
Full Round Distinguishing and Key-Recovery
Attacks on SAND-2 (Full version)

Zhuolong Zhang1, Shiyao Chen2, Wei Wang1,3,4(�), and Meiqin Wang1,3,4

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
zhuolongzhang@mail.sdu.edu.cn, {weiwangsdu, mqwang}@sdu.edu.cn

2 Nanyang Technological University, Singapore, Singapore
shiyao.chen@ntu.edu.sg

3 Quan Cheng Laboratory, Jinan, China
4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China

Abstract. This paper presents full round distinguishing and key re-
covery attacks on lightweight block cipher SAND-2 with 64-bit block
size and 128-bit key size, which appears to be a mixture of the AND-
Rotation-XOR (AND-RX) based ciphers SAND and ANT. However, the
security arguments against linear and some other attacks are not fully
provided. In this paper, we find that the combination of a SAND-like
nibble-based round function and ANT-like bit-based permutations will
cause dependencies and lead to iterative linear and differential trails with
high probabilities. By exploiting these, full round distinguishing attacks
on SAND-2 work with 246 queries for linear and 258.60 queries for differ-
ential in the single-key setting. Then, full round key recovery attacks are
also mounted, which work with the time complexity 248.23 for linear and
264.10 for differential. It should be noted that the dependency observed
in this paper only works for SAND-2 and will not threaten SAND and
ANT. From the point of designers, our attacks show the risk of mixing
the parts of different designs, even though each of them is well-studied
to be secure.

Keywords: Linear Cryptanalysis · Differential Cryptanalysis · Distin-
guishing Attack · Key Recovery Attack · SAND-2

1 Introduction

With strong demands of lightweight symmetric-key primitives, the design and
cryptanalysis of lightweight ciphers (e.g., block cipher and hash function) has
been one of the most productive lines of research in recent years. As one of the
most important building blocks of symmetric primitives, lightweight block cipher
has motivated and inspired many important research directions and works.

Taking a variety of cost metrics into considerations under lightweight scenar-
ios, it is naturally a challenge to balance different perspectives when designing
the block cipher, including security level, hardware cost and software efficiency.

1

For instance, SIMON and SPECK proposed by NSA [BSS+13] are two quite
elegant and competitive algorithms but without any design rationale and secu-
rity analysis in the design paper, where the former is hardware-oriented and the
latter is software-oriented. SKINNY [BJK+16] is then proposed by Beierle et
al. at CRYPTO 2016 as a competitor to SIMON in terms of performance, and
it provides stronger security guarantees with regard to differential [BS91] and
linear [Mat93] attacks, which are the most classical and powerful cryptanalytic
methods. Later, Chen et al. [CFS+22] proposed a new family of AND-RX block
ciphers SAND at DCC 2022, which admits an equivalent nibble-based structure,
this makes SAND both software and hardware efficient. They also introduced a
novel approach to analyze the security, which allows for high security in both
single-key and related-key [Knu91,Bih94] scenarios.

Recently, Chen and Li et al. [CLGH23] follows SAND and ANT [CFF+19]
block ciphers to design a new cipher called SAND-21, which adopts almost all
SAND cipher and bit-based permutations similar to that in ANT cipher. They
aim to achieve a better diffusion and security bounds of differential, however,
the designers only evaluate the resistance against differential attack and do not
provide other common cryptanalysis. Especially considering that the bit-based
permutations totally break the nibble-based structure, it seems that the de-
signers of SAND-2 did not take care of the dependency existing in the round
function, which has already been discussed by the designers of SAND [CFS+22,
Section 3]. And it is worth noting that this similar dependency has already been
observed by Sasaki [Sas18] to break full round ANU cipher [BPSP16] under
related-key setting. Naturally, we wonder that whether there are some depen-
dencies in SAND-2? and if there exists, whether we can make full use of such
dependencies to provide more in-depth security evaluations of SAND-2?

Contributions. In this paper, we answer the above two questions positively. By
carefully observing the bit-based round function of SAND-2, we firstly find some
dependencies that can be used to construct linear and differential trails, which
help us derive two-round iterative differential and linear characteristics. Then,
we mount longer number of rounds distinguishers from these iterative trails.
Based on which, we finally launch full round key recovery attacks on SAND-2,
our results are given in Table 1.

Dependencies in the round function of SAND-2. Although the designers
of SAND-2 adopted bit-based permutations P0/P1 to mix bits in G0/G1 as com-
plicated as possible, considering the software implementation, it still preserves
some properties (like the partial rotation invariant property of P0 and P1 in
ANT cipher). Based on these properties, for SAND-2 round function, we can
easily derive the same input bit for two parallel non-linear components G0 and
G1 after regrouping by rotations and bit permutations P0/P1.

1 SAND-2 uses the name of SAND, but it is designed by totally different designers.

2

Iterative linear and differential trails of SAND-2. Based on the observed
dependencies, we then construct two-round iterative linear and differential char-

acteristics of SAND-2. For linear (0x0, 0x2)
2r−→ (0x0, 0x2), it has the linear bias

with 2−2. For differential (0x8, 0x0)
2r−→ (0x8, 0x0), it has the differential prob-

ability with 2−3. Both only have one active bit and have other seven rotation
equivalent trails due to the partial rotation invariant of bit-based permutations.

Then, we mount longer linear and differential distinguishers based on these
iterative characteristics, the clustering effect is also considered, SAT/SMT based
automatic search method clustering and experiments of these distinguishers are
performed as verifications. For linear, these iterative based longer number of
rounds distinguishers has no significant clustering effect. For differential, we de-
velop a formula based method to approximately evaluate the clustering differen-
tial probability, especially for longer number of rounds where SAT/SMT based
method is inefficient. The experiment results show that our method is effective
and efficient to approximate these iterative differential distinguishers.

Full round attacks on SAND-2. With these carefully constructed and eval-

uated iterative trails, full round distinguishers can be mounted: (0x2, 0x0)
47r−−→

(0x0, 0x2) for linear with linear probability 2−46 and (0x0, 0x8)
47r−−→ (0x8, 0x0)

for differential with differential probability 2−58.60. These distinguishers not only
lead to full round distinguishing attacks on SAND-2, but also they have a high
probability, especially for linear with a practical complexity 246. Then, we launch
linear and differential full round key recovery attacks on SAND-2, which are sum-
marized in Table 1. It is worth noting that the time and data complexity of linear
full round key recovery attack are even practical (both under 250).

Table 1: Distinguishing and key recovery attacks on SAND-2 (the total rounds
of SAND-2 are 47).

Attack Method Rounds Time† Data Memory Success Prob. Source

Distinguisher

Differential 6 − − − − [CLGH23]
Linear 47 246.00 246.00 1 − Section 3.1

Differential 47 258.60 258.60 1 − Section 3.2

Key Recovery

Linear 47 (41)‡ 248.23 245.50 235.00 83.24% Section 4.1
Differential 47 (43) 264.10 260.20 257.20 92.61% Section 4.2
Differential 47 (41) 273.70 253.13 253.13 90.65% Appendix A

† Time complexity is evaluated by one full round encryption of SAND-2.
‡ The number of rounds of the distinguisher used for key recovery attack are 41.

3

Outline of the paper. In Section 2, we firstly give a brief introduction of
SAND and SAND-2 block ciphers. In Section 3, we show the dependencies in
the round function of SAND-2, which are used to construct differential and
linear distinguishers. Based on the distinguishers we mount, full round linear and
differential key recovery attacks on SAND-2 are provided in Section 4. Finally,
we conclude the paper.

2 Preliminary

The design of SAND-2 almost follows SAND block cipher, except that the design-
ers of SAND-2 break the nibble-based equivalent structure of SAND by adopting
bit-based permutations in the middle of two parallel expanding round functions,
which may incur dependency problems as discussed in the design rationales of
SAND [CFS+22, Section 3]. This also makes the security analysis of SAND-
2 more difficult, that is, the cipher cannot be analyzed under nibble-level like
SAND. We note that SAND-2 still lacks enough cryptanalysis and the designers
only provide a rough security bound against differential attack. Since SAND-2
directly uses the same key schedule and the similar round function of SAND, we
will first give an introduction to SAND and then briefly introduce SAND-2.

2.1 Specification of SAND block cipher

SAND is an AND-RX block cipher with Feistel construction, which has two
versions SAND-64 and SAND-128. As SAND-2 only has 64-bit version, we only
introduce SAND-64 here, it has 48 total rounds and 128-bit keysize.

skr

G0

G1

& &

& &

Pn

Xr Yr

Xr+1 Yr+1

<<< 0

<<< 4

Fig. 1: Round Function of SAND-64.

Round function of SAND. As shown in Fig. 1, the left branch Xr firstly
has a double expanding process and rotates with rotation constants (s0, s1),
where (s0, s1) = (0, 4) for its Synthetic S-box (SSb) equivalent representation.
Non-linear components G0 and G1 are then applied parallelly. Before applying a

4

nibble equivalent permutation Pn and adding to the right branch Yr, the outputs
of G0 and G1 are compressed by XOR operations. For more details, we refer the
reader to SAND design paper [CFS+22].

Ki+3 Ki+2 Ki+1 Ki

(A8)
3

i+1

Fig. 2: Key schedule of SAND-64.

X[7] X[6] X[5] X[4] X[3] X[2] X[1] X[0]

X'[7] X'[6] X'[5] X'[4] X'[3] X'[2] X'[1] X'[0]

<<< 1

<< 3

Fig. 3: Operation A8 of SAND-64.

Key schedule. The 128-bit master key K can be viewed as four 32-bit words,
i.e., K = K3||K2||K1||K0. The update function of key schedule is shown in Fig.
2, and Ki+4 can be calculated as below

Ki+4 ← (A8)
3(Ki+3)⊕Ki ⊕ (i+ 1), 0 ≤ i ≤ 43,

where (A8)
3 denotes that the operation A8 is applied to Ki+3 for three times

iteratively. A8 is a nibble-based function and depicted in Fig. 3 where X[j]
denotes the j-th (0 ≤ j < 8) nibble of input X, i.e., Kr(0 ≤ r ≤ 47) can be
divided into eight nibbles. Finally, the r-th round subkey skr will be loaded from
Kr and added to the encryption state.

2.2 Specification of SAND-2 block cipher

SAND-2 adopts the same key schedule and the similar round function of SAND,
it also changes the total rounds from 48 to 47.

Xr Yr

skr

!&
&

!& !&

G0

G1

P0

P1

Xr+1 Yr+1

<<< 0

<<< 4

Fig. 4: Round function for even round.

skr

&
!&

G0

G1

P0

!& !&P1

Xr Yr

Xr+1 Yr+1

<<< 0

<<< 4

Fig. 5: Round function for odd round.

5

For the round function of SAND-2, as shown in Fig. 4, it firstly replaces
some AND operations to NAND operations in G0 and G1. Then it uses two
different bit permutations P0 and P1, as shown in Table 2, which are similar
to the bit-based permutation adopted in ANT [CFF+19] block cipher. Finally,
SAND-2 alternatively swaps NAND and AND operations in two layers of G0 for
even round and odd round (see in Fig. 5). For more details of SAND-2, please
refer to its design paper [CLGH23].

Table 2: Bit permutations P0 and P1.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P0(i) 28 23 26 1 0 27 30 5 4 31 2 9 8 3 6 13
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P0(i) 12 7 10 17 16 11 14 21 20 15 18 25 24 19 22 29

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1(i) 20 27 2 29 24 31 6 1 28 3 10 5 0 7 14 9
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P1(i) 4 11 18 13 8 15 22 17 12 19 26 21 16 23 30 25

3 Iterative and Full Round Distinguishers of SAND-2

In this section, we show how to exploit dependency properties existing in the
round function of SAND-2 to construct iterative linear and differential char-
acteristics. Then, full round linear and differential distinguishers can be both
mounted. To enhance the probability of distinguishers, we evaluate the clustering
effect for these distinguishers, experiments are also performed for verifications.

3.1 Linear Distinguishers of SAND-2

We firstly present a two-round iterative linear characteristic of SAND-2, as shown
in Fig. 6, this is obtained by carefully observing two bit permutations P0/P1 and
the rotation, then we have the following property.

Property 1. For the input bit with index i0 = 4 × t + 32 (0 ≤ t < 8) of G0 and
the input bit with index i1 = 4 × (t + 1) + 3 of G1, these two bits are derived
from the same bit in Xr with index 4 × t + 3 and have a linear relation with
(4× t+ 1)-th output bit of G0 and G1 respectively.

We now give an example of this property as follows, and it should be noted
that it has other seven equivalent cases for different choices of t. Also, this
property is independent of the odd or even round.

2 For simplicity, all bit indices are taken modulo 32 in the rest of the paper.

6

Example 1. For i0 = 31, P0(i0) = 29, and P1(i1) = 29 when i1 = 3. Due to the
rotation Xr ≪ 0 before G0 and Xr ≪ 4 before G1, then the bit with index
i0 = 31 in G0 and the bit with index i1 = 3 in G1 are derived from the same bit
in Xr, which are marked as yellow in Fig. 6. Coincidentally, both these bits are
linear related to the 29-th bit of the outputs of G0 and G1 respectively.

With Property 1, the two-round linear characteristic depicted in Fig. 6 with
linear bias 2−2 (equivalent to linear probability 2−2) is now constructed as below

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

Xr Yr

skr

& & & & & & & &

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

Xr+1 Yr+1

012345678910111213141516171819202122232425262728293031

skr+1

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

Xr+2 Yr+2

0x00000000 0x20000000

0x20000000 0x00000000

0x00000000 0x20000000

<<< 0

<<< 4

<<< 0

<<< 4

0x80000000

0x00000008

0x20000000

0x20000000

0x00000000

0x00000000

0x00000000

0x00000000

Fig. 6: Two-round iterative linear characteristic (active bit is marked as yellow).

7

1. Let only the 29-th bit mask of the right branch of the input be active, i.e.,
ΓYr[29] = 1. All the rest bits of ΓYr and ΓXr are set to be zero mask. So,
the input mask is (ΓXr, ΓYr) = (0x00000000, 0x20000000);

2. According to the propagation rule of linear mask, the output masks of G0

and G1 of the first round function are both with 0x20000000;
3. In order to make the trail iterative, we let the mask ΓYr+1 = 0x00000000.

Then according to Property 1, the input masks of G0 and G1 of the first
round function can be set to be 0x80000000 and 0x00000008 respectively;

4. With ΓXr+1 = 0x20000000, it leads to the output mask of the second round
(ΓXr+2, ΓYr+2) = (ΓXr, ΓYr) = (0x00000000, 0x20000000).

For the linear bias of this two-round trail, only the step 3 mentioned above
produces the probability, that is, the second layer of G1 of the first round func-
tion, as the 29-th output bit mask is non-zero, then the output mask of the corre-
sponding NAND operation is also non-zero, which makes this NAND operation
active with linear bias 2−2. Thus, this two-round iterative linear characteristic3

(0x00000000, 0x20000000)→ (0x00000000, 0x20000000) has the linear bias with
2−2 and can start from both even or odd round number.

Longer trails, the clustering effect and experiments. With the presented
two-round iterative trail above, longer number of rounds linear distinguishers can
be naturally mounted. Especially, a 47-round (full round) linear characteristic of
SAND-2 can be obtained by iterating the two-round trail 23 times and appending
one free round at the beginning, which has the linear bias with 2−24. Not only
does this trail invalidates the security of SAND-2 against linear attacks, but also
its bias is even high enough to be a practical full round distinguisher with the
complexity 246.

To verify these iterative trails, we firstly cluster the trails of different numbers
of iterative times by the mature SAT/SMT automatic search method [AK18].
The results show that this kind of two-round iterative based linear trails has
no significant clustering effect. Then, we perform experiments to evaluate the
linear bias of these trails, which are given in Table 3 and match the results of
clustering. In next section, we will use the 41-round linear distinguisher with the
bias 2−21 to mount full round key recovery attack on SAND-2.

3.2 Differential Distinguishers of SAND-2

Similar to finding linear distinguishers of SAND-2, we now show how to construct
iterative differential trails of SAND-2 and then try to approximate differential
probability by considering the clustering effect.

We firstly divide the input bits of G0 (G1) by its 4-bit output, as shown in
Table 4 and Table 5, where the six bit indices of each row is derived from the

3 Note that this trail also has other seven equivalent cases, all these can be used to
mount longer distinguishers and key recovery attacks. In the rest of the paper, we
will only focus on evaluating one case, but the other seven cases will be similar.

8

Table 3: Experiments of the iterative linear characteristics.

Round Theoretical linear bias Experimental linear bias Test data

2 2−2 2−2.00 226

4 2−3 2−3.00 226

6 2−4 2−4.00 226

8 2−5 2−4.99 226

16 2−9 2−9.02 226

24 2−13 2−12.91 226

26 2−14 2−13.89 228

left branch state Xr and G0[3− 0] represents the lowest nibble of the output of
G0 (similarly for G1). Then, still by carefully observing the inputs of G0 and
G1, it has the following property.

Property 2. When all input bit differences ofXr are zero, except the (4×t+3)-th
(0 ≤ t < 8) bit, that is ∆Xr[4× t+ 3] = 1, it then has

– For the (t − 1)-th4 nibble of G0, its input difference is 0b001000 (binary
representation). Then, its possible 4-bit output differences are 0b0000 with
probability 1

2 , 0b0001 with probability 1
4 or 0b1001 with probability 1

4 ;

– For the t-th nibble of G0, its input difference is 0b000001. Then, its possi-
ble 4-bit output differences are 0b0010 with probability 1

2 or 0b1010 with
probability 1

2 ;

– For the (t − 7)-th nibble of G1, its input difference is 0b000100. Then, its
possible 4-bit output differences are 0b0000 with probability 1

2 , 0b0110 with
probability 1

4 or 0b0100 with probability 1
4 ;

– For the t-th nibble of G1, its input difference is 0b001000, its 4-bit output
difference must be 0b0010.

Table 4: Grouping input bit index of G0.

Nibbles Bit index of Xr

G0[3− 0] 13 10 7 6 4 3

G0[7− 4] 17 14 11 10 8 7

G0[11− 8] 21 18 15 14 12 11

G0[15− 12] 25 22 19 18 16 15

G0[19− 16] 29 26 23 22 20 19

G0[23− 20] 1 30 27 26 24 23

G0[27− 24] 5 2 31 30 28 27

G0[31− 28] 9 6 3 2 0 31

Table 5: Grouping input bit index of G1.

Nibbles Bit index of Xr

G1[3− 0] 8 5 3 31 30 29

G1[7− 4] 12 9 7 3 2 1

G1[11− 8] 16 13 11 7 6 5

G1[15− 12] 20 17 15 11 10 9

G1[19− 16] 24 21 19 15 14 13

G1[23− 20] 28 25 23 19 18 17

G1[27− 24] 0 29 27 23 22 21

G1[31− 28] 4 1 31 27 26 25

4 For simplicity, the index number of the nibble takes modulo 8.

9

With Property 2, we can easily construct an iterative two-round differential
characteristic with probability 2−3 as below

1. Let only the 31-th bit difference (t = 7) of the left branch of the input be ac-
tive, i.e.,∆Xr[31] = 1. All the rest bits of∆Xr and∆Yr are set to be zero dif-
ference. So, the input difference is (∆Xr, ∆Yr) = (0x80000000, 0x00000000);

2. In order to make this trail iterative, according to Property 2, we let the 4-bit
output differences of the 6-th nibble of G0 and the 0-th nibble of G1 be both
zero, and 4-bit output difference of the 7-th nibbles of G0 be 0b0010, which
then can cancel the difference of the corresponding nibble of G1;

3. With ∆Xr+1 = 0x00000000, it leads to the output difference of the second
round (∆Xr+2, ∆Yr+2) = (∆Xr, ∆Yr) = (0x80000000, 0x00000000).

For the differential probability of this two-round trail, only the step 2 men-
tioned above produces the probability 2−3, that is, cancelling all differences at the
compression. Thus, this two-round differential trail5 (0x80000000, 0x00000000)→
(0x80000000, 0x00000000) has the differential probability 2-3 and can start from
both even or odd round number.

Approximation of differential probabilities. In order to obtain a more
accurate differential probability of the iterative based distinguishers for later
attacks, we try to approximate the probability of these iterative distinguishers,
however, the method we proposed in the following still cannot capture all trails
for the given differential, but it can effectively cluster the differential with high
probability, which usually dominates the final probability of a differential. We
then also use SAT/SMT automatic search method to evaluate the clustering
effect, which shows our method is efficient and effective to approximate the
probability of such iterative differentials of SAND-2. The following property is
firstly introduced, which can be partly derived from Property 2.

Property 3. For one round of SAND-2, it has the following differential charac-
teristics and corresponding probability P :

– (0x80000000, 0x00000000)
1−round−−−−−−→ (0x00000000, 0x80000000), P = 2−3;

– (0x80000000, 0x00000000)
1−round−−−−−−→ (0x80000000, 0x80000000), P = 2−3;

– (0x80000000, 0x80000000)
1−round−−−−−−→ (0x00000000, 0x80000000), P = 2−3;

– (0x80000000, 0x80000000)
1−round−−−−−−→ (0x80000000, 0x80000000), P = 2−3;

– (0x00000000, 0x80000000)
1−round−−−−−−→ (0x80000000, 0x00000000), P = 1.

We note that the case in Property 3 is also just one of the eight equivalent
cases. Based on Property 3, except the above presented two-round iterative trail
with probability 2−3, we can also construct an (m + 3)-round differential trail
with probability 2−3(m+2) as below:

(0x8, 0x0)→ (0x8, 0x8)
m-round−−−−−−→ (0x8, 0x8)→ (0x0, 0x8)→ (0x8, 0x0).

5 Similarly, this trail also has other seven equivalent cases, which can be both used to
mount longer distinguishers and key recovery attacks.

10

With this configurable trail, it may bring us many different characteristics that
can be clustered to enhance the final probability. Thus, we provide the following
formulas to do such clustering process.

Proposition 1. For a given even number of rounds Nr = 2nr (nr ∈ Z+), for a
fixed probability P = 2−p (p ∈ Z+), it has

2j +

min(Nr−3,⌊ p
3−2⌋)∑

i=0,mi=i

(mi + 3)ki = Nr,

3j +

min(Nr−3,⌊ p
3−2⌋)∑

i=0,mi=i

3(mi + 2)ki = p,

where j (0 ≤ j ≤ nr) denotes the iterative times of the two-round iterative dif-
ferential characteristic and ki (0 ≤ ki ≤ ⌊ p

3(mi+2)⌋) denotes the number of (mi+

3)-round iterative differential. We can obtain a set of values for (j, k0, k1, ...)
which denotes the number of different short-round iterative differential char-
acteristic. Then we iterate the position of these short-round iterative differen-
tial characteristic, equivalent to calculating a permutation combination number,
which corresponds to different trails that can be clustered.

In order to check whether the method presented above can effectively approx-
imate the probability of longer rounds iterative distinguishers, we also apply the
SAT/SMT based search method to do the clustering for 8-round and 16-round it-
erative differential trails with probability greater than 2-30 and match the results
clustered by Proposition 1. Then the experiments to compare the theoretical and
experimental probabilities are also performed for several distinguishers, which
shows the effectiveness of our proposed method and are given in Table 6. It can
be observed that these iterative differential trails have slight clustering effect.

Table 6: Experiments of the iterative differentials of SAND-2.

Round Theoretical probability Experimental probability Test data

2 2−3.00 2−3.00 227

4 2−5.83 2−5.81 227

8 2−11.13 2−11.08 227

16 2−21.21 2−21.02 227

Distinguishers for full round attacks. With the effective and efficient eval-
uation method presented above, we then mount 40-round, 42-round and 46-round
iterative distinguishers. It should be noted that for such longer rounds, SAT/SMT
based method is already very inefficient due to the size of models thus cannot
provide tight bounds of the final probability. For the formulas in Proposition 1,
we also limit and select partmi for the calculation considering the efficiency, thus

11

just providing a lower bound of the probability. However, it is still high enough
to launch full round attacks and invalidate security bounds given in SAND-2
design paper [CLGH23, Table 17].

– For 46-round distinguisher, it has the probability 2−58.60. When one round is
added to its head with probability 1, this can lead to a full round differential
distinguisher of SAND-2.

– In order to launch full round key recovery attacks on SAND-2, we mount
a 43-round (extended from 42-round) and a 41-round (extended from 40-
round) distinguisher with probability 2−53.62 and 2−51.13 respectively.

Remark: In this section, we construct iterative differential and linear distin-
guishers, which already lead to full round distinguish attacks. Some distinguish-
ers will be later used to mount full round key recovery attacks, and we summarize
these distinguishers in Table 7. It should be noted that we only perform exper-
iments on some short rounds distinguishers of SAND-2 due to our inefficient
software implementation6 of SAND-2 and the limited computing resources.

Table 7: Summary of the differential and linear distinguishers of SAND-2.

Type Distinguisher Probability Usage

Linear (0x2, 0x0)
47-round−−−−−−→ (0x0, 0x2) 2−46 Distinguishing attack

Linear (0x2, 0x0)
41-round−−−−−−→ (0x0, 0x2) 2−40 Key recovery attack

Differential (0x0, 0x8)
47-round−−−−−−→ (0x8, 0x0) 2−58.60 Distinguishing attack

Differential (0x0, 0x8)
43-round−−−−−−→ (0x8, 0x0) 2−53.62 Key recovery attack

Differential (0x0, 0x8)
41-round−−−−−−→ (0x8, 0x0) 2−51.13 Key recovery attack

4 Key Recovery Attacks on SAND-2

In this section, we give the full round key recovery attacks based on the 41-round
linear distinguisher and 43-round differential distinguisher presented above. For
linear attack, the time, data and memory complexities are 248.23 full round en-
cryptions, 245.50 known-plaintexts and 235.00 respectively. For differential attack,
the time, data and memory complexities are 264.10 full round encryptions, 260.20

chosen-plaintexts and 257.20 respectively.
It should be noted that a full round key recovery attack based on 41-round

differential distinguisher is also mounted, which has a lower data complexity
253.13 but a higher time complexity 273.70. We provide a detailed description
about this result in Appendix A.

6 Because SAND-2 adopts two different bit permutation layers P0/P1 and different
round functions in even or odd round.

12

4.1 Full Round Linear Attack

In the attack, we both append three rounds before and after the 41-round linear
distinguisher. The key recovery attack is illustrated in Fig. 7 and Fig. 8, where
Xi and Yi denote the 32-bit input to the left and right branches, G0(Xi) and
G1(Xi) represent the 32-bit output of function G0 and G1 in the i-th round,
Wi records the XOR value of output of G0, G1 and Yi in the head(resp. Yi+1 in
the tail), rki stands for the i-th round key and Mi is the XOR value of Wi and
rki. In the following, we use Xi[j] to represent the j-th bit of Xi and the least
significant bit is Xi[0]. And the white cell denotes the linear mask of the bit is
zero, the yellow cell represents the linear mask of the bit is non-zero, the blue
cell denotes the value of the bit should be computed, the red cell represents the
subkey bits that are involved in the partial encryption and decryption phases
and the sequence numbers represent the order in which the key bits are guessed.

Suppose that the number of required plaintext-ciphertext pairs is NL. The
attack is realised with the following steps.

1. Guess 4-bit subkey value rk0[8, 10-12] and allocate a counter CL
1 [z1] for each

of 235 possible values of

z1 =X46[4, 25-27]||W0[0, 2, 5, 21-23, 27-31]||W1[4, 25-27]||
W46[0, 2, 5, 8, 10-12, 21-23, 27-31]||t0,

where t0 = G0(X0)[29]⊕G1(X0)[29]⊕Y0[29]⊕G0(X46)[29]⊕G1(X46)[29]⊕
Y47[29]. Then, for each possible 4-bit subkey value rk0[8, 10-12], we compute
the value of z1 and update CL

1 [z1] with CL
1 [z1] + 1, thus the dominant time

complexity is NL · 24 memory accesses to a table with 235 elements.

2. Guess 6-bit subkey value rk0[0, 2, 21-23, 27] and allocate a counter CL
2 [z2] for

each of 230 possible values of

z2 =X46[4, 25-27]||W0[5, 28-31]||M0[27]||W1[4, 25-27]||
W46[0, 2, 5, 8, 10-12, 21-23, 27-31]||t1,

where t1 = t0 and M0[27] records the value of rk0[27]. For each possible 6-
bit subkey value rk0[0, 2, 21-23, 27], we compute the value of z2 and update
CL

2 [z2] with CL
2 [z2]+CL

1 [z1], thus the dominant time complexity of this step
is 235 · 24 · 26 = 245 memory accesses to a table with 230 elements.

3. Guess 5-bit subkey value rk0[5, 28-31] and allocate a counter CL
3 [z3] for each

of 224 possible values of

z3 = X46[4, 25-27]||W1[4, 25-27]||W46[0, 2, 5, 8, 10-12, 21-23, 27-31]||t2,

where t2 = t1. For each possible 5-bit subkey value rk0[5, 28-31], we compute
the value of z3 and update CL

3 [z3] with CL
3 [z3] + CL

2 [z2], thus the dominant
time complexity of this step is 230 · 210 · 25 = 245 memory accesses to a table
with 224 elements.

13

& & & & & & & &

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X1 Y1

rk1

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X2 Y2

rk2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3141-round Linear distinguisher

（0b00100000000000000000000000000000, 0b00000000000000000000000000000000）
↓

（0b00000000000000000000000000000000, 0b00100000000000000000000000000000）

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X0 Y0

rk0

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

W0

M0

W1

①

②

③

④

G0(X0)

G1(X0)

G0(X1)

G1(X1)

G0(X2)

G1(X2)

<<< 0

<<< 4

<<< 0

<<< 4

<<< 0

<<< 4

Fig. 7: The head of Linear key recovery attack on full round SAND-2.

14

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X44 Y44

rk44

& & & & & & & &

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X45 Y45

rk45

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X46 Y46

rk46

X47 Y47

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

41-round Linear distinguisher

（0b00100000000000000000000000000000, 0b00000000000000000000000000000000）
↓

（0b00000000000000000000000000000000, 0b00100000000000000000000000000000）

G1(X46)

W46

W45

⑤

⑥

⑦

⑧

G0(X46)

G1(X45)

G0(X45)

G1(X44)

G0(X44)

<<< 0

<<< 4

<<< 0

<<< 4

<<< 0

<<< 4

M46

Fig. 8: The tail of Linear key recovery attack on full round SAND-2.

15

4. Guess 4-bit subkey value rk1[4, 25-27] and allocate a counter CL
4 [z4] for each

of 220 possible values of

z4 = X46[4, 25-27]||W46[0, 2, 5, 8, 10-12, 21-23, 27-31]||t3,

where t3 = t2⊕G1(X2)[29]. For each possible 4-bit subkey value rk1[4, 25-27],
we compute the value of z3 and update CL

4 [z4] with CL
4 [z4] + CL

3 [z3]. The
dominant time complexity of this step is 224 · 215 · 24 = 243 memory accesses
to a table with 220 elements.

5. Guess 4-bit subkey value rk46[8, 10-12] and allocate a counter CL
5 [z5] for each

of 216 possible values of

z5 = W46[0, 2, 5, 21-23, 27-31]||W45[4, 25-27]||t4,

where t4 = t3. For each possible 4-bit subkey value rk46[8, 10-12], we compute
the value of z5 and update CL

5 [z5] with CL
5 [z5] +CL

4 [z4]. The dominant time
complexity of this step is 220 · 219 · 24 = 243 memory accesses to a table with
216 elements.

6. Guess 6-bit subkey value rk46[0, 2, 21-23, 27] and allocate a counter CL
6 [z6]

for each of 211 possible values of

z6 = W46[5, 28-31]||M46[27]||W45[4, 25-27]||t5,

where t5 = t4. For each possible 6-bit subkey value rk46[0, 2, 21-23, 27], we
compute the value of z6 and update CL

6 [z6] with CL
6 [z6] +CL

5 [z5]. The dom-
inant time complexity of this step is 216 · 223 · 26 = 245 memory accesses to
a table with 211 elements.

7. Guess 5-bit subkey value rk46[5, 28-31] and allocate a counter CL
7 [z7] for each

of 25 possible values of

z7 = W45[4, 25-27]||t6,

where t6 = t5. For each possible 5-bit subkey value rk46[5, 28-31], we compute
the value of z7 and update CL

7 [z7] with CL
7 [z7] + CL

6 [z6]. The number of
memory accesses in this step is 211 · 229 · 25 = 245.

8. Guess 4-bit subkey value rk45[4, 25-27] and initialize a counter CounterL.
Then compute the value of t7 = t6 ⊕ G1(X44)[29] for each possible 4-bit
subkey value rk45[4, 25-27]. If t7 = 0, we update CounterL with CounterL+
CL

7 [z7]. The number of memory accesses in this step is 25 · 234 · 24 = 243.
9. The key guess will be accepted as a candidate if the counter CounterL sat-

isfies |CounterL/NL− 0.5|>τL, where τL is the threshold used in [SWW21].
10. As mentioned above, the mask “2” of linear distinguisher can be placed in

the remaining 7 position. Thus we can use three of them to recover key. Each
distinguisher involves 38-bit key and can recover 84 bits when considering
them together (30 bits are overlapped), which are shown in the Table 8.

11. Then do exhaustive search for all keys that correspond to the guessed 84-bit
subkey bits against a maximum of two plaintext-ciphertext pairs.

16

Table 8: Key bits involved in the 41-round distinguishers.

Distinguisher Key bits involved in the distinguisher All 84-bit key

(0x20000000,0x00000000)
↓

(0x00000000,0x20000000)

rk0[0, 2, 5, 8, 10-12, 21-23, 27-31]
rk46[0, 2, 5, 8, 10-12, 21-23, 27-31]

rk1[4, 25-27]
rk45[4, 25-27]

rk0
[0-8, 10-15, 17-31]

rk46
[0-8, 10-15, 17-31]
rk1[0, 4, 17-19
21-23, 25-28]
rk45[0, 4, 17-19
21-23, 25-28]

(0x02000000,0x00000000)
↓

(0x00000000,0x02000000)

rk0[1, 4, 6-8, 17-19, 23-28, 30]
rk46[1, 4, 6-8, 17-19, 23-28, 30]

rk1[0, 21-23]
rk45[0, 21-23]

(0x00200000,0x00000000)
↓

(0x00000000,0x00200000)

rk0[0, 2-4, 13-15, 19-24, 26, 29]
rk46[0, 2-4, 13-15, 19-24, 26, 29]

rk1[17-19, 28]
rk45[17-19, 28]

Complexity Analysis. As we leave 216 candidates, that means the advantage
[Sel08] of the attack as a=22. For three distinguishers, there are a total of 216·216·
216 candidate keys remaining. Then we set the number of pairs NL as 245.5, so
the data complexity of this attack is 245.5. And according to [SN14], we consider
one memory access as a half round encryption. So, the time complexity of this
attack can be computed as follows.

3× (NL · 24 + 245 × 4 + 243 × 3)× 1

2
× 1

47
+ ((216)

3
+ 2128−84)× (1 + 2−64),

where ((216)
3
+ 2128−84) × (1 + 2−64) denotes the time complexity of step 11.

Then, the time complexity of the attack is about 248.23 full round encryptions.
CL

1 [z1] dominates the memory complexity which is roughly 235. We calculate the
success probability by the following formula in [BN17]:

Ps ≈ Φ(
c ·
√
NL − Φ−1(1− 2−(a+1)) ·

√
1 +NL · 2−n√

1 +NL · (ELP − c2)
),

where Φ(·) is the normal distribution and n is block size. The variable c denotes
the approximation of the absolute value of the correlation related to the dom-
inant linear characteristic and the expected linear potential, denoted as ELP ,
of the approximation is calculated as the sum of squared correlations across all
characteristics associated with it. In our attack, ELP = c2, thus the success
probability for one such attack is Ps = 94.07% and (94.07%)3 = 83.24%.

4.2 Full Round Differential Attack

In the attack, we both append two rounds before and after the 43-round dis-
tinguisher. The key recovery attack is illustrated in Fig. 9, where the white cell
denotes the difference of the bit is zero, the yellow cell represents the difference

17

of the bit is non-zero, the blue cell denotes the difference of the bit can be zero
or non-zero and the red cell represents the value of the bit needs to be computed
for the intermediate states and for the round key that denotes being guessed.

Data collection. We can construct structures at the position of (X0, Y0). In
each structure, the 43 bits

X0[0, 3-23, 25-26, 28-30]||Y0[0, 3-4, 7-15, 18-19, 21-22]

with the difference being zero in Fig. 9 are fixed, and the value of the remaning 21
bits are traversed. Thus, 241 pairs can be generated with one structure composed
of 221 plaintexts.

Table 9: Conditions for key recovery and filter probabilities on SAND-2.

Condition Filter Probability

(C1) ∆X47[0, 3-23, 25-26, 28-30]||∆Y47[0, 3-4, 7-15, 18-19, 21-22] = 0 2−43

(C2) ∆X1[1-2, 5-6, 16-17, 20, 23-30] = 0,∆X1[31] = 1 2−16

(C3) ∆Y46[1-2, 5-6, 16-17, 20, 23-30] = 0,∆Y46[31] = 1 2−16

(C4) ∆X2[1-2, 24, 27, 31] = 0 2−5

(C5) ∆Y45[1-2, 24, 27, 31] = 0 2−5

Key recovery. In the attack, we prepare Ns structures and obtain N1 = Ns ·241
pairs. Thus, the data complexity of the attack is Ns · 221. The detailed attack is
realised with the following steps and we list all filter conditions in Table 9.

1. For each pair P = (X0, Y0) and P ′ = (X ′
0, Y

′
0), we obtain the corresponding

values of the ciphertexts C = (X47, Y47) and C ′ = (X ′
47, Y

′
47) by querying

the oracle. The time complexity of this step is Ns ·221 full round encryptions.
2. Denoising over ciphertexts: the 43 bits of ciphertexts with the difference

being zero and check the condition (C1), N1 · 2−43 pairs will be left;
3. For each pair P = (X0, Y0) and P ′ = (X ′

0, Y
′
0), we first calculate ∆X1 =

X1 ⊕X ′
1 without guessing any key bits and check the condition (C2), then

N1 · 2−43 · 2−16 pairs will be left. This step involves 18 S-box operation, thus
the time complexity is 2 ·N1 ·2−43×18×1/32×1/47 full round encryptions.

4. For each pair C = (X47, Y47) and C ′ = (X ′
47, Y

′
47), we can calculate ∆Y46

without guessing key bits and check the condition (C3), then N1 · 2−43 ·
2−16 ·2−16 pairs will be left. Similarly, this step involves 18 S-box operation,
thus the time complexity is 2 ·N1 · 2−43 · 2−16 × 18× 1/32× 1/47 full round
encryptions.

5. Guess 7 bits of rk0. We can compute X2[1-2, 24, 27, 31] and X ′
2[1-2, 24, 27, 31]

for each possible 7-bit subkey value rk0[0, 2-3, 8, 27, 29-30] and check the
condition (C4), then N1 · 2−43 · 2−16 · 2−16 · 2−5 pairs will be left. This step
involves 6 S-box operation, thus the time complexity is 2 ·N1 · 2−43 · 2−16 ·
2−16 · 27 × 6× 1/32× 1/47 full round encryptions.

18

6. Guess 7 bits of rk46. We can compute ∆Y45[1-2, 24, 27, 31] for each possible
7-bit subkey value rk46[0, 2-3, 8, 27, 29-30] and check the condition (C5), then
N1 ·2−43 ·2−16 ·2−16 ·2−5 ·2−5 pairs will be left. Similarly, the time complexity
is 2 ·N1 · 2−43 · 2−16 · 2−16 · 2−5 · 27× 6× 1/32× 1/47 full round encryptions.

7. As mentioned above, the difference “8” of Differential distinguisher can be
placed in the remaining 7 position. Thus we can use all of them to recover
key. Each distinguisher involves the 14-bit key, and the all can recover a total
of 64 bits which cover exactly rk0 and rk46.

8. Then do exhaustive search for all keys which correspond to the guessed 64-bit
subkey bits against a maximum of two plaintext-ciphertext pairs.

Complexity Analysis. We set a counter to record the number of right pairs
that validate the input and output differences of the 43-round distinguisher.
With the analysis above, for random key guesses, the number of right pairs is
about N1 ·2−85. For the right key guess, the number of right pairs is expected to
be N1 ·2−21 ·2−53.62, where 2−21 is the probability of the difference of plaintext to
the head of the distinguisher and 2−53.62 is the probability of the distinguisher. In
order to get higher success probability we set the number of right pair µ is 6 and

the signal-to-noise ratio SN = N1·2−21·2−53.62

N1·2−85 = 210.38. So the pairs N1 is 277.20

and corresponding Ns is 236.20. For eight distinguishers, the data requirement of
the attack is 8× 236.20 · 221 = 260.20 chosen plaintexts. As we leave only one best
candidate, that means advantage a is 14. So the time complexity of this attack
can be computed as follows.

8× (236.20 · 221 +N1 · 2−42.97) + (1 + 264)× (1 + 2−64),

where (1+264)×(1+2−64) denotes the time complexity of step 8. Then, the time
complexity of this attack is about 264.10 full round encryptions. We calculate the
success probability by the following formula in [Sel08]:

Ps = Φ(

√
µSN − Φ−1(1− 2−a)√

SN + 1
),

thus the success probability for one such attack is Ps = 99.04% and (99.04%)8 =
92.61% for the whole attack. Since we should record the right pairs, the memory
complexity of this attack is roughly 257.20.

5 Conclusion

In this paper, we present full round distinguishing and key recovery attacks
on lightweight block cipher SAND-2 in single-key setting. Our attacks exploit
iterative distinguishers with high probability (e.g., the time complexities of linear
distinguishing and key recovery attacks are both even lower than 250), which are
derived from the dependencies of the round function of SAND-2. Moreover, we
believe that our attacks provide the insight for designers about the importance of
applying extensive and in-depth security analysis under designers’ responsibility.

19

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X0 Y0

rk0

& & & & & & & &

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X1 Y1

012345678910111213141516171819202122232425262728293031

rk1

43-round Differential distinguisher

（0b00000000000000000000000000000000, 0b10000000000000000000000000000000）
↓

（0b10000000000000000000000000000000, 0b00000000000000000000000000000000）

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

<<< 0

<<< 4

<<< 0

<<< 4

& & & & & & & &

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X45 Y45

rk45

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X46 Y46

rk46

X47 Y47

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

<<< 0

<<< 4

<<< 0

<<< 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Fig. 9: Differential key recovery attack on full round SAND-2.

20

Acknowledgments. We sincerely thank the anonymous reviewers for provid-
ing valuable comments to help us improve the overall quality of the paper. This
work is supported by the National Key Research and Development Program of
China (Grant No. 2018YFA0704702 & 2022YFB2701700), the National Natural
Science Foundation of China (Grant No. 62032014), the Shandong Provincial
Natural Science Foundation (Grant No. ZR2020MF053), the Major Basic Re-
search Project of Natural Science Foundation of Shandong Province (Grant No.
ZR202010220025), Department of Science & Technology of Shandong Province
(Grant No. SYS202201), and Quan Cheng Laboratory (Grant No. QCLZD202306).

References

AK18. Ralph Ankele and Stefan Kölbl. Mind the gap - A closer look at the security
of block ciphers against differential cryptanalysis. In Carlos Cid and Michael
J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018 - 25th
International Conference, Calgary, AB, Canada, August 15-17, 2018, Re-
vised Selected Papers, volume 11349 of Lecture Notes in Computer Science,
pages 163–190. Springer, 2018.

Bih94. Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryp-
tology, 7(4):229–246, 1994.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceed-
ings, Part II, pages 123–153, 2016.

BN17. Céline Blondeau and Kaisa Nyberg. Joint data and key distribution of
simple, multiple, and multidimensional linear cryptanalysis test statistic and
its impact to data complexity. Des. Codes Cryptogr., 82(1-2):319–349, 2017.

BPSP16. Gaurav Bansod, Abhijit Patil, Swapnil Sutar, and Narayan Pisharoty. ANU:
an ultra lightweight cipher design for security in IoT. Security and Commu-
nication Networks, 9(18):5238–5251, 2016.

BS91. Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosys-
tems. J. Cryptology, 4(1):3–72, 1991.

BSS+13. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptol. ePrint Arch., page 404, 2013.

CFF+19. Shiyao Chen, Yanhong Fan, Yong Fu, Luning Huang, and Meiqin Wang.
On the design of ant family block ciphers. Journal of Cryptologic Research.,
6(6):748–759, 2019.

CFS+22. Shiyao Chen, Yanhong Fan, Ling Sun, Yong Fu, Haibo Zhou, Yongqing Li,
Meiqin Wang, Weijia Wang, and Chun Guo. SAND: an AND-RX feistel
lightweight block cipher supporting s-box-based security evaluations. Des.
Codes Cryptogr., 90(1):155–198, 2022.

CLGH23. Wen Chen, Lang Li, Ying Guo, and Ying Huang. SAND-2: an optimized
implementation of lightweight block cipher. Integr., 91:23–34, 2023.

21

Knu91. Lars R. Knudsen. Cryptanalysis of LOKI. In Advances in Cryptology - ASI-
ACRYPT ’91, International Conference on the Theory and Applications of
Cryptology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings, pages
22–35, 1991.

Mat93. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helle-
seth, editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the
Theory and Application of of Cryptographic Techniques, Lofthus, Norway,
May 23-27, 1993, Proceedings, volume 765 of Lecture Notes in Computer
Science, pages 386–397. Springer, 1993.

Sas18. Yu Sasaki. Related-key boomerang attacks on full ANU lightweight block
cipher. In International Conference on Applied Cryptography and Network
Security, pages 421–439. Springer, 2018.

Sel08. Ali Aydin Selçuk. On probability of success in linear and differential crypt-
analysis. J. Cryptol., 21(1):131–147, 2008.

SN14. Hadi Soleimany and Kaisa Nyberg. Zero-correlation linear cryptanalysis of
reduced-round lblock. Des. Codes Cryptogr., 73(2):683–698, 2014.

SWW21. Ling Sun, Wei Wang, and Meiqin Wang. Improved attacks on GIFT-64. In
Riham AlTawy and Andreas Hülsing, editors, Selected Areas in Cryptogra-
phy - 28th International Conference, SAC 2021, Virtual Event, September
29 - October 1, 2021, Revised Selected Papers, volume 13203 of Lecture Notes
in Computer Science, pages 246–265. Springer, 2021.

A Full Round Differential Attack based on 41-round
Distinguisher

In this attack, we both append three rounds before and after the 41-round dis-
tinguisher. The key recovery attack is illustrated in Fig. 10 and Fig. 11, where
the meaning of different cells is the same as Fig. 9.

Data collection. We can construct structures at the position of (X0, Y0). In
each structure, the 19 bits

X0[0, 3-4, 7-15, 18-19, 21-22]||Y0[4, 11, 14]

with the difference being zero in Fig. 10 are fixed, and the value of the reman-
ing 45 bits are traversed. Thus, 289 pairs can be generated with one structure
composed of 245 plaintexts.

Key recovery. In the attack, we prepare Ns structures and obtain N1 = Ns ·289
pairs. Thus, the data complexity of the attack is Ns · 245. The detailed attack is
realised with the following steps and we list all filter conditions in Table 10.

1. For each pair P = (X0, Y0) and P ′ = (X ′
0, Y

′
0), we obtain the corresponding

values of the ciphertexts C = (X47, Y47) and C ′ = (X ′
47, Y

′
47) by querying

the oracle. The time complexity of this step is Ns ·245 full round encryptions.

2. Denoising over ciphertexts: the 19 bits of ciphertexts with the difference
being zero and check the condition (C1), N1 · 2−19 pairs will be left;

22

& & & & & & & &

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X1 Y1

rk1

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X2 Y2

rk2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3141-round Differential distinguisher

（0b00000000000000000000000000000000, 0b10000000000000000000000000000000）
↓

（0b10000000000000000000000000000000, 0b00000000000000000000000000000000）

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X0 Y0

rk0

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

<<< 0

<<< 4

<<< 0

<<< 4

<<< 0

<<< 4

Fig. 10: The head of key recovery attack based on 41-round distinguisher.

23

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X44 Y44

rk44

& & & & & & & &

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X45 Y45

rk45

!& !& !& !& !& !& !& !&

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

&

28293031

28293031

&

24252627

24252627

&

20212223

20212223

&

16171819

16171819

& & & &

0123456789101112131415

0123456789101112131415

!& !& !& !& !& !& !& !&

282930310123456789101112131415161718192021222324252627

012345678910111213141516171819202122232425262728293031

!&

28293031

28293031

!&

24252627

24252627

!&

20212223

20212223

!&

16171819

16171819

!& !& !& !&

0123456789101112131415

0123456789101112131415

X46 Y46

rk46

X47 Y47

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

41-round Differential distinguisher

（0b00000000000000000000000000000000, 0b10000000000000000000000000000000）
↓

（0b10000000000000000000000000000000, 0b00000000000000000000000000000000）

<<< 0

<<< 4

<<< 0

<<< 4

<<< 0

<<< 4

Fig. 11: The tail of key recovery attack based on 41-round distinguisher.

24

Table 10: Conditions for key recovery and filter probabilities on SAND-2.

Condition Filter Probability

(C1) ∆X47[0, 3-4, 7-15, 18-19, 21-22]||∆Y47[4, 11, 14] = 0 2−19

(C2) ∆X1[0, 3, 5-10, 12-13, 15-23, 25-26, 28-30] = 0 2−24

(C3) ∆Y46[0, 3, 5-10, 12-13, 15-23, 25-26, 28-30] = 0 2−24

(C4) ∆X2[1-2, 5-6, 16-17, 20, 23-30] = 0,∆X2[31] = 1 2−16

(C5) ∆Y45[1-2, 5-6, 16-17, 20, 23-30] = 0,∆Y45[31] = 1 2−16

(C6) ∆X3[1-2, 24, 27, 31] = 0 2−5

(C7) ∆Y44[1-2, 24, 27, 31] = 0 2−5

3. For each pair P = (X0, Y0) and P ′ = (X ′
0, Y

′
0), we first calculate ∆X1 =

X1⊕X ′
1 without guessing any key bits and check the condition (C2), thenN1·

2−19 ·2−24 pairs will be left. We view this operation as one-round encryption,
thus the time complexity is about 2 ·N1 ·2−19×1/47 full round encryptions.

4. For each pair C = (X47, Y47) and C ′ = (X ′
47, Y

′
47), we can calculate ∆Y46

without guessing key bits and check the condition (C3), then N1 ·2−19 ·2−24 ·
2−24 pairs will be left. Similarly, the time complexity is 2·N1·2−19·2−24×1/47
full round encryptions.

5. Guess 22 bits of rk0. We can compute X2[1-2, 5-6, 16-17, 20, 23-30, 31] and
X ′

2[1-2, 5-6, 16-17, 20, 23-30, 31] for each possible 22-bit subkey value rk0[0, 2-
8, 10, 12-16, 23, 25-31] and check the condition (C4), then N1 · 2−19 · 2−24 ·
2−24 · 2−16 pairs will be left. This step involves 18 S-box operation, thus the
time complexity is 2 ·N1 · 2−19 · 2−24 · 2−24 · 222× 18× 1/32× 1/47 full round
encryptions.

6. Guess 22 bits of rk46. We can compute Y45[1-2, 5-6, 16-17, 20, 23-30, 31] and
Y ′
45[1-2, 5-6, 16-17, 20, 23-30, 31] for each possible 22-bit subkey value rk46[0, 2-

8, 10, 12-16, 23, 25-31] and check the condition (C5), then N1 · 2−19 · 2−24 ·
2−24 · 2−16 · 2−16 pairs will be left. Similarly, the time complexity is 2 ·N1 ·
2−19 · 2−24 · 2−24 · 2−16 · 222 × 18× 1/32× 1/47 full round encryptions.

7. Guess 7 bits of rk1. We can compute X3[1-2, 24, 27, 31] and X ′
3[1-2, 24, 27, 31]

for each possible 7-bit subkey value rk1[0, 2-3, 8, 27, 29-30] and check the
condition (C6), then N1 · 2−19 · 2−24 · 2−24 · 2−16 · 2−16 · 2−5 pairs will be
left. This step involves 6 S-box operation, thus the time complexity is 2 ·N1 ·
2−19 · 2−24 · 2−24 · 2−16 · 2−16 · 27 × 6× 1/32× 1/47 full round encryptions.

8. Guess 7 bits of rk45. We can compute ∆Y44[1-2, 24, 27, 31] for each possible
7-bit subkey value rk45[0, 2-3, 8, 27, 29-30] and check the condition (C7), then
N1 ·2−19 ·2−24 ·2−24 ·2−16 ·2−16 ·2−5 ·2−5 pairs will be left. Similarly, the time
complexity is 2 ·N1 · 2−19 · 2−24 · 2−24 · 2−16 · 2−16 · 2−5 · 27× 6× 1/32× 1/47
full round encryptions.

9. Then do exhaustive search for all keys which correspond to the guessed 58-bit
subkey bits against a maximum of two plaintext-ciphertext pairs.

Complexity Analysis. We set a counter to record the number of right pairs
that validate the input and output differences of the 41-round distinguisher.
With the analysis above, for random key guesses, the number of right pairs is

25

about N1 ·2−109. For the right key guess, the number of right pairs is expected to
be N1 ·2−45 ·2−51.13, where 2−45 is the probability of the difference of plaintext to
the head of the distinguisher and 2−51.13 is the probability of the distinguisher.
In order to get higher success probability we set the number of right pair µ is

2 and the signal-to-noise ratio SN = N1·2−45·2−51.13

N1·2−109 = 212.87. So the pairs N1 is

297.13 and corresponding Ns is 28.13. Thus the data requirement of the attack is
28.13 · 245 = 253.13 chosen plaintexts. As we leave only one best candidate, that
means advantage a is 58. So the time complexity of this attack can be computed
as follows.

28.13 · 245 +N1 · 2−23.55 + (1 + 270)× (1 + 2−64),

where (1 + 270) × (1 + 2−64) denotes the time complexity of step 9. Then, the
time complexity of this attack is about 273.70 full round encryptions and the
success probability is Ps = 90.65% for the whole attack. Since we should record
the right pairs, the memory complexity of this attack is roughly 253.13.

26

	Full Round Distinguishing and Key-Recovery Attacks on SAND-2 (Full version)
	Introduction
	Preliminary
	Specification of SAND block cipher
	Specification of SAND-2 block cipher

	Iterative and Full Round Distinguishers of SAND-2
	Linear Distinguishers of SAND-2
	Differential Distinguishers of SAND-2

	Key Recovery Attacks on SAND-2
	Full Round Linear Attack
	Full Round Differential Attack

	Conclusion
	Full Round Differential Attack based on 41-round Distinguisher

