
EKE Meets Tight Security in the Universally
Composable Framework⋆

Xiangyu Liu1,2, Shengli Liu1,2,3(B), Shuai Han1,2, and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{xiangyu_liu,slliu,dalen17,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. (Asymmetric) Password-based Authenticated Key Exchange
((a)PAKE) protocols allow two parties establish a session key with a pre-
shared low-entropy password. In this paper, we show how Encrypted Key
Exchange (EKE) compiler [Bellovin and Merritt, S&P 1992] meets tight
security in the Universally Composable (UC) framework. We propose a
strong 2DH variant of EKE, denoted by 2DH-EKE, and prove its tight
security in the UC framework based on the CDH assumption. The effi-
ciency of 2DH-EKE is comparable to the original EKE, with only O(λ)
bits growth in communication (λ the security parameter), and two (resp.,
one) extra exponentiation in computation for client (resp., server).

We also develop an asymmetric PAKE scheme 2DH-aEKE from
2DH-EKE. The security reduction loss of 2DH-aEKE is N , the total
number of client-server pairs. With a meta-reduction, we formally prove
that such a factor N is inevitable in aPAKE. Namely, our 2DH-aEKE
meets the optimal security loss. As a byproduct, we further apply our
technique to PAKE protocols like SPAKE2 and PPK in the relaxed UC
framework, resulting in their 2DH variants with tight security from the
CDH assumption.

Keywords: (Asymmetric) PAKE · UC Framework · Tight Security

1 Introduction

Password-based Authenticated Key Exchange (PAKE) [10] allows two parties
(client and server) who share a low-entropy password pw to agree on a session
key via public networks. Such session keys can later be used to establish se-
cure channels. Different from authenticated key exchange (AKE) which needs
a PKI to authenticate the validity of public keys, PAKE takes short human-
memorizable passwords rather than long cryptographic keys. Therefore, PAKE
is more convenient for deployments and applications.
⋆ A preliminary version of this paper was accepted by PKC 2023 and this is the full

version.

For PAKE, the server has to store all clients’ passwords and once compro-
mised, all clients are in high risk. Asymmetric PAKE (aPAKE) [11, 24] is a
variant of PAKE that considers security against server compromise. In the sce-
nario of aPAKE, the server stores a password file (usually a hash value H(pw))
for the client, rather than a plain password. A client can establish a session key
with a server if it holds a pre-image of the password file.

Started from the pioneering works by Belloven and Merritt [10, 11], (a)PAKE
has been studied extensively, and a variety of protocols have been proposed
over the past decades. For example, SPEKE [35], PPK/PAK [41], SPAKE2 [4],
Dragonfly [31], J-PAKE [30], KOY [38], KV [39] for PAKE, and VB-PAKE
[40], OPAQUE [37], KC-SPAKE2+ [47], KHAPE [27], YLZT [50], aEKE and
OKAPE [45] for aPAKE. Among these protocols, SPAKE2, J-PAKE, OPAQUE
are under the process of standardization [46, 5, 34, 44]. (a)PAKE protocols have
also been increasingly applied to numerous settings, including TLS [37, 43], ad
hoc networks [49], and the Internet of Things [48].

Since passwords have limited entropy, an adversary A can always try a pass-
word guess and actively engage in a session, and hence break the security with a
noticeable probability. Such online attacks are inherit to (a)PAKE, but we can
still fence these attacks via engineering methods, e.g., by limiting the number
of online password guesses. Another type of attacks is offline dictionary attacks,
i.e., the adversary eavesdrops on executions of the protocol and tries to break
the security via a brute-force attack with all possible passwords in a given dic-
tionary. Intuitively, a PAKE protocol is secure, if offline dictionary attacks help
nothing to the adversary, and the only feasible way to break the security, is to
engage in an online attack. In aPAKE, we further consider security when the
server is compromised. That is, the password files help nothing for the adversary
in impersonating a client, as long as A does not obtain the correct password
from the compromised password file via brute-force search.

Security models for (a)PAKE. There are two types of security notions for
(a)PAKE, namely, the game-based security in the Indistinguishability (IND)
model (see [9] for PAKE and [40, 12, 13] for aPAKE) and the simulation-based
security in the Universally Composable (UC) framework (see [17] for PAKE and
[24] for aPAKE). The IND model is formalized as an experiment between a
challenger C and an adversary A. We say an (a)PAKE protocol is secure in this
model, if A cannot distinguish a real session key from a random session key,
after it implements a variety of attacks.

The UC framework/model is another popular approach to formalize the secu-
rity of (a)PAKE. In the UC framework, an ideal function F is defined to capture
the essential functionality of an (a)PAKE protocol in the ideal world. We say
that an (a)PAKE protocol is secure in the UC framework, if it securely emulates
F , i.e., no PPT environment can distinguish the real world execution from the
ideal world execution (involving F and an ideal world simulator).

The UC framework is preferable to the IND model in a number of important
aspects.

2

– The UC framework allows an arbitrary correlation and distribution for pass-
words. But in the IND model, passwords are required to be uniformly dis-
tributed over the password set (or at least have a min-entropy) for the sake
of security proofs, e.g., [9, 38].

– UC security is preserved even if the protocol is running in arbitrary networks,
where multiple different protocols may run concurrently. This is guaranteed
by the universal composition theorem [16] in the UC framework.

– PAKE with UC security implies simulation-based security of secure-channel
protocols built on PAKE [17]. In contrast, it is not sure for the IND security
[47].

Tight security. The security of (a)PAKE (in both the IND and UC models) is
achieved by a security reduction under proper assumptions. The security reduc-
tion transforms the ability of a successful adversary A to an algorithm B solving
some well-known hard problem in about the same running time. If A’s attack
succeeds with probability ϵ, then B solves the problem with probability ϵ/L.
Here L is defined as the security loss factor. We say that the reduction is tight
if L is a constant. Otherwise the reduction is loose. A loose factor L is generally
a polynomial of Q, where Q is the total number of queries involved by A, and it
can be of arbitrary polynomial. PAKE and aPAKE are generally implemented
in the multi-user and multi-challenge setting. With a loose security reduction,
the deployment of (a)PAKE has to choose a larger security parameter to com-
pensate the loss factor L, resulting in larger elements and slower computations
in the execution of (a)PAKE. Therefore, pursuing tight security of (a)PAKE is
not only of theoretical value but also of practical significance.

There are very few works considering tight security of (a)PAKE. Becerra et
al. [8] proved that the security of the PAK protocol [41] can be tightly reduced to
the Gap DH assumption in the IND model. Under the same assumption, Abdalla
et al. [1] proved that SPAKE2 [4] is tightly secure in the relaxed UC framework.
However, both of the works used the non-standard Gap DH assumption, which
states that it is hard to compute gxy, given gx, gy, and an oracle deciding whether
the input (ga, gb, gc) is a DDH tuple. Besides, their securities are proved in the
IND or relaxed UC model [1], rather than the (regular) UC framework. Up to
now, there is no research on (a)PAKE with tight security in the UC framework.

Therefore, a challenge question is:

Can we construct a tightly secure (a)PAKE protocol in the UC framework,
preferably from the standard assumption?

Our contributions. In this paper, we aim to answer the above question. For
PAKE, we propose a tightly secure PAKE protocol based on the CDH assump-
tion in the UC framework, and hence answer the question for PAKE in affirma-
tive. For aPAKE, we prove a negative result via a meta-reduction, showing that
a loss factor L = N (the number of client-server pairs) is inevitable in aPAKE.
Nevertheless, we still come up with an aPAKE protocol that meets this optimal
security loss. In more detail, we revisit the EKE compiler/protocol in [10], and
make the following contributions.

3

1. We propose a strong 2DH variant of EKE, denoted by 2DH-EKE, and prove
that it is a tightly secure PAKE from the CDH assumption in the UC frame-
work. The efficiency of 2DH-EKE is comparable to the original EKE, with
only O(λ) bits growth in communication (λ the security parameter) and two
(resp., one) extra exponentiation in computation for client (resp., server).

2. We show a negative result for aPAKE, indicating that it is impossible for
aPAKE to be tightly secure. With a meta-reduction, we prove that the se-
curity loss of aPAKE is lower bounded by N , the number of client-server
pairs.

3. We develop our 2DH-EKE to an aPAKE protocol, denoted by 2DH-aEKE,
that meets the optimal security loss N based on the CDH assumption. Com-
pared with 2DH-EKE, the 2DH-aEKE protocol adds one extra round for
message authentications.

4. As a byproduct, we further apply our technique to PAKE protocols like
SPAKE2 [4] and PPK [41] in the relaxed UC framework [1], resulting in
their 2DH variants with tight security from the CDH assumption.

Related works. Bellovin and Merritt started the research of PAKE in [10],
and proposed the well-known EKE compiler/protocol. The security of EKE was
formally proved later by Bellare et al. [9] in the IND model, and by Dupont et
al. [22] in the UC framework. Most of the efficient PAKE constructions ([41,
15, 4, 14, 42], to name a few) rely on Random Oracles (RO), and they can be
viewed as different variants of the classical EKE compiler [10]. There are some
works [38, 23, 26, 39] that consider PAKE in the standard model (i.e., without
any ideal functions), but the constructions usually rely on heavy building blocks
like CCA2-secure PKE [26] or NIZK [39], and hence are less efficient.

Given the advantages of the UC framework over the IND model, a large
amount of (a)PAKE protocols [47, 37, 27, 45] are proposed and proved in the UC
framework recently. There are some other works [3, 2] focusing on the existing
IND-secure (a)PAKE schemes and aiming to prove their security in the stronger
UC framework. In [1], Abdalla et al. relaxed the UC framework by introducing
a modified lazy-extraction PAKE functionality, which allows the adversary in
the ideal world to postpone its password guess until after the session is com-
pleted. Under this relaxed model, they proved that SPEKE [36], SPAKE2 [4],
and TBPEKE [42] are UC-secure.

The only two works considering tight security of PAKE are [8] by Becerra
et al., and [3] by Abdalla et al. (both of them are in the RO model). However,
their securities are proved in the IND model or the relaxed UC framework [3],
based on the non-standard Gap DH assumption. As far as we know, there exists
no tightly secure (a)PAKE schemes in the regular UC framework up to now.

1.1 Technical Overview

In this subsection we briefly overview the technique used in this paper.
The main challenge to achieve tight security for (a)PAKE, is to embed the

hard problem into multiple sessions, while keeping the ability to output their

4

session keys in case the adversary A has the power to compute them (e.g., A
correctly guesses the password). Furthermore, the reduction algorithm should
extract (possibly from a set) the correct solution for the hard problem, if A wins
the security experiment non-trivially.

Now let us consider the EKE compiler/protocol [10] (Fig. 15 in Appendix D).
The client samples x and sends E(pw, gx), where E(·) is a symmetric encryption
under key pw. Similarly, the server samples y and sends E(pw, gy). The session
key is computed as key = H(aux, Z = gxy, pw) with aux some public information.
Now we explain why it is difficult for EKE to achieve tight security based on the
CDH assumption.

In the reduction, given a CDH problem instance (gx̄, gȳ), the reduction al-
gorithm B may use the random self-reducibility of the DH problem to generate
multiple (gxi , gyj), and embed them into multiple protocol sessions. Since H(·)
works as a random oracle, A has no advantage in distinguishing a real session
key from a random key, unless it queries H(·) on the right CDH value gxiyj .
Now suppose that A does query H(·) on the right CDH value, here come two
problems for B.

(1) A may ask hash queries on (aux, Zi, pw) with different Zi, but B cannot
identify/compute the right CDH value gx̄ȳ from all Zi. Therefore, B has to
guess one for the CDH problem, leading to a loose security factor Qh (maximum
number of hash queries).

(2) A may correctly guess the password and send gy out after seeing some
gxi , i.e., A has the power to compute gxiy and hence the session key. However,
without the knowledge of xi, B is unable to compute gxiy.

To solve these two problems, a natural idea is resorting to a decision oracle,
and that is exactly what [1, 8] did. However, [1, 8] rely on the non-standard Gap
DH assumption. In this paper, we solve these two problems with the twin DH
decision oracle and the standard CDH assumption.

Twin DH decision oracle. In [18], Cash et al. proposed the strong twin-
DH (st2DH) assumption and proved its equivalence to the (standard) CDH
assumption. Here the strong 2DH problem is to compute (gx̄1ȳ, gx̄2ȳ), given
gx̄1 , gx̄2 , gȳ, as well as a decision oracle 2DH(·, ·, ·) that inputs (Y, Z1, Z2) and
outputs whether (X̄1, Y, Z1) and (X̄2, Y, Z2) are both DDH tuples. Inspired by
[18], we propose our 2DH variant protocol for EKE, named 2DH-EKE. Now the
client sends E(pw, gx1 ||gx2) and the server sends E(pw, gy), and the session key
is computed as key = H(aux, Z1 = gx1y, Z2 = gx2y, pw) with aux some public
information. Next, we show how the twin DH decision oracle can be used to
solve the above two problems.

(1) With the decision oracle 2DH(·, ·, ·), the reduction algorithm B can easily
locate the correct Z1, Z2 among all possible candidates, by checking whether
2DH(Y, Z1, Z2) = 1. In this way, B succeeds in solving the strong 2DH problem,
and avoiding the loose factor Qh.

(2) In the reduction B may need to simulate the session key key = H(aux, gx1y,
gx1y, pw) for some adversarially generated gy, and the exponents x1||x2 are un-
known to B due to the embedded hard problem. In this case, B randomly samples

5

a key and implicitly sets it as the “right” key. Since H(·) works as a random or-
acle, A will not obverse this difference unless it asks a hash query on the right
2DH values Z1, Z2 later. If this happens, B can detect it with the decision oracle,
and reprogram the random oracle such that H(aux, Z1, Z2, pw) = key, and the
view of A is consistent.
Towards UC security. To achieve UC security, we need to construct a PPT
simulator to simulate the interactions with the environment in the real world,
with the help of the ideal functionality F . In our 2DH-EKE protocol, the sym-
metric encryption (E,D) is modeled as an Ideal Cipher (IC), and hence the tran-
scripts (e1 = E(pw, X1||X2) and e2 = E(pw, Y)) are perfect hiding. Consequently,
the simulator can perfectly simulate the transcripts with random messages.

To deal with the adversarially generated message (say e′1), we can always look
up the IC list to extract the password A guesses “in mind”. Then the simulator
can resort to the TestPW interface provided by F , to check whether A succeeds
in guessing the password. If yes, the simulator can compute the “real” session
key, with the help of the twin DH decision oracle, as discussed above. Otherwise,
the session key is simulated as a random key, and this is indistinguishable to the
adversary due to the CDH assumption.
Asymmetric PAKE. Generally in the scenario of aPAKE, the server stores a
password file (usually a hash of the password) rather than the password in plain.
The resistance to server compromise requires that getting the password file helps
nothing for the adversary in impersonating a client, unless it implements a brute-
force attack and successfully recovers the pre-image pw. In this paper, we develop
our 2DH-EKE to an aPAKE protocol 2DH-aEKE, with only one extra round to
transmit a confirming message.

2DH-aEKE inherits the idea of the generic CDH-based compiler in [33], and
it works as follows. Let H0(·) be a hash function, H0(pw) = (h, v1, v2) and
V1 := gv1 , V2 := gv2 . Now the password file stored in the server is (h, V1, V2).
In the execution of 2DH-aEKE, the client and the server first run the symmet-
ric 2DH-EKE protocol using h as the key of symmetric encryption. Recall that
the client and the server’s unencrypted messages are (X1||X2) = (gx1 ||gx2) and
Y = gy, respectively. Let H(aux, gx1y, gx2y, gv1y, gv2y, h) = (key, σ), where aux
is the public information, key is the sesssion key, and σ is the key confirmation
message. Then the client sends σ to the server as an extra round message. From
the strong 2DH assumption we know that, it is hard to compute gv1y||gv2y, even
with the password file (h, V1, V2) and Y . That is how the security of 2DH-aEKE
is guaranteed even after the server compromise. Note that the security reduc-
tion has a loss factor of N , the number of total client-server pairs, due to the
commitment of client’s password in the password file.

With a meta-reduction, we prove that the security loss of aPAKE is lower
bounded by N . Hence, our 2DH-aEKE meets the optimal reduction loss. Now we
give an intuition why the loss factor N is inevitable in aPAKE. In the reduction,
the hard problem (X̄1, X̄2, Ȳ) is embedded into the password file V1||V2 and the
server’s message Y , respectively. Meanwhile, if A asks the hash value of H0(pw)
with the correct password, then the discrete log of V1||V2 should be returned.

6

However, the reduction algorithm does not know whether and when A will issue
such a query. Hence, it has to choose a particular client-server pair among all N
pairs, embed the hard problem into this password file, and hope A breaks the
security of one session involving this password file but does not query H0(pw) at
the time being.

Recall that almost all previous aPAKE schemes [33, 47, 27] have a loose
reduction loss at least QhNθ, where Qh, N, θ denote the maximum numbers of
hash queries, client-server pairs, and protocol executions per client-server pair,
respectively. We stress that the decision oracle 2DH helps us improving the loss
factor from QhNθ to the optimal bound N (note that QhNθ � N in general).

Extend to the relaxed UC framework. Our method can also be applied to
some IC-free protocols like SPAKE2 [4] and PPK [41], to get their 2DH vari-
ants. And the tight security can be proved based on the CDH assumption in
the relaxed UC framework [1]. We take the SPAKE2 protocol as an example.
In SPAKE2, the transcript messages are X ·Mpw and Y ·Npw with M,N pub-
lic parameters. In our 2DH-SPAKE2, X is replaced by (X1||X2) = (gx1 ||gx2),
Y is replaced by (Y1||Y2) = (gy1 ||gy2), and the session key is computed as
key = H(aux, gx1y1 , gx1y2 , gx2y1gx2y2 , pw). Similar to the proof of 2DH-EKE, the
decision oracle 2DH is essential to make a tight reduction in the relaxed UC
framework.

Forward security. Both 2DH-EKE and 2DH-aEKE achieve Perfect Forward
Security [28] (PFS, a.k.a. perfect forward secrecy). PFS means that once a party
is corrupted at some moment, then all session keys completed before the cor-
ruption remain hidden from the adversary. Take 2DH-EKE as an example. Note
that a completed session has already uniquely determined e1 and e2, even if
one of them is adversarially generated. If A later gets pw via a corruption, the
information it obtains from the corruption is limited by X1||X2 = D(pw, e1)
and Y = D(pw, e2). However, given X1||X2 and Y , computing the session key
is as hard as solving the 2DH problem, and PFS is guaranteed as a result. The
analysis of PFS for SPAKE2 (2DH-SPAKE2) can be found in [1].

1.2 Roadmap

This paper is organised as follows. In Section 2 we present preliminaries, includ-
ing notations and some hardness assumptions. In Section 3 we describe the UC
framework for PAKE, propose the 2DH-EKE protocol, and prove its security.
In Section 4 we describe the UC framework for aPAKE, propose the asymmet-
ric variant 2DH-aEKE protocol, and prove its security. The optimal reduction
loss in aPAKE is proved in Section 5. Consequently, we extend our technique
to SPAKE2 to obtain 2DH-SPAKE2 in Section 6, with its proof in Appendix
C. The functionalities of ideal ciphers, random oracles, and Fle-pake (relaxed UC
framework) are shown in Appendixes A and B, respectively. Some more protocols
are shown in Appendix D.

7

2 Preliminaries

We use λ ∈ N to denote the security parameter throughout the paper. Denote
by x := y the operation of assigning y to x. Denote by x

$←− X the operation of
sampling x uniformly at random from a set X . For an algorithm A, denote by
y ← A(x; r), or simply y ← A(x), the operation of running A with input x and
randomness r and assigning the output to y. “PPT” is short for probabilistic
polynomial-time.

For the functionalities of ideal ciphers and random oracles, see Appendix A.

2.1 Hardness Assumptions

Let GGen be a group generation algorithm such that (G, q, g)← GGen(1λ), where
G is a cyclic group of prime order q with generator g.

Definition 1. For any adversary A, its advantage in solving the Computational
Diffie-Hellman (CDH) problem is defined as

AdvCDH
G,A (λ) := Pr[x, y

$←− Zq : A(g, gx, gy) = gxy].

In [18], Cash et al. proposed the Strong Twin Diffie-Hellman (strong 2DH or
st2DH) problem, and proved that it is as hard as the CDH problem.

Definition 2. [18] For any adversary A, its advantage in solving the st2DH
problem is defined as

Advst2DH
G,A (λ) := Pr[x̄1, x̄2, ȳ

$←− Zq : A2DH(·,·,·)(g, gx̄1 , gx̄2 , gȳ) = (gx̄1ȳ, gx̄2ȳ)],

where the decision oracle 2DH(·, ·, ·) inputs (gy, gz1 , gz2) and outputs 1 if (x̄1y =
z1) ∧ (x̄2y = z2) and 0 otherwise.

The st2DH assumption was proven equivalent to the CDH assumption [18].

Theorem 1. [18] For any PPT adversary A against the st2DH problem, there
exists a PPT algorithm B against the CDH problem such that Advst2DH

G,A (λ) ≤
AdvCDH

G,B (λ) +Q/q, where Q is the maximum number of decision oracle queries.

In the following sessions, we also use the notations CDH(gx, gy) = gxy, and
2DH(gx1 , gx2 , gy) = (gx1y, gx2y) for arbitrary elements gx, gy, gx1 , gx2 in G.

3 PAKE with Tight Security in the UC Framework

3.1 UC Framework for PAKE

We assume basic familiarity with the Universally Composable framework (UC
framework, a.k.a. UC model) for PAKE. The ideal functionality Fpake is shown
in Fig. 1. We mainly follow the definition by Shoup in [47], which is a modified

8

version of [17] by Canetti et al. For a full understanding of UC framework, we
refer [17, 47] for details.

Overview of the UC framework. The ideal functionality Fpake plays the role
of a trusted authority in the ideal world. A client and a server first share the same
password when registration, after which Fpake records the password privately.
When initializing a new PAKE session, both the two parties send a query to
Fpake, and the client additionally sends a password (since it is very possible for
a client to mistype the password, see the description below). Then Fpake verifies
whether the password from the client matches the (correct) password stored
by the server. If yes, these two parties are “matched” and they will get the
same random session key from Fpake. Otherwise, they are “dismatched” and the
execution of PAKE fails (the output may be arbitrary in this case). Security in
this ideal model holds inherently, since nothing except the identities of involved
parties is leaked to the simulator/adversary Sim in the ideal world, and the only
attack Sim can apply, is an online attack.

The security target of a PAKE protocol Π, is to emulates the ideal func-
tionality Fpake in the real world. More precisely, consider an environment Z that
controls passwords for all parties4, and it aims to distinguish the real world from
the ideal world, i.e., distinguish the case where outputs including session keys
are produced via executions of Π compelled by an adversary A, from the case
where outputs are obtained from Fpake and an simulator Sim interacting with
Fpake. If for any PPT environment Z, the distinguishing advantage is negligible,
we say PAKE protocol Π securely emulates Fpake.

Now we describe Fpake in more detail.

Password storage and sessions. We require two parties involved in a PAKE
execution have different roles (client or server), and each party has a unique iden-
tity, namely, C(i) or S(j). In the registration stage, the environment Z allocates
a password p̂w for each client-server pair (C(i), S(j)). The functionality Fpake then
records this password after a StorePWFile query from C(i) or S(j). Without loss
of generality, we assume each pair of (C(i), S(j)) has only one password.

For a party P , we call an execution of protocol a (session) instance, and
index it with an instance identity iid. After registration, P can initialize a new
session instance via a NewClient or NewServer query to Fpake. For a server S(j),
the password pw used in this instance is set to be the correct password p̂w pre-
shared between C(i) and S(j). While for a client C(i), it is possible that pw 6= p̂w
due to a mistyped/misremembered password.

Following by the definition in [47], we explicitly model mistyped or misre-
membered passwords in Fpake, instead of absorbing it into an active attack by the
adversary A (though this is enough from the perspective of PAKE security, i.e.,
preventing a bad client from logging into the server). Actually, a mistyped pass-

4 Let the environment deciding passwords captures the security in case users’ pass-
words are arbitrarily distributed and correlated. This is one aspect in which the UC
framework is superior to the IND model.

9

Functionality Fpake

The functionality Fpake is parameterized by a security parameter λ. It interacts with a simulator Sim
and a set of parties via the following queries:
Password Storage

Upon receiving a query (StorePWFile,C(i), S(j), p̂w) from a client C(i) or a server S(j):
If there exists a record ⟨file,C(i), S(j), ·⟩, ignore this query.
Otherwise, record ⟨file,C(i), S(j), p̂w⟩, and send (StorePWFile,C(i), S(j)) to Sim.

Sessions
Upon receiving a query (NewClient, iid(i), S(j), pw) from a client C(i):

Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewClient,C(i), iid(i), S(j), pw = p̂w?) to Sim.
Record (C(i), iid(i), S(j), pw) and mark it as fresh.
In this case, S(j) is called the intended partner of (C(i), iid(i)).

Upon receiving a query (NewServer, iid(j),C(i)) from a server S(j):
Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewServer, S(j), iid(j),C(i)) to Sim. Set pw := p̂w,
record (S(j), iid(j),C(i), pw) and mark it as fresh.
In this case, C(i) is called the intended partner of (S(j), iid(j)).

Two instances (C(i), iid(i)) and (S(j), iid(j)) are said to be partnered, if there are two fresh records
(C(i), iid(i), S(j), pw) and (S(j), iid(j),C(i), pw) sharing the same pw.

Active Session Attacks
Upon receiving a query (TestPW, P, iid, pw′) from Sim:

If there is a fresh record (P, iid, ·, pw):
– If pw′ = pw, mark the record compromised and reply to Sim with “correct guess”.
– If pw′ ̸= pw, mark the record interrupted and replay with “wrong guess”.

Key Generation
Upon receiving a query (FreshKey, P, iid, sid) from Sim:

If 1) there is a fresh or interrupted record (P, iid,Q, pw); and 2) sid has never been assigned to
P ’s any other instance (P, iid′):

Pick a new random key k, mark the record (P, iid,Q, pw) as completed, assign it with sid,
send (iid, sid, k) to P , and record (P,Q, sid, k).

Upon receiving a query (CopyKey, P, iid, sid) from Sim:
If 1) there is a fresh record (P, iid,Q, pw) and a completed record (Q, iid∗, P, pw) s.t. (P, iid) and
(Q, iid∗) are partnered; and 2) sid has never been assigned to P ’s any other instance (P, iid′);
and 3) there is a unique (Q, iid∗) that has been assigned with sid:

Retrieve the record (Q,P, sid, k), mark the record (P, iid,Q, pw) as completed, assign it with
sid, and send (iid, sid, k) to P .

Upon receiving a query (CorruptKey, P, iid, sid, k) from Sim:
If 1) there is a compromised record (P, iid,Q, pw); and 2) sid has never been assigned to P ’s any
other instance (P, iid′):

Mark the record (P, iid,Q, pw) as completed, assign it with sid, and send (iid, sid, k) to P .

Fig. 1. The PAKE functionality Fpake [47].

10

word is very close to the correct password, and an accidental mismatch would
not compromise this nearly-identical password to A.
Active attacks. To capture online attacks in the real world, Fpake allows the
simulator Sim in the ideal world to make a password guess per instance via the
interface TestPW. If the guess is correct, then the session instance is marked as
compromised, which means that the adversary succeeds in attacking this instance
and can affect the generation of the session key. If the guess is wrong, then the
instance is marked as interrupted, indicating a failed online attack, and the session
key is chosen at random.

Via (static) corruptions, a real world adversary can learn the password hold
by a party and control its behaviour completely. To make the view of the environ-
ment consistent, the simulator Sim in the ideal world also obtains the password
of that party, and simulates what it outputs in an indistinguishable way. Note
that the corruption process is not explicitly presented in Fpake in Fig 1.
Key generation. For an instance (P, iid), when the protocol execution is com-
pleted, Fpake will assign to the instance a key and a session identity sid which
is determined by Sim. And sid is required to uniquely index this completed in-
stance (the two parties in a session would share the same sid if there is no active
attack). Furthermore, Fpake provides three types of interfaces for key generation.

– FreshKey. When a successful protocol execution finishes and one instance
needs to output a session key first, or the passwords do not match (includ-
ing the case of a failed password guess), the instance is assigned with an
independent and random key.

– CopyKey. If there are two instances that match with each other, and a fresh
key has been assigned to one instance before, then a copy of the session key
is passed to the other instance.

– CorruptKey. If one of the participating parties is corrupted, or the adversary
successfully guesses the password, then the session key is totally determined
by Sim.

Remark 1 (Session identities). Fpake implicitly assumes that sid allocated by
the simulator differs for each instance (even for two different instances of the
same party) except for the two partnered instances. As we will see, this is indeed
the case in 2DH-EKE, since sid connects the identities of the client, the server,
and the session transcripts, and each instance contributes its own randomness
to transcripts. So once an instance is completed and has been assigned with
(sid, k), the information of sid is sufficient to locate the unique and partnered
pair (P, iid,Q, pw) and (Q, iid∗, P, pw), when dealing with CopyKey queries.

Remark 2 (Corruptions). Our PAKE framework deals with static corruptions,
i.e., the adversary can corrupt some parties and get their passwords prior to the
protocol execution. Note that there is a stronger model that supports adaptive
corruptions, where the adversary can corrupt parties adaptively throughout the
execution, and obtain not only the passwords but also the internal states. Almost
all UC frameworks [17, 47] for PAKE are defined in the way of static corruptions.

11

3.2 The 2DH-EKE Protocol
The EKE compiler/protocol (Fig. 15 in Appendix D) was proposed by Bellovin
and Merritt in [10], and formally proved later by Bellare et al. in the IND
model [9], and by Dupont et al. in the UC framework [22]. The security proof is
based on the CDH assumption in the IC and RO model, and has a security loss
L = Qh ·N ·θ, with Qh, N, θ the maximum numbers of hash queries, client-server
pairs, and protocol executions per client-server pair, respectively.

In this subsection, we present a variant of EKE, named 2DH-EKE protocol,
and prove its tight security based on the strong 2DH assumption (equivalently,
the CDH assumption) in the UC framework.

The 2DH-EKE protocol is shown in Fig. 2. Here (E1,D1) is a symmetric
encryption with key space PW , plaintext space G2 and ciphertext space E1, and
(E2,D2) is a symmetric encryption with key space PW , plaintext space G and
ciphertext space E2. Hash function H is defined as H : {0, 1}∗ 7→ K with K the
space of session keys. C, S are identities of Client and Server.

Public Parameter: (G, g, q), (E1,D1), (E2,D2), H

Client C (pw) Server S (pw)

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2

e1 ← E1(pw, X1||X2)

e1−−−−−−−−−−−−−−−→
e2←−−−−−−−−−−−−−−−

y
$←− Zq, Y := gy

e2 ← E2(pw, Y)

Y ← D2(pw, e2)
sid := C||S||e1||e2

Output keyC ← H(sid, Y x1 , Y x2 , pw)

X1||X2 ← D1(pw, e1)
sid := C||S||e1||e2

Output keyS ← H(sid,Xy
1 , X

y
2 , pw)

Fig. 2. The 2DH-EKE protocol.

Remark 3. The 2DH-EKE protocol can be modified to a variant protocol by in-
terchanging the operations of Client and Server: the client sends e1 = E1(pw, X)
and the server sends e2 = E2(pw, Y1||Y2). In this way, the computational cost of
Client is reduced, but Server has to initiate the session. In this paper we do not
take this variant, since Client will start a session in general cases.
Remark 4 (Ideal ciphers on group elements). The ideal cipher in the 2DH-EKE
protocol can be accomplished with a block cipher like AES. Take e1 = E1(pw, X)
as an example. First, the group element X is mapped to an n-bit string through a
quasi bijection [27], and then the encryption algorithm encrypts the n-bit string
with the password. The decryption algorithm D1 can be similarly defined. For
more details on implementations of IC, see [27].
Remark 5 (Comparisons with the twin DH protocol [18] and KC-SPAKE2 [47]).
Note that Cash et al. [18] extended the DH key exchange protocol to a twin

12

DH version and proved its tight security. In the twin DH protocol, one party
publishes (X1, X2) and the other party publishes (Y1, Y2), and the session key
is the hash value H(gx1y1 , gx1y2 , gx2y1 , gx2y2). In contrast, the server’s (plain)
message in our 2DH-EKE protocol consists of only one element Y , which greatly
decreases the computation/communication cost.

In [47], Shoup showed the (non-tight) security of KC-SPAKE2 based on the
CDH assumption, and argued that the reduction is tight under the Gap DH as-
sumption. In contrast, our tight reduction of 2DH-EKE is based on the standard
CDH assumption.

3.3 Security Analysis

Theorem 2 (Security of 2DH-EKE). If the st2DH assumption (equivalently,
the CDH assumption) holds in G, (E1,D1) and (E2,D2) work as ideal ciphers,
and H works as a random oracle, then the 2DH-EKE protocol in Fig. 2 securely
emulates Fpake. More precisely, for any PPT environment Z and real world ad-
versary A which has access to ideal ciphers (E1,D1), (E2,D2) and random oracle
H, there exist a PPT simulator Sim, which has access to the ideal functionality
Fpake, and algorithms B,B′, s.t. the advantage of Z in distinguishing the real
world running with A and the ideal world running with Sim is bounded by

Adv2DH-EKE,Z(λ) ≤2Advst2DH
G,B (λ) +

Q2
ic

|E1|
+

Q2
ic

|E2|
+ 2−Ω(λ)

≤2AdvCDH
G,B′(λ) + 2−Ω(λ).

where Qic denotes the maximum number of IC queries.

Proof. The main task of the proof, is to construct a PPT simulator Sim, which
has access to the ideal functionality Fpake and interactions with the environment
Z, and simulates the real world 2DH-EKE protocol interactions among the ad-
versary A, parties, and the environment Z. To this end, Sim needs to simulate
honestly generated messages from real parties, respond adversarial messages ap-
proximately, and simulate ideal functions (E1,D1), (E2,D2), and H, as shown in
Fig. 3. The functionality Fpake provides information to Sim through interfaces
including TestPW, NewClient, NewServer, FreshKey, CopyKey, and CorruptKey, as
defined in Fig. 1. Recall that Sim has no secret inputs (i.e., passwords).

The full description of the simulator Sim is given in Fig. 4. Let RealZ,A be the
real experiment where environment Z interacts with real parties and adversary
A, and IdealZ,Sim be the ideal experiment where Z interacts with simulator Sim.
We prove that |Pr[RealZ,A ⇒ 1]−Pr[IdealZ,Sim ⇒ 1]| is negligible via a series
of games Game 0−5, where Game 0 is RealZ,A, Game 5 is IdealZ,Sim, and
argue that the adjacent two games are indistinguishable from Z’s prospective of
view.

We consider the scenario of multi-users and multi instances. Let C(i) (resp.,
S(j)) denote clients (resp., servers) with superscript (i) (resp., (j)) indexing dif-
ferent clients (resp., servers). Let (C(i), iid(i)) denote client instances of C(i) with

13

Fig. 3. The real world execution (left) and the ideal world execution (right).

iid(i) indexing its different instances. Similarly, let (S(j), iid(j)) denote server in-
stances of S(j) with iid(j) indexing its different instances. For better presentation
of the proof, we give some definitions as follows.

Good/Bad client instance. We call a client instance (C(i), iid(i)) a good (resp.,
bad) one, if the password pw used in this instance equals (resp., differs from)
the correct password p̂w shared between C(i) and its intended partner S(j).
Note that a bad client instance indicates the case that the client mistypes
its password.

Linked instances. We say that a server instance (S(j), iid(j)) is linked to a
client instance (C(i), iid(i)) (no matter good or bad), if e1 generated by
(C(i), iid(i)) is received by one instance (S(j), iid(j)) of its intended part-
ner S(j). Similarly, we say a client instance (C(i), iid(i)) is linked to a server
instance (S(j), iid(j)), if e2 generated by (S(j), iid(j)) is received by one in-
stance (C(i), iid(i)) of its intended partner C(i). If the two instances are linked
to each other, then they are called linked instances.

Game 0. This is the real experiment RealZ,A. In this experiment, Z initial-
izes a password for each client-server pair, sees the interactions among clients,
servers and adversary A, and also obtains the corresponding session keys of pro-
tocol instances. Here A may implement attacks like view, modify, insert, or drop
messages over the network. We have

Pr[RealZ,A ⇒ 1] = Pr[Game 0⇒ 1].

Game 1. (Add an ideal layout.) From this game on, we add an ideal layout Sim5,
which is only a toy construction in Game 1, but will be complete with games
going on and arrive at the final Sim defined in Fig. 4. In Game 1, Sim still needs
to take passwords as inputs. With the help of passwords, it perfectly simulates
the executions in RealZ,A, except that the encryption of IC is simulated in
5 The simulators in Game 1−4 are semi-manufactured, which help us to analyze the

differences between the real world and the ideal world step by step. For simplicity,
we still use the same notation Sim in Game 1− 4.

14

Sim maintains lists LIC1 ,LIC2 , TIC1 , TIC2 ,LH, T ,DL (all initialized to be empty) in the simulation.

– LIC1 ,LIC2 , TIC1 , TIC2 : store records w.r.t. ideal ciphers (E1,D1) and (E2,D2).
– LH: store records w.r.t. random oracle H.
– T : store messages sent by client/server instances.
– DL: store discrete logarithms.

PAKE Sessions
on (NewClient,C(i), iid(i), S(j), b) from Fpake:

e1
$←− E1\TIC1 , TIC1 := TIC1 ∪ {e1}, T := T ∪ {(C(i), iid(i), e1)}, send e1 from C(i) to A.

If b = 1: mark (C(i), iid(i)) as correct-pw. // client C(i) correctly inputs the password
on (NewServer, S(j), iid(j),C(i)) from Fpake and e1 from A as a client message from C(i) to (S(j), iid(j)):

e2
$←− E2\TIC2 , TIC2 := TIC2 ∪ {e2}, T := T ∪ {(S(j), iid(j), e2)}, send e2 from S(j) to A.

sid := C(i)||S(j)||e1||e2.
If ∃(pw′, X1||X2, e1, enc) ∈ LIC1 : ask (TestPW, S(j), iid(j), pw′) to Fpake, and if Fpake returns “correct
guess”:

Let X1||X2 ← D1(pw′, e1) and Y ← D2(pw′, e2), retrieve item (Y, y) ∈ DL, Z1 := Xy
1 , Z2 := Xy

2 ,
key← H(sid, Z1, Z2, pw′), send (CorruptKey, S(j), iid(j), sid, key) to Fpake.
In other cases: send (FreshKey, S(j), iid(j), sid) to Fpake.

on e2 from A as a server message from S(j) to (C(i), iid(i)):
Retrieve (C(i), iid(i), e1) ∈ T , sid := C(i)||S(j)||e1||e2.
If (C(i), iid(i)) is correct-pw, ∃(S(j), ·, e2) ∈ T , and Sim has queried (FreshKey, S(j), ·, sid):

Send (CopyKey,C(i), iid(i), sid) to Fpake.
If ∃(pw′, Y, e2, enc) ∈ LIC2 : ask (TestPW,C(i), iid(i), pw′) to Fpake, and if Fpake returns “correct
guess”:

Let X1||X2 ← D1(pw′, e1) and Y ← D2(pw′, e2), retrieve item (X1||X2, x1||x2) ∈ DL, Z1 := Y x1 ,
Z2 := Y x2 , key← H(sid, Z1, Z2, pw′), send (CorruptKey,C(i), iid(i), sid, key) to Fpake.
In other cases: send (FreshKey,C(i), iid(i), sid) to Fpake.

On Ideal Ciphers and Random Oracles
on E1(pw, X1||X2) from A:

If ∃(pw, X1||X2, e1, ·) ∈ LIC1 : return e1.
Otherwise: e1 $←− E1\TIC1 , LIC1 := LIC1 ∪ {(pw, X1||X2, e1, enc)}, TIC1 := TIC1 ∪ {e1}, return e1.

on D1(pw, e1) from A:
If ∃(pw, X1||X2, e1, ·) ∈ LIC1 : return X1||X2.
Otherwise: x1, x2

$←− Zq, X1 := gx1 , X2 := gx2 , LIC1 := LIC1 ∪ {(pw, X1||X2, e1, dec)}, DL :=
DL ∪ {(X1||X2, x1||x2)}, return X1||X2.

on E2(pw, Y) from A:
If ∃(pw, Y, e2, ·) ∈ LIC1 : return e2.
Otherwise: e2 $←− E2\TIC2 , LIC2 := LIC2 ∪ {(pw, Y, e2, enc)}, TIC2 := TIC2 ∪ {e2}, return e2.

on D2(pw, e2) from A:
If ∃(pw, Y, e2, ·) ∈ LIC2 : return Y .
Otherwise: y $←− Zq, Y := gy, LIC2 := LIC2 ∪ {(pw, Y, e2, dec)}, DL := DL ∪ {(Y, y)}, return Y .

on H(C, S, e1, e2, Z1, Z2, pw) from A:
sid := C||S||e1||e2.
If ∃(sid, Z1, Z2, pw, key) ∈ LH for some key: return key.
Otherwise: key $←− K, record (sid, Z1, Z2, pw, key) in LH, and return key.

Fig. 4. Simulator Sim for 2DH-EKE in the proof of Theorem 2.
15

a collision-free way. Meanwhile, Sim also necessarily keeps the exponent values
of the decrypted group elements from D1 and D2. More precisely, it maintains
lists LIC1 ,LIC2 , TIC1 , TIC2 ,DL,LH (all initialized to be empty sets) and works as
follows.

– On E1(pw, X1||X2): If there exists (pw, X1||X2, e1, ·) ∈ LIC1
, return e1. Oth-

erwise, e1
$←− E1\TIC1

, add (pw, X1||X2, e1, enc) in LIC1
, add e1 in TIC1

, and
return e1. Here “enc” indicates that the record is created in encryption.

– On D1(pw, e1): If there exists (pw, X1||X2, e1, ·) ∈ LIC1 , return X1||X2. Oth-
erwise, x1, x2

$←− Zq, X1 := gx1 , X2 := gx2 , add (pw, X1||X2, e1, dec) in LIC1 ,
add (X1||X2, x1||x2) in DL, and return X1||X2. Here “dec” indicates that
the record is created in decryption.

– On E2(pw, Y): If there exists (pw, Y, e2, ·) ∈ LIC2
, return e2. Otherwise, e2

$←−
E2\TIC2

, add (pw, Y, e2, enc) in LIC2
, add e2 in TIC2

, and return e2.
– On D2(pw, e2): If there exists (pw, Y, e2, ·) ∈ LIC2

, return Y . Otherwise, y $←−
Zq, Y := gy, add (pw, Y, e2, dec) in LIC2 , add (Y, y) in DL, and return Y .

– On H(C, S, e1, e2, Z1, Z2, pw): Let sid := C||S||e1||e2. If there exists (sid, Z1,

Z2, pw, key) ∈ LH, return key. Otherwise, key $←− K, add (sid, Z1, Z2, pw, key)
in LH and return key.

According to the ideal functionality of ideal ciphers, we know that distinct
inputs of E1 (and E2) collide to the same ciphertext with probability 1/|E1| (and
1/|E2|). By union bound, we have

|Pr[Game 1⇒ 1]− Pr[Game 0⇒ 1]| ≤ Q2
ic

|E1|
+

Q2
ic

|E2|
,

where Qic denotes the maximum number of IC queries.

Game 2. (Randomize keys for passively attacked instances.) In this game, for
any session, if A only eavesdrops on the protocol instance, then Sim returns a
random key instead of the real session key (the hash value of H). More precisely,
Game 2 is changed as follows.

(1) If server instance (S(j), iid(j)) is linked to a good client instance (C(i), iid(i)),
then Sim generates a random session key for (S(j), iid(j)).

(2) If a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)) are
linked to each other, and (S(j), iid(j)) has already been assigned with a random
key, then Sim copies the key as the session key for (C(i), iid(i)).

Define bad1 as the event that there exists a passively attacked session w.r.t.
a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)), and A ever
asks a hash query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, p̂w) such that

(Ẑ1, Ẑ2) = 2DH(D1(p̂w, e1),D2(p̂w, e2)),

where e1 and e2 are the transcripts, and p̂w is the correct password pre-shared
between them.

16

Obviously A will not detect the change in Game 2 unless bad1 happens. We
show that if bad1 happens, then we can construct an algorithm B1 to solve the
strong 2DH problem.
B1 works as follows. It receives the 2DH challenge (X̄1, X̄2, Ȳ) = (gx̄1 , gx̄2 , gȳ),

as well as an oracle 2DH which inputs (Y, Z1, Z2) and outputs whether (Z1, Z2) =
2DH(X̄1, X̄2, Y). Then it simulates Game 2 as below.

– The simulation of (E1,D1), (E2,D2),H is the same as that in Game 2.
– For the simulation of good client instance (C(i), iid(i) = s) generating the

first message e1: B1 samples a
(i)
s,1, a

(i)
s,2

$←− Zq, and sets e1 ← E1(p̂w, X1||X2),
where X1 := X̄1g

a
(i)
s,1 = gx̄1+a

(i)
s,1 and X2 := X̄2g

a
(i)
s,2 = gx̄2+a

(i)
s,2 .

– For the simulation of server instance (S(j), iid(j) = t) generating the second
message e2 and the session key: Let e1 be the received message. There are
two cases.
• If (S(j), iid(j) = t) is linked to some good instance (C(i), iid(i) = t), it

samples b
(j)
t

$←− Zq, Y := gȳ+b
(j)
t , and sets the session key to be random.

• Otherwise, either (S(j), iid(j) = t) is linked to some bad client instance,
or e1 is adversarially generated. In this case, it samples y $←− Zq, Y := gy,
and computes the session key according to the protocol specification.

In either case, it outputs e2 ← E2(p̂w, Y).
– For the simulation of good client instance (C(i), iid(i) = s) generating the

session key (after generating e1 and receiving e2), there are two cases.
• If (C(i), iid(i) = s) and a server instance (S(j), iid(j) = t) are linked to

each other, then (S(j), iid(j) = t) must have been assigned with a random
key key. In this case, B1 assigns the same key for (C(i), iid(i) = s).

• If (C(i), iid(i) = s) is not linked to any server instance, then (C(i), iid(i) =
s) must have received an adversarially generated message e2. B1 re-
trieves (p̂w, X1||X2, e1, ·) ∈ LIC1

and (p̂w, Y, e2, ·) ∈ LIC2
(B1 gener-

ates the items if they do not exist), and checks whether there exists
(C(i), S(j), e1, e2, Z1, Z2, pw, key) ∈ LH, such that 2DH(X1, X2, Y) = (Z1,

Z2). Namely, it uses the trapdoor information a
(i)
s,1, a

(i)
s,1 and the decisional

oracle 2DH, to check whether

2DH(Y, Z1/Y
a
(i)
s,1 , Z2/Y

a
(i)
s,2) = 1.

If so, B1 assigns key as the session key of (C(i), iid(i) = s). Other-
wise, B1 randomly samples a key and “views” it as the hash output
for the correct input H(C(i), S(j), e1, e2, 2DH(X1, X2, Y) = (?, ?), p̂w),
where 2DH(X1, X2, Y) = (?, ?) means that the values of 2DH(X1, X2, Y)

are to be determined. If A later asks H(C(i), S(j), e1, e2, Z1, Z2, p̂w), then
B1 checks whether Z1||Z2 are the correct 2DH values via the decisional
oracle 2DH, i.e., it checks whether

2DH(Y, Z1/Y
a
(i)
s,1 , Z2/Y

a
(i)
s,2) = 1.

17

If yes, B1 reprograms the random oracle s.t. H(C(i), S(j), e1, e2, Z1, Z2, p̂w)
= key by replacing (?, ?) with (Z1, Z2). In this way, the view of A is
consistent.

– The simulation of bad client instances is the same as that in Game 2.

Suppose that bad1 happens w.r.t. instances (C(i), s) and (S(j), t) with tran-
scripts e1||e2, then A must have asked H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, p̂w) s.t.

(Ẑ1, Ẑ2) = 2DH(gx̄1+a
(i)
s,1 , gx̄2+a

(i)
s,2 , gȳ+b

(j)
t).

Note that B1 can detect bad1 with the help of oracle 2DH and trapdoors
a
(i)
s,1, a

(i)
s,2, b

(j)
t . Then it makes use of Ẑ1||Ẑ2 to extract

Ẑ1/g
x̄1b

(j)
t +ȳa

(i)
s,1+a

(i)
s,1b

(j)
t = gx̄1ȳ and Ẑ2/g

x̄2b
(j)
t +ȳa

(i)
s,2+a

(i)
s,2b

(j)
t = gx̄2ȳ,

which is obviously the solution to the strong 2DH problem.
Therefore, we have

|Pr[Game 2⇒ 1]− Pr[Game 1⇒ 1]| ≤ Advst2DH
G,B1

(λ).

Game 3. (Randomize simulated messages.) In this game, Sim directly samples
random messages to simulate the transcripts e1 and e2, and postpones the us-
age of ideal ciphers (E1,D1) and (E2,D2) until necessary (like the generation of
session keys). More precisely, Game 3 is now simulated by Sim as follows.

– For the simulation of a client instance (C(i), iid(i)) generating the first mes-
sage e1, Sim chooses a random e1

$←− E1\TIC1
(without any encryption) as

the output message and adds e1 in TIC1
.

– For the simulation of a server instance (S(j), iid(j)) generating the second
message e2 and the session key, Sim chooses a random e2

$←− E2\TIC2
(without

any encryption) as the output message and adds e2 in TIC2
. Let e1 be the

message that S(j) has received .
• If (S(j), iid(j)) is linked to some good client instance, then the session

key is set to be random, just like Game 2.
• If (S(j), iid(j)) is not linked to any good client instance, then Sim in-

vokes Y ← D2(p̂w, e2) by sampling y
$←− Zq, computing Y := gy and

adding (p̂w, Y, e2, dec) to LIC2
. The session key is generated by key ←

H(C(i), S(j), e1, e2, 2DH(D1(p̂w, e1), Y), p̂w) with the knowledge of y, where
C(i) is the intended partner of (S(j), iid(j)) and p̂w is the (correct) pass-
word. In this way, the session key is the same hash value as that in
Game 2.

– For the simulation of a client instance (C(i), iid(i)) that sends e1 out and
receives e2, if (C(i), iid(i)) is bad or e2 was adversarially generated, then Sim
invokes (X1, X2) ← D1(pw, e1) by sampling x1, x1,

$←− Zq, computing X1 :=
gx1 , X2 := gx2 and adding (pw, X1||X2, e1, dec) to LIC1 . The session key is

18

generated as key← H(C(i), S(j), e1, e2, 2DH(X1, X2,D2(pw, e2)), pw) with the
knowledge of x1, x2, where S(j) is the intended partner of (C(i), iid(i)) and
pw is the (possible incorrect) password used in this instance. In this way, the
session key is the same hash value as that in Game 2.

Recall that in Game 2, the transcripts e1 and e2 are randomly distributed
via the simulation of E1 and E2, so they have the same distribution as that in
Game 3. As shown above, the generation of all session keys in Game 3 is also
the same as that in Game 2. Therefore, we have

Pr[Game 3⇒ 1] = Pr[Game 2⇒ 1].

Game 4. (Randomize keys for actively attacked server/client instances in case
of incorrect password guesses.) In Game 4, the simulator further changes the
session key generation of server/client instances.

For any server instance (S(j), iid(j)) that receives e1, let C(i) be its intended
partner and pw(= p̂w) be the (correct) password used in this instance. Sim
generates the session key for it in the following way.

Case (S.1). If (S(j), iid(j)) is linked to some good client instance (C(i), iid(i)),
then Sim generates a random key for (S(j), iid(j)), just as that in Game 3.

Case (S.2). (S(j), iid(j)) is not linked to any good client instance (C(i), iid(i)).
We further divide it into the following two subcases.
Case (S.2.1). If there exists a record (pw′ = pw, X1||X2, e1, enc) ∈ LIC1

,
then Sim sets key ← H(C(i), S(j), e1, e2, 2DH(X1, X2,D2(pw, e2)), pw) as
the session key, just like that in Game 3. Note that there exists at most
one such record in LIC1

, since E1 is simulated in a collision-free way.
Case (S.2.2). If there does not exist a record (pw′ = pw, X1||X2, e1, enc) ∈
LIC1

, then Sim generates a random key for (S(j), iid(j)).

For any client instance (C(i), iid(i)) that sends e1 out and receives e2, let S(j)

be the intended partner and pw be the (possibly incorrect) password used in this
instance. Sim generates the session key for it in the following way.

Case (C.1). If (C(i), iid(i)) and some server instance (S(j), iid(j)) are linked to
each other, and (C(i), iid(i)) is good, then Sim assigns the same random
session key of (S(j), iid(j)) to (C(i), iid(i)), just as that in Game 3.

Case (C.2). If (C(i), iid(i)) is not linked to any server instance, or (C(i), iid(i))
is bad. We further divide it into the following two subcases.
Case (C.2.1). If there exists a record (pw′ = pw, Y, e2, enc) ∈ LIC2

, then Sim
sets key← H(C(i), S(j), e1, e2, 2DH(D1(pw, e1), Y), pw) as the session key,
just like that in Game 3. Note that there exists at most one such record
in LIC2

, since E2 is simulated in a collision-free way.
Case (C.2.2). If there does not exist a record (pw′ = pw, Y, e2, enc) ∈ LIC2 ,

then Sim generates a random key for (C(i), iid(i)).

19

Note that the differences between Game 3 and Game 4 lie in Cases (S.2.2)
and (C.2.2), since in Game 3 the session keys are the hash values (rather than
random elements) in Cases (S.2.2) and (C.2.2.).

We define bad2 as the event that there exists a server instance (S(j), iid(j))

in Case (S.2.2), or a client instance (C(i), iid(i)) in Case (C.2.2), and A ever asks
a hash query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, pw) such that

(Ẑ1, Ẑ2) = 2DH(D1(pw, e1),D2(pw, e2)),

where e1 and e2 are the transcripts w.r.t. (S(j), iid(j)) or (C(i), iid(i)), and pw is
the password used in this instance.

Obviously Game 4 and Game 3 are the same unless bad2 happens. We
show that if bad2 happens, then we can construct a reduction algorithm B2 to
solve the strong 2DH problem.
B2 receives the 2DH challenge (X̄1, X̄2, Ȳ) = (gx̄1 , gx̄2 , gȳ), as well as a deci-

sional oracle 2DH. Then it simulates Game 4 as follows.

– The simulation of E1,E2, and H is the same as that in Game 4.
– Simulation of D1(pw′, e1).
• If there exists (pw′, X1||X2, e1, ·) ∈ LIC1

, return X1||X2.
• Otherwise, sample a1, a2

$←− Zq, X1 := X̄1g
a1 = gx̄1+a1 , X2 := X̄2g

a2 =
gx̄2+a2 , add (pw′, X1||X2, e1, dec) in LIC1 , and return X1||X2.

– Simulation of D2(pw′, e2).
• If there exists (pw′, Y, e2, ·) ∈ LIC2

, return Y .
• Otherwise, if D2(pw′, e2) is invoked in Case (S.2.1), B2 samples y

$←− Zq,
Y := gy, adds (pw′ = p̂w, Y, e2, dec) in LIC2

, adds (Y, y) in DL and re-
turns Y . Note that with overwhelming probability, there exists no record
(·, ·, e2, ·) in LIC2

before D2(p̂w, e2) is invoked in Case (S.2.1), since e2 is
randomly sampled by the server instance (S(j), iid(j)).
In other cases, B2 samples b $←− Zq, Y := Ȳ gb = gȳ+b, adds (pw′, Y, e2, dec)
in LIC2

and returns Y .
– The simulation of transcripts e1 and e2 is the same as that in Game 4.
– The simulation of key generation for server instance (S(j), iid(j)) is the same

as that in Game 4. Specially in Case (S.2.1), B2 is able to compute the
correct hash value with the knowledge of y obtained in the simulation of D2.

– Simulation of key generation for client instance (C(i), iid(i)).
• If (C(i), iid(i)) and some server instance (S(j), iid(j)) are linked to each

other, and (C(i), iid(i)) is good, then B2 assigns the same random session
key for it, just as that in Game 4.

• Otherwise, B2 computes the session key with the help of the decisional
oracle 2DH. More preciesly, let e1, e2 be the messages sent and re-
ceived by (C(i), iid(i)), and pw be the password used in it. B2 retrieves
(pw, X1||X2, e1, ·) ∈ LIC1

and (pw, Y, e2, ·) ∈ LIC2
(B2 generates the items

if they do not exist), and checks whether there exists (C(i), S(j), e1, e2, Z1,

20

Z2, pw, key) ∈ LH, such that 2DH(X1, X2, Y) = (Z1, Z2). If so, B2 as-
signs key as the session key of (C(i), iid(i)). Otherwise, B2 randomly
samples a key and “views” it as the hash value for the correct input
H(C(i), S(j), e1, e2, 2DH(X1, X2, Y) = (?, ?), pw), where 2DH(X1, X2, Y)
= (?, ?) means that the values of 2DH(X1, X2, Y) are to be determined.
If A later asks H(C(i), S(j), e1, e2, Z1, Z2, pw), then B2 checks whether
Z1||Z2 are the correct 2DH values via the decisional oracle 2DH, i.e., it
checks whether

2DH(Y, Z1/Y
a1 , Z2/Y

a2) = 1,

with the knowledge of a1, a2. If yes, B2 reprograms the random oracle
s.t. H(C(i), S(j), e1, e2, Z1, Z2, pw) = key by replacing (?, ?) with (Z1, Z2).
In this way, the view of A is consistent.

If bad2 happens, then there exists a server instance (S(j), iid(j)) in Case
(S.2.2), or a client instance (C(i), iid(i)) in Case (C.2.2), and A asks a hash
query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, pw) such that

(Ẑ1, Ẑ2) = 2DH(D1(pw, e1),D2(pw, e2)) = 2DH(gx̄1+a1 , gx̄2+a2 , gȳ+b).

Note that B2 can detect bad2 with the help of oracle 2DH and trapdoors
a1, a2, b. Then, it can make use of Ẑ1||Ẑ2 to extract

Ẑ1/g
x̄1b+ȳa1+a1b and Ẑ2/g

x̄2b+ȳa2+a2b,

which is the solution to the strong 2DH problem.
Therefore, we have

|Pr[Game 4⇒ 1]− Pr[Game 3⇒ 1]| ≤ Advst2DH
G,B2

(λ) + 2−Ω(λ).

Now in Game 4, Sim does not use pw any more, except the case of ses-
sion key generation when the adversary A correctly guesses the password pw
and actively engages into a client/server instance, i.e., there exists a record
(pw, X1||X2, e1, enc) ∈ LIC1

or (pw, Y, e2, enc) ∈ LIC2
. Now we are ready to in-

troduce the complete simulator in Fig. 4, which helps us stepping to the ideal
experiment IdealZ,Sim.

Game 5. (Use Fpake interfaces.) In the final game we introduce the ideal func-
tionality Fpake. By using interfaces to interact with Fpake, the simulator Sim can
perfectly simulates Game 4 as follows.

– It simulates (E1,D1), (E2,D2), and H as described in Game 4.
– When Sim receives (NewClient,C(i), iid(i), S(j), b) from Fpake, it marks this

instance as correct-pw if b = 1, indicating that C(i) inputs the correct pass-
word in this client instance. Meanwhile, Sim chooses a random e1

$←− E1\TIC1

as the output message and adds e1 in TIC1 .

21

– When server instance (S(j), iid(j)) receives e1 and (NewServer, S(j), iid(j),C(i))

from Fpake, Sim chooses a random e2
$←− E2\TIC2 as the output message

and adds e2 in TIC2 . Meanwhile, it sets the session identity to be sid :=

C(i)||S(j)||e1||e2 and checks whether (S(j), iid(j)) is linked to a good client
instance (C(i), iid(i)).
• If it is the case, Sim allocates a random key to (S(j), iid(j)) by directly

asking a query (FreshKey, S(j), iid(j), sid) to Fpake. According to the def-
inition of FreshKey interface, this performs identically as that in Game
4.

• Otherwise, Sim checks whether there exists a record (pw′, ·, e1, enc) ∈
LIC1 . If such a record exists, Sim issues a TestPW query (TestPW, S(j),
iid(j), pw′) to ask Fpake whether pw′ = pw, where pw is the (correct)
password used in (S(j), iid(j)).

∗ If the record exists and Fpake returns “correct guess” (i.e., pw′ = pw),
then Sim computes the session key as key← H(sid, 2DH(D1(pw, e1),
D2(pw, e2)), pw), and allocates sid and key to (S(j), iid(j)) via a query
(CorruptKey, S(j), iid(j), sid, key) to Fpake. According to the definition
of CorruptKey interface, the environment Z has the same view as that
in Game 4.

∗ If the record does not exist, or Fpake returns “wrong guess” (i.e.,
pw′ 6= pw), then Sim allocates sid and a random key to (S(j), iid(j))

by asking a query (FreshKey, S(j), iid(j), sid) to Fpake. According to
the definition of FreshKey, this results in the same view to the envi-
ronment Z as that in Game 4.

– When client instance (C(i), iid(i)) receives e2, let e1 be the message sent
out and S(j) be its intended partner. Sim sets the session identity to be
sid := C(i)||S(j)||e1||e2 and checks whether (C(i), iid(i)) and a server instance
(S(j), iid(j)) are linked to each other, and (C(i), iid(i)) is marked as correct-pw.
• If it is the case, then sid and a random key key must have been assigned

to (S(j), iid(j)). Sim assigns the same sid and key to (C(i), iid(i)) via a
query (CopyKey,C(i), iid(i), sid) to Fpake. According to the definition of
CopyKey, this performs identically as that in Game 4.

• Otherwise, Sim retrieves the record (pw′, Y, e2, enc) ∈ LIC2
if it exists, and

uses the TestPW interface provided by Fpake to check whether pw′ = pw,
where pw is the (possible incorrect) password used in (C(i), iid(i)).

∗ If the record exists and Fpake returns “correct guess” (i.e., pw′ = pw),
then Sim computes the session key as key← H(sid, 2DH(D1(pw, e1),
D2(pw, e2)), pw), and allocates sid and key to (C(i), iid(i)) via a query
(CorruptKey,C(i), iid(i), sid, key) to Fpake. According to the definition
of CorruptKey interface, the environment Z has the same view as
that in Game 4.

∗ If the record does not exist, or Fpake returns “wrong guess” (i.e.,
pw′ 6= pw), then Sim allocates sid and a random key to (C(i), iid(i))

22

by asking a query (FreshKey,C(i), iid(i), sid) to Fpake. According to
the definition of FreshKey, this results in the same view to the envi-
ronment Z as that in Game 4.

The full description of Sim is shown in Fig. 4. From the analysis above we
know Game 4 and Game 5 are conceptually identical. Furthermore, one can
easily see that Game 5 is just the experiment in the ideal world. Therefore, we
have

IdealZ,Sim = Game 5 = Game 4.

Theorem 2 follows immediately from Game 0 to Game 5, and Theorem 1.

4 Asymmetric PAKE with Optimal Tightness in the UC
Framework

4.1 UC Framework for aPAKE

In aPAKE, the server stores a password file (usually a hash of the password)
rather than the password in plain. This somehow protects the password even
if the server is compromised. If the server’s password file is obtained by the
adversary due to compromise, the adversary can implement offline attacks to
guess the password, or impersonate the server to run the aPAKE protocol with
the client. However, it is still infeasible for the adversary to impersonate the
client to log in the server, if it fails to find the correct password and actively
engage into one protocol execution.

To capture the attacks due to server compromise6 in the asymmetric setting,
the ideal functionality Fapake is augmented with more interfaces like StealPWFile
and OfflineTestPW, compared with Fpake. Meanwhile, the CorruptKey interface
also takes into consideration the case of server compromise. Furthermore, we
add a new interface Abort to deal with the case that the explicit authentication
fails. The augments of Fapake are shown below.

– The StealPWFile interface. The server may send a StealPWFile query to
Fapake, indicating that the password file stored in it has been compromised
by the adversary. Then Fapake will pass this query message to the simulator
Sim (so that Sim “simulates” a password file for the adversary).

– The OfflineTestPW interface. Sim issues OfflineTestPW together with a pass-
word guess, and Fapake tests whether the guess is the pre-image of the pass-
word file and returns the test result to Sim.7.

6 In the real world, the server continues to faithfully execute protocols as normal after
a compromise of password files.

7 Such definitions seem reasonable only in a hybrid world where random oracles or
ideal ciphers exist. See further discussions in [27, 47, 32].

23

Functionality Fapake

The functionality Fapake is parameterized by a security parameter λ. It interacts with an adversary Sim
and a set of parties (clients and servers) via the following queries:
Password Storage

Upon receiving a query (StorePWFile,C(i), S(j), p̂w) from a client C(i) or a server S(j):
If there exists a record ⟨file,C(i), S(j), ·⟩, ignore this query.
Otherwise, record ⟨file,C(i), S(j), p̂w⟩, mark it as fresh, and send (StorePWFile,C(i), S(j)) to Sim.

Stealing Password File
Upon receiving a query (StealPWFile,C(i), S(j)) from server S(j):

Mark the password data record ⟨file,C(i), S(j), p̂w⟩ as compromised, and send
(StealPWFile,C(i), S(j)) to Sim.
If there is a record ⟨offline,C(i), S(j), p̂w⟩, then send p̂w to Sim.

Upon receiving a query (OfflineTestPW,C(i), S(j), pw′) from Sim:
If there exists a record ⟨file,C(i), S(j), p̂w⟩ marked compromised, check whether pw′ = p̂w: return
“correct guess” if yes, and “wrong guess” otherwise.
Else, store ⟨offline,C(i), S(j), pw′⟩.

Sessions
Upon receiving a query (NewClient, iid(i), S(j), pw) from a client C(i):

Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewClient,C(i), iid(i), S(j), pw = p̂w?) to Sim.
Record (C(i), iid(i), S(j), pw) and mark it as fresh.
In this case, S(j) is called the intended partner of (C(i), iid(i)).

Upon receiving a query (NewServer, iid(j),C(i)) from a server S(j):
Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewServer, S(j), iid(j),C(i)) to Sim. Set pw = p̂w,
record (S(j), iid(j),C(i), pw) and mark it as fresh.
In this case, C(i) is called the intended partner of (S(j), iid(j)).

Two instances (C(i), iid(i)) and (S(j), iid(j)) are said to be partnered, if there are two fresh records
(C(i), iid(i), S(j), pw) and (S(j), iid(j),C(i), pw) sharing the same pw.

Active Session Attacks
Upon receiving a query (TestPW, P, iid, pw′) from Sim:

If there is a fresh record (P, iid, ·, pw):
– If pw′ = pw, mark the record compromised and reply to Sim with “correct guess”.
– If pw′ ̸= pw, mark the record interrupted and replay with “wrong guess”.

Key Generation
Upon receiving a query (FreshKey, P, iid, sid) from Sim:

If 1) there is a fresh or interrupted record (P, iid,Q, pw); and 2) sid has never been assigned to
P ’s any other instance (P, iid′):

Pick a new random key k, mark the record (P, iid,Q, pw) as completed, assign it with sid,
send (iid, sid, k) to P , and record (P,Q, sid, k).

Upon receiving a query (CopyKey, P, iid, sid) from Sim:
If 1) there is a fresh record (P, iid,Q, pw) and a completed record (Q, iid∗, P, pw) s.t. (P, iid) and
(Q, iid∗) are partnered; and 2) sid has never been assigned to P ’s any other instance (P, iid′);
and 3) there is a unique (Q, iid∗) that has been assigned with sid:

Retrieve the record (Q,P, sid, k), mark the record (P, iid,Q, pw) as completed, assign it with
sid, and send (iid, sid, k) to P .

Upon receiving a query (CorruptKey, P, iid, sid, k) from Sim:
If 1) sid has never been assigned to some record (P, iid′); and 2) either: 2.1) there is a compromised
record (P, iid,Q, pw), or 2.2) there is a fresh record (P, iid,Q, pw) with P a client, and there is a
compromised record ⟨file, P,Q, p̂w⟩ such that pw = p̂w:

Mark the record (P, iid, ·, pw) as completed, assign it with sid, and send (iid, sid, k) to P .
Upon receiving a query (Abort, P, iid) from Sim:

If P is a server: mark the record (P, iid, ·, pw) as completed, and send (iid,⊥) to P .

Fig. 5. The aPAKE functionality Fapake [47].

24

– The CorruptKey interface. Beyond the cases considered in Fpake, if the pass-
word file has been compromised by the adversary, Sim also assigns a key to
a client instance by issuing a CorruptKey query8.

– The Abort interface. If the explicit authentication from the client to the
server fails, Sim assigns the session key k =⊥ to the server instance via an
Abort query, indicating that the execution of aPAKE fails.

The functionality of Fapake is shown in Fig. 5. We mainly follow the definition
by Shoup in [47], which is a modified version of [24] by Gentry et al. and [32] by
Hesse.

Remark 6. Perfect Forward Security [28] (PFS, a.k.a. perfect forward secrecy)
requires that once a party has been corrupted at some moment, the session keys
completed before the corruption remain hidden from the adversary. An aPAKE
protocol with implicit authentication cannot achieve PFS due to the following
reason. For the adversary who steals the password file and actively engages into
one session as the client, it can always stage a (successful) offline dictionary
attack, to find out the correct password, and hence obtain the “completed”
session key. A canonical approach to PFS is to add an explicit authentication
from the client to the server. And the server will output a specific key k =⊥ to
terminate the session, once the authentication fails.

4.2 The 2DH-aEKE Protocol

In this section, we provide an asymmetric variant of 2DH-EKE, named 2DH-
aEKE. The 2DH-aEKE protocol meets the optimal reduction loss factor L = N ,
the maximum number of client-server pairs. A formal proof for the optimality is
shown in Section 5.

The 2DH-aEKE protocol is shown in Fig. 6. Here (E1,D1) is a symmetric
encryption with key space H, plaintext space G2 and ciphertext space E1, and
(E2,D2) is a symmetric encryption with key space H, plaintext space G and
ciphertext space E2. Two hash functions are defined as: H : {0, 1}∗ 7→ K with
K the space of session keys, and H0 : {0, 1}∗ × PW 7→ H × Z2

q. And C, S are
identities of Client and Server.

In the registration stage, Server stores the password file S.file[C] := (h, V1, V2),
where (h, v1, v2)← H0(C, S, pw), and V1 := gv1 , V2 := gv2 .

4.3 Security Analysis

Theorem 3 (Security of 2DH-aEKE). If the st2DH assumption (equiva-
lently, the CDH assumption) holds in G, (E1,D1), (E2,D2) work as ideal ciphers,
and H,H0 work as random oracles, then the 2DH-aEKE protocol in Fig. 6 se-
curely emulates Fapake. More precisely, for any PPT environment Z and real
8 More precisely, a (corrupted) session key is assigned via CorruptKey, if ⟨file, P,Q, p̂w⟩

is compromised and the password pw used in the client instance is correct. If pw is
incorrect, then Sim would assign a random key for this client instance via FreshKey.

25

Public Parameter: (G, g, q), (E1,D1), (E2,D2), H, H0

Client C (pw) Server S (h, V1, V2)

(h, v1, v2)← H0(C, S, pw)

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2

e1 ← E1(h, X1||X2)

e1−−−−−−−−−−−−−−−→

e2←−−−−−−−−−−−−−−−
y

$←− Zq, Y := gy

e2 ← E2(h, Y)

Y ← D2(h, e2) X1||X2 ← D1(h, e1)
sid := C||S||e1||e2 sid := C||S||e1||e2

(keyC , σC)← H(sid, Y x1 , Y x2 , Y v1 , Y v2 , h) σC−−−−−−−−−−−−−−−→ (keyS , σS)← H(sid,Xy
1 , X

y
2 , V

y
1 , V y

2 , h)

Output keyC
If σS = σC : output keyS
Otherwise : output ⊥

Fig. 6. The 2DH-aEKE protocol.

world adversary A which has access to ideal ciphers (E1,D1), (E2,D2) and ran-
dom oracles H,H0, there exist a PPT simulator Sim, which has access to the
ideal functionality Fapake, and algorithms B,B′, s.t. that advantage of Z in dis-
tinguishing the real world running with A and the ideal world running with Sim
is bounded by

Adv2DH-aEKE,Z(λ) ≤(N + 3) · Advst2DH
G,B (λ) +

Q2
ic

|E1|
+

Q2
ic

|E2|
+

Q2
H0

|H|
+ 2−Ω(λ)

≤(N + 3) · AdvCDH
G,B′(λ) + 2−Ω(λ),

where Qic and QH0 denote the maximum numbers of IC and H0 queries, and N
denotes the number of client-server pairs.

Remark 7 (On the optimal tightness of 2DH-aEKE). As we can see, the security
reduction in Theorem 3 has a loss factor of N . Actually, such a loose factor is
unavoidable in the scenario of aPAKE, since the correct password is committed
by the hash value to the adversary in the form of password file, and it can be
adaptively revealed via offline dictionary attacks (i.e., password hash queries). In
Section 5 we give a formal proof to show that, the loss factor L = N is essentially
optimal — at least for “simple” reductions.

Nevertheless, the optimal factor N is superior to a loose factor (Qh · N · θ)
(the maximum numbers of hash queries, client-server pairs, and protocol execu-
tions per client-server pair, respectively). Usually there are thousands of protocol
executions per user (especially for the server), and QhNθ � N in general.

Proof. Similar to that in Theorem 2, the main task of the proof, is to construct
a PPT simulator Sim, which has access to the ideal functionality Fapake and in-
teractions with the environment Z, and simulates the real world 2DH-aEKE
protocol interactions among the adversary A, parties, and the environment
Z. To this end, Sim needs to simulate honestly generated messages from real

26

parties, respond adversarial messages approximately, and simulate ideal func-
tions (E1,D1), (E2,D2), and H0,H. The functionality Fapake provides informa-
tion to Sim through interfaces including StealPWFile9, OfflineTestPW, TestPW,
NewClient, NewServer, FreshKey, CopyKey, CorruptKey, and Abort, as defined in
Fig. 5. Recall that Sim has no secret inputs (i.e., passwords).

The full description of the simulator Sim is given in Fig. 7 and 8. Let RealZ,A
be the real experiment where environment Z interacts with real parties and
adversary A, and IdealZ,Sim be the ideal experiment where Z interacts with
simulator Sim. We prove that |Pr[RealZ,A ⇒ 1]− Pr[IdealZ,Sim ⇒ 1]| is negli-
gible via a series of games Game 0 − 6, where Game 0 is RealZ,A, Game 6
is IdealZ,Sim, and argue that the adjacent two games are indistinguishable from
Z’s prospective of view.

We consider the scenario of multi-users and multi instances as before, and
use (C(i), iid(i)) (resp., (S(j), iid(j))) to specify a client (resp., a server) instance.
The definitions of good/bad client instances are the same as those in Section
3. Besides, due to the explicit authentication from the client to the server in
2DH-aEKE, we redefine linked instances as follows.

Linked instances. We say that a server instance (S(j), iid(j)) is linked (resp.,
partially linked) to a client instance (C(i), iid(i)) (no matter good or bad), if
e1 and σ (resp., e1) generated by (C(i), iid(i)) are/is received by one instance
(S(j), iid(j)) of its intended partner S(j). Similarly, we say a client instance
(C(i), iid(i)) is linked to a server instance (S(j), iid(j)), if e2 generated by (S(j), iid(j))

is received by one instance (C(i), iid(i)) of its intended partner C(i). If the two
instances are linked to each other, then they are called linked instances.

Game 0. This is the real experiment RealZ,A. It is defined just like the real
experiment for 2DH-aEKE in the proof of Theorem 2, except that the adversary
can implement more attacks like “steal password” (StealPWFile) and “offline
attacks” (OfflineTestPW) on the password file, and perfectly impersonates the
server after compromising the password file. We have

Pr[RealZ,A ⇒ 1] = Pr[Game 0⇒ 1].

Game 1. (Add an ideal layout.) From this game on, we add an ideal layout
Sim, which is only a toy construction in Game 1, but will be complete with
games going on and arrive at the final Sim defined in Fig. 7 and 8. In Game
1, Sim still needs to take passwords as inputs. With the help of passwords, it
perfectly simulates the executions in RealZ,A, except that the encryption of
IC and H0 are simulated in a collision-free way. Meanwhile, Sim also necessarily
keeps the exponent values of the decrypted group elements from D1 and D2. More
precisely, it maintains lists LIC1 ,LIC2 , TIC1 , TIC2 ,LH0 , TH0 ,LH,DL (all initialized
to be empty sets) and works as follows.
9 The query (StealPWFile,C(i), S(j)) is invoked by S(j) under Z’s instruction, indicating

that the password data record ⟨file,C(i), S(j), ·⟩ is compromised. Then Sim obtains
this compromise information via a message (StealPWFile,C(i), S(j)) from Fapake.

27

Sim maintains lists LIC1 ,LIC2 , TIC1 , TIC2 ,LH0 , TH0 ,LH, T ,DL (all initialized to be empty) in the simulation.

– LIC1 ,LIC2 , TIC1 , TIC2 : store records w.r.t. ideal ciphers (E1,D1) and (E2,D2).
– LH0 , TH0 ,LH: store records w.r.t. random oracles H0 and H.
– T : store messages sent by client/server instances.
– DL: store discrete logarithms.

Password Storage
on (StorePWFile,C(i), S(j)) from Fapake:

Sample ĥ $←− H\TH0 , v̂1, v̂2
$←− Zq, V̂1 := gv̂1 , V̂2 := gv̂2 , TH0 := TH0 ∪ {ĥ}, DL := DL ∪

{(V̂1||V̂2, v̂1||v̂2)}, and record S(j).file[C(i)] := (ĥ, V̂1, V̂2).

Stealing Password Data
on (StealPWFile,C(i), S(j)) from Fapake:

Mark S(j).file[C(i)] as compromised and return it to A.
If Fapake additionally returns p̂w, pass p̂w to A.

aPAKE Sessions
on (NewClient,C(i), iid(i), S(j), b) from Fapake:

e1
$←− E1\TIC1 , TIC1 := TIC1 ∪ {e1}, T := T ∪ {(C(i), iid(i), e1)}, send e1 from C(i) to A.

If b = 1: mark (C(i), iid(i)) as correct-pw. // client C(i) correctly inputs the password
on (NewServer, S(j), iid(j),C(i)) from Fapake and e1 from A as a client message to (S(j), iid(j)):

e2
$←− E2\TIC2 , TIC2 := TIC2 ∪ {e2}, T := T ∪ {(S(j), iid(j), e1, e2)}, send e2 from S(j) to A.

on e2 from A as a server message from S(j) to (C(i), iid(i)):
Retrieve (C(i), iid(i), e1) ∈ T , sid := C(i)||S(j)||e1||e2.
If either 1) S(j).file[C(i)] is compromised and (C(i), iid(i)) is correct-pw; or 2) ∃(h′, Y, e2, enc) ∈
LIC2 and ∃(C(i), S(j), pw′, h′, v1, v2) ∈ LH0 , and Fapake returns “correct guess” upon query
(TestPW,C(i), iid(i), pw′):

Let X1||X2 ← D1(pw′, e1) and Y ← D2(pw′, e2), retrieve items (X1||X2, x1||x2) ∈ DL
and (V1||V2, v1||v2) ∈ DL, Z1 := Y x1 , Z2 := Y x2 , Z3 := Y v1 , Z4 := Y v2 , (key, σ) ←
H(sid, Z1, Z2, Z3, Z4, h′), send σ from C(i) to A, T := T ∪ {(C(i), iid(i), e1, e2, σ)}, and send
(CorruptKey,C(i), iid(i), sid, key) to Fapake.
In other cases: σ

$←− {0, 1}λ, send σ from C(i) to A, T := T ∪ {(C(i), iid(i), e1, e2, σ)}, and send
(FreshKey,C(i), iid(i), sid) to Fapake.

on σ from A as a client message from C(i) to (S(j), iid(j)):
Retrieve (S(j), iid(j), e1, e2) ∈ T , sid := C(i)||S(j)||e1||e2.
If ∃(C(i), iid(i), e1, ·, σ′ = σ) ∈ T , (C(i), iid(i)) is correct-pw, and Sim has queried (FreshKey,
C(i), iid(i), sid):

Send (CopyKey, S(j), iid(j), sid) to Fapake.
If ∃(h′, X1||X2, e1, enc) ∈ LIC1 and ∃(C(i), S(j), pw′, h′, v1, v2) ∈ LH0 : ask (TestPW, S(j), iid(j), pw′),
and if Fapake returns “correct guess”:

Y ← D2(h′, e2), retrieve item (Y, y) ∈ DL, Z1 := Xy
1 , Z2 := Xy

2 , Z3 := gv1y, Z4 := gv2y,
(key, σ′)← H(sid, Z1, Z2, Z3, Z4, h′): if σ′ = σ: send (CorruptKey, S(j), iid(j), sid, key) to Fapake.
In other cases: send (Abort, S(j), iid(j)) to Fapake.

Fig. 7. Simulator Sim for 2DH-aEKE in the proof of Theorem 3, part 1.

28

Sim maintains lists LIC1 ,LIC2 , TIC1 , TIC2 ,LH0 , TH0 ,LH, T ,DL (all initialized to be empty) in the simulation

On Ideal Ciphers and Random Oracles
on E1(h, X1||X2) from A:

If ∃(h, X1||X2, e1, ·) ∈ LIC1 : return e1.
Otherwise: e1 $←− E1\TIC1 , LIC1 := LIC1 ∪ (h, X1||X2, e1, enc), TIC1 := TIC1 ∪ {e1}, return e1.

on D1(h, e1) from A:
If ∃(h, X1||X2, e1, ·) ∈ LIC1 : return X1||X2.
Otherwise: x1, x2

$←− Zq, X1 := gx1 , X2 := gx2 , LIC1 := LIC1 ∪ {(h, X1||X2, e1, dec)}, DL :=
DL ∪ {(X1||X2, x1||x2)}, return X1||X2.

on E2(h, Y) from A:
If ∃(h, Y, e2, ·) ∈ LIC2 : return e2.
Otherwise: e2 $←− E2\TIC2 , LIC2 := LIC2 ∪ {(h, Y, e2, enc)}, TIC2 := TIC2 ∪ {e2}, return e2.

on D2(h, e2) from A:
If ∃(h, Y, e2, ·) ∈ LIC2 : return Y .
Otherwise: y $←− Zq, Y := gy, LIC2 := LIC2 ∪ {(h, Y, e2, dec)}, DL := DL ∪ {(Y, y)}, return Y .

on H0(C, S, pw) from A:
If ∃(C, S, pw, h, v1, v2) ∈ LH0 : return (h, v1, v2).
Otherwise, send (OfflineTestPW,C, S, pw) to Fapake:

If Fapake returns “correct guess”: retrieve S.file[C] = (h, V1, V2) and (V1||V2, v1||v2) ∈ DL.
Else: h $←− H\TH0 , TH0 := TH0 ∪ {h}, v1, v2

$←− Zq, V1 := gv1 , V2 := gv2 , DL := DL ∪
{(V1||V2, v1||v2)}.
Record (C, S, pw, h, v1, v2) in LH0 , and return (h, v1, v2).

on H(C, S, e1, e2, Z1, Z2, Z3, Z4, h) from A:
sid := C||S||e1||e2.
If ∃(sid, Z1, Z2, Z3, Z4, h, key, σ) ∈ LH for some key and σ: return (key, σ).
Otherwise: key $←− K, σ $←− {0, 1}λ, record (sid, Z1, Z2, Z3, Z4, h, key, σ) in LH, and return (key, σ).

Fig. 8. Simulator Sim for 2DH-aEKE in the proof of Theorem 3, part 2.

– On E1(h, X1||X2): If there exists (h, X1||X2, e1, ·) ∈ LIC1
, return e1. Oth-

erwise, e1
$←− E1\TIC1

, add (h, X1||X2, e1, enc) in LIC1
, add e1 in TIC1

, and
return e1. Here “enc” indicates that the record is created in encryption.

– On D1(h, e1): If there exists (h, X1||X2, e1, ·) ∈ LIC1 , return X1||X2. Other-
wise, x1, x2

$←− Zq, X1 := gx1 , X2 := gx2 , add (h, X1||X2, e1, dec) in LIC1
,

add (X1||X2, x1||x2) in DL, and return X1||X2. Here “dec” indicates that
the record is created in decryption.

– On E2(h, Y): If there exists (h, Y, e2, ·) ∈ LIC2
, return e2. Otherwise, e2

$←−
E2\TIC2

, add (h, Y, e2, enc) in LIC2
, add e2 in TIC2

, and return e2.

– On D2(h, e2): If there exists (h, Y, e2, ·) ∈ LIC2
, return Y . Otherwise, y $←− Zq,

Y := gy, add (h, Y, e2, dec) in LIC2 , add (Y, y) in DL, and return Y .

29

– On H0(C, S, pw): If there exists (C, S, pw, h, v1, v2) ∈ LH0 , return (h, v1, v2).
Otherwise, h $←− H\TH0 , add h in TH0 , v1, v2

$←− Zq, V1 := gv1 , V2 := gv2 , add
(C, S, pw, h, v1, v2) in LH0 , add (V1||V2, v1||v2) in DL, and return (h, v1, v2).

– On H(C, S, e1, e2, Z1, Z2, Z3, Z4, h): Let sid := C||S||e1||e2. If there exists
(sid, Z1, Z2, Z3, Z4, h, key, σ) ∈ LH, return (key, σ). Otherwise, key $←− K,
σ

$←− {0, 1}λ, add (sid, Z1, Z2, Z3, Z4, h, key, σ) in LH and return (key, σ).
– Simulation of clients’ registration, password file storage, and password com-

promise. When a client C(i) makes a registration to a server S(j) with pass-
word p̂w, Sim invokes H0(C(i), S(j), p̂w) to obtain (ĥ, v̂1, v̂2), and computes
V̂1 := gv̂1 , V̂2 := gv̂2 . Then it sets the password file as S(j).file[C(i)] := (ĥ,
V̂1, V̂2). WheneverA compromises the password file, Sim returns S(j).file[C(i)].

According to the ideal functionalities of ideal ciphers and random oracles, we
know that distinct inputs of E1 (resp., E2) collide to the same ciphertext with
probability 1/|E1| (resp., 1/|E2|), and different inputs collide to the same h with
probability 1/|H|. By union bound, we have

|Pr[Game 1⇒ 1]− Pr[Game 0⇒ 1]| ≤ Q2
ic

|E1|
+

Q2
ic

|E2|
+

Q2
H0

|H|
,

where Qic and QH0
denote the maximum numbers of IC and H0 queries, respec-

tively.
Game 2. (Randomize keys for passively attacked instances.) In this game,

for any session, if A only eavesdrops on the protocol instance, then Sim returns a
random key instead of the real session key (the hash value of H). More precisely,
Game 2 is changed as follows.

(1) If good client instance (C(i), iid(i)) is linked to a server instance (S(j), iid(j)),
then Sim generates a random session key for (C(i), iid(i)), and samples a random
σ as the third message.

(2) If server instance (S(j), iid(j)) and a good client instance (C(i), iid(i)) are
linked to each other, and (C(i), iid(i)) has already been assigned with a random
key, then Sim copies the key as the session key for (S(j), iid(j)).

Similar to that in the proof of Theorem 2, we show that Game 1 and Game
2 are indisintugishable due to the strong 2DH assumption.

Define bad1 as the event that there exists a passively attacked session w.r.t.
a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)), and A ever
asks a hash query on H(sid, Ẑ1, Ẑ2, Ẑ3, Ẑ4, ĥ) such that

(Ẑ1, Ẑ2) = 2DH(D1(ĥ, e1),D2(ĥ, e2)) ∧ (Ẑ3, Ẑ4) = 2DH(gv̂1 , gv̂2 ,D2(ĥ, e2)),

where sid = C(i)||S(j)||e1||e2 with e1 and e2 the transcripts, (ĥ, v̂1, v̂2)← H0(C(i),

S(j), p̂w) with p̂w the correct password pre-shared between them.
Obviously A will not detect the change in Game 2 unless bad1 happens. We

show that if bad1 happens, then we can construct an algorithm B1 to solve the
strong 2DH problem.

30

The reduction works as follows. B1 receives the 2DH challenge (X̄1, X̄2, Ȳ) =
(gx̄1 , gx̄2 , gȳ), as well as an oracle 2DH which inputs (Y, Z1, Z2) and outputs
whether (Z1, Z2) = 2DH(X̄1, X̄2, Y). Let H0(C(i), S(j), p̂w) = (ĥ, v̂1, v̂2) and p̂w is
the correct password pre-shared between C(i) and S(j). Then B1 simulates Game
2 as below.

– The simulation of (E1,D1), (E2,D2),H0,H is the same as that in Game 2.
– The simulation of clients’ registrations, password storage, responses to A’s

offline attacks and compromise is the same as that in Game 2.
– For the simulation of good client instance (C(i), iid(i) = s) generating the

first message e1: B1 samples a
(i)
s,1, a

(i)
s,2

$←− Zq, and sets e1 ← E1(ĥ, X1||X2),
where X1 := X̄1g

a
(i)
s,1 = gx̄1+a

(i)
s,1 and X2 := X̄2g

a
(i)
s,2 = gx̄2+a

(i)
s,2 .

– For the simulation of server instance (S(j), iid(j) = t) generating the second
message e2: Let e1 be the received message. There are two cases.
• If (S(j), iid(j) = t) is partially linked to some good instance (C(i), iid(i) =

s), it samples b
(j)
t ← Zq, Y := gȳ+b

(j)
t .

• Otherwise, either (S(j), iid(j) = t) is partially linked to some bad client
instance, or e1 is adversarially generated. In this case, B1 samples y ←
Zq, Y := gy.

In either case, it outputs e2 ← E2(ĥ, Y).
– For the simulation of good client instance (C(i), iid(i) = s) generating the

session key and the third message σ, let S(j) be its intended partner and
e1||e2 be the transcripts. There are two cases.
• If (C(i), iid(i) = s) and server instance (S(j), iid(j) = t) are linked to

each other, B1 assigns a random key for (C(i), iid(i) = s), and samples a
random σ as the third message.

• If (C(i), iid(i) = s) is not linked to any server instance, then (C(i), iid(i) =
s) must have received an adversarially generated message e2. Let sid :=

C(i)||S(j)||e1||e2. B1 retrieves (ĥ, X1||X2, e1, ·) ∈ LIC1
, (ĥ, Y, e2, ·) ∈ LIC2

(B1 generates the items if they do not exist) and (V̂1||V̂2, v̂1, v̂2) ∈ DL,
and checks whether there exists (sid, Z1, Z2, Z3 = Y v̂1 , Z4 = Y v̂2 , h,
key, σ) ∈ LH, such that 2DH(X1, X2, Y) = (Z1, Z2). If yes, B1 assigns key
as the session key of (C(i), iid(i) = s), and sends σ out. Otherwise, B1 ran-
domly samples (key, σ), and “views” it as the hash output for the correct
input H(sid, 2DH(X1, X2, Y) = (?, ?), Z3 = Y v̂1 , Z4 = Y v̂2 , ĥ), where
2DH(X1, X2, Y) = (?, ?) means that the values of 2DH(X1, X2, Y) are
to be determined. If A later asks H(sid, Z1, Z2, Z3 = Y v̂1 , Z4 = Y v̂2 , ĥ),
then B1 checks whether Z1||Z2 are the correct 2DH values via the deci-
sional oracle 2DH, i.e., it checks whether

2DH(Y, Z1/Y
a
(i)
s,1 , Z2/Y

a
(i)
s,2) = 1.

If yes, B1 reprograms the random oracle s.t. H(sid, Z1, Z2, Z3, Z4, ĥ) =
(key, σ) by replacing (?, ?) with (Z1, Z2). In this way, the view of A is
consistent.

31

– For the simulation of server instance (S(j), iid(j) = t) generating the session
key, there are two cases.
• If (S(j), iid(j) = t) and good client instance (C(i), iid(i) = s) are linked to

each other, then (C(i), iid(i) = s) must has been assigned with a random
key key. In this case Sim copies key as the session key of (S(j), iid(j) = t).

• Otherwise, Sim computes the session key according to the protocol specif-
cation.

– The simulation of bad client instances is the same as that in Game 2.

Suppose that bad1 happens w.r.t. instances (C(i), s) and (S(j), t) with tran-
scripts e1||e2, then A must have asked H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, ĥ) s.t.

(Ẑ1, Ẑ2) = 2DH(gx̄1+a
(i)
s,1 , gx̄2+a

(i)
s,2 , gȳ+b

(j)
t) ∧ (Ẑ3, Ẑ4) = ((gȳ+b

(j)
t)v̂1 , (gȳ+b

(j)
t)v̂2).

Note that B1 can detect bad1 with the help of oracle 2DH and trapdoors
a
(i)
s,1, a

(i)
s,2, b

(j)
t . Then B1 makes use of Ẑ1||Ẑ2 to extract

Ẑ1/g
x̄1b

(j)
t +ȳa

(i)
s,1+a

(i)
s,1b

(j)
t = gx̄1ȳ and Ẑ2/g

x̄2b
(j)
t +ȳa

(i)
s,2+a

(i)
s,2b

(j)
t = gx̄2ȳ,

which is obviously the solution to the strong 2DH problem.
Therefore, we have

|Pr[Game 2⇒ 1]− Pr[Game 1⇒ 1]| ≤ Advst2DH
G,B1

(λ).

Game 3. (Randomize simulated messages.) In this game, Sim directly samples
random values to simulate the hash output (ĥ, v̂1, v̂2) in password file storage,
and samples random messages to simulate the transcripts e1 and e2. Meanwhile,
it postpones the usage of random oracle H0 and ideal ciphers (E1,D1), (E2,D2)
until necessary (for example, until A issues queries to H0, or D1 and D2 are
invoked for the generation of session keys). More precisely, Game 3 is now
simulated by Sim as follows.

– For the simulation of password file storage w.r.t. a client C(i) and a server
S(j), let p̂w be the correct password. Sim samples ĥ $←− H\TH0

, v̂1, v̂2
$←− Zq,

computes V̂1 := gv̂1 , V̂2 := gv̂2 , adds ĥ in TH0
, adds (V̂1||V̂2, v̂1||v̂2) in DL, and

records S(j).file[C(i)] := (ĥ, V̂1, V̂2). Later whenever there is a hash query on
H0(C(i), S(j), p̂w), Sim patches the list LH0

by adding (C(i), S(j), p̂w, ĥ, v̂1, v̂2)
in it, and returns (ĥ, v̂1, v̂2) .

– For the simulation of a client instance (C(i), iid(i)) generating the first mes-
sage e1, Sim chooses a random e1

$←− E1\TIC1
(without any encryption) as

the output message and adds e1 in TIC1 .
– For the simulation of a server instance (S(j), iid(j)) generating the second

message e2, Sim chooses a random e2
$←− E2\TIC2

(without any encryption)
as the output message and adds e2 in TIC2 .

32

– For the simulation of a client instance (C(i), iid(i)) that sends e1 out and
receives e2, there are three subcases.
• If good client instance (C(i), iid(i)) is linked to some server instance
(S(j), iid(j)), then Sim assigns a random key for (C(i), iid(i)), and samples
a random σ as the third message, just like Game 2.

• If (C(i), iid(i)) is good and e2 is adversarially generated, then Sim re-
trieves S(j).file[C(i)] = (h, V1, V2) = (ĥ, V̂1, V̂2) and (V1||V2, v1||v2) ∈ DL,
invokes (X1, X2) ← D1(h, e1), and retrieves (X1||X2, x1||x2) ∈ DL (due
to the simulation of D1, such records always exist).

• If (C(i), iid(i)) is bad, i.e., the password pw used in this instance is incor-
rect, Sim invokes (h, v1, v2) ← H0(C(i), S(j), pw), (X1, X2) ← D1(h, e1),
and retrieves (X1||X2, x1||x2) ∈ DL.

Let Y ← D2(h, e2). In the last two cases, with the knowledge of x1, x2, v1, v2,
Sim can compute (key, σ) ← H(C(i), S(j), e1, e2, Y

x1 , Y x2 , Y v1 , Y v2 , h), and
send σ as the third message, just like Game 2.

– For the simulation of a server instance (S(j), iid(j)) generating the session
key after receiving σ. Let e1 and e2 be the first two messages.
• If (S(j), iid(j)) and some good client instance (C(i), iid(i)) are linked to

each other, then Sim assigns the same session key of (C(i), iid(i)) to
(S(j), iid(j)), just like Game 2.

• Otherwise, Sim invokes Y ← D2(ĥ, e2) and retrieves (Y, y) ∈ DL. Then
it computes (key, σ′) ← H(C(i), S(j), e1, e2, 2DH(D1(ĥ, e1), Y), V̂ y

1 , V̂
y
2 , ĥ)

with the knowledge of y. Here S(j).file[C(i)] = (ĥ, V̂1, V̂2). If σ = σ′, Sim
assigns key as the session key for (S(j), iid(j)); otherwise, Sim assigns ⊥.
In this way, the session key is the same as that in Game 2.

Recall that in Game 2, the hash output (ĥ, v̂1, v̂2) ← H0(C(i), S(j), p̂w) is
randomly sampled, which performs identically as that in Game 3. Meanwhile,
the transcripts e1 and e2 in Game 2 are randomly distributed via the simulation
of E1 and E2, so they have the same distribution as that in Game 3. As shown
above, the generation of all session keys in Game 3 is also the same as that in
Game 2. Therefore, we have

Pr[Game 3⇒ 1] = Pr[Game 2⇒ 1].

Game 4. (Randomize keys for actively attacked client instances if the password
guess is incorrect or the server is not compromised.) In this game, the simulator
changes the session key generation of client instances as follows.

For any client instance (C(i), iid(i)) that sends e1 out and receives e2, let S(j)

be the intended partner and pw be the (possibly incorrect) password used in
this instance. If (C(i), iid(i)) is good, then Sim retrieves the stored password file
S(j).file[C(i)] = (h, V1, V2) and (V1||V2, v1||v2) ∈ DL. And if (C(i), iid(i)) is bad,
Sim invokes H0(C(i), S(j), pw) to get (h, v1, v2). Let sid := C(i)||S(j)||e1||e2 and
Y ← D2(h, e2), Sim generates the session key in the following way.

33

Case (C.1) If (C(i), iid(i)) is good and linked to some server instance (S(j), iid(j)),
then Sim assigns a random key for (C(i), iid(i)), and samples a random σ as
the third message, just as that in Game 3.

Case (C.2) If (C(i), iid(i)) is not linked to any server instance, or (C(i), iid(i)) is
bad. We further divide it into the following three subcases.
Case (C.2.1). If (C(i), iid(i)) is good and the password file S(j).file[C(i)] has

been stolen, then Sim computes (key, σ)← H(sid, 2DH(D1(h, e1), Y), Y v1 ,
Y v2 , h), and sends σ out, just like that in Game 3.

Case (C.2.2). If there exists a record (h, Y, e2, enc) ∈ LIC2 , and a record
(C(i), S(j), pw′ = pw, h, v1, v2) ∈ LH0

, then Sim computes (key, σ) ←
H(sid, 2DH(D1(h, e1), Y), Y v1 , Y v2 , h), and sends σ out as the third mes-
sage, just like that in Game 3. Note that there exist at most one such
record in LIC2

and one such record in LH0
, since E2 and H0 are simulated

in a collision-free way.
Case (C.2.3). In any other case, Sim generates a random key for (C(i), iid(i)),

and samples a random σ
$←− {0, 1}λ.

Note that the differences between Game 3 and Game 4 lie only in cases
(C.2.3).

Define bad2 as the event that there exists a client instance (C(i), iid(i)) in Case
(C.2.3), andA ever asks a hash query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, h) such
that

(Ẑ1, Ẑ2) = 2DH(D1(h, e1),D2(h, e2)) ∧ (Ẑ3, Ẑ4) = 2DH(V1, V2,D2(h, e2)).

Obviously Game 3 and Game 4 are the same unless bad2 happens. Next
we show that if bad2 happens, then we can construct a reduction algorithm B2
to solve the strong 2DH problem.
B2 receives the 2DH challenge (X̄1, X̄2, Ȳ) = (gx̄1 , gx̄2 , gȳ), as well as a deci-

sional oracle 2DH. Then it simulates Game 4 as follows.

– The simulation of password file storage is the same as that in Game 4.
– For the simulation of stealing password file, B2 returns S(j).file[C(i)] as that

in Game 4.
– The simulation of E1,E2, H0, and H is the same as that in Game 4.
– Simulation of D1(h′, e1).
• If there exists (h′, X1||X2, e1, ·) ∈ LIC1

, return X1||X2.
• Otherwise, B2 samples a1, a2

$←− Zq, X1 := X̄1g
a1 = gx̄1+a1 , X2 :=

X̄2g
a2 = gx̄2+a2 , adds (h′, X1||X2, e1, dec) in LIC1

, and returns X1||X2.
– Simulation of D2(h′, e2).
• If there exists (h′, Y, e2, ·) ∈ LIC2 , return Y .
• If D2(h′, e2) is invoked when a server instance (S(j), iid(j)) generating

the session key in case of active attacks (including the case of bad client
instances), B2 samples y

$←− Zq, Y := gy, adds (h′, Y, e2, dec) in LIC2
,

adds (Y, y) in DL and returns Y .

34

• In other cases, B2 samples b $←− Zq, Y := Ȳ gb = gȳ+b, adds (h′, Y, e2, dec)
in LIC2

and returns Y .
– The simulation of e1 and e2 is the same as that in Game 4.
– The simulation of key generation for server instance (S(j), iid(j)) is the same

as that in Game 4.
– Simulation of σ and key generation for client instance (C(i), iid(i)).
• If (C(i), iid(i)) is good and linked to some server instance (S(j), iid(j)),

then B2 assigns a random key for it, and samples a random σ as the
third message, just as that in Game 4.

• Otherwise, B2 computes the session key with the help of the decisional
oracle 2DH. Concretely, let e1 and e2 be the transcripts, S(j) be its
intended partner, and pw be the (possibly incorrect) password used in
(C(i), iid(i)). For good client instance, B2 directly retrieves the password
file S(j).file[C(i)] = (h, V1, V2), and the record (V1||V2, v1||v2) ∈ DL. From
the simulation we know, (V1||V2, v1||v2) ∈ DL always exists. And for bad
client instance, B2 queries (h, v1, v2)← H0(C(i), S(j), pw). Let X1||X2 ←
D1(h, e1), Y ← D2(h, e2), and sid := C(i)||S(j)||e1||e2.

B2 checks whether there exists (sid, Z1, Z2, Z3, Z4, h, key, σ) ∈ LH, such
that (Z1, Z2) = 2DH(X1, X2, Y) and Z3 = Y v1 , Z4 = Y v2 . If so, B2
assigns key as the session key of (C(i), iid(i)), and sends σ out. Other-
wise, B2 randomly samples (key, σ), and “views” it as the hash value
for the correct input H(sid, 2DH(X1, X2, Y) = (?, ?), Y v1 , Y v2 , h), where
2DH(X1, X2, Y) = (?, ?) means that the values of 2DH(X1, X2, Y) are to
be determined. If A later asks H(sid, Z1, Z2, Y

v1 , Y v2 , h), then B2 checks
whether Z1||Z2 are the correct 2DH values via the decisional oracle 2DH,
i.e., it checks whether

2DH(Y, Z1/Y
a1 , Z2/Y

a2) = 1,

with the knowledge of a1, a2. If yes, B2 reprograms the random oracle s.t.
H(sid, Z1, Z2, Y

v1 , Y v2 , h) = (key, σ) by replacing (?, ?) with (Z1, Z2). In
this way, the view of A is consistent.

If bad2 happens in Case (C.2.3) w.r.t. a client instance (C(i), iid(i)) with
intended partner S(j), then the following conditions satisfy:

(a) (C(i), iid(i)) is bad, or the password fill S(j).file[C(i)] has not been stolen yet;
(b) there does not exist a record (h, Y, e2, enc) ∈ LIC2

or there does not exist a
record (C(i), S(j), pw, h, v1, v2) ∈ LH0 ;

(c) A asks a hash query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, h) such that

(Ẑ1, Ẑ2) = 2DH(D1(h, e1),D2(h, e2)) = 2DH(gx̄1+a1 , gx̄2+a2 , gȳ+b),

and
(Ẑ3, Ẑ4) = 2DH(V1, V2,D2(h, e2)).

35

Conditioned on (a), if A never asks H0(C(i), S(j), pw), then h is perfectly
hidden from A, since h is chosen at random and no information of h is leaked via
transcripts or hash queries. That is, with overwhelming probability, if there exists
a record (h, Y, e2, enc) ∈ LIC2

, then the record (C(i), S(j), pw, h, v1, v2) ∈ LH0
must

exist.
In the reduction above, B2 can detect bad2 with the help of oracle 2DH and

trapdoors a1, a2, b. Then, it can make use of Ẑ1||Ẑ2 to extract

Ẑ1/g
x̄1b+ȳa1+a1b and Ẑ2/g

x̄2b+ȳa2+a2b,

which is the solution to the strong 2DH problem.
Therefore, we have

|Pr[Game 3⇒ 1]− Pr[Game 4⇒ 1]| ≤ Advst2DH
G,B2

(λ) + 2−Ω(λ).

Game 5. (Randomize keys for actively attacked server instances in case of
incorrect password guesses.) In this game, the simulator further changes the
session key generation of server instances as follows.

For any server instance (S(j), iid(j)) that receives e1 and σ, let e2 be the
message sent out, C(i) be its intended partner and S(j).file[C(i)] = (ĥ, V̂1, V̂2) be
the stored password file. Sim generates the session key in the following way.

Case (S.1). If (S(j), iid(j)) and some good client instance (C(i), iid(i)) are linked
to each other, then Sim generates the same key of (C(i), iid(i)) for (S(j), iid(j)),
just as that in Game 4.

Case (S.2). Otherwise, we further divide it into the following three subcases.
Case (S.2.1). If there exists a record (ĥ, X1||X2, e1, enc) ∈ LIC1

and a record
(C(i), S(j), p̂w, ĥ, v̂1, v̂2) ∈ LH0 , then Sim invokes Y ← D2(ĥ, e2), retrieves
(Y, y) ∈ DL, and computes (key, σ′)← H(C(i), S(j), e1, e2, 2DH(X1, X2, Y),

2DH(V̂1, V̂2, Y), ĥ) according to the protocol description, just like that in
Game 4. If σ = σ′, then (S(j), iid(j)) outputs key; otherwise, it outputs
⊥. Note that there exist at most one such record in LIC1

and one in LH0
,

since E1 and H0 are simulated in a collision-free way.
Case (S.2.2). If there exists a record (ĥ, X1||X2, e1, enc) ∈ LIC1

, but there
does not exist a record (C(i), S(j), p̂w, ĥ, v̂1, v̂2) ∈ LH0

, then Sim assigns
⊥ for (S(j), iid(j)).

Case (S.2.3). If there does not exist a record (ĥ, X1||X2, e1, enc) ∈ LIC1
,

then Sim assigns ⊥ for (S(j), iid(j)).

Note that the differences between Game 4 and Game 5 lie in Cases (S.2.2)
and (S.2.3) only.

We analyse the difference in Case (S.2.3) first. Define bad′
3 as the event that

there exists a server instance (S(j), iid(j)) in Case (S.2.3), and A ever asks a hash
query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, ĥ) such that

(Ẑ1, Ẑ2) = 2DH(D1(ĥ, e1),D2(ĥ, e2)) ∧ (Ẑ3, Ẑ4) = 2DH(V̂1, V̂2,D2(ĥ, e2)),

36

where e1 and e2 are the transcripts, and S(j).file[C(i)] = (ĥ, V̂1, V̂2) is the stored
password file.

Recall that H(·) works as a random oracle. If A has not asked a hash query
as above, then with overwhelming probability, σ 6= σ′ and (S(j), iid(j)) would
output ⊥. Next we show that, if bad′

3 happens, then we can construct a reduction
algorithm B′3 to solve the strong 2DH problem. Intuitively, in the reduction the
2DH challenge problem is embedded into D1(ĥ, e1) and D2(ĥ, e2), respectively.
Due to the similarity with that in the proof of bad2 (from Game 3 to Game
4), we omit the details of reduction and draw the following conclusion.

Pr[bad′
3] ≤ Advst2DH

G,B′
3
(λ) + 2−Ω(λ).

Then we analyse the difference between Game 4 and Game 5 in Case
(S.2.2). Define bad3 as the event that there exists a server instance (S(j), iid(j))

in Case (S.2.2), and A ever asks a hash query on H(C(i), S(j), e1, e2, Z1, Z2, Ẑ3,

Ẑ4, ĥ) such that
(Ẑ3, Ẑ4) = 2DH(V̂1, V̂2,D2(ĥ, e2)),

where e1 and e2 are the transcripts, and S(j).file[C(i)] = (ĥ, V̂1, V̂2) is the stored
password file.

Similarly, since H(·) is a random oracle, A can hardly generates a σ that
passes the verification of (S(j), iid(j)), if it never asks the hash query above. Note
that the definition of bad3 omits the correctness check of Z1, Z2 in hash queries.
Next we show that if bad3 happens, we can construct a reduction algorithm B3
to solve the strong 2DH problem. The reduction has a optimal loss factor N , the
total number of client-server pairs.
B3 receives the 2DH challenge (X̄1, X̄2, Ȳ) = (gx̄1 , gx̄2 , gȳ), as well as a deci-

sional oracle 2DH. Then it simulates Game 5 as follows.

– For the simulation of password file storage, B3 randomly samples a client-
server pair (C(∗), S(∗)) among all N choices, hoping that bad3 happens in one
server instance (S(∗), iid) with intended partner C(∗). It samples ĥ $←− H\TH0

,
adds ĥ in TH0 , and sets the password file to be S(∗).file[C(∗)] := (ĥ, V̂1 :=

X̄1, V̂2 := X̄2). If there is a hash query on H0(C(∗), S(∗), p̂w) with p̂w the
correct password shared between them, B3 aborts the simulation.
The simulation of password file storage for other client-server pairs is the
same as that in Game 5.

– For the simulation of stealing password file, B3 returns S(j).file[C(i)] as that
in Game 5.

– The simulation of E1,E2, and H0 is the same as that in Game 5.
– The simulation of H is the same as that in Game 5. Specifically, B3 keeps de-

tecting whether bad3 happens in one instance between C(∗) and S(∗). Namely,
whenever there is a query on H(C(∗), S(∗), e1, e2, Z1, Z2, Z3, Z4, ĥ), it checks
whether

2DH(D(ĥ, e2), Z3, Z4) = 1,

37

with the help of decisional oracle 2DH, where S(∗).file[C(∗)] = (ĥ, V̂1 =
X̄1, V̂2 = X̄2) as defined above.

– Simulation of D1(h′, e1).
• If there exists (h′, X1||X2, e1, ·) ∈ LIC1 , return X1||X2.
• Otherwise, B3 samples x1, x2

$←− Zq, X1 := gx1 , X2 := gx2 , adds (h′,
X1||X2, e1, dec) in LIC1

, adds (X1||X2, x1||x2) inDL, and returns X1||X2.
– Simulation of D2(h′, e2).
• If there exists (h′, Y, e2, ·) ∈ LIC2

, return Y .
• Otherwise, if D2(h′, e2) is invoked in Case (S.2.1) or in Case (S.2.2) s.t.

S(∗).file[C(∗)] 6= (h′, ·, ·), then B3 samples y
$←− Zq, Y := gy, adds (h′ =

ĥ, Y, e2, dec) in LIC2 , adds (Y, y) in DL and returns Y .
In other cases, B3 samples b $←− Zq, Y := Ȳ gb = gȳ+b, adds (h′, Y, e2, dec)
in LIC2

and returns Y .
– The simulation of transcripts e1 and e2 is the same as that in Game 5.
– Simulation of σ and key generation for client instance (C(i), iid(i)).
• If (C(i), iid(i)) is good and linked to some server instance (S(j), iid(j)),

then B3 assigns a random key for it, and sends out a random σ
$←− {0, 1}λ,

just as that in Game 5.
• Otherwise, B3 computes the session key with the help of the decisional

oracle 2DH. Concretely, let e1 and e2 be the transcripts, S(j) be the in-
tended partner, and pw be the (possibly incorrect) password used in
(C(i), iid(i)). For good client instance, B3 directly retrieves the pass-
word file S(j).file[C(i)] = (h, V1, V2), and the record (V1||V2, v1||v2) ∈
DL if it exists. From the simulation we know, (V1||V2, v1||v2) ∈ DL
always exists except the case (C(i), S(j)) = (C(∗), S(∗)). And for bad
client instance, B3 invokes (h, v1, v2)← H0(C(i), S(j), pw). Let X1||X2 ←
D1(h, e1), Y ← D2(h, e2), and sid := C(i)||S(j)||e1||e2. Meanwhile, B3
retrieves (X1||X2, x1||x2) in DL.

∗ (C(i), S(j)) 6= (C(∗), S(∗)). Since B3 knows all exponents x1, x2, v1, v2,
it can compute the session key and σ as normal.

∗ (C(i), S(j)) = (C(∗), S(∗)). In this case, V1 = X̄1 and V2 = X̄2, and
B3 cannot compute Y v1 , Y v2 as above since it does not know the
exponents v1 and v2. Nevertheless, with the help of decisional oracle
2DH, B3 checks whether there exists (sid, Z1, Z2, Z3, Z4, h, key, σ) ∈
LH, such that (Z1, Z2) = (Y x1 , Y x2) and (Z1, Z2) = 2DH(V1, V2,

Y). If so, B3 assigns key as the session key of (S(j), iid(j)) and sends
σ out. Otherwise, B3 randomly samples (key, σ), and “views” it as
the hash value for the correct input H(sid, Y x1 , Y x2 , 2DH(V1, V2, Y)
= (?, ?), h), where 2DH(V1, V2, Y) = (?, ?) means that the values
of 2DH(V1, V2, Y) are to be determined. If A later asks H(sid, Y x1 ,
Y x2 , Z3, Z4, h), then B3 checks whether Z3||Z4 are the correct 2DH
values via the decisional oracle 2DH, i.e., it checks whether

2DH(Y, Z3, Z4) = 1.

38

If yes, B3 reprograms the random oracle s.t. H(sid, Y x1 , Y x2 , Z3,
Z4, h) = (key, σ) by replacing (?, ?) with (Z3, Z4). In this way, B3
can make the same simulation as in the case (C(i), S(j)) 6= (C(∗), S(∗)),
and the view of A is consistent.

– Simulation of key generation for server instance (S(j), iid(j)). Let Ci) be its
intended partner and S(j).file[C(i)] = (ĥ, ·, ·).
• If it is in Case (S.1) (i.e., (S(j), iid(j)) and some good client instance
(C(i), iid(i)) are linked to each other), then B3 assigns the same session
key of (C(i), iid(i)) for (S(j), iid(j)), just as that in Game 5.

• If it is in Case (S.2.3), then B3 assigns ⊥ for (S(j), iid(j)).
• If it is in Case (S.2.1), or in Case (S.2.2) s.t. (C(i), S(j)) 6= (C(∗), S(∗)), then
B3 computes the session key according to the protocol description. Note
that B3 is able to compute the correct hash value with the knowledge of
y obtained in the simulation of D2.

• If it is in Case (S.2.2) s.t. (C(i), S(j)) = (C(∗), S(∗)), then B3 assigns ⊥ for
(S(j), iid(j)). Consequently, B3 keeps detecting whether bad3 happens in
one instance between C(∗) and S(∗) in the simulation of H.

If bad3 happens in Case (S.2.2) w.r.t. server instance (S(∗), iid) with intended
partner C(∗), then A asks a hash query on H(C(∗), S(∗), e1, e2, Z1, Z2, Ẑ3, Ẑ4, ĥ)
such that

(Ẑ3, Ẑ4) = 2DH(V1, V2,D2(ĥ, e2)) = 2DH(gx̄1 , gx̄2 , gȳ+b).

B3 can make use of Ẑ3||Ẑ4 to extract

Ẑ3/g
x̄1b and Ẑ4/g

x̄2b,

which is the solution to the strong 2DH problem. Note that B3 can detect bad3

efficiently with the help of oracle 2DH and trapdoor b.
In the reduction above, B3 randomly chooses a client-server pair (C(∗), S(∗)).

If bad3 happens, then with probability 1/N , it happens on one instance of S(∗)

with intended partner C(∗). Therefore, we have

Pr[bad3] ≤ N · Advst2DH
G,B3

(λ) + 2−Ω(λ).

In summary, we have

|Pr[Game 4⇒ 1]− Pr[Game 5⇒ 1]| ≤ (N + 1) · Advst2DH
G,B3

(λ) + 2−Ω(λ).

Now in Game 5, Sim does not use pw any more, except the case of session
key generation when the adversary A correctly guesses the password pw used in
a client/server instance, i.e., there exists a record (h, X1||X2, e1, enc) ∈ LIC1

or
(h, Y, e2, enc) ∈ LIC2

, and a record (C, S, pw, h, v1, v2) ∈ LH0
. Now we are ready

to introduce the complete simulator in Fig. 7 and 8, which helps us stepping to
the ideal experiment IdealZ,Sim.

39

Game 6. (Use Fapake interfaces.) In the final game we introduce the ideal func-
tionality Fapake. By using interfaces to interact with Fapake, the simulator Sim
can perfectly simulates Game 5 as follows.

– It simulates (E1,D1), (E2,D2), and H0,H as described in Game 5.
– When Sim receives (StorePWFile,C(i), S(j)) from Fapake, it randomly samples

ĥ $←− H\TH0 , v̂1, v̂2
$←− Zq, computes V̂1 := gv̂1 , V̂2 := gv̂2 , and sets the

password file as S(j).file[C(i)] := (ĥ, V̂1, V̂2). Meanwhile, it adds ĥ in TH0
and

(V̂1||V̂2, v̂1||v̂2) in DL.
– When Sim receives (StealPWFile,C(i), S(j)) from Fapake, it marks S(j).file[C(i)]

as compromised and sends it to A. If Fapake additionally returns p̂w to Sim,
which indicates thatA employs a successful offline test and gets the password
from the stolen password file, Sim passes the correct password p̂w to A.

– For the simulation of H0(C(i), S(j), pw), if there already exists (C(i), S(j), pw, h,
v1, v2) in LH0

, then Sim returns (h, v1, v2). Otherwise, it indicates an “offline
test” query to the password file S(j).file[C(i)], and Sim sends (OfflineTestPW,

C(i), S(j), pw) to Fapake.
• If Fapake returns “correct guess”, i.e., pw is the correct password between

C(i) and S(j), then Sim retrieves S(j).file[C(i)] and (V1||V2, v1||v2) from
DL.

• Otherwise (pw is not the correct password, or the password file has not
been compromised yet), Sim randomly samples h $←− H\TH0 , v1, v2

$←− Zq,
computes V1 := gv1 , V2 := gv2 , adds h in TH0 and (V1||V2, v1||v2) in DL.

At last, Sim adds (C(i), S(j), pw, h, v1, v2) in LH0 and returns (h, v1, v2).
– When Sim receives (NewClient,C(i), iid(i), S(j), b) from Fapake, it marks this

instance as correct-pw if b = 1, indicating that the client instance is good.
Meanwhile, Sim chooses a random e1

$←− E1\TIC1
as the output message and

adds e1 in TIC1
.

– When server instance (S(j), iid(j)) receives e1 and (NewServer, S(j), iid(j),C(i))

from Fapake, Sim chooses a random e2
$←− E2\TIC2

as the output message and
adds e2 in TIC2

.
– When client instance (C(i), iid(i)) receives e2, let e1 be the message sent out

and S(j) be its intended partner. Sim sets the session identity to be sid :=
C(i)||S(j)||e1||e2, and checks whether (C(i), iid(i)) is marked as correct-pw and
linked to a server instance (S(j), iid(j)).
• If it is the case, Sim allocates a random key to (C(i), iid(i)) by directly

asking a query (FreshKey,C(i), iid(i), sid) to Fapake. Meanwhile, Sim ran-
domly samples σ as the third message. According to the definition of
FreshKey interface, this performs identically as that in Game 5.

• Otherwise, Sim checks whether: (1) the password file S(j).file[C(i)] has
been compromised and (C(i), iid(i)) is good; or (2) there exists a record
(h′, Y, e2, enc) ∈ LIC2 and a record (C(i), S(j), pw′, h′, v1, v2) ∈ LH0 , and
Fapake returns “correct guess” after a query on (TestPW,C(i), iid(i), pw′).

40

∗ If either (1) or (2) holds, Sim computes X1||X2 ← D1(h, e1), Y ←
D2(h, e2), and (key, σ)← H(sid, 2DH(X1, X2, Y), 2DH(gv1 , gv2 , Y), h)
(with the knowledge of x1, x2, v1, v2). Then it allocates sid and key
to (C(i), iid(i)) via a query (CorruptKey,C(i), iid(i), sid, key) to Fapake,
and sends σ out. According to the definition of CorruptKey interface,
the environment Z has the same view as that in Game 5.

∗ Otherwise, Sim allocates sid and a random key to (C(i), iid(i)) by
asking a query (FreshKey,C(i), iid(i), sid) to Fapake. Meanwhile, Sim
randomly samples σ as the third message. According to the definition
of FreshKey, this results in the same view to the environment Z as
that in Game 5.

– When server instance (S(j), iid(j)) receives σ, let e1 and e2 be the first two
messages, and C(i) be its intended partner. Sim sets the session identity to
be sid := C(i)||S(j)||e1||e2, and checks whether (S(j), iid(j)) and a good client
instance (C(i), iid(i)) are linked to each other.
• If it is the case, then sid = C(i)||S(j)||e1||e2 and a random session key

key must have been assigned to (C(i), iid(i)). Sim assigns the same sid

and key to (S(j), iid(j)) via a query (CopyKey, S(j), iid(j), sid) to Fapake.
According to the definition of CopyKey, this performs identically as that
in Game 5.

• Otherwise, Sim checks whether there exists a record (h′, ·, e1, enc) ∈ LIC1

and a record (C(i), S(j), pw′, h′, v1, v2) ∈ LH0
. If such records exist, Sim

issues a TestPW query (TestPW, S(j), iid(j), pw′) to ask Fapake whether
pw′ = pw, where pw is the (correct) password used in (S(j), iid(j)).

∗ If the record exists and Fapake returns “correct guess” (i.e., pw′ =
pw), then Sim computes X1||X2 ← D1(h, e1), Y ← D2(h, e2), and
(key, σ′) ← H(sid, 2DH(X1, X2, Y), 2DH(gv1 , gv2 , Y), h). If σ = σ′,
Sim sends (CorruptKey, S(j), iid(j), sid, key) to Fapake; otherwise, it
sends (Abort, S(j), iid(j)) to Fapake. According to the definitions of
CorruptKey and Abort, the environment Z has the same view as that
in Game 5.

∗ If the record does not exist, or Fapake returns “wrong guess” (i.e.,
pw′ 6= pw), then Sim allocates ⊥ for (S(j), iid(j)) by asking a query
(Abort, S(j), iid(j)) to Fapake. According to the definition of Abort in-
terface, this results in the same view to the environment Z as that
in Game 5.

The full description of Sim is shown in Fig. 7 and 8. From the analysis above
we know Game 5 and Game 6 are conceptually identical. Furthermore, one
can easily see that Game 6 is just the experiment in the ideal world. Therefore,
we have

IdealZ,Sim = Game 6 = Game 5.

Theorem 2 follows immediately from Game 0 to Game 6, and Theorem 1.

41

5 Optimal Reduction Loss in aPAKE

In this section we show that the security loss of L = N in Theorem 3 is essen-
tially optimal, at least for “simple” reductions. Here “simple” means that the
reduction algorithm runs a single copy of the adversary only once. Almost all
known security reductions (for PAKE and aPAKE) are either of this type, or
use the forking lemma (e.g., KHAPE-HMQV [27]).

We consider the class of DH-type aPAKE protocols defined as follows.

Definition 3 (DH-Type aPAKE Protocol). An asymmetric PAKE protocol
Π is DH-type, if it satisfies the following properties.

1. In the phase of password storage (registration), the server stores a password
file file based on the pre-shared password pw (and some salts, perhaps).

2. In an execution of Π, the honest client first obtains a secret input si from
the identities of the two parties, the password pw (and the first message by
the server, perhaps). In this case, we say si is matched with the password file
file (stored in the server).

3. For each file, there exists only one matching secret input si. And there exists
an efficiently comutable function R(file, si), to check whether si is matched
with file.

4. There exists an efficiently computable function F that inputs the identities
of the two parties, the password pw, and the password file file (stored in the
server), and outputs the matching secret input si.

5. With secret input si, an adversary can impersonate the client to communicate
with the server and compute the session key.

We take 2DH-aEKE protocol in Fig. 6 as an example, to show how it satisfies
the definition of DH-type aPAKE protocol.

1. Let pw be the password shared between C and S. The password file stored
in S is file = (h, V1, V2).

2. In the execution, C first obtains the secret input (h, v1, v2)← H0(C, S, pw).
3. For each file = (h, V1, V2), there exists only one matching si = (h, v1, v2). And

the matching relation can be efficiently verified.
4. Given identities C, S, pw, and file = (h, V1, V2), the secret input si can be

efficiently obtained by computing H0(C, S, pw).
5. The last property is self-evident.

Apart from 2DH-aEKE, a large number of existing aPAKE protocols, in-
cluding KC-SPAKE2+ [47], KHAPE-HMQV [27], aEKE-HMQV and OKAPE-
HMQV [45], fall into the DH-type class.

Definition 4 (Simple Reduction). A simple reduction R to a problem class
P interacts with an adversary/environment Z as follows.

1. R receives a problem instance P ∈ P from its own challenger, it also has
access to an oracle O provided by the challenger.

42

2. R randomly samples a bit β
$←− {0, 1}. If β = 0, then R simulates the real

world running for Z. And if β = 1, then R simulates the ideal world running
for Z.

3. R outputs its solution s.

We say R is a simple (tR, ϵR, ϵZ)-reduction, if it runs in time at most tR, and
for any adversary/environment Z with distinguishing advantage ϵZ , the output
s is a solution to P with probability at least ϵR.

The specification of oracle O depends on the problem class P (and of cause O
can be defined as NULL). In this paper we consider the strong twin DH problem,
where a problem instance is P = (X̄1, X̄2, Ȳ), and O takes (Y, Z1, Z2) as inputs
and outputs whether (Z1, Z2) = 2DH(X̄1, X̄2, Y).

Theorem 4. Let Π be a DH-type aPAKE protocol, and K be the session key
space of Π. For any simple (tR, ϵR, 1 − 1/|K|)-reduction R from the security
of Π defined in Subsec. 4.1 to the hardness of P, there exists a meta-reduction
algorithm M that solves P in time tM and with success probability ϵM, such
that tM ≈ N · tR, and

|ϵR − ϵM| ≤ 1/N,

where N denotes the total number of client-server pairs.

From the inequality |ϵR − ϵM| ≤ 1/N we know ϵM ≥ ϵR − 1/N . Namely,
even with a “perfect” adversary Z whose advantage is overwhelming, the success
probability ϵR of R cannot significantly exceed 1/N , as otherwise there exists
an efficient algorithm M against the hard problem P (e.g., the strong 2DH
problem). This implies that the reduction of R leads to a loss factor at least N .

Proof. Following the strategy by Bader et al. [7] and Cohn-Gordon et al. [19],
we construct a meta-reduction algorithmM that uses R as a subroutine to solve
P. We first describe a hypothetically inefficient (but on the other hand, perfect)
adversary/environment Z, and then show how Z can be efficiently simulated by
M.

Throughout the proof, we use pw(j) to denote the password shared between
the j-th client/server pair, and use file(j) and si(j) to denote the corresponding
password file and secret input, respectively. For 1 ≤ j ≤ N , we define [N] :=
{1, 2, ..., N} and [N\j] := [N]− {j}.

Hypothetical Adversary. The hypothetical adversary/environment Z works
as follows.

1. Z steals password files for all N client-server pairs (C, S).
2. Z randomly samples j∗

$←− [N]. For all i ∈ [N\j∗], it corrupts the client
in the i-th pair to get the password pw(i), and computes the secret input
si(i) := F(pw(i), file(i)).

43

3. Z computes the uniquely corresponding secret input si(j∗) from file(j
∗) via

exhaustive search (recall that we consider hypothetically inefficient adversary
here).

4. Let (C(∗), S(∗)) be the j∗-th client-server pair. Z impersonates C(∗) to ini-
tialize a protocol execution with S(∗), and obtains the session key key∗ from
S(∗). Meanwhile, Z uses si(j∗) to compute the session key key it self.

5. If key = key∗, then Z makes a decision it is in the real world. And if key 6=
key∗, then Z makes a decision it is in the ideal world.

We analyse the success probability of Z. With the help of si(j∗), Z is able to
impersonate C(∗) to start a protocol execution with S(∗) and compute the session
key key (the last property of Definition 3). Meanwhile, at the time S(∗) outputs
the session key, the password file file(j

∗) has been compromised, but Z has not
employed an offline search on the correct password pw(j∗) (i.e., Z has not asked
a hash query with correct input pw(j∗)). According to the functionality of Fapake,
in the ideal world, S(∗) will output ⊥, or an independent and random key10,
while in the real world, S(∗) will output the real session key. Via comparing key∗
obtained from S(∗) and key computed by itself, Z can distinguish the real world
execution from the ideal world execution with advantage 1 − 1/|K|. The loss
1/|K| is due to the fact that with probability 1/|K|, a randomly sampled key
collides to the real session key.

Meta-Reduction. The meta-reduction M interacts with reduction algorithm
R by simulating the adversary Z (against R) as follows.

1. M receives the problem instance P ∈ P from its own challenger, it also has
access to the oracle O. It passes the problem instance to R, and provides R
with the same oracle by forwarding queries and results honestly.

2. M steals password files for all N client-server pairs (C, S). Then it makes a
snapshot of the current state stR of R.

3. For j ∈ [N], M proceeds as follows.
(a) It corrupts the client in the i-th pair for all i ∈ [N\j], to get the password

pw(i).
(b) It computes the secret input si(i) := F(pw(i), file(i)). Note that F may

depend on some ideal function simulated by R, and R may abort for
certain queries.

(c) M resets R to state stR.
4. M simulates the adversary Z by processing the following steps.

(a) It randomly samples j∗
$←− [N]. For all i ∈ [N\j∗], it corrupts the client

in the i-th pair to get the password pw(i), and computes the secret input
si(i) := F(pw(i), file(i)).

10 If the Abort interface is provided by Fapake (as defined in Fig. 5), then S(∗) may
output ⊥ in the ideal world; and if the Abort interface is not provided [45], then S(∗)

will output an independent and random key.

44

(b) Let (C(∗), S(∗)) be the j∗-th client-server pair. It impersonates C(∗) to
initialize a protocol execution with S(∗), and obtains the session key key∗
from S(∗).

(c) It uses si(j∗), the secret input of C(∗) w.r.t. the intended partner S(∗), to
compute the session key key, and compares it with key∗. Note that this
works only if M was able to obtain si(j∗) in Step 3.

(d) If key = key∗, thenM makes a decision R is running the real world. And
if key 6= key∗, then M makes a decision R is running the ideal world.

5. If R outputs s throughout the experiment, then M outputs the same value
(to its challenger).

Analysis.M runs the reduction algorithmR at most N times. Apart from that,
M only processes several simple operations like reading, writing, and protocol
executions. Therefore, we have tM ≈ N · tR.

Then we analyse the success probability of M. First, observe that if M
obtains si(j∗) in Step 3, then it perfectly simulates the hypothetical adversary Z.
Define bad as the event that j∗ is the only index for which R did not abort in
Step 3 of the meta-reduction. If bad happens, M learns all secret inputs except
for si(j∗), in which is the only case the simulation of Z in Step 4c fails. Since the
reduction algorithm R works for at least one index j ∈ [N], and j∗ is sampled
randomly, we have

Pr[bad] ≤ 1/N.

Let win(R,Z) denotes the event that R outputs the correct solution s to P
when interacting with Z, and win(R,M) denotes the corresponding event with
M. Since M simulates Z perfectly unless bad happens, we have

|Pr[win(R,Z)]− Pr[win(R,M)]| ≤ Pr[bad].

By definition, ϵR = Pr[win(R,Z)], and ϵM = Pr[win(R,M)] (M successes if
and only if R successes). As a result, we have

|ϵR − ϵM| ≤ 1/N,

which finishes the proof.

Further discussions. If we view the password file as a “public key” and the
corresponding secret input as a “secret key”, such a bottleneck to tight reduction
is similar to that in signature schemes with multi-user existential unforgeability
agains adaptive corruptions (EUF-CMAcorr security) [6].
In the EUF-CMAcorr security of signatures.

– After seeing the verification key vk(i) (among all {vk(i)}), the adversary ASIG
can obtain the secret key sk(i) via adaptive corruptions.

– With sk(i), ASIG can trivially generates valid signatures for new messages
w.r.t. vk(i).

– ASIG successes if it forges a valid signature for some new message under an
uncorrupted verification key.

45

In the security of aPAKE.

– After stealing the password file file(i), the adversary/environment Z can
obtain the secret input si(i) via successfully employing an offline search on
the correct password and then computing F.

– With si(i), the secret input w.r.t. client C and server S, Z can trivially im-
personate C to S, and compute the session key.

– Z successes in distinguishing the real world from the ideal world, if it can
impersonate a client to a server, after stealing the password file but before
correctly searching the password.

The thorny problem to prove the tight EUF-CMAcorr security of signatures,
is that in the reduction, the reduction algorithm does not know whether and
when ASIG corrupts vk(i) and gets sk(i). Similarly, in the proof towards tight
security of aPAKE, the reduction algorithm does not know whether and when
Z successfully employs an offline search to get si(i), after stealing the password
file file(i).

To achieve full-tight security of SIG, all existing schemes [6, 29, 25, 21] are in
the form of non-unique secret keys (i.e., for each vk there exists multiple match-
ing secret keys sk). Gjøsteen and Jager [25] pointed out that, these non-unique
secret keys are inherently necessary to achieve fully-tight security. However,
aPAKE works in a “unique secret key” pattern. Namely, for each password file
there exists only one password (hence only one secret input) that can make the
client match with the server. Otherwise a different password would also pass the
authentication of server, which conflicts to the intention of aPAKE. As a result,
the loss factor L = N is inevitable in aPAKE.

6 Tight Security for 2DH-SPAKE2 in the Relaxed UC
Framework

In [1], Abdalla et al. relaxed the definition of PAKE functionality to a so-called
lazy-extraction PAKE (lePAKE), and proved some widely used PAKE protocols,
like SPEKE [36], SPAKE2 [4], and TBPEKE [42], are secure under this relaxed
model. We postpone the definition of lazy-extraction UC PAKE functionality
Fle-pake in Appendix B. Informally, Fle-pake allows the adversary/simulator in the
ideal world to postpone its password guess until after the session is completed.

In this section, we show how our technique can be extended to get tightly
secure and ideal cipher-free protocols in the relaxed UC framework. We take
2DH-SPAKE2 (Fig. 9) as an example. Here randomly sampled (M1,M2, N1,M2)
servers as the common reference string (CRS), and hash function H is defined
as: H : {0, 1}∗ 7→ K with K the space of session keys. C, S are identities of Client
and Server.

Theorem 5 (Security of 2DH-SPAKE2). If the CDH assumption holds in
G, H works as a random oracle, then the 2DH-SPAKE2 protocol in Fig. 9 securely
emulates Fle-pake. More precisely, for any PPT environment Z and real world

46

Public Parameter: (G, g, q),M1,M2, N1, N2,H

Client C (pw) Server S (pw)

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2

X∗
1 := X1 ·Mpw

1 , X∗
2 := X2 ·Mpw

2

X∗
1 ,X∗

2−−−−−−−−−−−−−−−→
Y ∗
1 ,Y ∗

2←−−−−−−−−−−−−−−−

y1, y2
$←− Zq, Y1 := gy1 , Y2 := gy2

Y ∗
1 := Y1 ·Npw

1 , Y ∗
2 := Y2 ·Npw

2

Z1,1 := (
Y ∗
1

N
pw
1
)x1 , Z1,2 := (

Y ∗
2

N
pw
2
)x1

Z2,1 := (
Y ∗
1

N
pw
1
)x2 , Z2,2 := (

Y ∗
2

N
pw
2
)x2

sid := C||S||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2

Output keyC ← H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw)

Z1,1 := (
X∗

1

M
pw
1
)y1 , Z1,2 := (

X∗
1

M
pw
1
)y2

Z2,1 := (
X∗

2

M
pw
2
)y1 , Z2,2 := (

X∗
2

M
pw
2
)y2

sid := C||S||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2

Output keyS ← H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw)

Fig. 9. The 2DH-SPAKE2 Protocol.

adversary A which has access to random oracle H, there exist a PPT simulator
Sim, which has access to the ideal functionality Fle-pake, and an algorithm B, s.t.
that advantage of Z in distinguishing the real world running with A and the ideal
world running with Sim is bounded by

Adv2DH-SPAKE2,Z(λ) ≤ 3AdvCDH
G,B (λ) + 2−Ω(λ).

The proof is given in Appendix C.
Note that the technique can be further used to extend PAKE protocol PPK

[41] (Fig. 17) to 2DH-PPK (Fig. 18 in Appendix D), that achieves tight security
in the relaxed UC framework. We omit the detailed proof due to the similarity
to the proof of Theorem 5.
Acknowledgments. We would like to thank the anonymous reviewers for their
constructive comments, especially on the perfect forward security of 2DH-aEKE.

Shengli Liu and Xiangyu Liu were partially supported by National Nat-
ural Science Foundation of China (NSFC No. 61925207), Guangdong Major
Project of Basic and Applied Basic Research (2019B030302008), and the Na-
tional Key R&D Program of China under Grant 2022YFB2701500. Shuai Han
was partially supported by National Natural Science Foundation of China (Grant
No. 62002223), Shanghai Sailing Program (20YF1421100), Young Elite Scien-
tists Sponsorship Program by China Association for Science and Technology
(YESS20200185), and Ant Group through CCF-Ant Research Fund (CCF-AFSG
RF20220224). Dawu Gu is partially supported by the National Key Research and
Development Project (Grant No. 2020YFA0712302).

References
[1] Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally

composable relaxed password authenticated key exchange. In: Advances in Cryp-
tology - CRYPTO 2020. vol. 12170, pp. 278–307. Springer (2020)

47

[2] Abdalla, M., Barbosa, M., Rønne, P.B., Ryan, P.Y.A., Sala, P.: Security charac-
terization of J-PAKE and its variants. IACR Cryptol. ePrint Arch. p. 824

[3] Abdalla, M., Haase, B., Hesse, J.: Security analysis of cpace. In: Advances in
Cryptology - ASIACRYPT 2021. vol. 13093, pp. 711–741. Springer (2021)

[4] Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) Topics in Cryptology - CT-RSA 2005. vol. 3376, pp.
191–208. Springer (2005)

[5] Anderson, T.: Local-use ipv4/ipv6 translation prefix. RFC 8215, 1–7 (2017)
[6] Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated

key exchange. In: TCC 2015. vol. 9014, pp. 629–658. Springer (2015)
[7] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic

reductions. In: Fischlin, M., Coron, J. (eds.) EUROCRYPT 2016. vol. 9666, pp.
273–304. Springer (2016)

[8] Becerra, J., Iovino, V., Ostrev, D., Sala, P., Skrobot, M.: Tightly-secure PAK(E).
In: Capkun, S., Chow, S.S.M. (eds.) Cryptology and Network Security. vol. 11261,
pp. 27–48. Springer (2017)

[9] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Advances in Cryptology - EUROCRYPT 2000.
vol. 1807, pp. 139–155. Springer (2000)

[10] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium
on Research in Security and Privacy. pp. 72–84. IEEE Computer Society (1992)

[11] Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise.
In: CCS ’93. pp. 244–250. ACM (1993)

[12] Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for sphfs and efficient one-round PAKE protocols. In: Advances in
Cryptology - CRYPTO 2013. vol. 8042, pp. 449–475. Springer (2013)

[13] Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key ex-
change: New models and constructions. IACR Cryptol. ePrint Arch. p. 833 (2013)

[14] Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: CCS 2003. pp. 241–250. ACM (2003)

[15] Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted
key exchange. In: Public Key Cryptography - PKC 2004. vol. 2947, pp. 145–158.
Springer (2004)

[16] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp.
136–145. IEEE Computer Society (2001)

[17] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally compos-
able password-based key exchange. In: Advances in Cryptology - EUROCRYPT
2005. vol. 3494, pp. 404–421. Springer (2005)

[18] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
In: Advances in Cryptology - EUROCRYPT 2008. vol. 4965, pp. 127–145. Springer
(2008)

[19] Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. vol. 11694, pp. 767–797. Springer (2019)

[20] Coron, J., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) Theory of Cryptography, 7th Theory of Cryptog-
raphy Conference, TCC 2010. vol. 5978, pp. 273–289. Springer (2010)

48

[21] Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: Public-Key Cryptography - PKC 2021. vol. 12711,
pp. 1–31. Springer (2021)

[22] Dupont, P., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy password-
authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. vol. 10822, pp. 393–424. Springer (2018)

[23] Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Advances in Cryptology - EUROCRYPT 2003. vol. 2656, pp. 524–543.
Springer (2003)

[24] Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for making password-
based key exchange resilient to server compromise. In: Advances in Cryptology
- CRYPTO 2006. vol. 4117, pp. 142–159. Springer (2006)

[25] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptol-
ogy - CRYPTO 2018. vol. 10992, pp. 95–125. Springer (2018)

[26] Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: CCS 2010. pp. 516–525. ACM (2010)

[27] Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding
key exchange. In: Advances in Cryptology - CRYPTO 2021. vol. 12828, pp. 701–
730. Springer (2021)

[28] Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J., Van-
dewalle, J. (eds.) EUROCRYPT 1989. vol. 434, pp. 29–37. Springer (1989)

[29] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
cated key exchange and signatures with tight security in the standard model. In:
Advances in Cryptology - CRYPTO 2021. vol. 12828, pp. 670–700. Springer (2021)

[30] Hao, F., Ryan, P.Y.A.: J-PAKE: authenticated key exchange without PKI. Trans.
Comput. Sci. 11, 192–206 (2010)

[31] Harkins, D.: Dragonfly key exchange. RFC 7664, 1–18 (2015)
[32] Hesse, J.: Separating symmetric and asymmetric password-authenticated key ex-

change. In: SCN 2020. vol. 12238, pp. 579–599. Springer (2020)
[33] Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced

modular construction of asymmetric password-authenticated key exchange. In:
SCN 2018. vol. 11035, pp. 485–504. Springer (2018)

[34] ISO/IEC: Iso/iec 11770-4:2017 information technology — security techniques —
key management — part 4: Mechanisms based on weak secrets, https://www.
iso.org/standard/67933.html

[35] Jablon, D.P.: Strong password-only authenticated key exchange. Comput. Com-
mun. Rev. 26(5), 5–26 (1996)

[36] Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: 6th Workshop on Enabling Technologies (WET-ICE ’97). pp. 248–255.
IEEE Computer Society (1997)

[37] Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Advances in Cryptology - EUROCRYPT
2018. vol. 10822, pp. 456–486. Springer (2018)

[38] Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Advances in Cryptology - EUROCRYPT
2001. vol. 2045, pp. 475–494. Springer (2001)

[39] Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Theory of Cryptography - 8th Theory of Cryptography Conference,
TCC 2011. vol. 6597, pp. 293–310. Springer (2011)

49

https://www.iso.org/standard/67933.html
https://www.iso.org/standard/67933.html

[40] Kwon, J.O., Sakurai, K., Lee, D.H.: One-round protocol for two-party verifier-
based password-authenticated key exchange. In: CMS 2006. vol. 4237, pp. 87–96.
Springer (2006)

[41] Mackenzie, P.: The pak suite: Protocols for password-authenticated key exchange
(12 2002)

[42] Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password expo-
nential key exchange. In: AsiaCCS 2017. pp. 301–312. ACM (2017)

[43] Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
1–160 (2018)

[44] RFC: Crypto forum (cfrg), https://datatracker.ietf.org/rg/cfrg/
documents/

[45] Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low
computation and communication. In: EUROCRYPT 2022. vol. 13276, pp. 127–
156. Springer (2022)

[46] Shin, S., Kobara, K.: Efficient augmented password-only authentication and key
exchange for ikev2. RFC 6628, 1–20 (2012)

[47] Shoup, V.: Security analysis of SPAKE2+. IACR Cryptol. ePrint Arch. p. 313
(2020)

[48] Tanwar, S., Vora, J., Kaneriya, S., Tyagi, S., Kumar, N., Sharma, V., You, I.:
Human arthritis analysis in fog computing environment using bayesian network
classifier and thread protocol. IEEE Consumer Electronics Magazine 9(1), 88–94
(2020)

[49] Williams, M., Benfield, C., Warner, B., Zadka, M., Mitchell, D., Samuel, K., Tardy,
P.: Magic Wormhole, pp. 253–284. Apress, Berkeley, CA (2019)

[50] Yu, J., Lian, H., Zhao, Z., Tang, Y., Wang, X.: Provably secure verifier-based
password authenticated key exchange based on lattices. Adv. Comput. 120, 121–
156 (2021)

50

https://datatracker.ietf.org/rg/cfrg/documents/
https://datatracker.ietf.org/rg/cfrg/documents/

Supplementary Material
The organization of supplementary material is as follows.

– A: Functionalities of ideal ciphers and random oracles.
– B: Functionality Fle-pake for lazy-extraction PAKE.
– C: Proof of Theorem 5 (security of 2DH-SPAKE2).
– D: More protocols (EKE [10, 9], SPAKE2 [4], PPK [41], and 2DH-PPK).

A Ideal Ciphers and Random Oracles

A.1 Ideal Cipher

The ideal cipher is an idealized computation model for block ciphers [20]. Fig.
10 shows the functionality of an ideal cipher (E,D), with key space K, plaintext
space M and ciphertext space E .

Functionality Fic

Upon receiving a query E(k,m):
If there exists a record (k,m, e): return e.
Otherwise: sample e

$←− E , store (k,m, e) and return e.
Upon receiving a query D(k, e):

If there exists a record (k,m, e): return m.
Otherwise: sample m

$←−M, store (k,m, e) and return m.

Fig. 10. The ideal cipher functionality Fic.

A.2 Random Oracle

The functionality of a random oracle H : X 7→ Y is shown in Fig. 11.

Functionality Fro

Upon receiving a query H(x):
If there exists a record (x, y): return y.
Otherwise: sample y

$←− Y, store (x, y) and return y.

Fig. 11. The random oracle functionality Fro.

51

B Relaxed UC Framework for PAKE

For some PAKE protocols like SPAKE2 [4], it is hard to prove their security in
the (standard) UC framework, due to the “perfect hiding” property of transcript
messages. To circumvent this problem, Abdalla et al. [1] relaxed the definition
of PAKE functionality to a so-called lazy-extraction PAKE (lePAKE) Fle-pake.
Under this relaxed model, Abdalla et al. proved that SPEKE [36], SPAKE2 [4]
and TBPEKE [42], are UC-secure.

Late password guesses. In Fle-pake, the simulator Sim is allowed to make a
password guess even after the session is completed and a key k is allocated.
More precisely, in the ideal world, once Sim detects an active attack in one
client/server instance, but it cannot extract the password guess “hidden” in it,
Sim sends a RegisterTest query to Fle-pake so that this instance will be marked
with a special flag tested. After that Fle-pake allocates a random key k to this
instance and the session terminates. Recall that the session key k should be
known to the adversary, only when it succeeds in guessing the password in this
actively attacked session. Sim may be able to “know” the guess at some time
after the client/server instance is completed. And if the guess is correct, Sim has
to know the random key k allocated to this instance before, to make the view
of the adversary be consistent (e.g., the view of random oracle H), and that is
captured by the LateTestPwd interface in Fle-pake.

Meanwhile, the FreshKey interface in Fpake is replaced by the NewKey inter-
face in Fle-pake, which allocates a random key key to a client/server instance,
but additionally allows concealing this key to Sim later when Sim succeeds in a
postponed password guess.

We need to point out that, making a password guess after the key is es-
tablished is somewhat contrast to the intuition what an ideal functionality of
PAKE should be. Intuitively, the simulator (together with the ideal functional-
ity) should decide immediately at the time a session key is generated, whether
it is a fresh key, a copy of a fresh key, or a compromised key. Nevertheless, such
relaxed notion still provides meaningful security in the password-only setting.
See [1, 47] for further discussions.

Weak forward security. Abdalla et al. [1] proved that any protocol realizing
Fle-pake satisfies Weak Forward Security (wFS, a.k.a. weak forward secrecy). Here
wFS means that the perfect forward security holds under passive/eavesdropping
attacks.

C Proof of Theorem 5

We prove the security of 2DH-SPAKE2 in this section. First we extend the strong
2DH problem (cf. Definition 2) to the so-called strong extended 2DH assumption
as follows, and show its equivalence to the CDH problem.

52

Functionality Fle-pake

The functionality Fle-pake is parameterized by a security parameter λ. It interacts with a simulator Sim
and a set of parties via the following queries:
Password Storage

Upon receiving a query (StorePWFile,C(i), S(j), p̂w) from a client C(i) or a server S(j):
If there exists a record ⟨file,C(i), S(j), ·⟩, ignore this query.
Otherwise, record ⟨file,C(i), S(j), p̂w⟩, and send (StorePWFile,C(i), S(j)) to Sim.

Sessions
Upon receiving a query (NewClient, iid(i), S(j), pw) from a client C(i):

Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewClient,C(i), iid(i), S(j), pw = p̂w?) to Sim.
Record (C(i), iid(i), S(j), pw) and mark it as fresh.
In this case, S(j) is called the intended partner of (C(i), iid(i)).

Upon receiving a query (NewServer, iid(j),C(i)) from a server S(j):
Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewServer, S(j), iid(j),C(i)) to Sim. Set pw = p̂w,
record (S(j), iid(j),C(i), pw) and mark it as fresh.
In this case, C(i) is called the intended partner of (S(j), iid(j)).

Two instances (C(i), iid(i)) and (S(j), iid(j)) are said to be partnered, if there are two fresh records
(C(i), iid(i), S(j), pw) and (S(j), iid(j),C(i), pw) sharing the same pw.

Active Session Attacks
Upon receiving a query (TestPW, P, iid, pw′) from Sim:

If there is a fresh record (P, iid, ·, pw):
– If pw′ = pw, mark the record compromised and reply to Sim with “correct guess”.
– If pw′ ̸= pw, mark the record interrupted and replay with “wrong guess”.

Upon receiving a query (RegisterTest, P, iid) from Sim:

If there is a fresh record (P, iid,Q, ·): mark it as interrupted and flag it tested.

Upon receiving a query (LateTestPwd, P, sid, pw′) from Sim:

If there is a record (P, iid,Q, pw) with flag tested and a record (P,Q, sid, k): remove tested, and

– If pw′ = pw, return k to Sim.
– If pw′ ̸= pw, sample a random key k′ and return it to Sim.

Key Generation
Upon receiving a query (NewKey, P, iid, sid) from Sim:

If 1) there is a fresh or interrupted record (P, iid,Q, pw) ; and 2) sid has never been assigned to
P ’s any other instance (P, iid′):

Pick a new random key k, mark the record (P, iid,Q, pw) as completed, assign it with sid,
send (iid, sid, k) to P , and record (P,Q, sid, k).

Upon receiving a query (CopyKey, P, iid, sid) from Sim:
If 1) there is a fresh record (P, iid,Q, pw) and a completed record (Q, iid∗, P, pw) s.t. (P, iid) and
(Q, iid∗) are partnered; and 2) sid has never been assigned to P ’s any other instance (P, iid′);
and 3) there is a unique (Q, iid∗) that has been assigned with sid:

Retrieve the record (Q,P, sid, k), mark the record (P, iid,Q, pw) as completed, assign it with
sid, and send (iid, sid, k) to P .

Upon receiving a query (CorruptKey, P, iid, sid, k) from Sim:
If 1) there is a compromised record (P, iid,Q, pw); and 2) sid has never been assigned to P ’s any
other instance (P, iid′):

Mark the record (P, iid,Q, pw) as completed, assign it with sid, and send (iid, sid, k) to P .

Fig. 12. The lazy-extraction PAKE functionality Fle-pake [1]. The difference with Fpake
is highlighted in gray .

53

Definition 5. For any adversary A, its advantage in solving the strong extended
twin DH (strong ex2DH) problem is defined as

Advst-ex2DH
G,A (λ) := Pr[x̄1, x̄2, ȳ1, ȳ2

$←− Zq : Aex2DHX(·),ex2DHY (·)(g, gx̄1 , gx̄2 , gȳ1 , gȳ2)

= (gx̄1ȳ1 , gx̄1ȳ2 , gx̄2ȳ1 , gx̄2ȳ2)],

where the decision oracle ex2DHX(·) inputs (Y1, Y2, Z1,1, Z1,2, Z2,1, Z2,2) and
outputs 1 if (Z1,1, Z2,1) = 2DH(X̄1, X̄2, Y1) ∧ (Z1,2, Z2,2) = 2DH(X̄1, X̄2, Y2) and
0 otherwise, and ex2DHY (·) inputs (X1, X2, Z1,1, Z1,2, Z2,1, Z2,2) and outputs
1 if (Z1,1, Z1,2) = 2DH(X1, Ȳ1, Ȳ2) ∧ (Z2,1, Z2,2) = 2DH(X2, Ȳ1, Ȳ2) and 0
otherwise.

Theorem 6. For any PPT adversary A against the strong ex2DH problem,
there exists a PPT algorithm B against the CDH problem such that Advst-ex2DH

G,A (λ)

≤ AdvCDH
G,B (λ)+2Q/q, where Q is the maximum number of decision oracle queries

(ex2DHX or ex2DHY).

Proof. The proof borrows the idea of the trapdoor test in [18]. Consider a re-
duction algorithm B that gets a CDH problem instance (gα, gβ). It provides
the strong ex2DH problem adversary A with (X̄1, X̄2, Ȳ1, Ȳ2) as well as oracles
ex2DHX and ex2DHY , and tries to solve the CDH problem with A’s ability. B
randomly samples s, t, u, v $←− Zq, and sets X̄1 := gα, X̄2 := gs ·X̄t

1 = gs+αt, Ȳ1 :=
gβ , Ȳ2 := gu · Ȳ v

1 = gu+βv. Besides, it simulates ex2DHX and ex2DHY using
trapdoors s, t, u, v as follows.

– ex2DHX(Y1, Y2, Z1,1, Z1,2, Z2,1, Z2,2): if Z2,1 = Y s
1 ·Zt

1,1 ∧ Z2,2 = Y s
2 ·Zt

1,2

return 1; otherwise return 0.
– ex2DHY (X1, X2, Z1,1, Z1,2, Z2,1, Z2,2): if Z1,2 = Xu

1 ·Zv
1,1 ∧ Z2,2 = Xu

2 ·Zt
2,1

return 1; otherwise return 0.

The trapdoor test theorem in [18] tells us that for any Y1, Z1,1, Z2,1 ∈ G, if

Z2,1 = Y s
1 · Zt

1,1 (1)

holds, then
Z1,1 = Y x̄1

1 ∧ Z2,1 = Y x̄2
1 (2)

holds, with error probability at most 1/q.
Theorem 6 holds immediately by the union bound.

Now we prove Theorem 5.

Proof. Similar to the proofs of Theorem 2 and 3, our main task is to construct
a PPT simulator Sim, which has access to the ideal functionality Fle-pake and in-
teractions with the environment Z, and simulates the real world 2DH-SPAKE2
protocol interactions among the adversary A, parties, and the environment Z.
To this end, Sim needs to simulate common reference strings (CRS), simu-
late honestly generated messages from real parties, respond adversarial mes-
sages approximately, and simulate random oracle H, as shown in Fig. 3. The

54

functionality Fle-pake provides information to Sim through interfaces including
TestPW, RegisterTest, LateTestPwd, NewClient, NewServer, NewKey, CopyKey,
and CorruptKey. Recall that Sim has no secret inputs (i.e., passwords).

The full description of the simulator Sim is given in Fig. 13 and 14. Let
RealZ,A be the real experiment where environment Z interacts with real parties
and adversary A, and IdealZ,Sim be the ideal experiment where Z interacts
with simulator Sim. We prove that |Pr[RealZ,A ⇒ 1] − Pr[IdealZ,Sim ⇒ 1]|
is negligible via a series of games Game 0 − 5, where Game 0 is RealZ,A,
Game 5 is IdealZ,Sim, and argue that two adjacent games are indistinguishable
from Z’s prospective of view.

We consider the scenario of multi-users and multi instances as before, and
use (C(i), iid(i)) (resp., (S(j), iid(j))) to specify a client (resp., server) instance.
Good/bad client instances are defined the same as those in Section 3, but the
definition of linked instances is a bit different, since in 2DH-SPAKE2, both the
client and the server can initialize a protocol execution.

To capture this property and for better presentation of Sim, we divide a
client (resp., server) instance into two phases, of which the first phase generates
X∗

1 ||X∗
2 (resp., Y ∗

1 ||Y ∗
2) and sends it out, and the second phase computes the

session key when receiving a message from its intended partner. Meanwhile, we
define linked instances as follows.

Linked instances. We say that a client (resp., server) instance (P, iid) is linked
to a server (resp., client) instance (Q, iid′), if (Q, iid′) generates Z∗

1 ||Z∗
2 which

is also received by one instance (P, iid) of its intended partner P .

Further more, we define correct DH values as follows.

Correct DH values. Let sid = C(i)||S(j)||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 and pw be a pass-
word (not necessarily the correct password between C(i) and S(j)). We say
Z1,1, Z1,2, Z2,1, Z2,2 are the correct DH values w.r.t. sid and pw, if

Z1,1 = CDH
(

X∗
1

Mpw
1

,
Y ∗
1

Npw
1

)
, Z1,2 = CDH

(
X∗

1

Mpw
1

,
Y ∗
2

Npw
2

)
,

Z2,1 = CDH
(

X∗
2

Mpw
2

,
Y ∗
1

Npw
1

)
, Z2,2 = CDH

(
X∗

2

Mpw
2

,
Y ∗
2

Npw
2

)
.

Game 0. This is the real experiment RealZ,A in the proof of Theorem 5. We
have

Pr[RealZ,A ⇒ 1] = Pr[Game 0⇒ 1].

Game 1. (Add an ideal layout.) From this game on, we add an ideal layout
Sim, which is only a toy construction in Game 1, but will be complete with
games going on and arrive at the final Sim defined in Fig. 13 and 14. In Game
1, Sim still needs to take passwords as inputs. With the help of passwords, it
perfectly simulates the executions in RealZ,A. Meanwhile, it generates CRS,
and emulates the random oracle H for parties and adversary A as follows.

55

Sim maintains lists T ,D,LH, IF ,DL in the simulation.

– T : store messages sent by client/server instances.
– D: store messages received by client/server instances.
– LH: store records w.r.t. random oracle H.
– IF : store information w.r.t. transcripts, (possible) password guesses, and session keys.
– DL: store discrete logarithms.

PAKE Sessions
on (NewClient,C(i), iid(i), S(j), b) from Fle-pake:

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2 , DL := DL∪{(X1||X2, x1||x2)}, T := T ∪{(C(i), iid(i), X1||X2)},

and send X1||X2 from C(i) to A.
If b = 1: mark (C(i), iid(i)) as correct-pw. // client C(i) correctly inputs the password

on (NewServer, S(j), iid(j),C(i)) from Fle-pake:

y1, y2
$←− Zq, Y1 := gy1 , Y2 := gy2 , DL := DL ∪ {(Y1||Y2, y1||y2)}, T := T ∪ {(S(j), iid(j), Y1||Y2)}.

Send Y1||Y2 from S(j) to A.
on X∗

1 ||X∗
2 from A as a client message from C(i) to (S(j), iid(j)):

Retrieve (S(j), iid(j), Y1||Y2) ∈ T and (Y1||Y2, y1||y2) ∈ DL, sid := C(i)||S(j)||X∗
1 ||X∗

2 ||Y1||Y2, D :=
D ∪ {(S(j), iid(j), X∗

1 ||X∗
2)}.

If ∃(C(i), iid(i), X∗
1 ||X∗

2) ∈ T and (C(i), iid(i)) is correct-pw:
If Sim has queried (NewKey,C(i), iid(i), sid): send (CopyKey, S(j), iid(j), sid) to Fle-pake;
Otherwise, send (NewKey, S(j), iid(j), sid) to Fle-pake.

Else if ∃(sid, pw′, key) ∈ IF : ask (TestPW, S(j), iid(j), pw′):
If Fle-pake returns “correct guess”: send (CorruptKey, S(j), iid(j), sid, key) to Fle-pake;
If Fle-pake returns “wrong guess”: send (NewKey, S(j), iid(j), sid) to Fle-pake.

Else: Send (RegisterTest, S(j), iid(j)) and (NewKey, S(j), iid(j), sid) to Fle-pake.
on Y ∗

1 ||Y ∗
2 from A as a server message from S(j) to (C(i), iid(i)):

Retrieve (C(i), iid(i), X1||X2) ∈ T and (X1||X2, x1||x2) ∈ DL, sid := C(i)||S(j)||X1||X2||Y ∗
1 ||Y ∗

2 ,
D := D ∪ {(C(i), iid(i), Y ∗

1 ||Y ∗
2)}.

If ∃(S(i), iid(j), Y ∗
1 ||Y ∗

2) ∈ T and (C(i), iid(i)) is correct-pw:
If Sim has queried (NewKey, S(j), iid(j), sid): send (CopyKey,C(i), iid(i), sid) to Fle-pake;
Otherwise, send (NewKey,C(i), iid(i), sid) to Fle-pake.

Else If ∃(sid, pw′, key) ∈ IF : ask (TestPW,C(i), iid(i), pw′):
If Fle-pake returns “correct guess”: send (CorruptKey,C(i), iid(i), sid, key) to Fle-pake;
If Fle-pake returns “wrong guess”: send (NewKey,C(i), iid(i), sid) to Fle-pake.

Else: Send (RegisterTest,C(i), iid(i)) and (NewKey,C(i), iid(i), sid) to Fle-pake.

Fig. 13. Simulator Sim for 2DH-SPAKE2 in the proof of Theorem 5, part 1.

56

Sim maintains lists T ,D,LH, IF ,DL in the simulation.

On CRS and Random Oracles
Generating CRS:

m1,m2, n1, n2
$←− Zq, (M1,M2, N1, N2) := (gm1 , gm2 , gn1 , gn2) and return (M1,M2, N1, N2).

on H(C(i), S(j), X∗
1 , X

∗
2 , Y

∗
1 , Y ∗

2 , Z1,1, Z1,2, Z2,1, Z2,2, pw) from A:
sid := C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 .

If ∃(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw, key) ∈ LH: return key.
key $←− K.
If ∃(C(i), iid(i), X∗

1 ||X∗
2) ∈ T , retrieve (X∗

1 ||X∗
2 , x1||x2) ∈ DL, and:

If Z1,1 := (Y ∗
1 /Npw

1)(x1−m1·pw), Z1,2 := (Y ∗
2 /Npw

2)(x1−m1·pw), Z2,1 := (Y ∗
1 /Npw

1)(x2−m2·pw),
Z2,2 := (Y ∗

2 /Npw
2)(x2−m2·pw):

If ∃(C(i), iid(i), Y ∗
1 ||Y ∗

2) ∈ D: ask (LateTestPwd,C(i), sid, pw) to get reply, go to FINAL.
Otherwise: IF := IF ∪ {(sid, pw, key)}, go to FINAL.

If ∃(S(j), iid(j), Y ∗
1 ||Y ∗

2) ∈ T : retrieve (Y ∗
1 ||Y ∗

2 , y1||y2) ∈ DL, and:
If Z1,1 := (X∗

1/M
pw
1)(y1−n1·pw), Z1,2 := (X∗

1/M
pw
1)(y2−n2·pw), Z2,1 := (X∗

2/M
pw
2)(y1−n1·pw),

Z2,2 := (X∗
2/M

pw
2)(y2−n2·pw):

If ∃(S(j), iid(j), X∗
1 ||X∗

2) ∈ D: ask (LateTestPwd, S(j), sid, pw) to get reply, go to FINAL.
Otherwise: IF := IF ∪ {(sid, pw, key)}, go to FINAL.

Otherwise: go to FINAL.
In any other case: go to FINAL.

FINAL: Set key := reply if reply exists. Record (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw, key) in LH and return
key.

Fig. 14. Simulator Sim for 2DH-SPAKE2 in the proof of Theorem 5, part 2.

– Generation of CRS: Sample m1,m2, n1, n2
$←− Zq, set (M1,M2, N1, N2) :=

(gm1 , gm2 , gn1 , gn2), and return (M1,M2, N1, N2).
– On H(C, S, X∗

1 , X
∗
2 , Y

∗
1 , Y

∗
2 , Z1,1, Z1,2, Z2,1, Z2,2, pw): Let sid := C||S||X∗

1 ||X∗
2

||Y ∗
1 ||Y ∗

2 . If there exists (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw, key) ∈ LH, return key;
otherwise, key $←− K, add (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw, key) in LH and return
key.

Obviously we have

Pr[Game 1⇒ 1] = Pr[Game 0⇒ 1].

Game 2. (Randomize keys for passively attacked instances.) In this game, for
any session, if A only eavesdrops on the protocol instance, then Sim returns a
random key instead of the real session key (the hash value of H). More precisely,
if a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)) are linked
to each other, then Sim generates a random session key for one of them, and
copies the key as the session key for the other.

57

Define bad1 as the event that there exists a passively attacked session w.r.t.
a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)), and A ever
asks a hash query on H(sid, Ẑ1,1, Ẑ1,2, Ẑ2,1, Ẑ2,2, p̂w) such that Ẑ1,1, Ẑ1,2, Ẑ2,1, Ẑ2,2

are correct DH values w.r.t. sid and p̂w, where sid = C(i)||S(j)||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2

with X∗
1 , X

∗
2 , Y

∗
1 , Y

∗
2 the transcripts, and p̂w is the correct password pre-shared

between them.
Obviously A will not detect the change in Game 2 unless bad1 happens. We

show that if bad1 happens, then we can construct an algorithm B1 to solve the
strong ex2DH problem.

The reduction works as follows. B1 receives the strong ex2DH challenge
(X̄1, X̄2, Ȳ1, Ȳ2), as well as oracles ex2DHX and ex2DHY . Then it simulates
Game 2 as below.

– The simulation of H is the same as that in Game 2.
– For the simulation of good client instance (C(i), iid(i) = s) generating X∗

1 ||X∗
2 :

B1 samples a
(i)
s,1, a

(i)
s,2

$←− Zq, sets X∗
1 := X̄1g

a
(i)
s,1M p̂w

1 = gx̄1+a
(i)
s,1M p̂w

1 , X∗
2 :=

X̄2g
a
(i)
s,2M p̂w

2 = gx̄2+a
(i)
s,2M p̂w

2 , and sends X∗
1 ||X∗

2 out.
– For the simulation of server instance (S(j), iid(j) = t) generating Y ∗

1 ||Y ∗
2 :

B1 samples b
(j)
t,1 , b

(j)
t,2

$←− Zq, sets Y ∗
1 := Ȳ1g

b
(j)
t,1N p̂w

1 = gȳ1+b
(j)
t,1N p̂w

1 , Y ∗
2 :=

Ȳ2g
b
(j)
t,2N p̂w

2 = gȳ2+b
(j)
t,2N p̂w

2 , and sends Y ∗
1 ||Y ∗

2 out.
– For the simulation of good client instance (C(i), iid(i) = s) generating the

session key: Let sid = C(i)||S(j)||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 with X∗
1 , X

∗
2 , Y

∗
1 , Y

∗
2 the

transcripts. There are two cases.
• If (C(i), iid(i) = s) and server instance (S(j), iid(j) = t) are linked to each

other, then B1 generates a random key for it if (S(j), iid(j) = t) has not
computed the session key yet, or assigns the same key of (S(j), iid(j) = t)
to it.

• If (C(i), iid(i) = s) receives an adversarially generated Y ∗
1 ||Y ∗

2 , then B1
computes the session key with the help of decisional oracle ex2DHX .
Concretely, B1 first computes X1 := X∗

1/M
p̂w
1 , X2 := X∗

2/M
p̂w
2 , Y1 :=

Y ∗
1 /N

p̂w
1 , Y2 := Y ∗

2 /N
p̂w
2 . Then, it uses ex2DHX to check whether there

exists (sid, Z1,1, Z1,2, Z2,1, Z2,2, p̂w, key) ∈ LH, such that Z1,1, Z1,2, Z2,1,
Z2,2 are correct DH values w.r.t. sid and p̂w. If so, B1 assigns key
as the session key to (C(i), iid(i) = s). Otherwise, B1 randomly sam-
ples a key and “views” it as the hash output for the correct input
H(sid,CDH(X1, Y1) =?,CDH(X1, Y2) =?,CDH(X2, Y1) =?,CDH(X2, Y2)
=?, p̂w), where ? means that the value is to be determined. If A later asks
H(sid, Z1,1, Z1,2, Z2,1, Z2,2, p̂w), then B1 checks whether Z1,1, Z1,2, Z2,1,
Z2,2 are correct DH values w.r.t. sid and p̂w via the decisional oracle,
i.e., it checks whether

ex2DHX(Y1, Y2, Z1,1/(Y1)
a
(i)
s,1 , Z1,2/(Y2)

a
(i)
s,1 , Z2,1/(Y1)

a
(i)
s,2 , Z2,2/(Y2)

a
(i)
s,2) = 1.

If yes, B1 reprograms the random oracle by replacing (?, ?, ?, ?) with
Z1,1, Z1,2, Z2,1, Z2,2. In this way, the view of A is consistent.

58

– For the simulation of server instance (S(j), iid(j) = t) generating the ses-
sion key: Let sid = C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 with X∗

1 , X
∗
2 , Y

∗
1 , Y

∗
2 the tran-

scripts. There are two cases.
• If (S(j), iid(j) = t) and good client instance (C(i), iid(i) = s) are linked

to each other, then B1 generates a random key for it if (C(i), iid(i) = s)

has not computed the session key yet, or assigns the same key of (C(i),
iid(i) = s) to it.

• If (S(j), iid(j) = t) receives an adversarially generated X∗
1 ||X∗

2 , then B1
computes the session key with the help of decisional oracle ex2DHY as
above, except that the verification equivalence is changed to

ex2DHY (X1, X2, Z1,1/(X1)
b
(j)
t,1 , Z1,2/(X1)

b
(j)
t,2 , Z2,1/(X2)

b
(j)
t,1 , Z2,2/(X2)

b
(j)
t,2) = 1.

– The simulation of bad client instances is the same as that in Game 2.

Suppose that bad1 happens w.r.t. instances (C(i), s) and (S(j), t) with tran-
scripts X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 , then A must have asked H(sid, Ẑ1,1, Ẑ1,2, Ẑ2,1, Ẑ2,2, p̂w)

s.t. Ẑ1,1, Ẑ1,2, Ẑ2,1, Ẑ2,2 are correct DH values w.r.t sid and p̂w. Note that B1
can detect bad1 with the help of oracles ex2DHX , ex2DHY , and trapdoors
a
(i)
s,1, a

(i)
s,2, b

(j)
t,1 , b

(j)
t,2 . Then B1 can extract the solution

Ẑ1,1/g
x̄1b

(j)
t,1+ȳ1a

(i)
s,1+a

(i)
s,1b

(j)
t,1 , Ẑ1,2/g

x̄1b
(j)
t,2+ȳ2a

(i)
s,1+a

(i)
s,1b

(j)
t,2 ,

Ẑ2,1/g
x̄2b

(j)
t,1+ȳ1a

(i)
s,2+a

(i)
s,2b

(j)
t,1 , Ẑ2,2/g

x̄2b
(j)
t,2+ȳ2a

(i)
s,2+a

(i)
s,2b

(j)
t,2 ,

to the strong ex2DH problem.
Therefore, we have

|Pr[Game 2⇒ 1]− Pr[Game 1⇒ 1]| ≤ Advst-ex2DH
G,B1

(λ).

Game 3. (Randomize simulated messages.) In this game, Sim directly samples
random messages to simulate the message outputs of client and server instances,
and uses the trapdoors m1,m2, n1, n2 to compute session keys. More precisely,
Game 3 is now simulated by Sim as follows.

– For the simulation of a client instance (C(i), iid(i)) generating the transcript,
Sim samples x1, x2

$←− Zq, and computes X∗
1 ||X∗

2 = gx1 ||gx2 as the output
message.

– For the simulation of a server instance (S(j), iid(j)) generating the transcript,
Sim samples y1, y2

$←− Zq, and computes Y ∗
1 ||Y ∗

2 = gy1 ||gy2 as the output
message.

– For the simulation of a client instance (C(i), iid(i)) generating the session
key, let sid = C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 and pw be the (possibly incor-

rect) password used in this instance. Sim computes the correct DH values
Z1,1, Z1,2, Z2,1, Z2,2 w.r.t. sid and pw via

Z1,1 = (Y ∗
1 /N

pw
1)x1−m1·pw, Z1,2 = (Y ∗

2 /N
pw
2)x1−m1·pw,

Z2,1 = (Y ∗
1 /N

pw
1)x2−m2·pw, Z2,2 = (Y ∗

2 /N
pw
2)x2−m2·pw.

59

Then Sim generates the session key as H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw).
– For the simulation of a server instance (S(j), iid(j)) generating the session key,

let sid = C(i)||S(j)||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 and pw be the (correct) password used
in this instance. Sim computes the correct DH values Z1,1, Z1,2, Z2,1, Z2,2

w.r.t. sid and pw via

Z1,1 = (X∗
1/M

pw
1)y1−n1·pw, Z1,2 = (X∗

1/M
pw
1)y2−n2·pw,

Z2,1 = (X∗
2/M

pw
2)y1−n1·pw, Z2,2 = (X∗

2/M
pw
2)y2−n2·pw.

Then Sim generates the session key as H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw).

Obviously Game 3 and Game 2 are identical, and we have

Pr[Game 3⇒ 1] = Pr[Game 2⇒ 1].

Game 4. (Randomize keys for client instances in case of incorrect password
guesses.) In Game 4, Sim changes the generation of session keys for client in-
stances when detecting an active attack.

Concretely, for a client instance (C(i), iid(i)) with transcript X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 ,
let S(j) be the intended partner and pw be the (possibly incorrect) password
used in this instance. Sim sets sid := C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 , and generates

the session key in the following way.

Case (C.1). If (C(i), iid(i)) and some server instance (S(j), iid(j)) are linked to
each other, and (C(i), iid(i)) is good, then Sim assigns the same random key
for both (C(i), iid(i)) and (S(j), iid(j)), just as that in Game 3.

Case (C.2). If (C(i), iid(i)) is not linked to any instance of S(j), or (C(i), iid(i))
is bad11. We further divide it into the following two subcases.
Case (C.2.1). Sim retrieves the first record (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′, key)
∈ LH s.t. Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t. sid and pw′.
If such a record exists and pw′ = pw, then Sim sets the session key to be
key. And if pw′ 6= pw, then Sim sets the session key to be random.

Case (C.2.2). If the record does not exist, Sim samples a random key as
the session key of (C(i), iid(i)). Meanwhile, it keeps looking on the first
hash query H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′) s.t. Z1,1, Z1,2, Z2,1, Z2,2 are
correct DH values w.r.t. sid and pw′. If pw′ = pw, then Sim reprograms
the random oracle by setting H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw) = key. And
if pw′ 6= pw, then Sim returns a random key and records it in the hash
list LH.

According to the protocol specification, the session key of a client instance
(C(i), iid(i)) is computed as H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw) s.t. Z1,1, Z1,2, Z2,1, Z2,2

11 As described in Subsec. 3.1, when considering security, a bad client instance (the
case when the client mistypes the password) can be simply viewed as an “online”
attack.

60

are correct DH values w.r.t. sid and pw, where pw is the password used in
(C(i), iid(i)). That is, in either Case (C.2.1) or Case (C.2.2), if the first query
satisfies pw′ = pw or the query does not exists, then the key generation performs
the same as in Game 3.

Define bad2 as the event that A has asked more than one hash query of
the form H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′) s.t. Z1,1, Z1,2, Z2,1, Z2,2 are correct DH
values w.r.t. sid and pw′, and pw′ 6= pw in the first such query, but pw′ = pw in
some subsequent query.

Obviously Game 4 and Game 3 are the same unless bad2 happens. Next
we show that if bad2 happens, then we can construct a reduction algorithm B2
to solve the strong ex2DH problem.

The reduction works as follows. B2 receives the strong ex2DH challenge
(X̄1, X̄2, Ȳ1, Ȳ2), as well as oracles ex2DHX and ex2DHY . Then it simulates
Game 4 as below.

– For the generation of CRS, B2 randomly samples m1,m2, computes M1 :=
gm1 ,M2 := gm2 , sets N1 := Ȳ1, N2 := Ȳ2, and outputs (M1,M2, N1, N2).

– For the simulation of client instance (C(i), iid(i)) generating X∗
1 ||X∗

2 : B2 sam-
ples a1, a2

$←− Zq, sets X∗
1 := X̄1g

a1 = gx̄1+a1 , X∗
2 := X̄2g

a2 = gx̄2+a2 , and
sends X∗

1 ||X∗
2 out.

– For the simulation of server instance (S(j), iid(j)) generating Y ∗
1 ||Y ∗

2 : B2 sam-
ples y1, y2

$←− Zq, sets Y ∗
1 := gy1 , Y ∗

2 := gy2 , adds (Y ∗
1 ||Y ∗

2 , y1||y2) into DL,
and sends Y ∗

1 ||Y ∗
2 out.

– For the simulation of client instance (C(i), iid(i)) generating the session key:
Let sid = C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 with X∗

1 , X
∗
2 , Y

∗
1 , Y

∗
2 the transcripts.

There are two cases.
• If (C(i), iid(i)) and server instance (S(j), iid(j)) are linked to each other,

and (C(i), iid(i)) is good, then B2 generates a random key for it if (S(j),
iid(j)) has not computed the session key yet, or assigns the same key of
(S(j), iid(j)) to it, just as Game 4.

• Otherwise, B2 computes the session key with the help of decisional ora-
cle ex2DHX . B2 first computes X1 := X∗

1/M
pw
1 , X2 := X∗

2/M
pw
2 , Y1 :=

Y ∗
1 /N

pw
1 , Y2 := Y ∗

2 /N
pw
2 . Then, it uses ex2DHX to check whether there

exists (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw, key) ∈ LH, such that Z1,1, Z1,2, Z2,1,
Z2,2 are correct DH values w.r.t. sid and pw. If so, B2 assigns key as the
session key to (C(i), iid(i)). Otherwise, B2 randomly samples a key and
“views” it as the hash output for the correct input H(sid,CDH(X1, Y1) =
?,CDH(X1, Y2) =?,CDH(X2, Y1) =?,CDH(X2, Y2) =?, pw), where ? means
that the value is to be determined. If A later asks H(sid, Z1,1, Z1,2, Z2,1,
Z2,2, pw), then B2 checks whether Z1,1, Z1,2, Z2,1, Z2,2 are correct DH
values w.r.t. sid and pw via the decisional oracle, i.e., it checks whether

ex2DHX(Y1, Y2, Z1,1·Y m1·pw−a1

1 , Z1,2·Y m1·pw−a1

2 , Z2,1·Y m2·pw−a2

1 , Z2,2·Y m2·pw−a2

2) = 1.

If yes, B1 reprograms the random oracle by replacing (?, ?, ?, ?) with
Z1,1, Z1,2, Z2,1, Z2,2. In this way, the view of A is consistent.

61

– For the simulation of server instance (S(j), iid(j)) generating the session key:
Let sid = C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 with X∗

1 , X
∗
2 , Y

∗
1 , Y

∗
2 the transcripts.

There are two cases.
• If (S(j), iid(j)) and good client instance (C(i), iid(i)) are linked to each

other, then B2 generates a random key for it if (C(i), iid(i)) has not
computed the session key yet, or assigns the same key of (C(i), iid(i))
to it, just as Game 4.

• Otherwise, B2 computes X1 := X∗
1/M

pw
1 , X2 := X∗

2/M
pw
2 , Y1 := Y ∗

1 /N
pw
1 ,

Y2 := Y ∗
2 /N

pw
2 . Then it generates the session key with the help of deci-

sional oracle ex2DHY as above, except that the verification formula is
changed to

ex2DHY (X1, X2, (X
y1

1 /Z1,1)
pw−1

, (Xy2

1 /Z1,2)
pw−1

, (Xy1

2 /Z2,1)
pw−1

, (Xy2

2 /Z2,2)
pw−1

) = 1.

– The simulation of H is the same as that in Game 4.

If bad2 happens, then there exists two queries (sid, Z ′
1,1, Z

′
1,2, Z

′
2,1, Z

′
2,2, pw′)

and (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw), such that Z ′
1,1, Z

′
1,2, Z

′
2,1, Z

′
2,2 are correct DH

values w.r.t. sid and pw′, and Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t.
sid and pw.

According to B2’s simulation above, we get

Z1,1/Z
′
1,1 =

CDH(X∗
1/M

pw
1 , Y ∗

1 /N
pw
1)

CDH(X∗
1/M

pw′

1 , Y ∗
1 /N

pw′

2)

=
g(x̄1+a1−m1·pw)(y1−ȳ1·pw)

g(x̄1+a1−m1·pw′)(y1−ȳ1·pw′)

= g(m1y1+a1ȳ1)·(pw′−pw) · gm1ȳ1·(pw2−pw′2) · gx̄1ȳ1·(pw′−pw).

Similarly,

Z1,2/Z
′
1,2 = g(m1y2+a1ȳ2)·(pw′−pw) · gm1ȳ2·(pw2−pw′2) · gx̄1ȳ2·(pw′−pw),

Z2,1/Z
′
2,1 = g(m2y1+a2ȳ1)·(pw′−pw) · gm2ȳ1·(pw2−pw′2) · gx̄2ȳ1·(pw′−pw),

Z2,2/Z
′
2,2 = g(m2y2+a2ȳ2)·(pw′−pw) · gm2ȳ2·(pw2−pw′2) · gx̄2ȳ2·(pw′−pw).

Note that B2 can detect bad2 with the help of oracles ex2DHX and ex2DHY

and trapdoors m1,m2, a1, a2, y1, y2. Subsequently, it can extract the solution
to the strong ex2DH problem, from tuples (sid, Z ′

1,1, Z
′
1,2, Z

′
2,1, Z

′
2,2, pw′) and

(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw).
Thus we have

|Pr[Game 4⇒ 1]− Pr[Game 3⇒ 1]| ≤ Advst-ex2DH
G,B2

(λ).

Game 5. (Randomize keys for server instances in case of incorrect password
guesses.) In Game 5, Sim further changes the generation of session keys for
server instances when detecting an active attack.

62

Concretely, for a server instance (S(j), iid(j)) with transcript X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 ,
let C(i) be the intended partner and pw be the (correct) password used in this
instance. Sim sets sid := C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 , and generates the session

key in the following way.

Case (S.1). If (S(j), iid(j)) and some good client instance (C(i), iid(i)) are linked
to each other, then Sim assigns the same random key for both (S(j), iid(j))

and (C(i), iid(i)), just as that in Game 4.
Case (S.2). If (S(j), iid(j)) is not linked to any good client instance (C(i), iid(i)),

we further divide it into the following two subcases.
Case (S.2.1). Sim retrieves the first record (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′, key)
∈ LH s.t. Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t. sid and pw′.
If such a record exists and pw′ = pw, then Sim sets the session key to be
key. And if pw′ 6= pw, then Sim sets the session key to be random.

Case (S.2.2). If the record does not exist, Sim samples a random key as
the session key of (S(j), iid(j)). Meanwhile, it keeps looking on the first
hash query H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′) s.t. Z1,1, Z1,2, Z2,1, Z2,2 are
correct DH values w.r.t. sid and pw′. If pw′ = pw, then Sim reprograms
the random oracle by setting H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw) = key. And
if pw′ 6= pw, then Sim returns a random key and records it in the hash
list LH.

Define bad3 as the event that A has asked more than one hash query of
the form H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′) s.t. Z1,1, Z1,2, Z2,1, Z2,2 are correct DH
values w.r.t. sid and pw′, and pw′ 6= pw in the first such query, but pw′ = pw in
some subsequent query.

Obviously Game 5 and Game 4 are the same unless bad3 happens. Next
we show that if bad3 happens, then we can construct a reduction algorithm B3
to solve the strong ex2DH problem. The reduction is very similar to B2’s (from
Game 3 to Game 4), except that B3 embeds the problem instance into M1,M2,
and server’s message Y ∗

1 ||Y ∗
2 .

In more detail, B3 receives the strong ex2DH challenge (X̄1, X̄2, Ȳ1, Ȳ2), as
well as oracles ex2DHX and ex2DHY . Then it simulates Game 5 as below.

– For the generation of CRS, B3 randomly samples n1, n2, computes N1 :=
gn1 , N2 := gn2 , sets M1 := X̄1,M2 := X̄2, and outputs (M1,M2, N1, N2).

– For the simulation of client instance (C(i), iid(i)) generating X∗
1 ||X∗

2 : B3 ran-
domly samples x1, x2

$←− Zq, sets X∗
1 := gx1 , X∗

2 := gx2 , adds (X∗
1 ||X∗

2 , x1||x2)
into DL, and sends X∗

1 ||X∗
2 out.

– For the simulation of server instance (S(j), iid(j)) generating Y ∗
1 ||Y ∗

2 : B3 sam-
ples b1, b2

$←− Zq, sets Y ∗
1 := Ȳ1 · gb1 = gȳ1+b1 , Y ∗

2 := Ȳ2g
b2 = gȳ2+b2 , and

sends Y ∗
1 ||Y ∗

2 out.
– For the simulation of client instance (C(i), iid(i)) generating the session key:

Let sid = C(i)||S(j)||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 with X∗
1 , X

∗
2 , Y

∗
1 , Y

∗
2 the transcripts.

There are two cases.

63

• If (C(i), iid(i)) and server instance (S(j), iid(j)) are linked to each other,
and (C(i), iid(i)) is good, then B3 generates a random key for it if (S(j),
iid(j)) has not computed a session key yet, or assigns the same key of
(S(j), iid(j)) to it, just as Game 5.

• Otherwise, B3 computes the session key with the help of decisional or-
acle ex2DHX . Concretely, B3 first computes X1 := X∗

1/M
pw
1 , X2 :=

X∗
2/M

pw
2 , Y1 := Y ∗

1 /N
pw
1 , Y2 := Y ∗

2 /N
pw
2 . Then, it uses ex2DHX to check

whether there exists (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw, key) ∈ LH, such that
Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t. sid and pw. If so, B3
samples a key and “views” it as the hash output for the correct input
H(sid,CDH(X1, Y1) =?,CDH(X1, Y2) =?,CDH(X2, Y1) =?,CDH(X2, Y2)
=?, p̂w), where ? means that the value is to be determined. If A later asks
H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw), then B3 checks whether Z1,1, Z1,2, Z2,1,
Z2,2 are correct DH values w.r.t. sid and pw via the decisional oracle,
i.e., it checks whether

ex2DHX(Y1, Y2, (Y
x1
1 /Z1,1)

pw−1

, (Y x1
2 /Z1,2)

pw−1

, (Y x2
1 /Z2,1)

pw−1

, (Y x2
2 /Z2,2)

pw−1

) = 1.

If yes, B3 reprograms the random oracle by replacing (?, ?, ?, ?) with
Z1,1, Z1,2, Z2,1, Z2,2. In this way, the view of A is consistent.

– For the simulation of server instance (S(j), iid(j)) generating the session key:
Let sid = C(i)||S(j)||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 with X∗

1 , X
∗
2 , Y

∗
1 , Y

∗
2 the transcripts.

There are two cases.
• If (S(j), iid(j)) and good client instance (C(i), iid(i)) are linked to each

other, then B3 generates a random key for it if (C(i), iid(i)) has not
computed a session key yet, or assigns the same key of (C(i), iid(i)) to it,
just as Game 5.

• Otherwise, B2 computes X1 := X∗
1/M

pw
1 , X2 := X∗

2/M
pw
2 , Y1 := Y ∗

1 /N
pw
1 ,

Y2 := Y ∗
2 /N

pw
2 . Then it generates the session key with the help of deci-

sional oracle ex2DHY as above, except that the verification formula is
changed to

ex2DHY (X1, X2, Z1,1·Xn1·pw−b1
1 , Z1,2·Xn2·pw−b2

1 , Z2,1·Xn1·pw−b1
2 , Z2,2·Xn2·pw−b2

2) = 1.

– The simulation of H is the same as that in Game 5.

If bad3 happens, then there exists two queries (sid, Z ′
1,1, Z

′
1,2, Z

′
2,1, Z

′
2,2, pw′)

and (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw), such that Z ′
1,1, Z

′
1,2, Z

′
2,1, Z

′
2,2 are correct DH

values w.r.t. sid and pw′, and Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t.
sid and pw.

According to B3’s simulation above, we get

Z1,1/Z
′
1,1 =

CDH(X∗
1/M

pw
1 , Y ∗

1 /N
pw
1)

CDH(X∗
1/M

pw′

1 , Y ∗
1 /N

pw′

2)

=
g(x1−x̄1·pw)(ȳ1+b1−n1·pw)

g(x1−x̄1·pw′)(ȳ1+b1−n1·pw′)

= g(x1n1+x̄1b1)(pw′−pw) · gx̄1n1·(pw2−pw′2) · gx̄1ȳ1·(pw′−pw).

64

Similarly,

Z1,2/Z
′
1,2 = g(x1n2+x̄1b2)(pw′−pw) · gx̄1n2·(pw2−pw′2) · gx̄1ȳ2·(pw′−pw),

Z2,1/Z
′
2,1 = g(x2n1+x̄2b1)(pw′−pw) · gx̄2n1·(pw2−pw′2) · gx̄2ȳ1·(pw′−pw),

Z2,2/Z
′
2,2 = g(x2n2+x̄2b2)(pw′−pw) · gx̄2n2·(pw2−pw′2) · gx̄2ȳ2·(pw′−pw).

Note that B3 can detect bad3 with the help of oracles ex2DHX and ex2DHY

and trapdoors n1, n2, b1, b2, x1, x2. Subsequently, it can extract the solution to
the strong ex2DH problem, from tuples (sid, Z ′

1,1, Z
′
1,2, Z

′
2,1, Z

′
2,2, pw′) and (sid,

Z1,1, Z1,2, Z2,1, Z2,2, pw).
Thus we have

|Pr[Game 5⇒ 1]− Pr[Game 4⇒ 1]| ≤ Advst-ex2DH
G,B3

(λ).

Now in Game 5, Sim does not use pw any more, except the case Sim checks
whether pw′ = pw, when the first hash query happens on H(sid, Z1,1, Z1,2, Z2,1,
Z2,2, pw′) s.t. Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t. sid and pw′. Now
we are ready to introduce the complete simulator in Fig. 13 and 14, which helps
us stepping to the ideal experiment IdealZ,Sim.

Game 6. (Use Fle-pake interfaces.) In the final game we introduce the ideal
functionality Fle-pake. By using interfaces to interact with Fle-pake, the simulator
Sim can perfectly simulates Game 5 as follows.

– The simulation of CRS generation is the same as that in Game 5.
– When Sim receives (NewClient,C(i), iid(i), S(j), b) from Fle-pake, it marks this

instance as correct-pw if b = 1, indicating that C(i) inputs the correct pass-
word in this client instance. Meanwhile, Sim samples x1, x2

$←− Zq, sets
X∗

1 ||X∗
2 := gx1 ||gx2 as the output message, and adds (X∗

1 ||X∗
2 , x1||x2) in

DL.
– When Sim receives (NewServer, S(j), iid(j),C(i)) from Fle-pake, it samples y1, y2

$←− Zq, sets Y ∗
1 ||Y ∗

2 := gy1 ||gy2 as the output message, and adds (Y ∗
1 ||Y ∗

2 , y1||y2)
in DL.

– When server instance (S(j), iid(j)) receives X∗
1 ||X∗

2 , let C(i) be its intended
partner, Y ∗

1 ||Y ∗
2 be the message sent out, and pw be the password used in

it. Sim sets the session identity to be sid := C(i)||S(j)||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 , and
checks whether (S(j), iid(j)) is linked to a good client instance (C(i), iid(i)).
• If it is the case, Sim allocates a random key to (S(j), iid(j)) by directly ask-

ing a query (CopyKey, S(j), iid(j), sid) or a query (NewKey, S(j), iid(j), sid)
to Fle-pake, and the choice depends on whether the linked client instance
(C(i), iid(i)) has already been assigned with a random key. According to
the definition of NewKey and CopyKey, this performs identically as that
in Game 5.

• Otherwise, Sim checks whether there exists a record (sid, Z1,1, Z1,2, Z2,1,
Z2,2, pw′, key) ∈ LH such that Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values

65

w.r.t sid and pw′. For ease of retrieval, Sim holds a list IF to record
(sid, pw′, key) and continues detecting such queries in the simulation of
H.

∗ If the record (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′, key) exists, Sim issues a
query (TestPW, S(j), iid(j), pw′) to Fle-pake. If Fle-pake returns “correct
guess”, Sim sets the session key to be key via a (CorruptKey, S(j),
iid(j), sid, key) query to Fle-pake. And if Fle-pake returns “wrong guess”,
then Sim allocates sid and a random key by asking a query (NewKey,
S(j), iid(j), sid) to Fle-pake. According to the definition of CorruptKey
and NewKey, the environment Z has the same view as that in Game
5.

∗ If the record does not exist, Sim marks (S(j), iid(j)) as “actively at-
tacked” via a query (RegisterTest, S(j), iid(j)) to Fle-pake, and allocates
a random key to it via query (NewKey, S(j), iid(j), sid). Meanwhile,
if Sim later detects a hash query (sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′) such
that Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t sid and pw′, Sim
checks whether pw′ = pw via a query (LateTestPwd, S(j), sid, pw′) to
Fle-pake. If pw′ = pw then Fle-pake will return the assigned random ses-
sion key, so that Sim can reprogram H by setting H(sid, Z1,1, Z1,2, Z2,1,
Z2,2, pw′) = key. And if pw′ = pw then Fle-pake will return a random
key, and Sim just takes it as the result of H, which performs the
same as before since H is modelled as a random oracle. Therefore,
the view is identical as that in Game 5.

– The simulation of key generation for client instance (C(i), iid(i)) is similar as
above due to the symmetry of 2DH-SPAKE2 protocol. We safely omit the
description here and refer Fig. 13 and 14 for details.

– The simulation of H is the same as that in Game 5. Specifically, Sim main-
tains a list IF to record (sid, pw′, key), indicating possible password guesses
and corresponding hash values in actively attacked instances. Meanwhile, it
continues detecting queries of the form H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw′) such
that Z1,1, Z1,2, Z2,1, Z2,2 are correct DH values w.r.t sid and pw′, with the
help of trapdoors m1,m2, n1, n2.

The full description of Sim is shown in Fig. 13 and 14. From the analysis above
we know Game 5 and Game 6 are conceptually identical. Furthermore, one
can easily see that Game 6 is just the experiment in the ideal world. Therefore,
we have

IdealZ,Sim = Game 6 = Game 5.

Theorem 5 follows immediately from Game 0 to Game 6, and Theorem 6.

D Some Other Protocols

66

Public Parameter: (G, g, q), (E1,D1), (E2,D2),H

Client C (pw) Server S (pw)

x
$←− q,X := gx

e1 ← E1(pw, X)

e1−−−−−−−−−−−−−−−→
e2←−−−−−−−−−−−−−−−

y
$←− Zq, Y := gy

e2 ← E2(pw, Y)

Y ← D2(pw, e2)
sid := C||S||e1||e2

Output keyC ← H(sid, Y x, pw)

X ← D1(pw, e1)
sid := C||S||e1||e2

Output keyS ← H(sid,Xy, pw)

Fig. 15. The EKE Protocol [10, 9].

Public Parameter: (G, g, q),M,N,H

Client C (pw) Server S (pw)

x
$←− Zq, X := gx

X∗ := X ·Mpw

X∗
−−−−−−−−−−−−−−−→

Y ∗
←−−−−−−−−−−−−−−−

y
$←− Zq, Y := gy

Y ∗ := Y ·Npw

sid := C||S||X∗||Y ∗

Output keyC ← H(sid, (Y ∗/Npw)x, pw)
sid := C||S||X∗||Y ∗

Output keyS ← H(sid, (X∗/Mpw)y, pw)

Fig. 16. The SPAKE2 Protocol [4].

Public Parameter: (G, g, q),HX ,HY

Client C (pw) Server S (pw)

x
$←− Zq, X := gx

HX ← HX(C, S, pw)
X∗ := X ·HX

X∗
−−−−−−−−−−−−−−−→

Y ∗
←−−−−−−−−−−−−−−−

y
$←− Zq, Y := gy

HY ← HY (C, S, pw)
Y ∗ := Y ·HY

HY ← HY (C, S, pw)
sid := C||S||X∗||Y ∗

Output keyC ← H(sid, (Y ∗/HY)x, pw)

HX ← HX(C, S, pw)
sid := C||S||X∗||Y ∗

Output keyS ← H(sid, (X∗/HX)y, pw)

Fig. 17. The PPK Protocol [41].

67

Public Parameter: (G, g, q),HX ,HY

Client C (pw) Server S (pw)

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2

HX,1||HX,2 ← HX(C, S, pw)
X∗

1 := X1 ·HX,1, X
∗
2 := X2 ·HX,2

X∗
1 ,X∗

2−−−−−−−−−−−−−−−→
Y ∗
1 ,Y ∗

2←−−−−−−−−−−−−−−−

y
$←− Zq, Y := gy

HY,1||HY,2 ← HY (C, S, pw)
Y ∗
1 := Y1 ·HY,1, Y

∗
2 := Y2 ·HY,2

HY,1||HY,2 ← HY (C, S, pw)

Z1,1 := (
Y ∗
1

HY,1
)x1 , Z1,2 := (

Y ∗
2

HY,2
)x1

Z2,1 := (
Y ∗
1

HY,1
)x2 , Z2,2 := (

Y ∗
2

HY,2
)x2

sid := C||S||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2

Output keyC ← H(sid, Z1,1, Z1,2,Z2,1, Z2,2, pw)

HX,1||HX,2 ← HX(C, S, pw)

Z1,1 := (
X∗

1
HX,1

)y1 , Z1,2 := (
X∗

1
HX,1

)y2

Z2,1 := (
X∗

2
HX,2

)y1 , Z2,2 := (
X∗

2
HX,2

)y2

sid := C||S||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2

Output keyS ← H(sid, Z1,1, Z1,2,Z2,1, Z2,2, pw)

Fig. 18. The 2DH-PPK Protocol.

68

Table of Contents

EKE Meets Tight Security in the Universally Composable Framework . . . 1
Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu

1 Introduction . 1
1.1 Technical Overview . 4
1.2 Roadmap . 7

2 Preliminaries . 8
2.1 Hardness Assumptions . 8

3 PAKE with Tight Security in the UC Framework 8
3.1 UC Framework for PAKE . 8
3.2 The 2DH-EKE Protocol . 12
3.3 Security Analysis . 13

4 Asymmetric PAKE with Optimal Tightness in the UC Framework . . . 23
4.1 UC Framework for aPAKE . 23
4.2 The 2DH-aEKE Protocol . 25
4.3 Security Analysis . 25

5 Optimal Reduction Loss in aPAKE . 42
6 Tight Security for 2DH-SPAKE2 in the Relaxed UC Framework 46
A Ideal Ciphers and Random Oracles . 51

A.1 Ideal Cipher . 51
A.2 Random Oracle . 51

B Relaxed UC Framework for PAKE . 52
C Proof of Theorem 5 . 52
D Some Other Protocols . 66

	EKE Meets Tight Security in the Universally Composable Framework
	Introduction
	Technical Overview
	Roadmap

	Preliminaries
	Hardness Assumptions

	PAKE with Tight Security in the UC Framework
	UC Framework for PAKE
	The 2DH-EKE Protocol
	Security Analysis

	Asymmetric PAKE with Optimal Tightness in the UC Framework
	UC Framework for aPAKE
	The 2DH-aEKE Protocol
	Security Analysis

	Optimal Reduction Loss in aPAKE
	Tight Security for 2DH-SPAKE2 in the Relaxed UC Framework
	Ideal Ciphers and Random Oracles
	Ideal Cipher
	Random Oracle

	Relaxed UC Framework for PAKE
	Proof of Theorem 5
	Some Other Protocols

