ′)

≤δ′ +∆∗(πk+1,Enck+1(fk+1))

where the last inequality holds because each element in foldrk(πk+1) that is inconsistent
with foldrk(Enck+1(fk+1) maps to at least one element in πk+1 that is inconsistent with
Enck+1(fk+1). Thus Eqn 8 holds and we complete the proof.

In sum, since P∗ succeeds with non-negligible probability, from Lemma 8 and Claim 1,
with non-negligible probability (that is more than 2d/|F |) over r, we have f ′(r) := f(r) ·
ẽqz(r) = h1(r0), thus f(z) = y by the soundness of the sumcheck protocol.

Knowledge soundness. Next, we prove knowledge soundness of the PCS evaluation
protocol. By the IOP-to-NARK transformation of [20], given any PCS evaluation prover
that convinces the verifier with non-negligible probability, there is an efficient extractor
that outputs the IOP oracle string that opens the Merkle commitment sent by the prover
(intuitively by querying Merkle paths from the prover). Thus it is sufficient to prove the
following theorem in the language of IOP.

Theorem 4 (Knowledge soundness.). Let γ, δ ∈ (0, 1) satisfy the conditions as in Lemma 7.
Fix finite field F and set ℓ ∈ N such that (2d/γ3|F|) + (1 − δ + dγ)ℓ ≤ negl(λ). For
any PCS evaluation instance (πf , z, y) (where πf is the input oracle), and any malicious
prover P∗ that suceeds in Protocol 4 with non-negligible probability, there is a polynomial-
time extractor ExtP∗ such that with overwhelming probability, ExtP∗ outputs a polynomial
f ∈ F[X1, . . . , Xd] where ∆

∗(Encd(f), πf) ≤ δ and f(z) = y, where ∆∗ is the coset minimum
relative distance (Definition 2).

Before proving the theorem, we state a useful “predicate forking lemma”, which is a
special case of Lemma 3 from [29]. Loosely speaking, the lemma says that if A is an
algorithm that on uniform random input m ←$ M returns A(m) = 1 with probability
ϵ, and Φ(m1, ...mk) is any predicate that holds with overwhelmingly high probability for
independent random mi ←$ M, then it is possible to efficiently “extract” k inputs to A
that satisfy the predicate Φ and for which A(mi) = 1 for all i ∈ [k]. The runtime of this
“extractor” algorithm is proportional to 1/ϵ and the success is overwhelmingly high. A
bit more precisely, it isn’t enough for Φ to hold true with high probability over random
vectors inMk, but a sufficient condition is that for any i ≤ k the conditional probability
Pr[Φ(m1, ...mi) ̸= 1|Φ(m1, ..,mi−1) = 1] over mi ←$M is negligible.

26

Lemma 9 (Variant of Lemma 3 in [29]). Let Φ :M∗ → {0, 1} be any predicate such that
for any (m1, . . . ,mi) ∈Mi where Φ(m1, . . . ,mi) = 1,

Pr
mi+1←$M

[Φ(m1, . . . ,mi+1) = 1] ≥ 1− negl(λ) .

Let N = poly(λ). For any ϵ > 0 there exists an extractor Ext which runs in time T ∈ O(λ/ϵ)
and, given oracle access to any algorithm A where Prm←$M[A(m) = 1] ≥ ϵ, the following
holds:

Pr

[
Φ(m1, . . . ,mN) = 1∧
A(mi) = 1∀i ∈ [N]

∣∣∣∣ (m1, . . . ,mN)← ExtA
]
≥ 1− T · negl(λ)

Proof. For completeness, we present the proof in Appendix B.4.

Equipped with Lemma 9, we are ready to prove knowledge soundness of the PCS
evaluation protocol.

Proof of Theorem 4. By Lemma 7 (for soundness), we know that there exists a unique mul-
tilinear polynomial f ∈ F[X1, . . . , Xd] such that the coset relative distance ∆∗(πf ,Encd(f)) ≤
δ and f(z) = y. The remaining task is to construct an algorithm that recovers the
polynomial f . Note that this is trivial if πf is efficiently decodable. However, we do
not have any guarantee that the code Cd is efficiently decodable. Fortunately, we can
recover f by building an extractor Ext that outputs a list of 2d points S := {vi ∈
Fd}i∈[2d] and their corresponding evaluations {f(vi)}i∈[2d], such that the expansion vec-

tors {expd(v1), . . . , expd(v2d)} are linearly independent. Here for a vector v ∈ Fd, the

expansion vector expd(v) ∈ F2d is defined so that for every i ∈ [0, 2d),

expd(v)[i+ 1] :=

d∏
j=1

v[j]bit(i)[j] . (10)

E.g., for a vector (x, y) ∈ F2, the expansion vector is expd([x, y]) := (1, x, y, xy). Im-

portantly, we note that the evaluation f(v) satisfies that f(v) =
∑2d

i=1 f [i] · expd(v)[i]
where f ∈ F2d is the coefficient vector of the polynomial f . Hence given the set of 2d lin-
early independent expansion vectors {expd(v1), . . . , expd(v2d)}) and the set of evaluations
f(S) := {f(vi)}i∈[2d], we can solve the system of equations using Gaussian elimination to

recover vector f ∈ F2d and thus recover the polynomial f .
Next we show how to build the extractor Ext using the predicate forking lemma

(Lemma 9). There are two major steps: the first step is to define the predicate to be
used in Lemma 9; the second step is defining the algorithm A in Lemma 9 that outputs 1
with non-negligible probability.

27

The predicate. We define the predicate Φ as follows. Let M := Fd be the message space
that consists of a length-d vector. For input (v1, . . . ,vi) ∈ Mi which consists of i length-
d vectors8, we say Φ(v1, . . . ,vi) = 1 expd(V) := {expd(v1), . . . , expd(vi)} are linearly
independent.

Lemma 10. For any i ∈ [0, 2d) and any (v1, . . . ,vi) ∈ (Fd)i where Φ(v1, . . . ,vi) = 1, it
holds that

Pr
vi+1←$Fd

[Φ(v1, . . . ,vi+1) = 1] ≥ 1− (d/|F|) ≥ 1− negl(λ) .

Proof. Let M ∈ Fi×2d be the matrix such that the jth (1 ≤ j ≤ i) row of M is expd(vj).
Note that Φ(v1, . . . ,vi) = 1 implies that the rank of M is i. Let M ′ be the matrix obtained
by adding the row vector expd(vi+1) to M . Again Φ(v1, . . . ,vi+1) = 1 if and only if
rank(M ′) = i+1 = rank(M)+1. Meanwhile we have rank(M ′) ≥ rank(M) and kernel(M ′) ⊆
kernel(M) (as any vector f with M ′ · f = 0i+1 also satisfies M · f = 0i). Therefore,
rank(M ′) = i+1 > rank(M) if and only if kernel(M ′) ⊊ kernel(M) and it suffices to analyze
the probability that exist a non-zero element in kernel(M) that’s not in kernel(M ′). Note

that |kernel(M)| = |F|2d−i > 1, thus we can pick a non-zero vector f ∈ F2d from kernel(M).
Now we check the probability that f is also in kernel(M ′) (i.e. M ′ · f = 0i+1). This is
the probability that ⟨expd(vi+1), f⟩ = f(vi+1) = 0 for a uniformly random vi+1, where f
is the d-variate multilinear polynomial with coefficients being f . By the Schwartz-Zippel
Lemma, this happens with probability at most d/|F|. Thus kernel(M ′) ⊊ kernel(M) with
probability at least 1− d/|F| and the lemma holds.

The algorithm A: Next, we construct a PPT algorithm A to be used in Lemma 9. To help
with extraction of the polynomial f , we first define an algorithm A′ that will additionally
output some evaluation values. Given input challenges v ∈ Fd, the algorithm A′ runs
Protocol 4 with the prover P∗ where the folding challenge vector is set as v. After P∗
outputs all of the oracles (from the sumcheck and the IOPP commit phase), A′ simulates
the verifier of Protocol 4 by sampling the query positions in IOPP.query. The algorithm
A′ outputs 1 plus the claimed evaluations y ∈ F (from the sumcheck) if the PCS verifier
accepts; otherwise A′ outputs 0. After describing algorithm A′, the algorithm A(v) on
input v simply runs A′(v) and outputs 1 if and only if A′(v) also outputs 1.

A′ (and thus A) runs in polynomial time as the interaction with P∗ in Protocol 4 runs
in polynomial time. Moreover, the probability that A outputs 1 is exactly the probability
that P∗ pass the verification, which is non-negligible.

The polynomial extractor. By setting N := 2d and applying Lemma 9 given the
above predicate Φ and algorithm A, we can obtain an extractor E that runs in time
T ∈ O(λ/ϵ), and with probability at least 1−T ·negl(λ), E outputs 2d vectors [v1, . . . ,v2d]

8Intuitively, vi will be the vector of folding challenges used in the execution of Protocol 4.

28

such that (i) A(vi) = 1∀i ∈ [2d], and (ii) Φ(v1, . . . ,v2d) = 1, that is, the expansion vectors
{expd(vi)}i∈[2d] are linearly independent.

Recall that A(vi) = 1∀i ∈ [2d] implies A′(vi) = (1; yi)∀i ∈ [2d] where yi ∈ Fm is the
additional output (i.e. the claimed evaluation) of A′(vi). Given (v1, . . . ,v2d) output by
E, the polynomial extractor simply runs A′ on inputs {vi}i∈[2d] to obtain the evaluations9

(y1, . . . , y2d), and attempts to solve the system of equations using Gaussian elimination to
recover the coefficients of the polynomial f .

However, at this point, we do not have a guarantee that (y1, . . . , y2d) are the correct
evaluations of f , thus it’s possible that the polynomial extractor cannot recover f (as the
system of equations might have no solution) even if the extractor E succeeds. Fortunately,
by Lemma 7, the probability that P∗ succeeds but outputs an incorrect evaluation is
negligible (over a random input). Thus the probability that A′ outputs 1 plus an incorrect
evaluation is negligible. Recall that the extractor E only invokes A (and thus A′) (on
uniformly random v ∈ Fd) for polynomial number of times. Let TA denote the number
of invocations. From the above claim and by taking union bounds, we have that with
probability at least 1 − T · negl(λ) − TA · negl(λ), E outputs 2d vectors [v1, . . . ,v2d] such
that Φ(v1, . . . ,v2d) = 1; and for all i ∈ [2d], A′(vi) outputs correct evaluation f(vi) for
the point vi ∈ Fd. This implies that the polynomial extractor will successfully extract the
coefficients of f using Gaussian elimination and the theorem holds.

6 Experiments

In this section, we compare BaseFold PCS with state-of-the-art multilinear polynomial
commitment schemes, including Brakedown [43], Zeromorph-FRI [53].10 and Multilinear-
KZG [58]. We instantiate Basefold PCS over both the random foldable code defined in
Section 3 and over FFT-Friendly Reed-Solomon codes. We refer to the former as Basefold
and the latter as BasefoldFri, as it is a generalization of FRI to the multilinear setting.

We measure the performance of these protocols both as stand-alone PCS as well as com-
ponents of the SNARK from Hyperplonk [33]. We also compare Basefold to ECFFT2 [14],
which is another field-agnostic error-correcting code that can be used with the FRI IOPP.

Methodology and setup. Our testbed is an AWS r6i.8xlarge EC2 instance, which has
16 cores and 256 GiB of RAM using Ubuntu 22. All experiments are run over 16 cores
except for the ECFFT2 comparions, which we run over just 1 core to achieve a direct
comparison with the existing implementation. We use the hash function Blake2s256 across
all schemes. We test polynomial commitment schemes on both 256-bit fields and 64-bit

9Note that the claimed evaluations (y1, . . . , y2d) (from sumcheck) are fully deterministic given the input
challenges {vi}i∈[2d], as they are independent of the challenges from the IOPP query phase.

10Zeromorph is a FRI-based multilinear PCS constructed via the generic univariate-to-multilinear PCS
compiler from [53]

29

fields. For the 64-bit field Fp, as mentioned in Remark 2, we use an extension field of Fp in
the IOPP and sum-check for soundness bootstrapping. The metrics we consider are prover
time, verifier time, and proof size. The choices of parameters for Brakedown, BaseFold,
and Zeromorph-FRI all achieve at least 100 bits of security.

Comparison to Field-Agnostic SNARKs

Field-agnosticity can enable extremely efficient SNARKs for certain applications. For in-
stance, according to [62], a circom circuit encoding ECDSA signature verification uses 220

gates when it is encoded over a field that is not native to the underlying SNARK, while
a field-agnostic SNARK only needs circuits with 214 multiplication gates to compute the
same function. This discrepency stems from the fact that each non-native field opera-
tion incurs an overhead of approximately 26 constraints, according to standard techniques
from [54]. For instance, as shown in Figure 2, Hyperplonk[Basefold] can prove (mock)
ECDSA signature verification in only 122ms, while ZeromorphFri takes 2.9 seconds, 23
times slower.

To our knowledge, the only other field-agnostic SNARKs are derived from Brake-
down PCS and ECFFT2([14]). Next, we compare Hyperplonk[Basefold] with Hyper-
plonk[Brakedown] and compare our random foldable code with ECFFT2, respectively.

Comparison with Brakedown. Hyperplonk[Brakedown] has a comparable prover speed
to HyperPlonk[Basefold], but has a larger proof size and slower verifier time. For circuits
with 220 gates, Hyperplonk[Brakedown]’s prover time is 3.691s while Hyperplonk[Basefold]’s
is 3.862s. Hyperplonk[Brakedown]’s proof size is 254MB while Hyperplonk[Basefold]’s is
only 23MB, more than 10 times smaller. Finally, Hyperplonk[Brakedown]’s verifier time is
2.725s while Hyperplonk[Basefold]’s is 87ms, 31 times faster.

Remark 5. As shown in Figures 5 and 6, Brakedown’s prover is up to 10 times faster
than Basefold as a PCS, but the SNARK prover times are comparable. This is largely due
to the more expensive single PCS open protocol from BaseFold/FRI: in Brakedown, it is
a one-round protocol that requires no additional hashing; while in BaseFold (and FRI),
the prover runs in log(n) rounds of interaction and require log n additional Merkle Trees.
For instance, we find that for 25 variables, the Brakedown opening phase is 9.65 times
faster than BaseFold while the commit protocol is only 3.2 times faster. Fortunately, this
gap is significantly reduced in the batch opening setting as BaseFold/FRI enables efficient
batching techniques from [33]. We therefore expect Brakedown to be about 3 times faster
than Basefold in the batched setting, as the commit protocol dominates the prover time in
that case. In addition to batching, the Hyperplonk PIOP prover contributes some additional
overhead (See Remark 8), so the SNARK prover times are ultimately comparable.

Remark 6. Recent work ([39]) halves the prover time and verifier time of the Brake-
down PCS and slightly reduces the proof size (by a factor of 1.4). Similarly, [46] reduces

30

ECDSA Circuit

Protocol
Prover Time
(ms)

Proof Size
(KB)

Verifier Time
(ms)

Hyperplonk[Basefold] 122 6258 24

Hyperplonk[Brakedown] 168 32271 797

Hyperplonk[ZeromorphFri] 2888 7739 47

HyperPlonk[MKZG] 71027 7.74 107

Table 2: Prover time, proof size and verifier time for an ECDSA signature verification
circuit. We use the lowest benchmarked rates for Basefold and Brakedown, which minimizes
their verifier work, and we use the highest benchmarked rate for ZeromorphFri, which
minimizes its prover time.

the encoding time of the Brakedown PCS by 25 percent. This may slightly reduce Hyper-
plonk[Brakedown]’s proving time and we leave rigorous benchmarking to future work.

Comparison with ECFFT2. Next, we compare our random foldable code with ECFFT2 [14].
In order for ECFFT2 to be integrated into a multilinear PCS and used with HyperPlonk,
the prover needs to first convert a polynomial from the standard coefficient basis to a
special basis over an elliptic curve. This is referred to as the ENTER protocol, which has
complexity O(n log2(n)). For n = 220, it takes 26.894s to run the ENTER algorithm, which
is 16 times slower than the Basefold’s encoding algorithm, which takes only 1.67s.

Evaluation

Protocol Time(ms)

ECFFT Enter 26894

ECFFT Extend 2726

Basefold Encode 1670

Table 3: Evaluation

Interpolation

Protocol Time(ms)

ECFFT Reverse Extend 2339

Interpolate BH 168

Table 4: Interpolation

Remark 7. When ECFFT2 is integrated into STARK, as described in [13], the witness
can be directly encoded into the appropriate basis, using protocols EXTEND and Reverse
EXTEND, which run in O(n log n) and together take 5s. This is comparable to the analgous
operations in Hyperplonk[Basefold] (overall about 2.5 times slower). However, as noted
in the introduction, the STARK proof system has considerable additional overhead when
proving a large circuit with high-degree custom-gates.

31

Comparison to Non-Field Agnostic SNARKs

In this section, we compare HyperPlonk[BaseFold] with HyperPlonk[Zeromorph] and Hy-
perPlonk[MultilinearKZG], respectively. Here HyperPlonk[MultilinearKZG] refers to plug-
ging HyperPlonk with the PCS from [57].

We find that over the same 256-bit finite field, BasefoldPCS’s prover is approximately
2.7 times faster than ZeromorphFri’s for polynomials with more than 20 variables. This
difference is due to the fact that the opening phase of ZeromorphFri requires the equivalent
of two more commitment computations (of complexity O(n log n)) while the Basefold open

protocol runs in strictly linear time. The Basefold verifier is about 1.2 times slower than
ZeromorphFri’s verifier and its proofs are approximately 2.8 times bigger. This is both
because the relative minimum distance of the underlying code of Basefold is lower than
that of RS-codes and because the soundness proof for BasefoldPCS requires more queries
from the verifier than the soundness proof from FRI does (using techniques from Deep-
FRI [21]). We leave it to future work to determine whether similar techniques can be
applied to BasefoldPCS.

Over the same 64-bit finite field, BasefoldPCS’s prover is only about 1.7 times faster
than ZeromorphFri’s for polynomials with more than 21 variables. The reason for this is
that over smaller fields, random foldable codes require lower rates to maintain a sufficiently
high relative minimum distance. If we instead instantiate Basefold with a Reed-Solomon
code, we can still use a rate of 1

2 and in that case, BasefoldFri’s prover time is approximately
3 times faster than ZeromorphFri’s for polynomials with more than 20 variables. We
compare prover time, verifier time, and proof size of PCS and SNARKs over a 64-bit field
in Figures 6 and 8.

Next, we compare Basefold to MultilinearKZG [57], which requires a stronger crypto-
graphic assumption, a trusted setup, and is not field-agnostic. As a SNARK, we found
that for circuits with 220 gates, Hyperplonk[MultilinearKZG] [57] took 71 seconds, whereas
Hyperplonk[Basefold]’s prover (over a code of rate 1

8) takes about 5.5 seconds. Hyper-
plonk[MultilinearKZG]’s verifier time was 107ms whereas Hyperplonk[Basefold]’s is 46ms
but its proof size was only 7.3 kilobytes, whereas Hyperplonk[Basefold]’s is 9.5MB.

6.0.1 Analyzing the Tradeoff Between Prover and Verifier

Finally, we compare the performance of Hyperplonk[ZeromorphFri], Hyperplonk[Brakedown],
and Hyperplonk[Basefold] across different rates. As demonstrated in Figure 4, Hyper-
plonk[Brakedown] has slightly faster proving times across rates, but at the cost of consid-
erably larger proof sizes. On the other hand, we find that Hyperplonk[ZeromorphFri] has
the slower proving times across rates, but with the advantage of having the smallest proof
sizes. Hyperplonk[Basefold] strikes a balance between these two protocols. It has (slightly)
faster prover for rates (1/2) and (1/4) at the cost of a (slightly) larger proof size.

32

Figure 4: Hyperplonk[Basefold/ZeromorphFRI/Brakedown] over the same 256-bit field for circuits
with 220 gates with different encoding rates (i.e. the ratio k

n , for block length n, message length
k.). Recall that Brakedown and Basefold are field-agnostic while ZeromorphFri is not.

Remark 8. In the batch opening setting, Brakedown PCS is approximately 3 times faster
than BaseFold PCS, while BaseFold PCS is 2-3 times faster than Zeromorph-FRI. However,
when compiled into Hyperplonk, the prover times of the three schemes are comparable. This
is largely due to the overhead imposed by the high-degree multivariate sum-check protocol
from Hyperplonk PIOP [33]. We believe that the implementation of multivariate sum-checks
can be further optimized and we leave it to future work.

Acknowledgements

We want to thank Justin Thaler for providing helpful feedback to an earlier draft. We
would also like to thank Han Jian for answering many questions about his plonkish repo11,
which we used for our benchmarks. Finally, we thank Daniel Lubarov for helpful discussions
about the concrete performance of existing SNARKs.

11https://github.com/han0110/plonkish

33

Figure 5: Performance of different PCS over 256-bit fields. Recall that Brakedown and Basefold
are field-agnostic while Multilinear-KZG, ZeromorphFri, and BasefoldFri are not.

34

Figure 6: Performance of different PCS over (the extensions of) 64-bit fields. Recall that Basfold
is field-agnostic while BasefoldFri and ZeromorphFri are not.

35

Figure 7: Performance of different SNARKs over the same 256-bit field. Recall that Brakedown
and Basefold are field-agnostic while ZeromorphFri, MultilinearKZG, and BasefoldFri are not.

36

Figure 8: Hyperplonk[Basefold] and Hyperplonk[ZeromorphFRI] over the same 64-bit field. Note
that Basefold is field-agnostic, while ZeromorphFri and BasefoldFri are not.

37

References

[1] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepi-
eniec. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols.
Cryptology ePrint Archive, Report 2019/426. https://eprint.iacr.org/2019/
426. 2019.

[2] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. “Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”. In:
ACM CCS 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu. ACM Press, 2017, pp. 2087–2104. doi: 10.1145/3133956.3134104.

[3] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. Cryptology
ePrint Archive, Report 2022/1608. https://eprint.iacr.org/2022/1608. 2022.

[4] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “IOPs with Inverse Polynomial
Soundness Error”. In: Cryptology ePrint Archive 2023 (2023), p. 1062.

[5] Thomas Attema, Serge Fehr, and Nicolas Resch. Generalized Special-Sound Inter-
active Proofs and their Knowledge Soundness. Cryptology ePrint Archive, Paper
2023/818. https://eprint.iacr.org/2023/818. 2023. url: https://eprint.
iacr.org/2023/818.

[6] Daniel Augot, Sarah Bordage, and Jade Nardi. “Efficient multivariate low-degree
tests via interactive oracle proofs of proximity for polynomial codes”. In: Designs,
Codes and Cryptography (2022). doi: 10.1007/s10623-022-01134-z. url: https:
//inria.hal.science/hal-03454113.

[7] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking Com-
putations in Polylogarithmic Time”. In: 23rd ACM STOC. ACM Press, May 1991,
pp. 21–31. doi: 10.1145/103418.103428.

[8] Eli Ben-Sasson, Iddo Bentov, Ariel Gabizon, and Michael Riabzev. “A security anal-
ysis of Probabilistically Checkable Proofs”. In: Electron. Colloquium Comput. Com-
plex. TR16 (2016). url: https://api.semanticscholar.org/CorpusID:41937281.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed-
Solomon Interactive Oracle Proofs of Proximity”. In: Electron. Colloquium Comput.
Complex. 2017.

[10] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed-
Solomon Interactive Oracle Proofs of Proximity”. In: ICALP 2018. Ed. by Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella. Vol. 107.
LIPIcs. Schloss Dagstuhl, July 2018, 14:1–14:17. doi: 10.4230/LIPIcs.ICALP.2018.
14.

38

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://doi.org/10.1145/3133956.3134104
https://eprint.iacr.org/2022/1608
https://eprint.iacr.org/2023/818
https://eprint.iacr.org/2023/818
https://eprint.iacr.org/2023/818
https://doi.org/10.1007/s10623-022-01134-z
https://inria.hal.science/hal-03454113
https://inria.hal.science/hal-03454113
https://doi.org/10.1145/103418.103428
https://api.semanticscholar.org/CorpusID:41937281
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14

[11] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,
Report 2018/046. https://eprint.iacr.org/2018/046. 2018.

[12] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. “Scalable and
Transparent Proofs over All Large Fields, via Elliptic Curves - (ECFFT Part II)”.
In: TCC 2022, Part I. Ed. by Eike Kiltz and Vinod Vaikuntanathan. Vol. 13747.
LNCS. Springer, Heidelberg, Nov. 2022, pp. 467–496. doi: 10.1007/978-3-031-
22318-1_17.

[13] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. “Scalable and
Transparent Proofs over All Large Fields, via Elliptic Curves - (ECFFT Part II)”.
In: Theory of Cryptography - 20th International Conference, TCC 2022, Chicago,
IL, USA, November 7-10, 2022, Proceedings, Part I. Ed. by Eike Kiltz and Vinod
Vaikuntanathan. Vol. 13747. Lecture Notes in Computer Science. Springer, 2022,
pp. 467–496. doi: 10.1007/978-3-031-22318-1_17. url: https://doi.org/10.
1007/978-3-031-22318-1_17.

[14] Eli Ben-sasson, Dan Carmon, Swastik Kopparty, and David Levit. “Scalable and
Transparent Proofs over All Large Fields, via Elliptic Curves: (ECFFT Part II)”. In:
Jan. 2023, pp. 467–496. isbn: 978-3-031-22317-4. doi: 10.1007/978-3-031-22318-
1_17.

[15] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Short Interactive Oracle Proofs with Constant Query Complexity, via Com-
position and Sumcheck. Cryptology ePrint Archive, Report 2016/324. https : / /
eprint.iacr.org/2016/324. 2016.

[16] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent Succinct Arguments for R1CS. Cryptol-
ogy ePrint Archive, Report 2018/828. https://eprint.iacr.org/2018/828. 2018.

[17] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: EU-
ROCRYPT 2019, Part I. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11476. LNCS.
Springer, Heidelberg, May 2019, pp. 103–128. doi: 10.1007/978-3-030-17653-2_4.

[18] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”.
In: Theory of Cryptography Conference. 2016. url: https://api.semanticscholar.
org/CorpusID:8363041.

[19] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs.
Cryptology ePrint Archive, Report 2016/116. https://eprint.iacr.org/2016/
116. 2016.

39

https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1007/978-3-031-22318-1_17
https://eprint.iacr.org/2016/324
https://eprint.iacr.org/2016/324
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-030-17653-2_4
https://api.semanticscholar.org/CorpusID:8363041
https://api.semanticscholar.org/CorpusID:8363041
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116

[20] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”.
In: TCC 2016-B, Part II. Ed. by Martin Hirt and Adam D. Smith. Vol. 9986. LNCS.
Springer, Heidelberg, 2016, pp. 31–60. doi: 10.1007/978-3-662-53644-5_2.

[21] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. “DEEP-
FRI: Sampling Outside the Box Improves Soundness”. In: ITCS 2020. Ed. by Thomas
Vidick. Vol. 151. LIPIcs, Jan. 2020, 5:1–5:32. doi: 10.4230/LIPIcs.ITCS.2020.5.

[22] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
“Robust PCPs of proximity, shorter PCPs and applications to coding”. In: Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing. 2004, pp. 1–
10.

[23] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. “Worst-Case to Average
Case Reductions for the Distance to a Code”. In: Proceedings of the 33rd Compu-
tational Complexity Conference. CCC ’18. San Diego, California: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018. isbn: 9783959770699.

[24] Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ran-
jan Tiwari, and Michal Zajac. Fiat-Shamir Security of FRI and Related SNARKs.
Cryptology ePrint Archive, Paper 2023/1071. 2023. url: https://eprint.iacr.
org/2023/1071.

[25] Alexander R Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan
Tiwari, and Micha Zajc. “Fiat-Shamir Security of FRI and Related SNARKs”. In:
Cryptology ePrint Archive (2023).

[26] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with
Sublinear Verification from Tensor Codes”. In: TCC 2020, Part II. Ed. by Rafael
Pass and Krzysztof Pietrzak. Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020,
pp. 19–46. doi: 10.1007/978-3-030-64378-2_2.

[27] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. “Gemini: Elas-
tic SNARKs for Diverse Environments”. In: EUROCRYPT 2022, Part II. Ed. by Orr
Dunkelman and Stefan Dziembowski. Vol. 13276. LNCS. Springer, Heidelberg, 2022,
pp. 427–457. doi: 10.1007/978-3-031-07085-3_15.

[28] Sarah Bordage, Mathieu Lhotel, Jade Nardi, and Hugues Randriam. “Interactive
Oracle Proofs of Proximity to Algebraic Geometry Codes”. In: 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA. Ed.
by Shachar Lovett. Vol. 234. LIPIcs. 2022, 30:1–30:45. doi: 10.4230/LIPIcs.CCC.
2022.30. url: https://doi.org/10.4230/LIPIcs.CCC.2022.30.

[29] Benedikt Bünz and Ben Fisch. Schwartz-Zippel for multilinear polynomials mod N.
Cryptology ePrint Archive, Report 2022/458. https://eprint.iacr.org/2022/
458. 2022.

40

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.4230/LIPIcs.ITCS.2020.5
https://eprint.iacr.org/2023/1071
https://eprint.iacr.org/2023/1071
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2022/458

[30] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from DARK
Compilers”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai.
Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 677–706. doi: 10.1007/978-
3-030-45721-1_24.

[31] Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic, Mara Mi-
hali, and Justin Thaler. Testudo: Linear Time Prover SNARKs with Constant Size
Proofs and Square Root Size Universal Setup. Cryptology ePrint Archive, Paper
2023/961. https://eprint.iacr.org/2023/961. 2023. url: https://eprint.
iacr.org/2023/961.

[32] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk
with Linear-Time Prover and High-Degree Custom Gates. Cryptology ePrint Archive,
Report 2022/1355. https://eprint.iacr.org/2022/1355. 2022.

[33] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “HyperPlonk: Plonk
with Linear-Time Prover and High-Degree Custom Gates”. In: EUROCRYPT 2023,
Part II. Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer, Hei-
delberg, Apr. 2023, pp. 499–530. doi: 10.1007/978-3-031-30617-4_17.

[34] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS.
Cryptology ePrint Archive, Report 2019/1047. https://eprint.iacr.org/2019/
1047. 2019.

[35] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updat-
able SRS”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai.
Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 738–768. doi: 10.1007/978-
3-030-45721-1_26.

[36] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-Quantum and
Transparent Recursive Proofs from Holography. Cryptology ePrint Archive, Report
2019/1076. https://eprint.iacr.org/2019/1076. 2019.

[37] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. “Verifiable Se-
cret Sharing and Achieving Simultaneity in the Presence of Faults (Extended Ab-
stract)”. In: 26th FOCS. IEEE Computer Society Press, Oct. 1985, pp. 383–395. doi:
10.1109/SFCS.1985.64.

[38] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Aurora Naska. “Clone Detection
in Secure Messaging: Improving Post-Compromise Security in Practice”. In: ACM
CCS 2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna.
ACM Press, Nov. 2020, pp. 1481–1495. doi: 10.1145/3372297.3423354.

41

https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2023/961
https://eprint.iacr.org/2023/961
https://eprint.iacr.org/2023/961
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-031-30617-4_17
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2019/1076
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1145/3372297.3423354

[39] Benjamin E. Diamond and Jim Posen. Proximity Testing with Logarithmic Random-
ness. Cryptology ePrint Archive, Paper 2023/630. https://eprint.iacr.org/
2023/630. 2023. url: https://eprint.iacr.org/2023/630.

[40] Irit Dinur and Omer Reingold. “Assignment testers: Towards a combinatorial proof
of the PCP theorem”. In: SIAM Journal on Computing 36.4 (2006), pp. 975–1024.

[41] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953. https://eprint.iacr.org/2019/953.
2019.

[42] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating Compu-
tation: Interactive Proofs for Muggles”. In: J. ACM 62.4 (2015). issn: 0004-5411.
doi: 10.1145/2699436. url: https://doi.org/10.1145/2699436.

[43] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby.
Brakedown: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint
Archive, Report 2021/1043. https://eprint.iacr.org/2021/1043. 2021.

[44] Venkatesan Guruswami, Lingfei Jin, and Chaoping Xing. “Efficiently List-Decodable
Punctured Reed-Muller Codes”. In: IEEE Transactions on Information Theory 63
(2015), pp. 4317–4324. url: https : / / api . semanticscholar . org / CorpusID :

14176561.

[45] Venkatesan Guruswami and Jonathan Mosheiff. Punctured Low-Bias Codes Behave
Like Random Linear Codes. 2022. arXiv: 2109.11725 [cs.CC].

[46] Ulrich Haböck. Brakedown’s expander code. Cryptology ePrint Archive, Paper 2023/769.
https://eprint.iacr.org/2023/769. 2023. url: https://eprint.iacr.org/
2023/769.

[47] Ulrich Haböck, Daniel Lubarov, and Jacqueline Nabaglo. “Reed-Solomon Codes over
the Circle Group”. In: https://eprint.iacr.org/2023/824. 2023. url: https:
//eprint.iacr.org/2023/824.

[48] Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner. Foundations of Data
Availability Sampling. Cryptology ePrint Archive, Paper 2023/1079. https://eprint.
iacr.org/2023/1079. 2023. url: https://eprint.iacr.org/2023/1079.

[49] Ari Juels and Burton S. Kaliski Jr. “Pors: proofs of retrievability for large files”. In:
ACM CCS 2007. Ed. by Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson. ACM Press, Oct. 2007, pp. 584–597. doi: 10.1145/1315245.1315317.

[50] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commit-
ments to Polynomials and Their Applications”. In:ASIACRYPT 2010. Ed. by Masayuki
Abe. Vol. 6477. LNCS. Springer, Heidelberg, Dec. 2010, pp. 177–194. doi: 10.1007/
978-3-642-17373-8_11.

42

https://eprint.iacr.org/2023/630
https://eprint.iacr.org/2023/630
https://eprint.iacr.org/2023/630
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436
https://eprint.iacr.org/2021/1043
https://api.semanticscholar.org/CorpusID:14176561
https://api.semanticscholar.org/CorpusID:14176561
https://arxiv.org/abs/2109.11725
https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/824
https://eprint.iacr.org/2023/824
https://eprint.iacr.org/2023/824
https://eprint.iacr.org/2023/1079
https://eprint.iacr.org/2023/1079
https://eprint.iacr.org/2023/1079
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

[51] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transpar-
ent SNARKs from List Polynomial Commitment IOPs. Cryptology ePrint Archive,
Report 2019/1400. https://eprint.iacr.org/2019/1400. 2019.

[52] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. “RedShift: Trans-
parent SNARKs from List Polynomial Commitments”. In: ACM CCS 2022. Ed. by
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022,
pp. 1725–1737. doi: 10.1145/3548606.3560657.

[53] Tohru Kohrita and Patrick Towa. “Zeromorph: Zero-Knowledge Multilinear-Evaluation
Proofs from Homomorphic Univariate Commitments”. In: Cryptology ePrint Archive
2023 (2023), p. 917.

[54] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. “xJsnark: A Frame-
work for Efficient Verifiable Computation”. In: 2018 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2018, pp. 944–961. doi: 10.1109/
SP.2018.00018.

[55] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Algebraic methods
for interactive proof systems”. In: Journal of the ACM (JACM) 39.4 (1992), pp. 859–
868.

[56] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Algebraic Methods
for Interactive Proof Systems”. In: Journal of the ACM 39 (Apr. 1999). doi: 10.
1145/146585.146605.

[57] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of Correct
Computation. Cryptology ePrint Archive, Report 2011/587. https://eprint.iacr.
org/2011/587. 2011.

[58] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. “Signatures of Cor-
rect Computation”. In: TCC 2013. Ed. by Amit Sahai. Vol. 7785. LNCS. Springer,
Heidelberg, Mar. 2013, pp. 222–242. doi: 10.1007/978-3-642-36594-2_13.

[59] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-round interac-
tive proofs for delegating computation”. In: 48th ACM STOC. Ed. by Daniel Wichs
and Yishay Mansour. ACM Press, June 2016, pp. 49–62. doi: 10.1145/2897518.
2897652.

[60] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. Cryptology ePrint Archive, Report 2019/550. https://eprint.iacr.org/
2019/550. 2019.

[61] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for
succinct arguments. Cryptology ePrint Archive, Paper 2023/552. https://eprint.
iacr.org/2023/552. 2023. url: https://eprint.iacr.org/2023/552.

[62] Yi Sun, Tony L, Wen-Ding L, and gubsheep. zk-ECDSA: zkSNARKs for ECDSA
(Part 1). url: https://0xparc.org/blog/zk-ecdsa-1.

43

https://eprint.iacr.org/2019/1400
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://eprint.iacr.org/2011/587
https://eprint.iacr.org/2011/587
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://0xparc.org/blog/zk-ecdsa-1

[63] Alexander Vlasov and Konstantin Panarin. Transparent Polynomial Commitment
Scheme with Polylogarithmic Communication Complexity. Cryptology ePrint Archive,
Report 2019/1020. https://eprint.iacr.org/2019/1020. 2019.

[64] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
“Doubly-Efficient zkSNARKs Without Trusted Setup”. In: 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May 2018, pp. 926–943. doi:
10.1109/SP.2018.00060.

[65] Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Orion: Zero Knowledge Proof with
Linear Prover Time”. In: CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis and
Thomas Shrimpton. Vol. 13510. LNCS. Springer, Heidelberg, Aug. 2022, pp. 299–
328. doi: 10.1007/978-3-031-15985-5_11.

[66] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fer-
nando Krell, and Philippe Camacho. VERI-ZEXE: Decentralized Private Compu-
tation with Universal Setup. Cryptology ePrint Archive, Report 2022/802. https:
//eprint.iacr.org/2022/802. 2022.

[67] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and
Yupeng Zhang. “Doubly Efficient Interactive Proofs for General Arithmetic Circuits
with Linear Prover Time”. In: ACM CCS 2021. Ed. by Giovanni Vigna and Elaine
Shi. ACM Press, Nov. 2021, pp. 159–177. doi: 10.1145/3460120.3484767.

[68] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transparent Poly-
nomial Delegation and Its Applications to Zero Knowledge Proof”. In: 2020 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2020,
pp. 859–876. doi: 10.1109/SP40000.2020.00052.

[69] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. “vRAM: Faster Verifiable RAM with Program-Independent
Preprocessing”. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2018, pp. 908–925. doi: 10.1109/SP.2018.00013.

A Other Related Work

Polynomial Commitment Schemes. The notion of polynomial commitment schemes
was first introduced in 2010 by Kate, Zaverucha, and Goldberg [50], who construct a uni-
variate polynomial commitment scheme using bilinear groups. Polynomial commitment
schemes with knowledge soundness (that are suitable to be used in SNARKs) were in-
troduced in Marlin [34]. Several works extended the notion of polynomial commitment
schemes to the multivariate setting (e.g. [57, 69, 31]). Since then, many practical multi-
linear polynomial commitment schemes with fast provers have been introduced, including
Hyrax [64], Brakedown [43], Orion [65], and Orion+ [33].

44

https://eprint.iacr.org/2019/1020
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-031-15985-5_11
https://eprint.iacr.org/2022/802
https://eprint.iacr.org/2022/802
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP.2018.00013

Orion [65] presents a SNARK based on multilier PCS that has a linear-time prover
and polylogarithmic proof size, through the use of proof recursion, which encodes the
verifier computation into a SNARK circuit so that the prover can non-interactively prove
that the verifier will accept. However, as mentioned in [39], the Orion verifier ends up
running in linear time when compiled into a non-interactive proof via the Fiat-Shamir
transform. Furthermore, Orion is not field-agnostic - as it only achieves polylogarithmic
communication costs by using a proof system that is not field-agnostic in its recursive step.

In ECFFT2 [12], the authors present a method for using FRI over any finite field,
however it is only efficient when used within a univariate PIOP, such as STARK. To use
it within a multilinear PIOP, the runtime of their prover is asymptotically O(n log2(n)).
In a similar vein, the authors of [47] present a method for encoding a Reed-Solomon code
over the super efficient Mersenne prime finite-field GF (231 − 1), which is progress towards
eventually enabling FRI over this field. However, it has a constant overhead that cancels
out the gains of the more efficient finite field. Additionally, this solution only enables FRI
over one additional field, while our goal is to enable FRI-like IOPPs over all finite fields
while maintaining similar prover and verifier costs.

Interactive Oracle Proofs of Proximity (IOPP). The notion of IOPP was intro-
duced by [15] and [59] independently. IOPPs are analogous to PCPPs [22, 40] but with
multiple rounds: in each round, the verifier sends random challenges and the prover replies
with oracle messages; in the last round, the verifier makes oracles queries to prover mes-
sages. Both IOPPs and PCPPs can be used to test the proximity of a vector to an error-
correcting code, but interaction has the benefit of reducing the proof length and prover
complexity without compromising soundness. Two works [8, 15] present IOPPs that are
linear in the proof length but are still O(npoly(log(n))) in prover complexity. FRI [10]
improved this result and presented a linear-time IOPP for Reed-Solomon codes. The in-
troduction of FRI [10] leads to extensive study of IOPPs in the context of SNARKs. For
example, FRI was used to construct proof systems in [11, 16, 68, 67] and was used to build
polynomial commitment schemes in [17, 63, 32]. Several works study the security of the
Fiat-Shamir heuristic when applied to FRI, including [25, 5]. Additionally, there have been
works generalizing the FRI IOPP to other codes [12, 28, 6]. E.g., Ligero [3] presented an
IOPP that can be used with tensor codes, and Brakedown [43] extends this to codes that
are additionally linear-time encodable.

Interactive Oracle Proofs. Interactive Oracle Proofs are analogous to PCPs [7] but
with multiple rounds. They were introduced and formalized by Ben-Sasson, Chiesa, and
Spooner in [19], which also presented a generic compilation from IOP to Non-interactive
Argument of Knowledge in the random oracle model. The transformation can be use-
ful in compiling IOPs for polynomial evaluation relations into polynomial commitment
schemes [38, 2, 36]. Polynomial IOP [35, 30, 59] is a variant of IOP where the prover

45

messages are oracles to evaluations of polynomials. PIOPs can also be compiled into
SNARKs [33, 41, 34] from polynomial commitments or through the transformation from [19].

B Deferred Proofs

B.1 Proof of Lemma 3

Proof. In this proof, we will show that the probability that Encd(m) has more than t zeroes
is ≤ (12)

λ for non-zero m. To accomplish this, we consider the subset S ⊆ [1, nd−1] such
that m ∈ md−1(S) and then consider positions outside of S on which Encd(m) is zero. We
will show if j ̸∈ S, then the event that Encd(m)[j] = 0 is either an independent Bernulli trial
with a very small probability of success or it is an event that happens with a probability
of 0.

Let S+ = S ∪ {j + nd−1 : j ∈ S} and let ¬S+ = [1, nd] \ S+. For all j ∈ S+,
Encd(m)[j] = 0 with a probability of 1 (by definition of md−1(S)). Therefore, we know
that Encd(m) is zero everywhere on S+. To complete this proof, we need to show that the
probability that Encd(m) has more than td − |S+| zeroes at positions outside of S+ is as
stated in Equation 6. Since S+ is a set of pairs (j, j + nd−1) for j ∈ S, it follows that ¬S+

is also a set of pairs. Therefore, without loss of generality, we can reason over the set of
representatives, ¬S = [1, nd−1] \ S, and for any position j ∈ ¬S, we can refer to position
j + nd−1 when needed.

We consider the subset ¬S∗ ⊆ ¬S such that,

¬S∗ = {j ∈ [1, nd−1] \ S : Encd−1(mr)[j] ̸= 0} .

Let t = diag(T). For each j ∈ ¬S∗, set Aj = Encd−1(ml)[j] and Bj = Encd−1(mr)[j]
and define fj(x) = Aj + xBj . Note that by only considering j ∈ ¬S∗, we guarantee
that fj(x) is a non-zero polynomial since Bj is non-zero. We now consider the event that
fj(x) evaluates to 0 at either t[j] or −t[j]. Without loss of generality, we are able to
confine our analysis to ¬S∗ because for every j in ¬S but not in ¬S∗, with full certainty
that Encd(m)[j] ̸= 0, because then Aj is not zero and so fj(x) is a non-zero constant
polynomial.

For each j ∈ ¬S∗, define the random variable

Xj = 1{fj(t[j]) = 0}+ 1{fj(−t[j]) = 0}

First, we observe that Xj is an independent Bernulli Trial since t[j] is an independent
sample from F×. We now evaluate the probability mass function of the random variable
Xj . Let zj ∈ F× be the unique non-zero root of fj such that fj(zj) = 0. 1{fj(t[j]) = 0}
is equal to 1 when t[j] = zj and 1{fj(−t[j]) = 0} when t[j] = −zj . Therefore, Xj = 2
corresponds with the event that t[j] = zj = −zj , which is impossible for non-zero zj .
Xj = 1 corresponds with the event that tj is equal to either zj or −zj , which happens with

46

probability 2
|F|−1 and Xj = 0 corresponds with the event that tj is not equal to zj or −zj .

Therefore, we can write the probability mass function as follows.

PMF (Xj) =


Pr[Xj = 2] = 0
Pr[Xj = 1] = 2

|F|−1
Pr[Xj = 0] = 1− 2

|F|−1


Define the random variable X =

∑
j∈¬S∗ Xj . X has a binomial distribution with ¬S∗ trials

and success probability of 2
|F|−1 . We need to compute the probability that X ≥ td − 2|S|,

ie that there are more than td − 2|S| successess out of |¬S∗| trials, where each trial is
an independent Bernulli trial with probability 2

|F|−1 . This can be computed using the
cumulative distribution function as follows.

Pr
T←Fnd−1

[X ≥ td − 2|S|] (11)

≤
|¬S∗|∑

i=td−2|S|

(
|¬S∗|
i

)
· (2

|F| − 1
)i · (1− 2

|F| − 1
)|¬S

∗|−i (12)

≤ |¬S∗| · 2|¬S∗| · (2

|F| − 1
)td−2|S| (13)

≤ |¬S| · 2|¬S| · (2

|F| − 1
)td−2|S| (¬S∗ ⊆ ¬S) (14)

= |[1, nd−1] \ S| · 2|[1,nd−1]\S| · (2

|F| − 1
)td−2|S| (15)

= (nd−1 − |S|) · 2nd−1−|S| · (2

|F| − 1
)td−2|S| (16)

≤ nd−1 · 2nd−1−|S| · (2

|F| − 1
)td−2|S| (17)

By definition ofmd−1(S), Encd(m) is 0 at every position in S+. Therefore nzero(Encd(m)) =
X + |S+| = X + 2|S| and so Pr[nzero(Encd(m)) ≥ td] = Pr[X ≥ td − 2|S|] which is less
than or equal to nd−1 · 2nd−1−|S| · (2

|F|−1)
td−2|S| by Equation 17.

Finally, we show that for |F| ≥ 210, 2
|F|−1 ≤

2.002
|F| . We solve the following for x, where

τ = log(|F|)

2

|F| − 1
=

x

|F|
=⇒ x =

2|F|
|F| − 1

=
2τ+1

2τ − 1

The function f(τ) = 2τ+1

2τ−1 is decreasing. Therefore for τ ≥ 10, f(τ) ≤ f(10) = 211

210−1 =
2.002, which completes the proof.

47

B.2 Proof of Lemma 4

Proof. Recall that

Gd :=

[
Gd−1 Gd−1

Gd−1 · T Gd−1 · −T

]
.

The statement of the lemma assumes that Gd−1 is the generator matrix of a code such
that the encoding of any non-zero messages m ∈ Fkd−1 has fewer than td−1 zeroes. By
Lemma 2 and Lemma 3 and by definition of td := 2td−1 + ℓd, we obtain that,

Pr
diag(Td)←$(F×)nd−1

[
∃m ∈ Fkd \ {0} : nzero(Encd(m)) ≥ td

]
≤

∑
m∈Fkd\{0}

Pr
diag(Td)←$(F×)nd−1

[nzero(Enc(m)) ≥ td] (Union Bound)

≤
∑

S⊆[1,nd−1]

∑
m∈md−1(S)

Pr
diag(Td)←$(F×)nd−1

[nzero(Encd(m)) ≥ td] (
⋃

md−1(S) covers Fkd)

≤
∑

S⊆[1,nd−1]

|F|2td−1−2|S| · nd−1 · 2nd−1−|S| ·
(
2.002

|F|

)2td−1+ℓd−2|S|
(Lemma 2 and 3)

=
∑

S⊆[1,nd−1]

(
|F|
|F|

)2td−1−2|S| · nd−1 · 2nd−1−|S| · 2.0022td−1−2|S|
(
2.002

|F|

)ℓd

(Rearranging terms)

(18)

Simplifying and moving all terms that are independent of S outside the sum, Equation 18
is equal to

nd−1 · 2nd−1 · (2.002)2td−1

(
2.002

|F|

)ℓd

 ∑
S⊆[1,nd−1]

2−|S| · (2.002)−2|S|


= nd−1 · 2nd−1 · (2.002)2td−1

(
2.002

|F|

)ℓd

 ∑
x∈[0,nd−1]

(
nd−1
x

)
· 2−x · (2.002)−2x

 (19)

48

Next, we evaluate the sum in Equation 19.∑
x∈[0,nd−1]

(
nd−1
x

)
· 2−x · (2.002)−2x (20)

≤
∑

x∈[0,nd−1]

(
nd−1 exp(1)

x

)x

· (2−3x) (21)

=
∑

x∈[0,nd−1]

(
2log(nd−1)+log(exp(1))

2log(x)

)x

· (2−3x) (22)

=
∑

x∈[0,nd−1]

2x(log(
nd−1

x
)+log(exp(1))−3) (23)

=
∑

x∈[0,nd−1]

2x(log(
nd−1

x
)−1.55) (24)

The function f(x) = x(log(
nd−1

x) − 1.55) has a maximum at x = 0.126 · nd−1. Therefore
Equation 24 is less than or equal to

nd−1 · 2
0.126·nd−1(log(

nd−1
0.126nd−1

)−1.55)
= nd−1 · 21.43·0.126·nd−1 ≤ nd−12

nd−1
5.55 (25)

Therefore,

Pr
diag(Td)←$(F∗)nd−1

[∃m ∈ Fkd \ {0} : nzero(Encd(m)) ≥ td]

≤ n2
d−1 · 2nd−1 · (2.002)2td−1

(
2.002

|F|

)ℓd

· 2
nd−1
5.55

≤ n2
d−1 · 2nd(

1
2
+ 1

2·5) · (2.002)nd(1−∆Cd
) ·
(
2.002

|F|

)ℓd

(26)

Finally, by plugging in the value of ℓd in the statement of Theorem 2, the Formula 26
is no more than 2−λ, which completes the proof.

B.3 Proof of Lemma 3 (IOPP Soundness)

Proof. We first define a bad event B in the commit phase: Let (αd−1, . . . , α0) be the folding
challenges output by the verifier and let (πd, . . . , π0) be the prover oracles. Intuitively, the
bad event happens if for some i ∈ [0, d−1], the “folding” of the oracle πi+1 with challenge αi

has significantly smaller relative Hamming distance to Ci compared to the distance between
πi+1 and Ci+1. More formally, the bad event B happens if there exists i ∈ [0, d − 1] such
that

∆(foldαi(πi+1), Ci) ≤ min(∆∗(πi+1, Ci+1), Jγ(Jγ(∆Cd
)))− γ ,

49

where ∆∗ is defined in Definition 2 and foldαi(πi+1) is defined as follows: let u,u′ ∈ Fni be
the unque interpolated vectors such that

πi+1 = (u+ diag(Ti) ◦ u′,u+ diag(T ′i) ◦ u′) ,

then foldαi(πi+1) is set to
foldαi(πi+1) := u+ αi · u′ . (27)

Next, we prove that the bad event B happens with probability at most 2d
γ3|F| , which is

implied by the following corollary that adapts Corollory 7.3 from [23] to general foldable
linear codes.

Corollary 1 (Adapted from Corollory 7.3 from [23]). Fix any i ∈ [0, d−1] and any γ, δ > 0
such that δ ≤ Jγ(Jγ(∆Cd

))). Then if ∆∗(v, Ci+1) > δ then

Pr
αi←$F

[∆(foldαi(v), Ci) ≤ δ − γ] ≤ 2

γ3|F|
(28)

where foldαi(v) is defined as in Eqn. 27.

Proof. Let u,u′ ∈ Fni be the two unique vectors such that foldαi(v) = u + αiu
′. Let

U = {u+ xu′ : x ∈ F} and let Û be the set of elements in U that have distance less than
δ−γ from Ci. Assume for contradiction that |Û | > 2

γ3 . Then Theorem 4.4 from [23] implies

the existence of w′,w ∈ Ci and a subset T ⊆ [1, ni], |T | ≥ (1− δ)ni, such that w′[t] = u′[t]
and w[t] = u[t] for all t ∈ T . Since w,w′ are codewords in Ci, by definition of Ci+1, the
following is a codeword in Ci+1

cw =
(
w + diag(Ti−1) ◦w′,w + diag(T ′i−1) ◦w′

)
. (29)

Therefore, for each t ∈ T , cw agrees with v at positions t and t+ni. Therefore ∆
∗(v, Ci+1) ≤

δ, which contradicts with our assumption that ∆∗(v, Ci+1) > δ.

From Corollary 1 and by taking union bound over d folding rounds, the bad event B
happens with probability at most 2d

γ3|F| .

Next, conditioned on the bad event B doesn’t happen in the commit phase, we argue
that IOPP.query outputs reject with probability at least δ − dγ, which implies that the
verifier outputs accept in all of the ℓ independent query executions with probability at
most (1− δ + dγ)ℓ.

Fix any folding challenges (αd−1, . . . , α0) such that the bad event B doesn’t happen.
Let (πd, . . . , π0) be the prover oracles. Without loss of generality we can slightly modify the
oracle strings (πd−1, . . . , π1) (but not πd or π0) without increasing its rejecting probability
in IOPP.query. We can understand the oracle entries of (πd, . . . , π0) as the nodes of binary
trees. For every i ∈ [0, d − 1] and every µ ∈ [ni], node (i, µ) has two children (i + 1, µ),
(i + 1, µ + ni), and we say (i, µ) is a bad node if πi[µ] is inconsistent with πi+1[µ] and

50

πi+1[µ + ni] in terms of the folding operation (Eqn. 27). Note that in IOPP.query, given
a challenge query index µ ∈ [nd−1], the verifier outputs reject if and only if there is at
least one bad node in the path Qµ queried by the verifier. We modify the oracle strings
as follows: scan the tree top-down with i = 0, . . . , d − 2 and left-right with µ = 1, . . . , ni.
Whenever there is a bad node (i, µ), we reset the node values in the subtree of (i, µ) as
follows: we go from layer j = d − 1 to i + 1 and for each node in the subtree, we set the
node’s oracle string value to be consistent with their children. Note that the modification
doesn’t change oracles π0, πd and we never turn a good node into a bad node. Thus the
rejecting probability of IOPP.query never increase. Hence without loss of generality we can
assume that the oracles (πd, . . . , π0) has the form abvove. It remains to argue that the
rejecting probability of IOPP.query is at least δ − γd.

It is easy to see that after the modification, the rejecting probability of IOPP.query is
precisely

∑d−1
i=0 βi, where βi := ∆(πi, foldαi(πi+1)) is the ratio of bad nodes in layer i.

Claim 2. For every i ∈ [0, d], define δ(i) := min(Jγ(Jγ(∆Cd
)),∆∗(πi, Ci)). For all i ∈

[0, d− 1], we have
βi ≥ δ(i+1) − δ(i) − γ .

Proof. By the condition that the bad event B doesn’t happen, we have that for every
i ∈ [0, d− 1],

∆(foldαi(πi+1), Ci) > δ(i+1) − γ

On the other hand, by triangle inequality,

∆(foldαi(πi+1), Ci) ≤ ∆(fold(πi+1), πi) + ∆(πi, Ci) ≤ βi +∆∗(πi, Ci)

where the last inequality follows by Lemma 6. Rearranging the terms we have

βi > δ(i+1) −∆∗(πi, Ci)− γ . (30)

WLOG we can assume that δ(i) < δ(i+1) − γ as otherwise the claim trivially holds. This
implies that δ(i) < δ(i+1) ≤ Jγ(Jγ(∆Cd

)) and thus δ(i) = ∆∗(πi, Ci). From Eqn. 30, the
claim holds.

Recall that δ = δ(d), and ∆∗(π0, C0) = ∆(π0, C0) = 0 as otherwise the IOPP verifier
will never accept, thus δ(0) = 0. By the claim above, we have

δ = δ(d) − δ(0) =
d−1∑
i=0

δ(i+1) − δ(i) ≤
d−1∑
i=0

βi + γd ,

which implies that
∑d−1

i=0 βi ≥ δ − γd as desired and the theorem holds.

51

B.4 Proof of Lemma 9 (Path Predicate Forking Lemma)

Proof. We will first construct an expected time extractor E that repeatedly samples m←$

M and checks that A(m) = 1. It repeats this process, sampling with replacement, until
its gets N inputs m1, ...mN ∈ M such that A(mi) = 1 for all i ∈ [N]. If the probability
that A(m) = 1 over random m is exactly ϵ then E runs in expected time N/ϵ. Next, we
use E to build a new algorithm E′ that runs for time T ∈ O(λ · N/ϵ) and succeeds with
probability (1− negl(λ)). This algorithm E′ will start by running λ copies of E each for
2N/ϵ steps. Technically, E′ will not run them in parallel, but will iterate over the copies
running each for one step at a time. By Markov’s inequality, each copy terminates with
probability at least 1/2. The probability no copy terminates is less than 2−λ. So at least
one copy terminates with probability 1− 2−λ. In other words, in each step E′ is sampling
a new message mj , interpreted as the ⌊j/N⌋th message in the (j mod N)th copy of E.
Suppose towards contradictions that Φ(m1, ...,mN) ̸= 1. Let j be the smallest index for
which Φ(m1, ...mj) ̸= 1. This means there occurred an event where Φ(m1, ...,mj−1) = 1
and mj was sampled randomly resulting in Φ(m1, ...,mj) ̸= 1, an event which happens
with probability at most negl(λ). The probability it occurred in any of the T steps is at
most T · negl(λ) by a union bound.

C Minimum Relative Distance Calculation for BaseFold

Let d, k0, c ∈ N and let Cd be a (c, k0, d) random foldable linear code. Let F be a finite
field such that |F| ≥ 210. The maximum number of 0s of Cd is given by

td = 2td−1 + ℓd

Therefore, the maximum relative number of 0s in Cd, ZCd
is equal to the following rec-

curence relation

ZC0 =
1

c
,

ZCd
=

td
nd

=
2td−1
nd

+
ℓd
nd

= ZCd−1
+

1

log(|F|)− 1.001

(
2 log(nd−1) + λ

nd
+ 1.001ZCd−1

+ 0.6

)
= ZCd−1

·
(
log(|F|)− 1.001

log |F| − 1.001

)
+

1.001ZCd−1

log (|F|)− 1.001
+ (

1

log(|F|)− 1.001
) ·
(
2 log(nd−1) + λ

nd
+ 0.6

)
= ZCd−1

·
(

log(F)
log(|F|)− 1.001

)
+

(
1

log(|F|)− 1.001

)
·
(
2 log(nd−1) + λ

nd
+ 0.6

)

52

Finally, ZCd
resolves to

=

(
1

c

)(
log(|F|)

log(|F|)− 1.001

)d

+

d∑
i=1

(
log(|F|)

log(|F|)− 1.001

)d−i(
0.6

log(|F|)− 1.001
+

2 log(ni−1) + λ

ni(log(|F|)− 1.001)

)
(31)

The sum in Equation 31 only has d terms and therefore can be computed very efficiently.
To obtain the relative minimum distance, ∆Cd

, we simply subtract ZCd
from 1. The Table 1

refers to (c, k0, d)-random foldable linear codes that achieve the relative minimum distance
with probability at least (1− 2−128).

D Foldable Linear Codes as Punctured Reed-Muller Codes

Lemma 11 (Foldable Punctured Reed-Muller Codes). Let Cd be a foldable linear code with
generator matrices (G0, ..,Gd−1) and diagonal matrices (T0, .., Td−1), (T

′
0, .., T

′
d−1). Then

there exists a subset D ⊂ Fd such that Cd = {(P (x) : x ∈ D) : P ∈ F[X1, .., Xd]}, i.e. each
codeword in Cd is a vector whose elements are evaluations of a multilinear polynomial P
at each point in D.

Proof. We proceed by induction and for simplicity, we consider the case where C0 is the
repetition code. The statement is true for the base case as Enc0(m) = m||..||m is the
evaluation of a degree-0 polynomial m at c distinct points. For the inductive hypothesis,
suppose that for i < d, there exists a set, Di such that Ci = {(P (x) : x ∈ Di) : P ∈
F[X1, .., Xi]}. Without loss of generality, we index elements of Di by arbitrarily assigning
an integer j ∈ [1, c · 2i] to each element in Di. We will denote xj as the jth element of Di

according to this ordering.
Let t = diag(Ti), t

′ = diag(T ′i), ni = c · 2i,v ∈ F2i+1
and let P ∈ F[X1, .., Xi+1] be the

polynomial with the elements of v as coefficients. Finally, let Pl, Pr ∈ F[X1, .., Xi] such
that P (X1, .., Xi+1) = Pl(X1, .., Xi) +Xi+1 · Pr(X1, .., Xi). Then,

Enci+1(v)

= Enci(vl) + diag(Ti) ◦ Enci(vr) || Enci(vl) + diag(T ′i) ◦ Enci(vr) (32)

= (Pl(x1), .., Pr(xn)) + diag(Ti) ◦ (Pr(x1), .., Pr(xn)) (33)

|| (Pl(x1), .., Pr(xn)) + diag(T ′i) ◦ (Pr(x1), .., Pr(xn))

= (Pl(x1) + t1Pr(x1), · · · , Pl(xn) + tnPr(xn), Pl(x1) + t′1Pr(x1), · · · , Pl(xn) + t′nPr(xn)
(34)

= (P (x1, t1), .., P (xn, tn), P (x1, t
′
1), .., P (xn, t

′
n)) (35)

where Equation (11) follows from Protocol 1, Equation (12) follows from the inductive
hypothesis, Equation (13) follows from the definition of hadamard product and Equation
(14) follows from definition of P . Thus, we set
Di+1 = {(x1, t1), .., (xn, tn), (x1, t

′
1), .., (xn, t

′
n)}, which completes the proof.

53

E FRI as a foldable linear code

Let D be a multiplicative cyclic group of order n with generator g, where n is a power of
2. Let M be a Vandermonde matrix over D for degree-d polynomials. By definition of
Vandermonde matrix, for each j ≤ n, i ≤ d, M [i, j] = (gj)i = gj·i. We consider i ≤ d such
that i = 2i′ for i′ ≤ ⌊d/2⌋. Then M [i, j] = M [i, j + n/2] because

M [i, j] = gij = g2i
′j

M [i, j + n/2] = g2i
′(j+n/2) = g2i

′j · g2i′·n/2 = g2i
′j · gni′ = g2i

′j

Furthermore, looking at each individual column j ≤ n, consider odd i such that i =
2i′ + 1 for i′ ≤ ⌊d/2⌋. Then

M [i, j] = g(2i
′+1)j = g2i

′j+j = g2i
′j · gj

Thus, each column vector M[·, j] is equal to (g0, gjg0, g2, gjg2...g⌊d/2⌋gj).
We create a matrix, M ′ as follows:

M ′ =

[
Meven

Modd

]
where Meven are the even rows of M and Modd are the odd rows of M . Then each column
vector of M[·, j] is equal to (Meven[·, j], gj ·Meven[·, j]). Since for all j ≤ n/2, Meven[j] =
Meven[j + n/2], we set Md−1 to be the first n/2 columns of Meven and so

M ′ =

[
Md−1 Md−1

Md−1 · T1 Md−1 · T2

]
where T1, T2 are two diagonal matrices such that diag(T1) = (g0, .., gn/2) and diag(T2) =
(gn/2+1, .., gn−1).

54

	Introduction
	Polynomial Commitment Schemes from Error Correcting Codes
	Our Contributions
	Improvements in Concrete Performance

	Overview
	Other Related Work
	Error Correcting Codes
	Polynomial Commitment Schemes

	Roadmap

	Preliminaries
	Interactive Oracle Proofs and Polynomial Commitments

	Fast Linear Code from Foldable Distributions
	Proof of Relative Minimum Distance

	BaseFold : IOPPs for Foldable Codes
	Multilinear Polynomial Commitments From BaseFold
	Security Proofs

	Experiments
	Analyzing the Tradeoff Between Prover and Verifier

	Other Related Work
	Deferred Proofs
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 3 (IOPP Soundness)
	Proof of Lemma 9 (Path Predicate Forking Lemma)

	Minimum Relative Distance Calculation for BaseFold
	Foldable Linear Codes as Punctured Reed-Muller Codes
	FRI as a foldable linear code

