
Another Look at Side-Channel Resistant

Encoding Schemes

Xiaolu Hou1, Jakub Breier2 and Mladen Kovačević3

1Faculty of Informatics and Information Technologies, Slovak University of
Technology, Slovakia. E-mail: houxiaolu.email@gmail.com.

2TTControl GmbH, Vienna, Austria. E-mail: jbreier@jbreier.com.

3Faculty of Technical Sciences, University of Novi Sad, Serbia.
E-mail: kmladen@uns.ac.rs.

Abstract

The idea of balancing the side-channel leakage in software was proposed more than a
decade ago. Just like with other hiding-based countermeasures, the goal is not to hide
the leakage completely but to significantly increase the effort required for the attack.
Previous approaches focused on two directions: either balancing the Hamming weight of
the processed data or deriving the code by using stochastic leakage profiling.

In this brief, we build upon these results by proposing a novel approach that combines
the two directions. We provide the theory behind our encoding scheme backed by experi-
mental results on a 32-bit ARM Cortex-M4 microcontroller. Our results show that such a
combination gives better side-channel resistance properties than each of the two methods
separately.

1 Introduction

Side-channel analysis (SCA) attacks are a well-known attack vector affecting the security of
cryptographic implementations that has been around for more than two decades [KJJ99]. The
main working principle of SCA is observing the physical characteristics of the device during
the encryption, for example in the form of power consumption or electromagnetic emanation,
based on which the attacker can recover confidential information, such as encryption keys.

In the area of symmetric cryptography, two main countermeasure concepts have emerged:
masking and hiding. Masking countermeasures use random numbers to “mask” the sensitive
values so that there is no correlation between these values and the side-channel leakage.
Currently, the most popular masking-based scheme is threshold implementation [NRR06].
Masking has been shown to be provably secure, given that the source of randomness is truly
random [RP10]. Hiding countermeasures aim to decrease the signal-to-noise ratio to make
side-channel attacks harder. This means that, while the attacker can eventually succeed in
the key recovery, the number of leakage traces is significantly higher compared to attacking
an unprotected implementation. In some scenarios, such as payment cards, this might mean
preventing an attack if the number of required traces is higher than the limit on the number of
transactions set by the card issuer. Some of the hiding-based schemes are built upon shuffling
the cipher operation [VCMKS12] and utilizing complementary wires and computations in the
form of so-called “dual-rail” [CZ06].

In this brief, we are interested in hiding countermeasures in software based on coding
theory. Several schemes have been proposed to date, such as balancing the Hamming weight

1

of the processed values by using look-up table operations [CESY15], software approach to
imitate dual-rail [HDD11], or codes derived from stochastic profiling to take the separate bit
leakages into the account [MSB16]. The last scheme was also extended to provide protection
against fault injection attacks [BH17].

Our contribution. We revisit encoding schemes in software by combining two different
approaches to provide better protection against SCA than the previously proposed encoding-
based works. More specifically, we combine the balancing of Hamming weight with the
stochastic leakage characteristic of the underlying device. We provide experimental results on
a PRESENT-80 Sbox implementation running on a 32-bit ARM Cortex-M4 microcontroller.
Our results show that even with 50k traces, the guessing entropy metric shows a very small
reduction in the remaining brute force search that needs to be done by the attacker to recover
the secret key. This is in line with our expectations that the proposed method performs better
than the two previously proposed approaches.

2 Background and Related Work

2.1 Binary codes

We recall the definition of a binary code [LX04]. Let n be a positive integer. A nonempty
set C ⊆ {0, 1}n is called a binary code of length n. Elements of C are called codewords. The
number of codewords in C is called the size of C. A binary code of length n and size M is
called an (n,M)−binary code.

For example, {000, 111} ⊆ {0, 1}3 is a (3, 2)−binary code. It is easy to see that if we
wish to encode information with bit length k, we need to have a binary code of size 2k. For
example, suppose we want to encode bits 0 and 1, then we would look for binary codes of size
2. We can take the above mentioned (3, 2)−binary code {000, 111} and encode 0 as 000, 1 as
111 (the so-called repetition code). To decode, we simply decode 111 to 1 and 000 to 0.

We note that the information on which binary code is used in the countermeasure is
considered public.

2.2 Related work

The initial idea to hide the information leakage by balancing the Hamming weight in software
was proposed by Hoogvorst et al. in 2011 [HDD11]. Servant et al. [SDMB15] took the idea and
implemented a constant Hamming weight1 AES by using a binary code of length 6 whose all
codewords have Hamming weight 3. This was followed by Rauzy et al. [RGN16] who trans-
lated dual-rail circuits into look-up tables in software (titled “DPL”), showing that if properly
balanced, DPL implementation can resist up to 4810 traces. The authors used a 16-bit AT-
mega163 microcontroller for their experiments. Chen et al. [CESY15] proposed a different
approach that took the original nibble of data b0b1b2b3 and translated it into b̄0b0b̄1b1b̄2b2b̄3b3,
where b̄i is a binary complement of bi, thus always having a Hamming weight of 4. An ex-
perimental evaluation on an 8-bit AVR microcontroller showed no side-channel leakage until
≈ 50k traces. While all the previously listed works focused on the Hamming weight leakage
model, Maghrebi et al. [MSB16] experimented with stochastic leakage, where the contribu-
tion of each bit is determined by device profiling. This approach allows tailoring the code
according to the device and achieves better results, as the Hamming weight model is often
inaccurate due to process variation and other factors influencing the physical computation.

Our work bridges the gap by combining the two approaches – utilizing the stochastic device
profile together with Hamming weight-balanced code to improve on the previous results.

1Hamming weight of a non-negative integer is defined as the number of 1s in its binary representation.

2

3 Method

As has been shown before, the leakage at a single time sample can be profiled with a stochastic
leakage model [DPRS11]. When a value x = xn−1xm−2 . . . x1x0 with bit length n is being
processed in the device, the stochastic leakage model assumes that the leakage is related to
each bit of x as follows:

L(x) =
n−1∑
s=0

αsxs +N, (1)

where N ∼ N (0, σ2) denotes the Gaussian noise with mean 0 and variance σ2. Here αs

(s = 0, 1, . . . , n − 1) are real numbers referred to as the coefficients of the stochastic leakage
model.
The steps of our countermeasure are as follows:

1 Identify the target intermediate value and vulnerable instruction. For the pro-
posed countermeasure, same as in [MSB16], we focus on a single time sample, which we will
refer to as point of interest (POI). While the whole cipher state can be encoded, it is not
practical. Instead, we can choose which part of the cipher state to encode. The first step is to
identify the target intermediate value and the vulnerable instruction(s) in the cryptographic
implementation. The target intermediate value, denoted v, is the value that we would like to
protect. In particular, we would like to know the bit length of v, mv, and hence determine
the code size of our binary code, which is given by 2mv . The vulnerable instruction is the
instruction that would result in the most leakage while operating on the target intermediate
value during the computation.

For example, in differential power analysis, the Sbox output is a common target [MOP08].
In such a scenario, we can choose v to be one Sbox output. For illustration, we will demon-
strate the countermeasure on a PRESENT [BKL+07] Sbox implementation. As we have
mv = 4, we are interested in binary codes of size 24 = 16. For the vulnerable instruction, we
choose the MOV instruction, as memory operations tend to have the highest leakage and they
are a common target of SCA.

2 Choose the code length nC . As mentioned before, we would like to combine the pro-
posal of utilizing the stochastic device profile with the Hamming weight-balanced code. In
particular, we look for binary codes of size 2mv such that each codeword has the same Ham-
ming weight. We note that there are in total

(
nC
wH

)
vectors in {0, 1}nC of Hamming weight

wH . Since
(
nC
wH

)
is maximized when wH is ⌊nC/2⌋ or ⌈nC/2⌉, we need to choose nC such that(

nC

⌊nC/2⌋

)
> 2mv ,

so that we can construct a binary code of size 2mv , length nC , and with every codeword having
the same Hamming weight.

It is easy to see that the longer the code length, the more choices we have for the Hamming
weight values. On the other hand, longer code length results in bigger memory overhead. We
need to find a compromise in the level of freedom of protection the code gives and the overhead
it causes. For the illustration, we will choose nC = 8 so that we can have a few choices for
the fixed Hamming weight of each codeword.

3 Identify the possible Hamming weight values. We propose to analyze a few binary
codes that have balanced Hamming weight and choose the best-performing one for the final
countermeasure. With the chosen code length nC , the number of possible codewords with
fixed Hamming weight wH is given by

(
nC
wH

)
. Thus, all the possible Hamming weight values

3

wH are those for which (
nC

wH

)
> 2mv .

For the illustration, we have nC = 8, 2mv = 24 = 16. All the possible Hamming weight values
are 2, 3, 4, 5, 6.

4 Experimental setup and trace measurement. Since the goal is to profile the device
and find the best code, we would take measurements with devices that we expect the potential
attackers to have. Two sets of traces are to be collected, T1 and T2. Each trace in T1
corresponds to the computation of the vulnerable instruction with random values of v as
input. This dataset will be used to identify the POI, which is the time of the computation
that is supposed to be the most vulnerable. Each trace from T2 corresponds to the computation
of the vulnerable instruction with random values of bit length nC as input. T2 will be used
to profile the stochastic leakage of the device, namely finding estimations for the coefficients
αs from Equation (1). We note that it is important for traces in those two datasets to be
horizontally aligned so that the profiling of T2 is carried out with the correct POI. Suppose
there are M1 traces in T1 and M2 traces in T2.
5 POI identification. With T1, we compute the SNR at each time sample and choose the
time sample with the highest SNR value to be our POI. Recall that SNR is given by

SNR =
Var(signal)

Var(noise)
.

We follow a standard way for SNR calculation in the context of SCA (see e.g. [MOP08,
Section 4.3.2]) – we first group the traces into different sets, A1, A2, . . . , A2mv , according to
the corresponding value of v, then for a given time sample t:

• We compute the averaged leakage for traces in each set, denoted µ1,t, µ2,t, . . . , µ2mv ,t.

• The variance of the signal, Var(signal), is given by the variance of the values µ1,t, µ2,t, . . . , µ2mv ,t.

• The noise for each trace ℓ at time sample t is given by the leakage at t subtracted by
the corresponding average µi,t, where ℓ ∈ Ai.

• The variance of noise, Var(noise), is given by the variance of noises in each trace at time
sample t.

6 Estimate stochastic leakage model coefficients. Let xi denote the input correspond-
ing to trace ℓi in T2. Suppose the binary representation of xi is given by

xi = xi(nC−1) . . . xi1xi0, i = 1, 2, . . . ,M2.

Then we define matrix M as follows

M =

x10 x11 . . . x1(nC−1)

x20 x21 . . . x2(nC−1)
...

...
. . .

...
xM20 xM21 . . . xM2(nC−1)

 .

Next, we take
ℓpf = (ℓ1,POI, ℓ2,POI, . . . , ℓM2,POI)

4

to be the array of leakage values at the POI from each trace in T2. According to the ordinary
least square method [DPRS11], the estimations of αs values in Equation (1), denoted α̂s, are
given by

(α̂0, α̂1, . . . , α̂nC−1) =
(
MTM

)−1
MT ℓpf .

Then, for any binary string x = xnC−1xnC−2 . . . x1x0, we define its estimated signal to be

SG(x) :=

nc∑
s=0

α̂sxs. (2)

7 Find optimal codes for each possible Hamming weight value. For each possible
Hamming weight identified in Step 3, we will find an optimal code using Algorithm 1. This
algorithm is a modification of [MSB16, Algorithm 1], which does not preserve the constant
Hamming weight.

For the algorithm’s input, mv is the bit length of the target intermediate value identified
in Step 1; nC is the code length chosen in Step 2; wH is one of the possible Hamming weight
values found in Step 3; α̂s are estimations of stochastic leakage model coefficients obtained
in Step 6. In line 1, as the name suggests, code size specifies the size of the binary code,
and total word is the total number of binary strings of length nC and Hamming weight wH ,
where those binary strings are found and stored in the array S in lines 6 – 8. Line 9 computes
the estimated signal of each element of S with Equation (2) and stores it to the array TSG.
Tsorted is the sorted version of TSG such that Tsorted[0] contains the lowest value from TSG

(line 10). Array I records the corresponding binary string in S for each estimated signal in
Tsorted (lines 11 and 12). In the jth entry of array D, we put the difference between the value
in Tsorted[j+code size−1] and Tsorted[j] (line 14). Then, we find the index of the smallest value
in D (line 15). Finally, our optimal code consists of codewords that correspond to estimated
signals in the interval D[ind] and D[ind + code size− 1] (lines 16 and 17).

Now, let C be any (nC , 2
mv)−binary code and define

SG(C) := { SG(c) | c ∈ C }

to be the set of estimated signals of codewords in C. When C is used for encoding the target
intermediate value, the variance of the signal at POI is then given by Var(SG(C)). We note
that the goal of Algorithm 1 is to find a C such that

d := max { | SG(ci)− SG(cj)| | ci, cj ∈ C }
= max { | ai − aj | | ai, aj ∈ SG(C) }

is the minimum among all (nC , 2
mv)−binary codes whose codewords have Hamming weight

wH . Let ai (i = 1, 2, . . . , 2mv) denote the elements of SG(C) and let a be the mean of those
numbers. Then by definition

Var(SG(C)) =
1

2mv

2mv∑
i=1

(ai − a)2 ≤ d2.

Thus, Algorithm 1 indeed finds a binary code with a relatively small Var(signal), resulting
in a small SNR. Although it is possible to compare Var(SG(C)) for all binary codes with the
same parameters nC , 2

mv , wH , it is too slow, especially when nC is big.

5

Algorithm 1: Finding the optimal code with given Hamming weight.

Input: mv, nC , wH , α̂s (s = 0, 1, . . . , nC − 1)
Output: An (nC , 2

mv)−binary code with each codeword having Hamming weight
wH

1 code size = 2mv , total word =
(
nC
wH

)
2 empty array S, TSG

3 array of size total word-code size+1 D
4 array of size total word I
5 array of size code size C
6 for i = 0, i < 2nC , i++ do
7 if Hamming weight of i == wH then
8 append i to S
9 append SG(i) to TSG

10 Tsorted = TSG sorted in ascending order
11 for j = 0, j < total word, j ++ do
12 I[j] = S [index of Tsorted[j] in TSG]

13 for j = 0, j ≤ total word− code size, j ++ do
14 D[j] = Tsorted[j + code size− 1]− Tsorted[j]

15 ind = argminj D[j]

16 for j = 0, j < code size, j ++ do
17 C[j] = I[ind + j]

18 return C

4 Experimental Evaluation

As an illustration, we have chosen PRESENT Sbox output as the target intermediate value
and MOV as the vulnerable instruction. The bit length of our target intermediate value is
hence mv = 4. As mentioned in Step 3, we have chosen nC = 8 and all the possible Hamming
weight values are 2, 3, 4, 5, 6.

For the measurements, NewAE ChipWhisperer-Lite was used. The target device is a
32−bit ARM Cortex-M4 microcontroller (STM32F303RDT6) with a clock speed of ≈ 7.4
MHz. ADC was set to capture the samples at 4× that speed, i.e. ≈ 29.6 MHz with a 10−bit
resolution. We measured the computation of the operation

MOV r0 x,

where r0 represents a register. M1 = 10, 000 traces were measured with x being a random
4−bit value, giving us the dataset T1. Dataset T2 was obtained by taking x to be random
8−bit values and we also measured M2 = 10, 000 traces.

The SNR values computed with T1 are shown in Figure 1. The highest point corresponds
to the time sample 430, which will be our POI. The estimations of αs computed with our
dataset T2 are as follows:

α̂0 ≈ −0.0024576, α̂1 ≈ −0.0013003,
α̂2 ≈ −0.0013588, α̂3 ≈ −0.0012280,
α̂4 ≈ −0.0013157, α̂5 ≈ −0.0021347,
α̂6 ≈ −0.0020975, α̂7 ≈ −0.0022129.

6

0 50 100 150 200 250 300 350 400 450 500 550 600

0

0.2

0.4

0.6

0.8

1

1.2

Time sample

L
ea
ka
ge

Figure 1: SNR values for each time sample computed with dataset T1. The highest point is
our POI = 430.

Five (8, 16)−binary codes were found using Algorithm 1 with wH = 2, 3, 4, 5, 6. For
example, with wH = 3, the code we have obtained is given by (in hexadecimal)

[92, 34, 8C, 26, 54, 98, 46, 32, 8A, 2C, 52, 4C, 38, 2A, 58, 4A].

To identify the best code and compare it with existing works, we implemented differential
power analysis (DPA) attacks based on correlation coefficient analysis [Sta10] on the MOV

instruction using the same POI = 430. Such an attack is also sometimes referred to as a
correlation power analysis (CPA) attack. In particular, with each random plaintext nibble p
and a fixed key nibble 9, we compute the PRESENT Sbox output SB(p⊕9), where PRESENT
Sbox is given by C56B90AD3EF84712. Then, we take measurements with MOV instruction. For
the unprotected implementation, the Sbox output is the input operand, and for the protected
implementation, the encoded Sbox output is the input operand. As an attacker, we do not
have the knowledge of the real key 9, thus we make a hypothesis and compute the correlation
coefficients between the corresponding hypothetical leakages and real measurements. The key
guesses are ranked according to the resulting absolute value of correlation coefficients. It is
desirable for the correct key guess (i.e. 9) to be ranked the 1st. Guessing entropy [SMY09]
is a common criterion used in DPA attacks to demonstrate the effectiveness of the attack,
which is defined to be the expected ranking of the correct key guess. The lower the guessing
entropy, the better the attack. Empirically, we repeat the experiments many times, 100 in
our case, to get an estimation of this value.

4.1 Results

The attack results are shown in Figure 2. As the baseline, we can see that the unprotected
implementation reaches a guessing entropy of 1 very fast. The code where each codeword
has Hamming weight 3 performs the best, especially outperforming the two existing propos-
als [CESY15] and [MSB16]. The key rank stabilizes around 12 and stays at that point until
50k traces. As there are only 16 possible key guesses for one key nibble, we can conclude that
the protection is rather effective. As an attacker, if we would like to brute force the key with
all the top 12 ranked key guesses, we will need to brute force 16 nibbles each with 12 possibil-
ities, resulting in 1216 ≈ 257.4 remaining key space for one 64−bit round key. To recover the
master key, the remaining key space is then ≈ 273.4 in case of PRESENT-80. The codes with
Hamming weights 4 and 5 take the second and the third best rank, respectively. The attacks

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

0

5

10

15

Number of traces

G
u
es
si
n
g
en
tr
o
p
y

Unprotected [8] [6] wH = 2

wH = 3 wH = 4 wH = 5 wH = 6

Figure 2: Guessing entropy of CPA attacks on MOV instruction with different (8, 16)−binary
codes. [CESY15] is a balanced 8-bit Hamming weight code and [MSB16] is the stochastic
encoding.

on the proposal from [MSB16] stabilize at key rank 9, resulting in 916× 216 ≈ 266.7 remaining
key space. Attacks on the balanced encoding proposal from [CESY15] reach key rank 7, thus
the key search space is reduced to 716 × 216 ≈ 260.9. On the other hand, we can see that the
codes for Hamming weights 2 and 6 do not perform well, for some reason. That shows that
it is always important to perform an experimental evaluation with the target device as the
leakage modeling is always just an estimation of the real leakage.

5 Discussion

Hiding vs. masking. As mentioned in the introduction, masking-based approaches are
generally more effective as they utilize randomness to mask the source of leakage. However,
hiding-based methods can make the attacker’s task significantly harder by decreasing SNR and
are often implemented on top of masking to enhance its potential. A noteworthy advantage
of hiding over masking is that it does not require a source of randomness. This is especially
important for small-scale low-power devices that do not contain random number generators
(RNGs) or if they do, they can be biased [HSHC17].

Fault protection. Encoding countermeasures necessarily create memory overheads based
on the chosen code. As codes can naturally provide error detection/correction, it makes sense
to design a combined countermeasure against both SCA and fault attacks. A fault attack
evaluation of proposals from [CESY15, MSB16, RGN16] was provided in [BJB17], essentially
showing that even without a specific fault-tolerant design, these schemes can provide a decent
security margin against fault attacks. Furthermore, the stochastic encoding scheme [MSB16]
was taken as a basis for a combined countermeasure in [BH17] which shows an automated
way to generate codes that can provide specified trade-offs between side-channel and fault
resistance. We would argue that with minor adjustments, the same method can be used to
tailor the codes used in this work.

Encoding the entire computation. Even though the presented attack focuses on
one instruction, the whole cipher state can be encoded, giving protection to all the other
instructions. We refer the readers to [BHL19] for a method of encoding the whole encryption

8

computation. Different codes might work for different devices, but as evaluators, we would
have access to the device we want to protect and can choose the best code that is suitable for
the device.

Overhead. The overheads of the protected implementation are dependent on the used
code length. More details on that topic can be found in [BHL19], where the authors compared
various codes with the PRESENT-80 implementation. The reported execution time overhead
was ≈ 82.5%, while the required memory for codes up to length 8 was ≈ 2MB. Additionally,
some memory reduction tricks can be used to avoid implementing large tables, as mentioned
in [SDMB15].

6 Conclusion

In this brief, we looked into a hiding-based countermeasure against side-channel attacks
based on coding theory. More specifically, we analyzed the previously proposed software
encoding schemes that used either balanced Hamming weights [CESY15] or stochastic en-
coding [MSB16]. Realizing that a combination of the two would likely result in even better
leakage properties, we developed a method to generate such codes. We experimentally ver-
ified our proposal and found that, indeed, a constant Hamming weight code that takes the
leakage characteristics of the device into account provides better resistance than each of these
encoding countermeasures separately.

For future work, a natural extension would be to investigate fault resistance properties of
the codes that can be generated by using our method.

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under the Programme SASPRO 2 COFUND Marie Sklodowska-Curie
grant agreement No. 945478.

This work was supported by the Slovak Research and Development Agency under the
Contract no. SK-SRB-21-0059.

References

[BH17] Jakub Breier and Xiaolu Hou. Feeding two cats with one bowl: On design-
ing a fault and side-channel resistant software encoding scheme. In Topics in
Cryptology–CT-RSA 2017: The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14–17, 2017, Proceedings, pages 77–94.
Springer, 2017.

[BHL19] Jakub Breier, Xiaolu Hou, and Yang Liu. On evaluating fault resilient encoding
schemes in software. IEEE Transactions on Dependable and Secure Computing,
18(3):1065–1079, 2019.

[BJB17] Jakub Breier, Dirmanto Jap, and Shivam Bhasin. A study on analyzing side-
channel resistant encoding schemes with respect to fault attacks. Journal of
Cryptographic Engineering, 7:311–320, 2017.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
Present: An ultra-lightweight block cipher. In Cryptographic Hardware and

9

Embedded Systems-CHES 2007: 9th International Workshop, Vienna, Austria,
September 10-13, 2007. Proceedings 9, pages 450–466. Springer, 2007.

[CESY15] Cong Chen, Thomas Eisenbarth, Aria Shahverdi, and Xin Ye. Balanced en-
coding to mitigate power analysis: a case study. In Smart Card Research and
Advanced Applications: 13th International Conference, CARDIS 2014, Paris,
France, November 5-7, 2014. Revised Selected Papers 13, pages 49–63. Springer,
2015.

[CZ06] Zhimin Chen and Yujie Zhou. Dual-rail random switching logic: a countermea-
sure to reduce side channel leakage. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 242–254. Springer, 2006.

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. Univariate side channel attacks and leakage modeling. Journal of Cryp-
tographic Engineering, 1:123–144, 2011.

[HDD11] Philippe Hoogvorst, Guillaume Duc, and Jean-Luc Danger. Software implemen-
tation of dual-rail representation. COSADE, February, pages 24–25, 2011.

[HSHC17] Darren Hurley-Smith and Julio Hernandez-Castro. Certifiably biased: An in-
depth analysis of a common criteria eal4+ certified trng. IEEE Transactions on
Information Forensics and Security, 13(4):1031–1041, 2017.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings
19, pages 388–397. Springer, 1999.

[LX04] San Ling and Chaoping Xing. Coding theory: a first course. Cambridge Univer-
sity Press, 2004.

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business
Media, 2008.

[MSB16] Houssem Maghrebi, Victor Servant, and Julien Bringer. There is wisdom in
harnessing the strengths of your enemy: Customized encoding to thwart side-
channel attacks. In Fast Software Encryption: 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers 23,
pages 223–243. Springer, 2016.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In International conference on
information and communications security, pages 529–545. Springer, 2006.

[RGN16] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved security of
assembly code against power analysis: A case study on balanced logic. Journal
of Cryptographic Engineering, 6:201–216, 2016.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of aes. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 413–427. Springer, 2010.

10

[SDMB15] Victor Servant, Nicolas Debande, Houssem Maghrebi, and Julien Bringer. Study
of a novel software constant weight implementation. In Smart Card Research and
Advanced Applications: 13th International Conference, CARDIS 2014, Paris,
France, November 5-7, 2014. Revised Selected Papers 13, pages 35–48. Springer,
2015.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Advances in Cryptology-
EUROCRYPT 2009, pages 443–461. Springer, 2009.

[Sta10] François-Xavier Standaert. Introduction to side-channel attacks. Secure inte-
grated circuits and systems, pages 27–42, 2010.

[VCMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive study
with cautionary note. In Advances in Cryptology–ASIACRYPT 2012: 18th In-
ternational Conference on the Theory and Application of Cryptology and In-
formation Security, Beijing, China, December 2-6, 2012. Proceedings 18, pages
740–757. Springer, 2012.

11

	Introduction
	Background and Related Work
	Binary codes
	Related work

	Method
	Experimental Evaluation
	Results

	Discussion
	Conclusion

