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Abstract
Many secure computation schemes and protocols (such as numerous variants of secure multi-

party computation and homomorphic encryption) have favorable performance characteristics
when they are used to evaluate addition and scalar multiplication operations on private values
that can be represented as ring elements. A purely algebraic argument (with no references to
any specific protocol or scheme) can be used to show that the ability to perform these operations
is sufficient to implement any univariate map that operates on private values when that map’s
domain is finite. Such implementations of univariate maps can be composed in sequence any
number of times. Other forms of composition for such implementations can be realized by using
multiplication operations involving ring elements, but it is possible that these can be substituted
with scalar multiplication operations within certain secure computation workflows.

1 Introduction
Secure computation schemes and protocols are typically well-suited for evaluating certain kinds
of operations involving private values, particularly with respect to cost metrics such as running
time and number of communication rounds. This report demonstrates that it is possible to present
in a distilled manner – relying only on algebraic structures and their properties – a particular
technique for implementing any univariate map that has a finite domain using only addition and
scalar multiplication operations involving ring elements. Ways in which such implementations may
be composed are also discussed. Such a succinct, abstract exposition of the techniques (as opposed
to a presentation that is tied to particular applications [1, 12] or families of schemes or protocols
[4, 5, 10, 15, 15]) is intended to aid in the broader dissemination of a simple (when isolated)
algebraic construction, in its implementation and evaluation within a broader variety of existing
secure computation frameworks and applications, and in the incorporation of the construction’s
insights in novel and/or hybrid protocols and applications.

2 Structures, Conventions, and Notation
The techniques presented in this report rely on vectors and matrices in which individual components
are elements of rings. In the subsections below, it is assumed that k, ℓ ∈ Z+.

2.1 Rings and Modules

For any ring R, denote by ⊕ : R × R → R its binary addition operation (for which 0 ∈ R is the
identity) and by ⊗ : R×R → R its binary multiplication operation (for which 1 ∈ R is the identity).



For two finite rings S and C where S ∼= C via a bijection ι : S → C, denote by ⊙ : S × C → C the
scalar multiplication operation for the left S-module C. In such cases, S is also called the ring of
scalars for the module C. Underlined symbols are used to distinguish the identity elements 0, 1 ∈ C
from the identity elements 0, 1 ∈ S.

Linear secret sharing schemes (LSSS) typically support addition of encrypted (i.e., secret-
shared) values and multiplication of encrypted values by an unencrypted (i.e., not secret-shared)
scalar without requiring any rounds of communication beyond those that are necessary to distribute
inputs and reconstruct outputs [7, 14]. Some partially homomorphic encryption (PHE) schemes
support addition of encrypted values and multiplication of encrypted values by unencrypted scalar
values [2, 3, 13], and in some fully homomorphic encryption (FHE) schemes [6] these two kinds of
operations are less costly than other operations (in particular, multiplication of encrypted values).
For some of the schemes in these categories, an appropriately chosen pair of rings S and C can be
used to represent scalars and encrypted values (i.e., ciphertexts), respectively, with ⊕ : C × C → C
representing addition of encrypted values and ⊙ : S × C → C representing multiplication of en-
crypted values by unencrypted scalars.

Some secure multi-party computation (MPC) schemes [7], along with FHE schemes [6, 8],
support multiplication of encrypted values. In such schemes, ⊗ : C × C → C would represent such
a (sometimes more costly) multiplication operation.

2.2 Vector and Matrix Notation

A k-component vector v ∈ Rk of elements from a ring R is represented using the notation
⟨v1, . . . , vk⟩, where individual entries in the vector are represented using subscript notation. Vectors
in Rk are used interchangeably with their corresponding single-column matrices Rk×1. A one-hot
vector [9] is any vector ⟨v1, . . . , vk⟩ ∈ Rk in which exactly one component is 1 ∈ R and all other
components are 0 ∈ R.

Let C be a left S-module. Multiplication of a vector v ∈ Ck of module elements drawn from
C by a matrix M ∈ Sℓ×k of scalars drawn from S is denoted M ⊙ v and involves both the scalar
multiplication operation ⊙ : S × C → C and the ring addition operation ⊕ : C × C → C:M11 . . . M1k

... . . . ...
Mℓ1 . . . Mℓk

 ⊙

v1
...

vk

 =

(M11 ⊙ v1) ⊕ . . . ⊕ (M1k ⊙ vk)
...

(Mℓ1 ⊙ v1) ⊕ . . . ⊕ (Mℓk ⊙ vk)


Similarly, multiplication of v by a matrix M ′ ∈ Cℓ×k of module elements drawn from C is denoted
M ′ ⊗ v and involves both the multiplication operation ⊗ : C × C → C and the ring addition
operation ⊕ : C × C → C:M ′

11 . . . M ′
1k

... . . . ...
M ′

ℓ1 . . . M ′
ℓk

 ⊗

v1
...

vk

 =

(M ′
11 ⊗ v1) ⊕ . . . ⊕ (M ′

1k ⊗ vk)
...

(M ′
ℓ1 ⊗ v1) ⊕ . . . ⊕ (M ′

ℓk ⊗ vk)


For a matrix M ∈ Cℓ×ℓ, M⊤ denotes its transpose and diag(M) denotes the vector ⟨M11, . . . , Mℓℓ⟩.

3 Implementation of Sequentially Composable Univariate Maps
Let X and Y be finite sets and let m : X → Y be any map. Let two finite rings S and C be
such that |S| ≥ 2, S ∼= C, and C is a left S-module. It is possible to implement m using only
⊕ : C × C → C and ⊙ : S × C → C.
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3.1 Simple Example

Let X = {a, b, c} be a set and let m : X → X be a map such that m = {a 7→ b, b 7→ b, c 7→ a}.
Define a bijection η : X → C3 that maps each element of X to a one-hot vector that represents it:

η =
{

a 7→ ⟨1, 0, 0⟩, b 7→ ⟨0, 1, 0⟩, c 7→ ⟨0, 0, 1⟩
}

.

For example, η(m(c)) = η(a) = ⟨1, 0, 0⟩, where η(a)i for i ∈ {1, 2, 3} denote the components of
the vector η(a). Given m and η, define a matrix M ∈ S3×3 by leveraging ι−1 : C → S in a
componentwise manner:

M =

ι−1(η(m(a))1) ι−1(η(m(b))1) ι−1(η(m(c))1)
ι−1(η(m(a))2) ι−1(η(m(b))2) ι−1(η(m(c))2)
ι−1(η(m(a))3) ι−1(η(m(b))3) ι−1(η(m(c))3)

 =

0 0 1
1 1 0
0 0 0

 .

It is then the case that the transformation represented by M over C3 corresponds to the transfor-
mation represented by m over X. For example, the calculation m(c) = a is implemented below:

M ⊙ η(c) =

0 0 1
1 1 0
0 0 0

 ⊙

0
0
1

 =

(0 ⊙ 0) ⊕ (0 ⊙ 0) ⊕ (1 ⊙ 1)
(1 ⊙ 0) ⊕ (1 ⊙ 0) ⊕ (0 ⊙ 1)
(0 ⊙ 0) ⊕ (0 ⊙ 0) ⊕ (0 ⊙ 1)

 =

1
0
0

 = η(a).

3.2 Implementation via Ring Addition and Scalar Multiplication

Let X be a finite set. Let xi for any i ∈ {1, . . . , |X|} refer to the ith element in an ordered
enumeration of the elements of X. Define a bijection ηX : X → C |X| that maps each element of X
to a one-hot vector representing that element such that for i, j ∈ {1, . . . , |X|}, it is the case that

ηX(xi)j =
{

1 if i = j,

0 otherwise.

Similarly, let Y be a finite set with a corresponding bijection ηY : Y → C |Y |. Define a matrix
M ∈ S|Y |×|X| such that for i ∈ {1, . . . , |Y |} and j ∈ {1, . . . , |X|}, it is the case that

Mij =
{

1 if m(xj) = yi,

0 otherwise.

Given the above definition, M can be interpreted intuitively as a collection of column vectors in
which the jth column corresponds to the output m(xj) ∈ Y for the input xj ∈ X:

ι(M11) . . . ι(M1|X|)
... . . . ...

ι(M|Y |1) . . . ι(M|Y ||X|)

 =

 | |
ηY (m(x1)) . . . ηY (m(x|X|))

| |

 .

Then it is the case that for all xi ∈ X,

η−1
Y (M ⊙ ηX(xi)) = m(xi).

Note that for any two maps m : X → Y and m′ : Y → Z (where X, Y , and Z are finite sets), the
implementations of m and m′ can be composed sequentially into an implementation of m′ ◦ m by
using matrix multiplication.
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4 Non-Sequential Composition via Multivariate Maps
For n ∈ N where n ≥ 2, assume X1, . . . , Xn and Y are all finite sets and let m : X1 × . . . × Xn → Y
be any map. While the technique presented in Section 3 can be used to implement m by treating
X1 × . . . × Xn as a single finite set (albeit of elements that represent tuples), this is not sufficient
for composing m with other map implementations that may be implemented in parallel and may
output one-hot vector representations of elements from the individual sets Xi for i ∈ {1, . . . , n}.

Given two finite rings S and C where |S| ≥ 2, S ∼= C, and C is a left S-module, it is possible
to prepare an input for an implementation of m by leveraging the ring multiplication operation
⊗ : C × C → C to implement a bijection θ : C |X1| × . . . × C |Xn| → C |X1|·...·|Xn| that associates
each distinct tuple of one-hot vectors in C |X1| × . . . × C |Xn| with a corresponding one-hot vector
in C |X1|·...·|Xn|. If only one of the one-hot input vectors has components from C (with all other
one-hot input vectors having components from S), scalar multiplication via ⊙ : S ×C → C suffices.

4.1 Simple Example

Let X = {a, b} be a set and let η : X → C2 be a bijection {a 7→ ⟨1, 0⟩, b 7→ ⟨0, 1⟩} that maps each
element of X to a one-hot vector representing that element. Let θ : C2 × C2 → C4 be a bijection
that associates one-hot vectors in C4 with pairs of one-hot vectors in C2:

θ(v, w) =


⟨1, 0, 0, 0⟩ if v = ⟨1, 0⟩ and w = ⟨1, 0⟩,
⟨0, 1, 0, 0⟩ if v = ⟨1, 0⟩ and w = ⟨0, 1⟩,
⟨0, 0, 1, 0⟩ if v = ⟨0, 1⟩ and w = ⟨1, 0⟩,
⟨0, 0, 0, 1⟩ if v = ⟨0, 1⟩ and w = ⟨0, 1⟩.

Any pair of inputs (each drawn from X) can be converted into a pair of vectors (each one in C2).
For example, suppose the two inputs are a ∈ X and b ∈ X where η(a) = ⟨1, 0⟩ and η(b) = ⟨0, 1⟩. It
is then possible to calculate θ(η(a), η(b)) by first multiplying one vector by an appropriate expansion
matrix in S4×2 and the other by a corresponding repetition matrix in S4×2 (see Section 4.2), and
then combining1 the results by using ⊗ : C × C → C:

diag





1 0
1 0
0 1
0 1

 ⊙
[
1
0

] ⊗




1 0
0 1
1 0
0 1

 ⊙
[
0
1

]
⊤

 = diag




1
1
0
0

 ⊗


0
1
0
1


⊤

 =


0
1
0
0

 .

If one input is represented by a vector in S2 (e.g., a by ⟨1, 0⟩ ∈ S2), ⊙ : S × C → C alone suffices:

diag





1 0
1 0
0 1
0 1

 ⊙
[
1
0

] ⊙




1 0
0 1
1 0
0 1

 ⊙
[
0
1

]
⊤

 = diag




1
1
0
0

 ⊙


0
1
0
1


⊤

 =


0
1
0
0

 .

4.2 Expansion and Repetition Matrices

Assume X and X ′ are finite sets. Define the expansion matrix Γ|X|,|X′| ∈ S(|X|·|X′|)×|X| that
transforms any one-hot vector of length |X| into a vector of length |X| · |X ′| wherein every entry

1Transposition and the diag operator are used to implement two versions of the Hadamard product (in terms of ⊗
and ⊙). In practice, the entries in the product of matrices that do not appear in the diagonal need not be computed.
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in the original vector is repeated |X ′| times:

(
Γ|X|,|X′|

)
ij

=
{

1 if ⌊(i − 1)/|X ′|⌋ = j − 1,

0 otherwise.

Define the repetition matrix ∆|X|,|X′| ∈ S(|X|·|X′|)×|X| that transforms any one-hot vector of length
|X| into a vector of length |X| · |X ′| consisting of |X ′| concatenated copies of the original:

(
∆|X|,|X′|

)
ij

=
{

1 if ((i − 1) mod |X ′|) = j − 1,

0 otherwise.

4.3 Transforming Pairs of Vectors using Ring Multiplication

Given two one-hot vectors v ∈ C |X| and v′ ∈ C |X′|, define a binary operation ⊠ : C |X| × C |X′| →
C |X|·|X′| where

v ⊠ v′ = diag((Γ|X|,|X′| ⊙ v) ⊗ (∆|X|,|X′| ⊙ v′)⊤).

It is the case that v ⊠ v′ must be a one-hot vector because (1) the vector on the left-hand side of
the ⊗ operator in the expression above has exactly one subvector of 1 entries (of length |X|) and
(2) the vector on the right-hand side of the ⊗ operator has |X| − 1 entries that are 0 between every
two 1 entries. Furthermore, for any w ∈ C |X| where w ̸= v, w ⊠ v′ ̸= v ⊠ v′. Similarly, for any
w′ ∈ C |X′| where w′ ̸= v′, v ⊠ w′ ̸= v ⊠ v′. Thus, this operation acts as a bijection between the set
of pairs of one-hot vectors in C |X| × C |X′| and the set of one-hot vectors in C |X|·|X′|.

4.4 Transforming Pairs of Vectors using Scalar Multiplication

Suppose v ∈ S|X| is a one-hot vector and v′ ∈ S|X′| is also a one-hot vector. Define a binary
operation � : S|X| × S|X′| → S|X|·|X′| where

v � v′ = diag((Γ|X|,|X′| ⊙ v) ⊙ (∆|X|,|X′| ⊙ v′)⊤).

If instead it is the case that v′ ∈ C |X′|, the above equation defines a binary operation � : S|X| ×
C |X′| → C |X|·|X′|. Via the same argument presented for ⊠ in Section 4.3, it is the case that v � v′

is a one-hot vector and � is a bijection between the sets of interest.

4.5 Transforming Collections of Vectors

Let v1, . . . , vn be a collection of one-hot vectors such that vi ∈ C |Xi| for i ∈ {1, . . . , n}. By induction,
it is sufficient to compute v1 ⊠ . . . ⊠ vn to calculate a corresponding one-hot vector in C |X1|·...·|Xn|.
For the special case in which v1, . . . , vn is a collection of one-hot vectors such that vi ∈ S|Xi| for
i ∈ {1, . . . , n − 1} and vn ∈ C |Xn|, the � operation is sufficient to calculate the result: v1 � . . . � vn.

5 Utilization in Secure Computation Schemes
The techniques presented in Section 3 and 4 rely on two algebraic structures: a finite ring S and
an isomorphic finite ring C where C is a left S-module. While only the additive and multiplicative
identities are used, S and C can be any ring of size greater than or equal to 2. The techniques
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are thus compatible with a very broad selection of secure computation schemes, and this is demon-
strated in a substantial body of past and ongoing work2 on developing, improving, and applying
variants of these techniques [1, 4, 5, 10, 12, 15].

On its own, the technique in Section 3 implies that all univariate maps with finite domains can
be implemented (in a manner that composes) using PHE schemes such as the Pailler cryptosystem
[13] and others [2, 3]. It also implies that such maps can be implemented using a variety of
MPC schemes, from the most basic to the most sophisticated (including Shamir’s secret sharing
scheme [14], additive secret sharing schemes [7], any LSSS, and so on), without additional rounds of
communication beyond those necessary for distributing shares and reconstructing results. Finally,
it implies that in some cases non-linear maps can be computed on encrypted inputs using schemes
and protocols that do not rely on cryptographic assumptions, and/or are straightforward to explain
to non-experts and to implement in software applications [11].

The techniques presented in Section 4 offer some additional options for composing map imple-
mentations that rely one one-hot vectors. These may be of interest within at least three scenarios.

1. The technique in Sections 4.3 (and its generalization in Section 4.5) provides a way to imple-
ment multivariate maps at the expense of performing ring multiplications (which correspond
to multiplications involving secret-shared or encrypted values). This technique can be used
directly within MPC schemes that allow multiplication of secret-shared values [7] and within
FHE schemes [6, 8].

2. The technique in Section 4.4 (and its generalization in Section 4.5) provides a template for
combining any number of public or plaintext inputs with a single private input and then
applying any multivariate map to that input to obtain a private output. This is mostly a
convenience, as the public or plaintext inputs and the multivariate map together can be repre-
sented using an appropriately defined univariate map. However, the fact that the expressions
are nearly identical between Section 4.3 and Section 4.4 (with the exception of the underlying
operators used) can be useful in practice.

3. The technique in Section 4.4 provides a template for combining multiple private inputs using
scalar multiplication when specific secure computation workflows are an option (whether
using existing schemes and protocols, or using a combination thereof). For example, it may
be possible to use a PHE scheme to pass an encrypted accumulator value from one input
contributor to another, with each contributor using the technique in Section 4.4 to compute a
new private accumulator value by applying a map to the previous private accumulator value
and their own unencrypted (but never disclosed and consequently still private) input.

6 Conclusion
For small finite sets X and Y , it is possible to implement any univariate map m : X → Y by relying
only on ring addition and scalar multiplication. Such implementations can be composed arbitrarily
many times without modifying the representation of input and output values. Multiplication of
ring elements can be leveraged to extend this technique to multivariate maps in general, but scalar
multiplication can still be used in place of ring multiplication within certain workflows. These
results can be derived independently of any specific secure computation scheme or protocol, as
they rely only on algebraic objects and operations that are supported by many such schemes.

2Variants of this technique appear in many other works besides the handful that are explicitly cited in this report.
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