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Abstract

When outsourcing a database to an untrusted remote server, one might want to verify the
integrity of contents while accessing it. To solve this, Blum et al. [FOCS ‘91] propose the notion
of memory checking. Memory checking allows a user to run a RAM program on a remote server,
with the ability to verify integrity of the storage with small local storage.

In this work, we define and initiate the formal study of memory checking for Parallel RAMs
(PRAMs). The parallel RAM model is very expressive and captures many modern architec-
tures such as multi-core architectures and cloud clusters. When multiple clients run a PRAM
algorithm on a shared remote server, it is possible that there are concurrency issues that cause
inconsistencies. Therefore, integrity verification is even more desirable property in this setting.

Assuming only the existence of one-way functions, we construct an online memory checker
(one that reports faults as soon as they occur) for PRAMs with O(logN) simulation overhead
in both work and depth. In addition, we construct an offline memory checker (one that reports
faults only after a long sequence of operations) with amortized O(1) simulation overhead in both
work and depth. Our constructions match the best known simulation overhead of the memory
checkers in the standard single-user RAM setting. As an application of our parallel memory
checking constructions, we additionally construct the first maliciously secure oblivious parallel
RAM (OPRAM) with polylogarithmic overhead.
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1 Introduction

Consider a large database outsourced to an untrusted remote storage server. A fundamental cryp-
tographic property one might hope to achieve in this setting is integrity verification, i.e., the ability
to verify that the server has not tampered with the contents of the storage. For example, if a
hospital stores its patients’ medical records on a database, the reliability of the records is crucial.
Moreover, the use of cloud servers to store personal information (e.g. email, digital photographs,
etc.) is widespread. For all of these applications, it is important to guarantee the integrity of the
contents of the storage.

In the setting where a user outsources a static database, they can simply authenticate the database
to ensure integrity. However, when the user outsources a database which also has to dynamically sup-
port updates, integrity verification becomes more complicated. This is in fact the problem of memory
checking, which was first introduced by Blum, Evans, Gemmel, Kannan and Naor [BEG+91].

In the memory checking setting, a user U would like to run a RAM program on a remote storage S.
A memory checker is a layer between the user U and remote storage S, as shown in Figure 1a. The
user U sends read and write requests to M, and M then sends its own read and write requests to
the unreliable storage S. The checkerM then uses the responses from the server and its own small
private local storage to determine if S responded correctly and send the correct response to U . If S
sends an incorrect response, the checkerM reports that S was faulty and aborts.

There are two main efficiency metrics for memory checking: the work blowup (the ratio of the number
of physical accesses byM per underlying logical query made by U), and the space complexity of the
local private storage ofM. Using an authentication tree [Mer90, BEG+91], it is possible to achieve
O(logN) work blowup with O(1) word space complexity.

The memory checking model of Blum et al. has been well studied [BEG+91, Ajt02, NR09, DNRV09,
PT11] and has found many real-world and theoretical applications. For example, many secure
enclaves such as AEGIS and Intel SGX [CD16] support the integrity verification of external memory.
On the theoretical side, memory checking has been used to obtain proofs of retrievability [SW13]
and maliciously secure oblivious RAM (ORAM) constructions [RFY+13, MV23].

Integrity verification with multiple users. One can also ask if integrity verification can be
done in a setting where there are multiple users executing a parallel RAM (PRAM) algorithm on
a shared remote storage. The PRAM model is a generalization of the RAM model that allows
for parallel batches of operations to be made to the server. The PRAM model captures many
emerging technologies. For example, it can model multiple users sharing a common cloud server to
perform some shared computation, or multiple processors running within a single multicore system.
One can also imagine multiple entities (e.g. hospitals) sharing a single shared database that they
dynamically and independently update. Due to its generality, many recent works have studied
cryptography in the PRAM setting, such as Oblivious PRAM (OPRAM), Garbled PRAM, and
more [BCP16, CCC+16, CLT16, LO17].

In the parallel setting, integrity verification can also be useful to ensure that the various entities
have a consistent and most up-to-date view of remote storage. Therefore, it seems natural to extend
memory checking to the parallel setting.
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1.1 Our Contributions

In this work, we initiate the formal study of memory checking for PRAM programs. We first define
memory checking notions for PRAMs by generalizing the definitions of Blum et al. Throughout this
section, N is the size of shared remote storage with word size w, and 1 ≤ m ≤ N is the number of
users.

U M S

(a) Memory checking model for RAMs as defined by
Blum et al. [BEG+91]. Here, user U is accessing
a remote storage S. Memory checker M is a layer
between C and S that ensures the correctness of the
responses from S.

U1

U2

M1

M2

S

...
...

Um Mm

(b) Memory checking model for PRAMs. Here,
U1,U2, . . . ,Um are CPUs that simultaneously ac-
cess a server S. To ensure the correctness of
the server’s responses, we have memory checkers
M1,M2, . . . ,Mm as an interface for the clients
U1, . . . ,Um, and the memory checker communicates
with the server S to ensure the correctness of the
server’s responses.

Figure 1: Memory checking models for RAMs and PRAMs.

In this model, we assume that each user Ui interfaces with a checkerMi to interact with the server
(see Fig. 1b). For every batch of logical queries from {Ui}i, the checkers {Mi}i produce batches
of physical requests to the S. While the checkers {Mi}i can use shared private randomness to
generate a secret state (e.g. authentication keys) before the start of the memory checking protocol,
they are not allowed to communicate directly to each other after the start of the protocol. These
users can still communicate with each other through the server in an authenticated manner. This is
the most general setting because it does not require any reliable communication channels between
the checkers. Note that however, our model does not prevent the users Ui from communicating with
each other, but it is general enough to accomodate users that do not communicate with each other.
We formalize this model in Section 4.

We focus on three main PRAM models: exclusive-read exclusive-write (EREW), concurrent-read
exclusive-write (CREW) and concurrent-read concurrent-write (CRCW). In the first model, we
assume that at most one user accesses any index of the remote storage at any parallel time step. In
the CREW model, we allow concurrent read accesses to any location, but only one user can access
any given location for a write. Finally, in the CRCW model we allow concurrent reand and write
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accesses to memory locations, where we resolve write-conflicts according to some pre-determined
rule (e.g. an arbitrary user wins any write. See Section 3 for more examples). Our results apply to
most natural conflict-resolution rules.

Efficiency metrics. Like Blum et al., we are interested in minimizing work blowup (i.e. the ratio
of the number of physical queries for every batch of logical queries) and space complexity of each
Mi. Moreover, an additional complexity measure we hope to minimize in the case of PRAMs is
depth or parallel complexity blowup. In other words, for each parallel batch of instructions from the
users {Ui}i, we hope to minimize the number of parallel batches of instructions from {Mi}i. For all
constructions in this work, the blowup in server space storage is O(1).

The problem with concurrency. As we detail in Section 2, allowing concurrent reads and writes
makes the memory checking problem more challenging. In the standard RAM setting (as in Fig. 1a),
the problem of memory checking boils down to checking whether a server returns corrupted data
when U performs a read. In the CRCW PRAM setting, we also run into problems concurrency issues
with writes. If multiple users attempt to write to the same address, S essentially gets to choose
which user wins the write. However, nothing prevents S from pretending that multiple different
writes were accepted. For example, if U1 and U2 both write to some address addr, the server can
now branch the memory into two versions - one with U1 winning the write, and one with U2 winning
the write. Therefore, we need to ensure that S does not branch the memory and instead commits
to a single consistent memory across all users.

Online memory checking for PRAMs. The notion of memory checking defined above is known
as online memory checking since noMi sends incorrect responses to its user, i.e. the correctness of
responses is ensured in an online manner. In particular, if the server sends an incorrect response
to some Mi, there exists some Mj (possibly different from Mi) which will abort before Mi sends
any response to Ui.
In the standard single-user RAM setting, one can implement online memory checkers with collision-
resistant hash functions (CRHFs) following the Merkle-tree paradigm [Mer90] with O(logN) work
blowup. Blum et al. [BEG+91] show a tree-based memory checker with O(logN) overhead which
can be instantiated with message authentication codes (MACs). At a high level, the construction
maintains a binary tree where the leaf nodes correspond to the elements of the underlying database.
Every leaf node is given a counter value keeping track of the number of times the associated database
entry is updated. Every non-leaf node contains the sum of the counts of its children nodes. M keeps
track of the value at the root node. Every node is authenticated, and any read to any node is verified.
If U performs a write to some entry, the counts along the corresponding path are incremented. If
U performs a read to some database entry, M traverses the path to the corresponding leaf node.
While doing so, M verifies the consistency of the counts of the nodes on the path. Since every
node is authenticated, one can argue that any adversarial behavior from the server can be detected
because either the authentication verification fails, or the counts are inconsistent. Since the binary
tree has O(logN) height, this introduces an O(logN) simulation overhead. We refer the reader to
Section 2 for more details on this construction.
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There is no known construction beating the O(logN) overhead. Moreover, Dwork, Naor, Rothblum
and Vaikuntanathan [DNRV09] showed a Ω(logN/ log logN) lower bound on the blowup for mem-
ory checkers which are deterministic and non-adaptive - capturing most known memory checkers.
Therefore, this is essentially the best work blowup one can hope for.

One can imagine that by serializing a given PRAM algorithm (i.e. at each time-step, exactly one user
accesses the server), one can adapt a tree-based online memory checker such as the construction of
Blum et al. [BEG+91] or a Merkle tree [Mer90]. However, this gives a memory checking construction
with O(logN) work blowup and O(m logN) depth blowup. While the work blowup matches that
of memory checking for RAMs, the depth blowup is in fact equal to the total work, and does not
capitalize on the parallelization capabilities of our model. Therefore, one can ask if it is also possible
to also achieve an O(logN) depth blowup. In this work, we show that this is indeed possible.

Theorem 1.1 (Informal version of Theorem 5.4). Assuming the existence of one-way functions,
there exists an online memory checking protocol with O(logN) work blowup, O(logN) depth blowup
and O(1) local space complexity per checker.

We remark that if the underlying algorithm is EREW or CREW, the access pattern of the resulting
memory checking protocol is also EREW or CREW respectively when interacting with an honest
server.

Naor and Rothblum [NR09] show that one-way functions are in fact necessary for online memory
checking for RAM programs, and hence this assumption is also necessary for our result. Moreover,
when we consider the special case where m = 1, our result reduces to memory checking for RAM
programs, and our efficiency in fact matches the best known memory checkers [BEG+91, DNRV09,
PT11].

The starting point of our construction is the authentication tree of Blum et al. [BEG+91]. However,
there are two main technical difficulties that arise when directly implementing their construction.
Firstly, since multiple elements of the database might be accessed in the same batch of queries, this
could result in many read-write conflicts when updating the internal nodes of the tree. Secondly, if
the underlying algorithm performs concurrent accesses, as previously mentioned, the server could
potentially branch the history by showing multiple incompatible versions of the storage to different
users. Therefore, we have to ensure that all the users view exactly one consistent copy of the
authentication tree.

To solve the first problem, we simply introduce a simple tie-breaking rule. If two CPUs in charge
of two children nodes want to update the parent node at the same time, we give the left node
priority. This ensures that in an honest execution, at most one CPU attempts to update any given
internal node of the authentication tree. To avoid the branching-history problem, we use a counting
technique. Essentially, in addition to updating the counters of the leaf nodes of the authentication
tree, each CPU also locally keeps track of whether it successfully executed a write (i.e. if its write
won the conflict resolution rule). Once the counts are propagated through the the authentication
tree, we can then verify that the number of successful writes recorded at the root node corresponds
to the total number of CPU writes. If the server tells more than one client that they “won”, we
argue that we will detect a discrepancy. We discuss our techniques in further detail in Section 2.
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Offline memory checking for PRAMs. Blum et al. [BEG+91] also suggest a weaker notion of
memory checking known as offline memory checking. An offline checker gives a weaker guarantee
that after a long sequence of operations to the storage, it can detect whether there was any faulty
response from the storage. To contrast with online memory checking, we note that it is possible
that some Mi sends back an incorrect response to Ui, but by the end of the algorithm, with high
probability, someMj (not necessarily the same asMi) reports that some mistake has occurred.

Model CPUs Total Work Total Parallel Depth Assumption Reference
RAM 1 O(q +N) - None [BEG+91, DNRV09]
RAM 1 O(q +N) - OWF [MV23]

EREW m O(q +N) O(d+N/m+ logm) None Theorem 6.4
CRCW/CREW m O(q +N + dm logm) (d logm+N/m+ logm) None Corollary 6.5
CRCW/CREW m O(q +N) O(d+N/m+ logm) OWF Theorem 7.3

Table 1: Consider offline checking for a storage of size N with a m-user database. Here, we are
given an underlying PRAM program with q queries and depth d over a database of size N , and the
table represents the work and parallel complexity of the communication with the remote storage after
applying an offline memory checker.

The main benefit of an offline checker is that it is possible to achieve an amortized work blowup of
O(1). In fact, Blum et al. showed that there exists a statistically secure offline memory checker with
amortized O(1) query complexity, i.e. even a computationally unbounded remote server S cannot
fool the memory checker with high probability. To achieve this, they use ϵ-biased hash functions as
constructed by Naor and Naor [NN90]. The work of Arasu et al. [AEK+17] alludes to the fact that
this algorithm is parallelizable for EREW programs1. We give a formal exposition of the algorithm
and prove that this is in fact the case.

Theorem 1.2 (Informal version of Theorem 6.4). There exists a statistically secure offline memory
checker for EREW PRAM algorithms with amortized O(1) blowup in work and parallel complexity.

Since all CREW and CRCW programs can be emulated in the EREW model with logarithmic
overhead in work and parallel complexity, this additionally gives us a statistically secure memory
checker for CREW and CRCW PRAM programs as well. However, the amortized blowup of such a
scheme is O(logm) in terms of work and depth.

To achieve O(1) amortized complexity, we instead draw inspiration from the offline memory checking
construction of Mathialagan and Vafa [MV23] which relies on authentication.

Theorem 1.3 (Informal version of Theorem 7.3). Assuming the existence of one-way functions,
there exists an offline memory checker with amortized O(1) work blowup and amortized O(1) depth
blowup.

The main difficulty in obtaining this result once again is ensuring that the adversary does not branch
the memory (i.e. by accepting different concurrent writes from the perspective of multiple users).
To resolve this issue, we carefully extend our counting argument from our online memory checking
construction to the offline setting as well. Additionally, authentication seems to be necessary to

1Arasu et al. [AEK+17] ultimately instantiate the algorithm of Blum et al. [BEG+91] with pseudorandom
functions.
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prevent any “spoofing” attacks from the server. We elaborate our techniques in Section 2. We state
the exact work and parallel overhead of our offline checkers in Table 1.

Relaxing the parallelization requirements. Just like the RAM model, the PRAM model is
rather idealized and abstracts out many practical considerations such as sychronization. In the
respective sections (Remarks 5.3 and 7.2), we argue that the memory checking algorithms are
flexible and can in fact be generalized to work with some notion of “rounds” without the need for
synchronization.

Application to Oblivious Parallel RAM (OPRAM). Oblivious RAM is a primitive which
takes a sequence of RAM queries to a server and transforms the access pattern to remove any in-
formation leakage to the server. As a general technique to ensure privacy of RAM computations,
ORAM has many applications including cloud computing, multi-party protocols, secure processor
design, and private contact discovery, the latter as implemented by the private messaging ser-
vice Signal [SCSL11, FDD12, LO13, WHC+14, BNP+15, FRK+15, GHJR15, LWN+15, ZWR+16,
DFD+21, Con22].

Boyle, Chung and Pass [BCP16] extended this notion to the parallel RAM setting, and defined the
notion of an Oblivious Parallel RAM (OPRAM). OPRAM is a compiler that allows multiple users
to interact with a remote server concurrently in a privacy-preserving way. After a series of works
[BCP16, CCS17, CGLS17, CS17], the work of Asharov et al. [AKL+22] constructed an OPRAM
with O(logN) blowup.

Theorem 1.4 (Informal, [AKL+22]). Assuming the existence of one-way functions, there exists an
arbitrary CRCW OPRAM scheme with O(logN) blowup in both work and depth.

Asharov et al. [AKL+22] additionally show that their construction is optimal when the number of
CPUs m = O(N0.99).

However, this OPRAM construction is only known to be secure in the honest-but-curious setting,
where the adversary answers all read and write queries honestly. In reality, the adversary can do
a lot more. If the adversary tampers with the database contents and returns corrupted responses,
the OPRAM scheme may no longer be secure. We say that an OPRAM is maliciously secure if it
is secure even against tampering adversaries.

Several works [GO96, RFY+13, MV23] have noted that composing memory checkers with ORAM
constructions is sufficient to obtain malicious security. By a similar argument, we can combine our
PRAM memory checker with the optimal OPRAM of [AKL+22] to obtain the following result.

Theorem 1.5 (Informal version of Theorem 8.11). Assuming the existence of one-way functions,
there exists a maliciously secure arbitrary CRCW OPRAM scheme with O(log2N) blowup in both
work and depth.

To the best of our knowledge, this is the first maliciously secure OPRAM construction with poly-
logarithmic overhead.

In the case of ORAMs, Mathialagan and Vafa [MV23] were able to intricately interleave offline and
online memory checking for RAMs with the optimal ORAM construction of Asharov et al. [AKLS21]
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to avoid the additional log factor from memory checking, and obtained a maliciously secure ORAM
with optimal logarithmic overhead. We believe that our offline and online PRAM memory checking
constructions can also be similarly used to obtain a more efficient maliciously secure OPRAM. We
leave this for future work.

1.2 Related Work

We will compare our model and results to some related work.

Byzantine agreement and distributed consensus. Our model differs from the traditional
distributed algorithms setting for Byzantine agreement [PSL80] crucially because our model has no
reliable communication channels between the users. The only way the users can communicate with
each other in our setting is through an unreliable remote server. We also assume that the users
are trusted. On the other hand, the focus in many works in Byzantine agreement and consensus
[PSL80, DS83, FL82, FLM86] in the presence of faulty/malicious users. For example, in work of
Dolev and Strong [DS83], all communication channels are thought to be reliable (i.e. no spoofing
attacks), but authentication is still useful in ensuring malicious users cannot introduce new messages
in the information exchange.

Parallel memory checking. In the work of Papamanthou and Tamassia [PT11], they consider
the parallel complexity of memory checking for a RAM program. In other words, a single user makes
an update to the remote storage, but the memory checker itself is able to send parallel batches of
requests to the remote storage. Instead, our work focuses on allowing many users to concurrently
access a shared database.

1.3 Organization

In Section 2, we discuss the main technical challenges of memory checking with concurrency, and
give an overview of our memory checking algorithms. In Section 3, we define the RAM and PRAM
models, and introduce cryptographic primitives that we use in our construction. In Section 4, we for-
mally define the memory checking model for parallel RAMs. In Section 5, we give our online memory
checking construction. In Section 6, we construct a statistically-secure offline memory checker for
EREW algorithms with amortized O(1) complexity. In Section 7, we construct a computationally-
secure offlime memory checker for CRCW with amortized O(1) complexity. In Section 8, we show
how we can apply our memory checking techniques to obtain a maliciously secure oblivious parallel
RAM construction with logarithmic overhead.

2 Technical Overview

In this section, we give an overview of our constructions in the EREW setting. We then highlight
the core difficulties that arise in the CRCW setting due to the concurrency, and describe how we
deal with these issues.
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2.1 Overview of our constructions

First, we give an overview of our algorithms. For simplicity, we first consider the case where the
underlying PRAM program satisfies the EREW model.

Authentication trees. For our online memory checking construction, we follow the authenti-
cation tree paradigm for RAM models [Mer90, BEG+91]. We first recall the memory checking
construction of [BEG+91] for RAMs. At a high level, an authentication tree stores the database at
the leaves of a binary tree. At the leaves, the version number (i.e. the number of updates made) of
every element is stored along with contents of the memory location. The parents of the leaf nodes
then contain the sum of the version numbers of its two children. Every subsequent internal node
contains the sum of the counts on both of its children. Every node is authenticated. The memory
checker then keeps track of the count stored at the root node at any point in time. The main
invariant maintained is that if the server functions honestly, then the count stored at any internal
node is the sum of the counts of its two children.

When a user wants to read a memory location, the checker verifies the counts of all the elements
from the root to the corresponding leaf node, and ensures that the count is in fact the sum of the
counts of its children. When a user writes to a memory location, it increments the counts of all
nodes on the path from the leaf to the root. At a high level, this is secure because by the security
of MACs, the server S can only present “stale” values with lower counts. Since we know the count
of the root node reliably, one can always detect a replay attack.

Authentication trees for PRAMs. When extending this construction to EREW or CREW
PRAMs, we run into the issue that if many leaf values are updated in parallel, there will be many
conflicts at the internal nodes of the tree. If we serialize the updates (i.e. one update is made at a
time), the depth complexity of the algorithm blows up by O(m logN).

In order to update the tree in parallel, we introduce a tie-breaking rule to ensure at most one checker
updates any internal node in the tree. For EREW/CREW algorithms, clearly at most one checker
updates any leaf node. After updating the leaf nodes, we now have to propagate the updated counts
to the rest of the tree. To ensure that the nodes at the next level have a unique CPU assigned, we
always give priority to the CPU that updated the left child. In other words, the CPU associated to
the right child first checks if the left child was updated (e.g. by checking a time-stamp). If so, the
CPU in charge of the left node is now in charge of the parent node. Otherwise, the CPU in charge
of the right node is now in charge of the parent. We use a similar rule to assign a checker to any
parent. It is clear that this can be done in an EREW manner with O(1) blowup in time-complexity.

At the end of each iteration, the algorithm then tallies the number of checkers that made updates
to the database at a given time-step (can be done in O(logm) depth), and verifies that the root
node count has in fact increased by that amount. This ensures that all internal nodes were in fact
increased consistently. For a full exposition of this algorithm, see Section 5.

Offline memory checking. We now describe our offline memory checking construction from
one-way functions, once again in the context of EREW algorithms. We draw inspiration from the
counting-based argument of Mathialagan and Vafa [MV23].
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At a high level, every memory location stored on the server is tagged with a version number (i.e.
the number of times that element was udpated). Whenever a checker reads or writes to a memory
location, it writes back to the memory location with the version number incremented. The checker
also locally increments a counter. Note that we authenticate every read and write to this server. In
the offline setting, since reads and writes both result in updates to a memory location, the CREW
model and CRCW model both have CRCW offline-checkers.

At the end of the sequence of operations, the checkers sum the version numbers of all the elements
on the server, and compares this to the sum of the local counters of all the checkers. By the security
of MACs, we have that the sums are equal only if the server succeeds in forgery or if the server did
not corrupt any of the responses. For a full exposition and proof of correctness, see Section 7.

2.2 Main Challenges with Concurrency

We now describe the subtleties that arise in the CRCW model that do not show up in the RAM or
EREW/CREW PRAM model.

Concurrent reads and writes. In the arbitrary CRCW PRAM model, multiple users are able
to write to the same location at any point in time. For example, suppose both U1 and U2 try to
write values v1 and v2 respectively to some address addr. Then, a malicious storage server S could
essentially branch the storage into two states: a state where location addr contains v1, and a state
where location addr contains v2 instead. Therefore, our memory checking protocol must account
for this, and force the server to commit to one consistent memory2. Note that this may not be a
problem for conflict resolution rules such as priority CRCW which uniquely determines the CPU
that “win” the concurrent write.

Preventing spoofing attacks. On the other hand, one can also imagine that a server could
block a memory location addr that some user Ui wishes to update, by “spoofing” some other user
Uj . Therefore, the server can repeatedly do this and block every memory location. However, this
attack can be prevented by using authentication. This fundamentally seems to be the reason we
are unable to obtain a statistically secure CRCW offline memory checker with O(1) amortized work
blowup.

Note that both of the above attacks do not appear in the EREW PRAM algorithms, since every
memory checker knows that there will be no conflict during a read or a write.

2.3 Our Techniques for Concurrency

Although dealing with memory branching seems like a daunting task, we show how one can use
authentication along with a simple counting argument to prevent branching in both our offline and
online memory checking constructions. We give a high-level overview of our counting technique.

2In other words, we want a single “sacred timeline” that every user sees, in the language of the Marvel television
series Loki.
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In both of our online and offline checking constructions, every address is tagged with a version
number count, initialized to 0 at the start of the algorithm. This version number keeps track of the
number of times the location was accessed. We instantiate every write in a few phases. At parallel
time-step t, we do the following:

1. Test phase: First, every user Ui reads from their desired location addr to retrieve the version
number count of the location. Then, every Mi attempts to write to its desired address, with
a test flag set. The Mi also tags their data with the time-step t, user ID i and increases the
version number of count.

2. Winner phase: Now, every checker reads the same location again to determine if they “won”
the concurrent write.

• If Ui in fact “won” the write (i.e. the storage S reports back with their write),Mi writes
back the contents with the test flag set to false.

• If Ui did not “win” the write, Mi ensures that the winning user Uj in fact set the test
flag to false, set the time-step to t, and has a consistent count value.

By authenticating all writes with a shared secret MAC key, one can be sure that the server is not
spoofing fake writes. Additionally, the verification of the “test” flag ensures that there are no cycle
of winners. In other words, we prevent the scenario where user Ui1 receives the signal that Ui2 won,
Ui2 receives the signal that Ui1 won. While this prevents a spoofing attack, this does not yet prevent
branching in memory.

Throughout the algorithm, every Mi keeps track of the number of concurrent writes it has won.
Let C be the sum of the highest version numbers of all memory locations, and let M be the sum of
the number of concurrent writes won by all M1,M2, . . . ,Mm. Assuming unforgeability of MACs,
our key observation is that C = M if and only if the server responded with respect to a “consistent
version” of the storage to all users. In fact, if the server lies at any point, it must be the case that
at the end of the algorithm, C < M . We formalize this argument in the proofs of Theorem 5.4 and
Theorem 7.3.

3 Preliminaries

Throughout this work, we let λ be the security parameter. In all of these constructions, we assume
the adversary or the server S runs in time poly(λ). We say that a function negl : N → R+ is
negligible if for every constant c, there exists Nc such that negl(λ) < λ−c for all λ > Nc. For an
integer n ∈ N, we denote by [n] the set {1, 2, . . . , n}. We use the notation (x, y) or (x||y) to indicate
string concatenation of x and y.

3.1 Parallel RAM Machines

RAM machines. A RAM is an interactive turing machine with memory mem containing N
logical addresses where each memory cell indexed by addr ∈ [N ] contains a word of size w. The RAM
supports read and write operations. Read operations are of the form (read, addr,⊥) where addr ∈
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[N ], the RAM returns the contents of mem[addr]. Write operations are of the form (write, addr, v),
in which case the RAM updates the contents of mem[addr] to be v. As standard in previous works,
we assume that word-level addition, Boolean operations and evaluating PRFs can be done in unit
cost.

In this work, we generally set w = ω(log λ). While this is not standard for the RAM model, many
memory checking constructions implicitly operate in this setting since most construction use MACs
or CRHFs, which need to be of size ω(log λ) to be secure against poly(λ) adversaries. For a detailed
discussion, see Section 2.4 of Mathialagan and Vafa [MV23].

Parallel RAM machines. A parallel RAM (PRAM) is a generalization of a RAM but with
multiple CPUs. In fact, a RAM is simply a PRAM with exactly 1 CPU. A PRAM comprises m
CPUs and a shared memory mem containing N logical addresses where each memory cell indexed
by addr ∈ [N ] contains a word of size w. Just like RAMs, we assume the word-level operations such
as word-level addition, Boolean operations and evaluating PRFs can be done in O(1) time.

At time step t of the execution, each CPU might compute some request I⃗
(t)
i = (op, addr, data).

Then, the RAM receives a sequence of requests I⃗(t) := (I
(t)
i : i ⊆ [m]) (i.e. a set of requests from a

subset of the CPUs). If opi = read, then CPUi receives the contents of mem[addri] at the start of
time-step t. If opi = write, then the contents of mem[addri] are updated to datai.

Write conflict resolution. In the PRAM model, it is possible that multiple CPUs attempt to
access a given address at the same time. If a PRAM algorithm guarantees that any address is
accessed by at most one CPU at any given time-step, we say that the algorithm is exclusive-read
exclusive-write (EREW). If CPUs can concurrently read any address but at most one CPU writes to
an address at any given time-step, we say the algorithm is concurrent-read exclusive-write (CREW).

On the other hand, if there are multiple concurrent accesses to the same address for both reads and
writes, we call this the concurrent-read concurrent-write (CRCW) model. Since many CPUs can
perform a write to the same address, we need a conflict resolution rule so that the PRAM update
operations are well-defined. Here are a few commonly used rules:

• Arbitrary CRCW: An arbitrarily chosen CPU wins a write.

• Priority CRCW: Processors are ordered by some fixed priority, and the processor with the
highest priority wins any write.

• Maximum/Minimum CRCW: The write with the maximum or minimum value is accepted.

It is well known that a CREW or CRCW algorithm can be transformed into an EREW algorithm
with a logarithmic slow-down.

Lemma 3.1. Consider a (possibly randomized) CREW/CRCW algorithm with work q and depth d
on a m-processor PRAM. Such an algorithm can be converted into an EREW algorithm with work
O(q + dm logm) and depth O(d logm) on an m-processor PRAM.

Throughout our paper, we often use the following fact about the parallel runtime of adding n
numbers.
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Lemma 3.2. There is an m-CPU EREW algorithm that sums n numbers with O(n) work and
O(n/m+ logm) depth.

This is done as follows. First, each of the m processors sums n/m of the numbers. This step takes
O(n) work and O(n/m) depth. Then, the m CPUs publish their current m values, and these are
then summed up in a binary tree fashion. This step takes O(m) work and O(logm) depth.

3.2 Authentication

In this section, we define the cryptographic primitives we need, such as pseudorandom function
families (PRFs) and message authentication codes (MACs). Recall that we consider the setting
where the word-size w = ω(log λ).

Definition 3.3 (Pseudorandom functions (PRFs)). Let PRF be an efficiently computable function
family indexed by keys sk ∈ {0, 1}ℓ(λ), where each PRFsk takes as input a word x ∈ {0, 1}w and
outputs a value y ∈ {0, 1}w. A function family PRF is secure if for every (non-uniform) PPT A, it
holds that ∣∣∣∣ Pr

sk←{0,1}ℓ(λ)

[
APRFsk(·)(1λ) = 1

]
− Pr

f←Fw

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ)

for all large enough λ ∈ N, where Fw is the set of all functions that map {0, 1}w into {0, 1}w.

Often, we only need a PRF with smaller domain or codomain than {0, 1}w. We abuse notation and
use the same PRF, where we implicitly either pad the input with 0s or ignore a suffix of the PRF
output.

Definition 3.4 (MACs). A message authentication code (MAC) scheme is a triple of PPT algo-
rithms (MACGen,MAC,MACVer) with the following syntax:

• MACGen(1λ): Outputs a key k ∈ {0, 1}ℓ(λ).
• MACk(m): Outputs an authentication tag ∈ {0, 1}w on the key k corresponding to the input

message m ∈ {0, 1}w.

• MACVerk(m, tag): Outputs 1 or ⊥.

Moreover, the following properties should hold:

• Correctness: For all m ∈ {0, 1}w, it holds that Pr[MACVerk(m, tag) = 1] = 1, where the
probability is taken over k ← MACGen(1λ) and tag← MACk(m).

• Unforgeability: For all PPT adversaries A with oracle access to MACk(·) and MACVerk(·, ·),
let SA be the random variable corresponding to the set of mi queried by A to the MACk(·) oracle.
Then, for k ← MACGen(1λ) and AMACk(·),MACVerk(·,·)(1λ) → (m∗, tag∗) where |m∗| = w, we
require that

Pr [MACVerk(m
∗, tag∗) = 1 ∧m∗ /∈ SA] = negl(λ).
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We use the standard construction of MACs from PRFs (e.g., from [Gol09]), as follows. MACGen(1λ)
outputs uniformly random k ← {0, 1}ℓ(λ), MACk(m) outputs tag = PRFk(m), and lastly, MACVerk(m, tag) =
1 if and only if PRFk(m) = tag. Correctness immediately follows, and unforgeability follows
from PRF security because both the MACk and MACVerk oracles can be instantiated with a
PRF oracle, and the probability of correctly guessing a new output from a random function is
2−w = 2−ω(log λ) = negl(λ).

4 Memory Checking Model

In this section, we first recall the notion of memory checking for RAMs as introduced by Blum et
al. [BEG+91]. We then define our notion of memory checking for PRAMs.

4.1 Memory Checking for RAMs

We recall the notion of memory checking from Blum et al. [BEG+91]. A memory checker M can
be defined as a probablistic RAM program that interacts with a user U and server S, where U is
performing a RAM computation with memory held by S. Specifically, without a memory checker,
U sends (op, addr, data) ∈ {read,write}× [N ]× ({0, 1}w ∪ {⊥}) to S, who may or may not correctly
follow the RAM command, i.e., may send the wrong word back to U when op = read. M now serves
as an intermediary between U and S (see Fig. 1a) that takes in each query from U and generates and
sends (possibly multiple and adaptive) queries to S. Whenever op = read, U once again generates
and sends (possibly multiple and adaptive) queries to S, andM is then required to either respond
to U with some word or abort by sending ⊥ to indicate a malicious S. Once the memory checker
aborts, the protocol is done. This continues in rounds until U is done sending queries, of which
there are at most poly(λ).

Definition 4.1 (Online Memory Checker). We say thatM is an online memory checker if for any
U the following two properties hold:

1. Completeness: If S is honest, then M never aborts and the responses that M sends to U
are all correct with probability 1− negl(λ).

2. Soundness: For all p.p.t. S, the probability that M ever sends some incorrect response to U
is negl(λ). That is, for each request from U , if S sends an incorrect response to M, M can
either independently recover the correct answer and send it to U , or it can abort by sending ⊥
to U .

We call such a memory checker “online” because the memory checker must be able to catch incorrect
responses fromM as soon they are sent. On the other hand, one can define the notion of an “offline”
memory checker:

Definition 4.2 (Offline Memory Checker). We say that M is an offline memory checker for U if
the following two properties hold:

1. Completeness: If S is honest, then M never aborts, and the responses that M sends to U
are all correct with probability 1− negl(λ).
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2. Soundness: For all p.p.t. S, ifM ever sends an incorrect response to U , it must abort by the
end of the last request made by U (the user indicates this by sending ⊥ to M, for example)
with probably at least 1− negl(λ).

In other words, M may send many incorrect responses to U , but if it does, by the end of the
computation,M must detect that there was some error at some point. We emphasize thatM does
not need to know where or when an error occurred.

In both the offline and online memory checking setting, we want the correctness and completeness
requirements to hold for any request sequence and for any behavior of the unreliable memory. In
particular, we consider security against a malicious adversary A that controls all messages sent to
M, i.e, controls both U and the server responses toM.

4.2 Memory Checking for Parallel RAMs

We now define the memory checking model for PRAMs. As pictured in Fig. 1b, given a PRAM with
m CPUs {Ui}i∈[m], we have corresponding family of memory checkers {Mi}i∈[m]. Before the start of
the protocol, there is a set-up phase where the memory checkers run a probabilistic key generation
algorithm (s1, . . . , sm)← Gen(1λ, 1m), and obtain secret states based on shared randomness. Now,
eachMi only locally stores si.

Each Mi acts as an intermediary between Ui and the S. If {Ui}i at parallel time-step t directly
sends I⃗(t) = (I

(t)
i : i ⊆ [m]) to the server, the server may not carry out the commands correctly or

consistently. Instead, each Ui now sends I(t)i = (opi, addri, datai) toMi. Now, the family {Mi}i, in
parallel, make multiple (possibly adaptive) queries in parallel I⃗(t,1), I⃗(t,2), . . . , I⃗(t,ℓt) for some ℓt ∈ N
to S. Then, Mi needs to respond to Ui either with some word, or ⊥ if it detects any malicious
behavior from the adversary. This continues in rounds until {Ui}i is done sending queries, of which
there are at most poly(λ) batches of requests.

Definition 4.3 (Online memory checker for PRAMs). We say that the family M = {Mi}i is an
parallel online memory checker family if for all CPUs {Ui}i where each Mi is an intermediary
between Ui and S, if the following two properties hold:

• Correctness: If S is honest, then no Mi aborts and the responses from Mi to Ui are all
correct with probability 1− negl(λ).

• Soundness: For all p.p.t. S that Mi sends an incorrect response to Ui is negl(λ). In
particular, if S sends an incorrect response to Mi, either Mi recovers the correct answer
and sends it to Ui, or some Mj (not necessarily the same as Mi) aborts with 1 − negl(λ)
probability.

Similarly, we define offline memory checking for PRAMs as follows.

Definition 4.4 (Offline memory checker for PRAMs). We say that the family M = {Mi}i is an
parallel online memory checker if for any family {Ui}i, where each Mi is an intermediary between
Ui and S if the following two properties hold:
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• Correctness: If S is honest, then no Mi aborts and the responses from Mi to Ui are all
correct with probability 1− negl(λ).

• Soundness: For all p.p.t. S, if anyMi had sent back an incorrect response to Ui, someMj

(not necessarily the same asMi) must abort by the end of the last request made by the clients
with probability at least 1− negl(λ).

Concurrency. We sometimes distinguish a family of memory checkers as compatible with EREW,
CREW or CRCW PRAM programs. If not explicitly stated, we generally default to the arbitrary
CRCW model.

Efficiency metrics. We recap the efficiency metrics as described in Section 1. The main metrics
are work and depth blowup, space requirement of the memory checkers, and the server space blowup.

• Depth blowup: The value of ℓt (as defined in the first paragraph of this subsection). In other
words, this is the ratio of the number of parallel steps conducted by {Mi} for every parallel
step of {Ui}i.

• Work blowup: The ratio of |I⃗(t,1) + I⃗(t,1) + · · · + I⃗(t,ℓt)| to I⃗(t). In other words, is the ratio
of the number of physical queries from {Mi}i to the ratio of underlying logical queries from
{Ui}i. We note that we are only charging the communication with S as work.

• Memory checker local space: This is the amount of secret local space stored by eachMi.

• Server space blowup: This is the size of the server storage divided by Nw (the size of the
underlying server storage). In our constructions, this will be O(1) assuming w = ω(log λ).

5 PRAM Online Memory Checker

In this section, we present our online-memory checking construction achieving O(logN) blowup in
work and depth. Without loss of generality, suppose m and N are powers of two.

Following the construction of Blum et al. [BEG+91], our construction is binary tree of size 2N − 1,
where the leaf nodes correspond to the underlying database.

Algorithm 5.1 Online memory checker for a PRAM with m CPUs sharing a work-tape of size N .

Set-up: A key sk← MACGen(1λ) is sampled and distributed to all checkers {Mi}i∈[m].
Initial State: The server S’s memory is organized in a binary tree of size 2N − 1 of height
log2N . (Note that since the root is the node that is initialized, initialization only takes O(1)
time.)

• Initialize the root node r to contain (r, count := 0, time := 0, test := 0) (authenticated).
• Each internal node v is of the form (v, count, time) (if uninitialized or if authentication fails,

treat the contents as (v, 0, 0))3.
3We use this trick to ensure that we obtain worst-case overhead since this mitigates the need for an initialization

phase.
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• The N leaf nodes of the binary tree correspond to the contents of the logical memory. The
leaf node corresponding to addr in the work tape W will contain (addr, data, count, time, test).
In an honest execution, the variables denote the following:

– addr: Denotes the logical address of the data stored in the leaf.
– data: Denotes the contents of W [addr], i.e. the contents of addr in the underlying

database.
– CPU: The CPU which performed the write.
– count: The number of times W [addr] was written to.
– time: The last iteration during which W [addr] was modified.
– test : A boolean bit indicating if the last write happened during a “test” phase.

If uninitialized, treat the contents as (addr, data := ∅,CPU := ∅, count := 0, time :=
0, test := 0).

• EveryMi has a counter T initialized to 1.

Authentication: Every write is authenticated using MACsk and every read is verified with
Verifysk. If a read fails authentication, we assume that it is an uninitialized node.
The algorithm: At iteration T :

• All readers: First, everyMi corresponding to CPUs performing reads proceeds as follows.

– Every Mi verifies that the root node has time = T − 1 and test = 0. Record the count
value at the root.

– Each Mi traverses the tree along the path to the leaf associated with addr, in parallel.
For each node v along the path with children u and w, verify that v.count = u.count+
w.count (i.e. the count values of the corresponding nodes add up). If this is not true for
any node, abort and output ⊥.

– Once the leaf node is reached,Mi simply reads the contents of the leaf node correspond-
ing to addr, and sends data to CPU i.

• All writers: Now, everyMi corresponding to CPUs with writes proceeds as follows.

1. Test phase: Every Mi reads the leaf node corresponding to addr. Suppose addr has
counter value count. Then, every Mi tries to write (addr, data′, i, count + 1, time :=
T, test := 1) (in parallel) to the leaf node corresponding to addr.

2. Winner phase: EachMi reads the same entry to check if their corresponding write had
“won” the concurrent write.
– If yes, rewrite (addr, data′, i, count+1, time := T, test := 0) to the same address (i.e.

indicate that the test phase has concluded).
– Otherwise, verify that the count value has been incremented, and time = T , and

test = 1.
– EveryMi reads the corresponding leaf node again to ensure that it has been updated

with the “winning” entry with test = 0 4.
3. Propagation phase: Now, we propagate the counts from the leaves of the tree to the

root of the tree in parallel one layer at a time, starting from the bottom, i.e. updating
the nodes from h = 0, 1, . . . , log2N :

4If there is a rule for conflict resolution that can be easily verified (e.g. the CPU with the highest priority wins,
CPU with the maximum or minimum value write wins, etc.), then that can also be verified here.
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– At h = 0 (i.e. leaf nodes), everyMi with a successful write is assigned to that leaf.
– At h ≥ 1, each node with children that are updated will be assigned a checker Mi

as follows:
∗ Assigning nodes: If the left child was updated at round T , the checkerMi assigned

to the left child is assigned to the node. Otherwise, the checker Mi assigned to
the right child at round T is also assigned to the parent node. Note that this
can be checked in an EREW manner by simply having a time-step where any
checker Mi assigned to a right node checks if the sibling left node was updated
at iteration T . If yes, it will no longer update the values.

– Every node v at level h ≤ log2N − 1 with an assigned CPU with children u and w
is updated to (v, u.count+w.count, T ). At h = log2N (i.e. the root node), the root
r is set to (r, u.count+ w.count, T, test := 1).

4. Verification of the root:
– In a separate array of size m (i.e. the number of CPUs), every Mi writes a 1 if

it performed a successful write operation (i.e. “won” in the “winner phase”) to the
database, and 0 otherwise.

– Compute the sum of this array to be some W . Note that this can be done in
O(logm) depth with O(m) work with an EREW algorithm.

– M1 verifies that the count value of the root of the tree was increased by W (note
that W can be 0 if no writes were performed).
∗ If the count count was in fact correct, update the root to be (addr, count, T, 0).
∗ Otherwise, abort and output ⊥.

• EveryMi locally increments T .

First, we make a couple of remarks about Algorithm 5.1.

Remark 5.2. If the underlying algorithm is CREW, the access patterns of the memory checkers are
also CREW if the server is honest. If the underlying algorithm is EREW, we can make the following
modifications to ensure the memory checkers’ access patterns are also EREW. One can treat every
“read” also as a “write” where the same value is written back. Then, we can simply skip “All readers”
phase of the above algorithm and execute the “All writers” phase. Since exactly one user is assigned
to each internal node when the server is honest, the resulting memory checking algorithm is also
EREW against honest servers.

Remark 5.3. We can relax the parallelization requirements of the model by instead having an agreed
upon time for “read rounds” and “write rounds” for the “All readers” and “All writers” phase. This
ensures that all CPUs can agree on the time-stamp of the root of the tree. We can also assume that in
practice, no writes happen concurrently (e.g. by adding randomness to the timing of an access), and
the algorithm is essentially EREW. We also assume that any read followed by an immediate write
to the same location is “atomic” and cannot be interfered (i.e. any read-write to update the counter
will not be interleaved with another CPU’s read-write, as this will result in inconsistent counters).
The “read rounds” have no synchronization issues, as long as every CPU agrees on the counter at
the root of the tree. During the “write rounds”, the protocol is consistent during leaf-update phase
and propagation phases as long as read-writes are atomic. During the verification phase, we perform
an EREW algorithm sum a set of values and compare it against the root. As long as this is done in
a consistent and authenticated way, this phase can be done correctly and securely.
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Theorem 5.4. Assuming the existence of one-way functions, there exists an online memory checker
for a m-CPU PRAM with O(logN) work blowup and O(logN) depth blowup. Each CPU locally
needs to store O(1) words and one PRF key of length ℓ(λ) (for authentication).

Proof. We first start by mentioning some invariants preserved during the algorithm when the server
is honest.

Invariants. For each node u in the tree, we denote by u.count(t) the value the count associated to
u that is read at iteration t. The following invariants are maintained if the server behaves honestly
at the start of iteration T .

• EveryMi has the correct value T of iteration number.

• Every entry is authenticated, unless uninitialized (we treat every entry which fails authenti-
cation as uninitialized). An uninitialized node v is treated to have v.count(t) = 0.

• The time value of the root node is equal to T − 1.

• For a leaf node v corresponding to logical address addr, the variable v.count(t) denotes the
number of times the logical address addr is written to. Additionally, v.time is the last iteration
when any of the leaves of the sub-tree is updated.

• For every non-leaf node v, the variable v.count(t) denotes the total number of times the leaf
nodes of the sub-tree rooted at v have been updated. In particular, if v and w are the children
of u, we have that

u.count(t) = v.count(t) + w.count(t).

• For every node v, the variable v.time is the last iteration when any of the leaves of the sub-tree
was updated.

Clearly, the invariants are met at the initialization phase of the algorithm.

Suppose that we are at iteration T of the algorithm, and that the server has functioned honestly
so far (up to iteration T − 1) and the invariants have been maintained. Now, we argue that at the
end of iteration T , either the memory functions correct correctly and the invariants are preserved,
or the memory functions incorrectly and someMi aborts and outputs ⊥.

The former case is easy. Therefore, it suffices to consider the case where the memory functions
incorrectly. By the inductive hypothesis, note that u.count(t) for t ≤ T − 1 are correct for every
node u in the binary tree.

By unforgeability of MACs, every valid read corresponds to some authenticated write with proba-
bility 1− negl(λ). Therefore, for the rest of this proof, we limit the memory’s attacks to only replay
attacks (i.e. memory sends stale requests corresponding to each address). There are three cases to
consider when the memory functions incorrectly.

Case 1: Memory functions incorrectly during the traversal phase of the reads.

First, notice that the time value of the root is monotone increasing with each iteration. There-
fore any replay attack on the root node will show time < T , and will be detected. For every
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internal node and leaf node, notice that the count value is monotone increasing with every
write if the memory functions correctly. Suppose the memory first performs a replay attack
on node u (not equal to the root) while some Mi is traversing a path from the root to some
leaf. Then, we have v.count(T ) > u.count(T ) + w.count(T ) where v is the parent node of u,
and w is a sibling node of u. Therefore, any such replay attack will be caught and Mi will
immediately abort.

Case 2: Memory functions incorrectly during the test and/or winner phases.

Let W be the number of CPUs that “win” during the test phase, and let U be the number of
leaf nodes that are updated with writes. Note that it is possible that multiple CPUs get the
signal that they won the concurrent write. Let w1, w2, . . . , wU denote the number of “wins”
associated to each of the U nodes that are updated with writes, i.e. number of CPUs that
get a signal that they won per updated leaf node. Since every Mi with a write verifies that
some CPU has won that concurrent write (with test = 0), this ensures that wj ≥ 1. Moreover,
wj = 1 if and only if there is exactly one CPU that won the arbitrary write.

Therefore, we have that W =
∑U

j=1wj ≥ U , where equality holds if and only if exactly one
CPU wins each concurrent write. In other words, if the memory functions incorrectly in this
phase, we must have W > U . Recall that W is computed during the verification phase, and
we argue in the next case that this inequality will be detected during the verification phase.

Case 3: Memory functions incorrectly during the propagation and/or the verification
phases.

Consider an arbitrary internal node v of the tree. Let v.count(T − 1) be the count value at
iteration T −1 (this is correct by the induction hypothesis), and let v.update be the number of
leaf nodes of the sub-tree at v that were updated at iteration T (possibly by multiple nodes).
We argue by induction on the height of v that for any read to v, the counter value read is at
most v.count(T −1)+v.update. Moreover, equality holds if and only if the memory functioned
correctly in the sub-tree rooted at v during the propagation phase.

At h = 0 (i.e. leaf nodes), the statement is clearly true because a replay attack can only
show a smaller counter value than v.count(T − 1) by the monotonicity of the count values.
Therefore, any read to v can only show a value of at most v.count(T −1) if it was not updated,
and v.count(T − 1) + 1 otherwise.

Now, consider a node v at height h′ ≥ 1. Suppose that u and w are the children of v, and
that the node updating v receives counter values u.count(T ) and w.count(T ) when reading u
and w respectively. Then, the new updated counter value of v is

v.count(T ) = u.count(T ) + v.count(T )

≤ u.count(T − 1) + u.update+ w.count(T − 1) + w.update

= v.count(T − 1) + v.update

where the first equality holds by the definition of v.count(T ), the second inequality holds by
the induction hypothesis, and the last equality comes from the correctness of the memory at
iteration T − 1, and by the definition of v.update. Therefore, the largest possible count value
associated to any read of v in this iteration is at most v.count(T−1)+v.update, where equality
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holds if and only if the memory functioned correctly in the sub-tree rooted at v during the
propagation phase.

In particular, at the root node r, we have that

r.count(T ) ≤ r.count(T − 1) + r.update ≤ r.count(T − 1) + U

where equality holds if and only if the memory functioned correctly during the propagation
phase. Moreover, combining this with Case 2, we have that

r.count(T )− r.count(T − 1) ≤ U ≤W

where all the inequalities hold if and only if the memory functioned correctly at every point
in the algorithm. Therefore, if the memory functions incorrectly at any point, the check at
the verification phase will fail, thereby completing the proof.

Efficiency. Note that eachMi traverses a path to the desired leaf of CPU i, and therefore does a
O(logN) depth traversal. Moreover, during the propagation phase, each CPU again updates only
elements on the path from the root to its leaf of the tree, and hence will once again only update
O(logN) elements.

Moreover, it is clear that each checker only requires O(1) local space to keep track of the root of the
tree as well as verify the count values of the nodes of the tree. Therefore, this gives us the desired
and space complexity.

6 Statistically Secure EREW PRAM Offline Memory Checker

In this section, we show that the offline memory checking approach of Blum et al. [BEG+91] can
be naturally parallelized and extended to the EREW PRAM setting. We state the theorem here.

Definition 6.1. A family of hash functions H = {hk}k∈K where hk : {0, 1}n → {0, 1}ℓ(n) is ϵ-biased
if

Pr
k
[hk(x) = hk(y)] ≤ ϵ.

Naor and Naor [NN90] constructed a family of efficient ϵ-biased hash functions as follows.

Theorem 6.2 ([NN90]). There exists a family of ϵ-biased hash functions H = {hk}k with hk :
{0, 1}n → {0, 1}ℓ(n) such that ℓ(n) = O

(
log n+ log 1

ϵ

)
and |k| = O

(
log n+ log 1

ϵ

)
.

Moreover, the family of hash functions of [NN90] has the additional property that it is in fact
linear. In other words, hk is of the form hk(x) = Ax (mod 2) for a matrix A ∈ {0, 1}ℓ(n)×n, where
the ith column Ai of A can be computed efficiently given k. Therefore, hk(x) can be computed
incrementally given the bits of x.

In this construction, every memory location on the server S contains the following information:

• addr: Logical address
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• data: Contents of logical address addr.

• CPU: Name of CPU that last accessed (could be either read or write).

• time: Last time CPU accessed addr.

For an EREW algorithm of depth d, the values written to any memory location must be in the set
Z = [N ] × {0, 1}w × [m] × [d], and any such value is written at most once. Therefore, there are
z = |Z| = N × 2w ×m× d = O(poly(N)) possible values of address.

Following Blum et al. [BEG+91], let R be the set of values that are read by the CPUs, and let W
be the set of values that are written by the CPUs. Note that we can encode R,W ⊆ Z as indicator
vectors in {0, 1}z. Our algorithm will keep track of h(R) and h(W ).

Without loss of generality, we may assume m divides N .

Algorithm 6.3 Efficient EREW Parallel Memory Checker
Set-up phase:

• Pick ϵ > 0 such that ϵ = negl(λ).
• Fix a family of ϵ-biased hash functions {hk}k∈K such that hk : {0, 1}z → {0, 1}ℓ(z). Sample
k ← K, and distribute k to all CPUs.

• For each Mi, sample two random strings r
(1)
i , r

(2)
i ← {0, 1}ℓ(z). Let A represent the matrix

corresponding to hk. Associate each column of A with some value in Z := [N ]× {0, 1}w ×
[m]× [d].

• M1 additionally receives r(j) = ⊕m
i=1r

(j)
i for j = 1, 2.

• EveryMi has a counter T initialized to 1.
• EveryMi keeps track of a value hRi and hWi of length ℓ(z), intialized to 0ℓ(z).
• We abuse the notation S[addr] to denote the underlying database entry at address addr

along with the last CPU CPU which updated the entry, and the last time-step time when
the entry was updated. We also have additional O(N) server space for the second phase of
the algorithm.

Query Phase:

• Initialize all server memory locations to 0w.
• At iteration T :

– Every Mi corresponding to a CPU with reqeust (op, addr, data) does the following in
parallel:

∗ Retrieve S[addr] to obtain (addrold, dataold,CPUold, timeold). We denote this string
by x ∈ Z.

∗ Verify that timeold < T and addrold = addr.
∗ Update hRi ← hRi +Ax, where Ax is the column of A corresponding to x.
∗ If op = read, set data = dataold.
∗ Update S[addr] to be (addr, data, i, T ). We denote this string by y ∈ Z.
∗ Update hWi ← hWi +Ay.

– EveryMi increments T locally.

Verification phase:
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• Now, every Mi in parallel reads memory locations addr ∈ [N/m · (i − 1) + 1, N/m · i] and
does the following:

– Retrieve x← S[addr].
– Update hRi ← hRi +Ax.

• First, we compute h(W ) =
∑m

i=1 h
W
i as follows (using server space):

– Every Mi posts hWi ⊕ r
(1)
i on the additional work space S (i.e. a one-time pad of the

secret state).
– Compute

∑m
i=1(h

W
i ⊕r

(1)
i ) = r(1)⊕h(W ) in a tree-like manner (note that this is EREW).

– M1 locally computes r(1) ⊕ r(1) ⊕ h(W ) = h(W ) and stores this value locally.

• Now, we similarly compute h(R) =
∑m

i=1 h
R
i as follows:

– EveryMi posts h(R) = hRi ⊕ r
(2)
i on the additional work space of S.

– Compute
∑m

i=1(h
R
i ⊕ r

(2)
i ) = r(2) ⊕ h(R) in a tree-like manner.

– M1 locally computes r(2) ⊕ r(2) ⊕ h(R) = h(R) and stores this value locally.

• M1 only accepts if h(R) = h(W ), and rejects otherwise.

Comparison to Blum et al. [BEG+91]. If m = 1 (i.e. we are in the RAM setting), note
that the CPU can aggregate the value of the hash function locally. Therefore, the server S does
not see evaluations of hk and hence has no information about k. However, when m > 1, if the
users aggregate the values of the hash function in the clear using the server space, the server might
be able to determine information about k. Therefore, it seems like encryption might be necessary.
However, since each server only has to encrypt two messages in our scheme, we can instead rely on
the information-theoretically secure one-time pad.

Theorem 6.4. Consider w = Θ(logN). Consider an EREW algorithm with work q and depth d.
There is a statistically secure offline memory checker for a m-CPU EREW algorithm with total work
O(q + N +m) and depth O(d + N/m + logm). Each Mi has to locally store O(logN + log(1/ϵ))
bits of memory, where ϵ = negl(λ).

Proof. Following the argument of Blum et al. [BEG+91, Lemma 1], we have that R = W if and
only if the server did not corrupt any of the responses to the memory checkers. Therefore, using
the epsilon-biased hash, we have that h(R) =

∑m
i=1 h

R
i and h(W ) =

∑m
i=1 h

W
i are not equal with

probability at least 1− ϵ if the server responded incorrectly.

Now, it suffices to show that S cannot manipulate the verification phase. Note that since the server
only sees one-time pads of the values hRi ⊕ r

(1)
i and hWi ⊕ r

(2)
i and does not see the values of r(1)

and r(2), the server only sees truly random values. Therefore, even if it does manipulate the values
sent back to the servers, the probability thatM1 accepts is still at most ϵ.

Corollary 6.5. Consider w = Θ(logN). Consider an arbitrary CRCW algorithm algorithm with
work q and depth d. There is a statistically secure offline memory checker for a m-CPU EREW
algorithm with total work O(q+md logm+N +m) and depth O(d logm+N/m+logm). EachMi

has to locally store O(logN + log(1/ϵ)) bits of memory, where ϵ = negl(λ).
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Proof. Using Lemma 3.1, we have that the algorithm can be converted into an EREW algorithm
with work q +md logm and depth d logm. Now, we get our result by applying Theorem 6.4.

We note that this yields a CRCW offline memory checking algorithm with O(logm) amortized
blow-up in work and depth. In the next section, we show how to achieve O(1) amo

7 PRAM Offline Memory Checker

In this section, we use authentication to construct an offline memory checker for CREW and CRCW
PRAM programs with amortized O(1) complexity in both work and depth. Throughout this section,
we are once again in the setting where the word size is w = ω(log λ). Without loss of generality, we
may assume that m divides N , where m is the number of CPUs and N is the size of the database.

Algorithm 7.1 Offline memory checker for the arbitrary CRCW model
Set-up phase:

• Fix a MAC family (MACGen,MAC,Verify). Sample sk ← MACGen(1λ) and distribute sk to
allMi.

• EachMi associated to CPU i initializes a local counter ti to 0.
• We abuse the notation S[addr] to denote the underlying database entry data at address addr

along with the following metadata MD containing (count,CPU, time,CPUprev, timeprev, test).
In an honest execution, these entries correspond to the following:

– count: Number of times this logical address accessed.
– CPU: Name of CPU that last accessed (could be either read or write).
– time: Last time CPU accessed addr.
– CPUprev: Name of CPU that accessed addr before time.
– timeprev: Last time CPUprev accessed addr.
– test: A boolean bit indicating if the last write happened during the “test” phase.

• We also have additional O(N) server space for the second phase of the algorithm.

Authentication: Every write is authenticated using MACsk and every read is verfied with
Verifysk. If a read fails authentication, we abort.
Query phase:

• Initialize S[addr] to set addr := addr, count := 0, test := 0, and set all other fields metadata
fields CPU, time,CPUprev, timeprev to ∅.

• For each batch of requests I⃗(T ) = (I
(T )
i : i ⊆ [m]) at time T :

– All readers: First, we handle all requests Ii = (opi, addri, datai) from which are reads.
∗ Read phase: EachMi corresponding to opi = read does the following in parallel:

· Read the corresponding entry S[addri], and downloads and saves the contents
(addr, data,MD). Abort if addr ̸= addri, or if the test value is nonzero.

· Return data to CPU i.
· Unpack MD = (count,CPU, time,CPUprev, timeprev, test).
· Set CPU′prev := CPU and time′prev = time.
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· Set CPU′ := i and time′ := T .
· Increment count′ := count+ 1.
· Set test′ := 1.
· Set MD′ = (count′,CPU′, time′,CPU′prev, time′prev, test

′).

∗ Test phase: AllMi’s perform a write to the accessed address with (addri, data,MD′).
∗ Winner phase: EachMi performs a read to see if it “won” the arbitrary write. Note

that when the memory is honest, there should be exactly one write that wins.
· If yes, write back to update the test value to be 0. Increment local counter ti.
· Else, verify that CPU′prev, time′prev and count′ values of the winning write are

consistent with their own write attempt, and that test value is updated to 0. 5

∗ EveryMi increments their locally stored global timer T .
– All writers: Same as read phase, except data is now updated with datai during the test

and winner phases.

Verification phase:

• Compute t :=
∑

i ti, i.e. the sum of all local counters of all the CPUs.
• Denote caddr := S[addr].count. Compute t′ :=

∑
addr caddr in a tree-like manner.

• Accept if and only if t = t′, otherwise abort and output ⊥.

Remark 7.2. As in the online memory checking case, we can relax the parallelization requirements
of the model for this memory checking protocol. During the query phase, we assume that in practice,
no reads or writes happen concurrently (e.g. by adding randomness to the timing of an access), and
the algorithm is essentially EREW. We also assume that any read followed by an immediate write
to the same location is “atomic” and cannot be interfered (i.e. any read-write to update the counter
will not be interleaved with another CPUs read-write, as this will result in inconsistent counters).
For the verification phase, every CPU needs to agree when the verification phase begins, and when
to write their respective local counters on the server. After this, the CPUs have to sum two lists of
numbers and compare them. Since summing a list is an EREW algorithm, as long as this is done
in a consistent and authenticated way, we can ensure the security and correctness of our protocol.

Theorem 7.3. Consider an honest-but-curious implementation with work q and depth d. Then,
there is a post-verifiable offline memory checker with total work O(q+N), total depth O(d+N/m+
logm) and local space complexity O(1) words and one PRF key of length ℓ(λ).

Proof. By unforgeability of MACs, every valid read corresponds to some authenticated write with
probability 1− negl(λ). Moreover, since we check the consistency of addr when we read, for the rest
of this proof, we limit the memory’s attacks to only replay attacks (i.e. memory sends stale requests
corresponding to each address).

History graph. For each address addr ∈ S, let Vaddr be the set of (count,CPU, time) tuples
corresponding to contents written to addr with flag test = 0. Construct the following directed
acyclic graph Gaddr on Vaddr.

5If there is a rule for conflict resolution that can be easily verified (e.g. the CPU with the lowest number wins),
then that can also be verified here.
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• The root of the graph is (0,∅, 0).

• If something of the form (addr, ∗, count,CPU, time,CPUprev, timeprev, test := 0) was ever written
to addr, add an edge from (count− 1,CPUprev, timeprev) to (count,CPU, time). Here, * denotes
that the data entry can be any arbitrary value.

Intuitively, this graph will represent the history of updates made to addr. We abuse the notation
|Vaddr| to denote the number of vertices in Gaddr.

Claim 7.4. If the server behaved correctly, then caddr = |Vaddr|−1. Otherwise, if the server behaved
incorrectly, for some addr ∈ S, we must have caddr < |Vaddr| − 1.

Proof. First, we argue that the history graph Gaddr for each addr ∈ S is connected. For all nodes
with count value 1, it must be adjacent to the root node (0,∅, 0). Therefore, all the nodes with
count at most 1 are connected. Now assume that all nodes with count at most k− 1 are connected.
Note that a node with count = k, it must be adjacent to some node with count = k − 1, and hence
inductively, we must have that Gaddr is connected.

Let haddr denote the height of the graph Gaddr. It is clear that caddr must correspond to the count
value of some node in the graph, and hence caddr ≤ haddr. Note that haddr = |Vaddr| − 1 if and only
if Gaddr is a path. Hence, to show the statement of the theorem, it suffices to show that Gaddr is a
path if and only if the server behaves correctly.

Clearly, if the server behaves correctly, for every addr ∈ S, the graph Gaddr is a path. Moreover, the
final version of the S[addr] corresponds to the leaf node of Gaddr, and hence has count |Vaddr| − 1,
as desired.

Now, suppose the server behaves incorrectly at some address addr. There are three ways that the
memory could have functioned incorrectly.

• The memory functioned correctly throughout, until the final read to S[addr] during the ver-
ification phase, where the memory does a replay attack. Then, the graph is a path, but
caddr < |Vaddr| − 1 since the memory must have sent back a counter associated to a non-leaf
node.

• The memory could have sent back a “stale” entry for some address addr. Consider the first such
stale response. Note that because of the test = 0 flag check, the “stale” request must correspond
to some node on Gaddr, say (count,CPU, time). Moreover, since this is a stale request, it must
mean that this node already has a child in Gaddr. Note that the new update created must have
the form (addr, ∗, count+1,CPU′, time′,CPU, time). Therefore, (count,CPU, time) has at least
two children, and the graph is no longer a path.

• Alternatively, the memory could have accepted conflicting writes to some addr at the same
time-step. In particular, some Mi and Mj concurrently write to some addr at time-step
time, and both writes “win” in the winner phase. Then, the corresponding winning writes,
(counti,CPUi, time) and (countj ,CPUj , time), cannot lie on the same path from the root be-
cause they both have the same time value (because by construction, the time values are
increasing on any directed path from the root).
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If the server behaves correctly, note that t =
∑

ti =
∑
|Vaddr| − 1 because this is the number of

times each address is updated, and t′ =
∑

addr caddr =
∑
|Vaddr| − 1 = t. Therefore, the memory

checker accepts.

Otherwise, if the server behaves incorrectly, then for some address addr′, caddr′ ≤ |Gaddr′ | − 2.
Therefore, T ′ ≤

∑
addr ̸=addr′(|Vaddr|− 1)+ (|Gaddr′ |− 2) <

∑
(|Vaddr|− 1) =

∑
ti = T , and hence will

be rejected with probability 1− negl(λ).

Efficiency. During the query phase, it is easy to see that every underlying query generates O(1)
physical queries. Therefore, the work during the query phase is O(q), and the depth is O(d). During
the second phase of the algorithm, we are summing O(N) counters, and this takes O(N +m) work
and O(N/m+ logm) parallel steps. This gives us the desired efficiency.

8 Maliciously Secure Oblivious Parallel RAM

In this section, we recall the definition of oblivious parallel RAMs (OPRAMs), as introduced by
Boyle et al. [BCP16]. We then extend the notion of OPRAMs to be secure even in the presence
of malicious adversaries. For a full treatment of malicious security of oblivious RAMs, we refer
the readers to [MV23]. Then, we argue that composing our memory checker with any honest-but-
curious oblivious PRAM gives a maliciously secure OPRAM construction. As a corollary, using
the honest-but-curious construction of [AKL+22], we obtain an OPRAM with O(log2N) simulation
overhead in both work and depth for a database of size N .

8.1 Definitions

Reactive PRAM functionalities. Loosely speaking, a reactive functionality F is an interactive
functionality that holds some internal state, and whenever it takes in a command cmd and input
x, it gives some (possibly randomized) output F(cmd, x), where the notational dependence on the
internal hidden state is suppressed. One way to think of a reactive functionality is as a specification
for a data structure problem (i.e., the desired behavior of a data structure), where the various
types of queries are specified by cmd and the input to those queries are denoted by x. For a
PRAM reactive functionality for a m-processor machine, we can instead model it as taking as input
I = {(cmdi, xi})i∈[m], and outputting a list {out}i∈[m], where outi is sent to CPU i. Note that
it is possible that only a subset of the CPUs make a request at any point in time, and we set
(cmdi, xi) = (∅,⊥) if CPU i does not make a request. We can write the PRAM model itself as
a reactive PRAM functionality as described in FN,w

PRAM (Functionality 8.1). We use the notation
ĉmd, x̂ and ôut to denote the list of all commands {cmdi}i∈[m], list of all inputs {xi}i∈[m] and list of
all outputs {outi}i∈[m] respectively.

Oblivious implementations. Given an m-CPU PRAM reactive functionality F , we say that an
oblivious implementation Π = {Ci}i∈[m] (each Ci is a compiler acting on CPU i) is a PRAM compiler
that interacts with the memory and has identical input/output behavior as F , and additionally has
a simulatable access pattern. In more detail, we consider an adversary A that participates in
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Functionality 8.1 FN,m
PRAM: The Arbitrary CRCW PRAM Functionality.

Syntax:

• cmdi ∈ {read,write,∅}, where ∅ indicates that CPU i is not reading or writing.
• xi = (addri, datai) ∈ [N ]× {0, 1}w, where addri is an index into an N -entry RAM database,

and datai contains a word of size w(to be used only if cmdi = write).

Internal State: A memory array mem with N entries, each containing values in {0, 1}w, all
initialized to 0w.
Command FN,m

PRAM((cmd1, x1), (cmd2, x2), . . . , (cmdm, xm)):

• If cmdi = read, set outi = mem[xi[addr]].
• If cmdi = write, update mem by mem[xi[addr]] ← xi[data], and a success symbol is sent

back to the user (i.e., only the internal hidden state is modified). If there are multiple users
accessing the same addr, an arbitrary user’s update is chosen. The remaining users get a ⊥
symbol.

Experiment 8.2 or Experiment 8.2. We use the shorthand (ôut,Addrs) ← Π(ĉmd, x̂) denote the
joint distribution of Π’s outputs and access patterns. In the real experiment, A sees this joint
distribution produced by Π. In the ideal experiment, it receives an access pattern Addrs generated
by a simulator S, and independently generated functionality output. Furthermore, A is allowed to
choose the next command and input in an adaptive manner in either experiment. We formalize this
in Definition 8.4.

Experiment 8.2 RealHBC(Π,A).

(ĉmd, x̂)← A
(
1λ
)

while ĉmd ̸= ⊥ do

ôut,Addrs← Π(1λ, ĉmd, x̂)

(ĉmd, x̂)← A
(
1λ, ôut ,Addrs

)
end while
return b← A

(
1λ
)

Experiment 8.3 IdealHBC(F ,S,A).

(ĉmd, x̂)← A
(
1λ
)

while ĉmd ̸= ⊥ do

Addrs← S(1λ, ĉmd)

(ĉmd, x̂)← A
(
1λ, F(ĉmd, x̂) ,Addrs

)
end while
return b← A

(
1λ
)

Definition 8.4 (Oblivious implementation). For a reactive functionality F , we say a (stateful)
PRAM machine ΠF = {Ci}i∈[m] is a (1 − δ)-oblivious implementation of a reactive functionality
F if there is a (stateful) PPT simulator S such that for all (stateful) PPT A, the adversary A
distinguishes between RealHBC(ΠF ,A) (Experiment 8.2) and IdealHBC (F ,S,A) (Experiment 8.3)
with advantage at most δ.

We can view the honest-but-curious OPRAM definition of Boyle, Chung and Pass as an oblivious
implementation Π of the FN

PRAM reactive functionality (Functionality 8.1).

Definition 8.5 (OPRAM). We say that Π is an honest-but-curious oblivious PRAM (OPRAM)
for a database of size N with m CPUs if Π is an (1− negl(λ))-oblivious implementation of FN,m

PRAM.
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Malicious security. The main difference between honest-but-curious and malicious security is
that an adversary A can additionally corrupt the responses sent back to the compiler Π = {Ci}i. To
capture this, we follow the malicious security definition of Mathialagan and Vafa [MV23] and now
allow the distinguishing environment A to additionally control the responses back to the server.
Essentially, rather than Π outputting the full list Addrs as in Experiments 8.2 and 8.3, it instead
outputs adaptive PRAM queries q̂uery to the memory, which the environment A responds to with
(possibly corrupted) d̂ata∗. We formalize this as a game between the two worlds, Experiments 8.6
and 8.7 in Definition 8.8.

Experiment 8.6 RealMal(Π,A).

(ĉmd, x̂)← A
(
1λ
)

while ĉmd ̸= ⊥ do
ôut← ⊥
d̂ata∗ ← ⊥
while ôut = ⊥ do

(q̂uery, flag, ôut)← Π
(
1λ, ĉmd, x̂, d̂ata∗

)
if flag = true then return b← A

(
1λ
)

d̂ata∗ ← A
(
1λ, q̂uery

)
end while
(ĉmd, x̂)← A

(
1λ, ôut

)
end while
return b← A

(
1λ
)

Experiment 8.7 IdealMal(F ,S,A).

(ĉmd, x̂)← A
(
1λ
)

while ĉmd ̸= ⊥ do
done← false

d̂ata∗ ← ⊥
while done = false do

(q̂uery, flag, done)← S
(
1λ, ĉmd, d̂ata∗

)
if flag = true then return b← A

(
1λ
)

d̂ata∗ ← A
(
1λ, q̂uery

)
end while
(ĉmd, x̂)← A

(
1λ, F(ĉmd, x̂)

)
end while
return b← A

(
1λ
)

Definition 8.8. For a reactive functionality F , we say a (stateful) PRAM machine ΠF = {Ci}i∈[m]

is a (1−δ)-maliciously secure oblivious implementation of a reactive functionality F if the following
two conditions hold:

1. Obliviousness & Correctness: There is a (stateful) PPT simulator S such that for all
(stateful) PPT A, the adversary A distinguishes between RealMal(ΠF ,A) (Experiment 8.6)
and IdealMal (F ,S,A) (Experiment 8.7) with advantage at most δ.

2. Completeness: For all (stateful) honest-but-curious A, with probability 1−δ, the compiler ΠF
never aborts, i.e., never sets flag to true throughout the whole execution of the real experiment.

Remark 8.9. When combined with symmetric key encryption in a straightforward way, any (1−δ)-
oblivious implementation Π as in Definition 8.4 also gives a (1− δ−negl(λ))-implementation secure
against honest-but-curious adversaries A as in Definition 8.8.

Definition 8.10 (Maliciously secure OPRAM). We say that Π is a (1−negl(λ))-maliciously secure
oblivious PRAM (OPRAM) for a database of size N with m CPUs if Π is a (1 − δ)-maliciously
secure oblivious implementation of FN,m

PRAM.
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8.2 Maliciously secure OPRAM with O(log2N) simulation overhead

In this section, we show that combining an online PRAM memory checker with honest-but-curious
OPRAM implementation gives us a maliciously secure OPRAM.

Theorem 8.11. Suppose Π = {Ci}i∈[m] is an (1−δ)-honest-but-curious oblivious PRAM implemen-
tation. Let {Mi}i∈[m] be a family of online memory checkers. Consider the family Π′ = {C′i}i∈[m]

obtained by taking C′i to be the natural composition ofMi with Ci. The family Π′ is a (1−δ−negl(λ))
maliciously secure oblivious PRAM.

Proof (sketch). The proof follows closely to the proof of Theorem 4.5 of Mathialagan and Vafa [MV23].
At a high level, the soundness of {Mi}i guarantees that no incorrect response is sent back to the
{Ci}i. Therefore, we can invoke the honest-but-curious obliviousness of {Ci}i to argue that the
resulting composition remains oblivious.

Now, we recall the following theorem of Asharov et al. [AKL+22].

Theorem 8.12. Assume the existence of one-way functions and let N ∈ poly(λ) and m ≤ N .
There exists a (1−negl(λ))-honest-but-curious OPRAM protocol that serves a batch of m concurrrent
requests with O(m·logN) amortized total work, O(logN) worst-case depth, and O(1) space overhead.

Therefore, by choosing Π to be the optimal OPRAM construction of [AKL+22] (as in Theorem 1.4)
and {Mi}i to be our construction from Section 5, we obtain the following result.

Theorem 8.13. Assume the existence of one-way functions and let N ∈ poly(λ) and m ≤ N . There
exists a (1− negl(λ))-maliciously secure arbitrary CRCW OPRAM scheme that serves a batch of m
concurrent requests with O(m · log2N) amortized total work, O(log2N) worst-case depth, and O(1)
space overhead.
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