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Abstract. Motivated by applications in anonymous reputation systems
and blockchain governance, we initiate the study of predicate aggregate
signatures (PAS), which is a new primitive that enables users to sign
multiple messages, and these individual signatures can be aggregated by
a combiner, preserving the anonymity of the signers. The resulting PAS
discloses only a brief description of signers for each message and provides
assurance that both the signers and their description satisfy the specified
public predicate.
We formally define PAS and give a construction framework to yield a
logarithmic size signature, and further reduce the verification time also
to logarithmic. We also give several instantiations for several concrete
predicates that may be of independent interest.
To showcase its power, we also demonstrate its applications to multiple
settings including multi-signatures, aggregate signatures, threshold sig-
natures, (threshold) ring signatures, attribute-based signatures, etc, and
advance the state of the art in all of them.

1 Introduction

Anonymous reputation systems are widely used in many applications. For ex-
ample, on online platforms, for Internet peers to jointly establish accumulated
ratings on the merchants/service providers or certain products, so that users that
are not familiar with them, can have some context to make a better choice. Since
the main necessary information is the accumulated rating, ensuring anonymity
plays a crucial role to allow users to participate in the reputation systems. More
specifically, in YouTube, each user registers at YouTube, and then gives his rat-
ing on each content as an “I like it” (like +1) or not, then there will be an
accumulated content score shown in the platform. The accumulated score not
only serves as a succinct representation/description, but also hides the identities
of the voters. To reduce the reliance on fully trusting the platform, other impor-
tant requirements are that the accumulated score should be publicly verifiable,
so that users may have stronger confidence that the score is not manipulated by
the platform; furthermore, in the anonymous setting, one potential threat arises
when a malicious platform attempts to manipulate the ratings by repeatedly
counting one user’s vote for many times. Therefore, additional measures must
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be taken to assure the verifier that each voter’s contribution to the accumulated
score is limited to a single vote.1

Naturally, individual votes can be realized via digital signatures from legit-
imate users (e.g., registered identities). To obtain a succinct accumulated score
k, say up-votes, we would like to aggregate the corresponding identities and sig-
natures to be a short “proof”. The proof needs to ensure that indeed there are
at least k signatures on “I like it” from k distinct identities.

The one-user-one-vote requirement above can be seen as a special policy
that was put on the identities of those signatures. In broader applications, there
could be more complex voting policies that could be expressed as a predicate on
the voter identities. For example, in blockchain governance (e.g., Decentralized
autonomous organizations (DAOs)[4]), decisions could be made by the whole
community whose accounts hold sufficient amount of tokens. The final decision
needs to be attested with a short proof that the voting result is indeed following
the governing policy, and the proof would be stored onchain. Voting processes in
DAOs offer a remarkable degree of flexibility and customization. These processes
can be tailored and programmed to accommodate a wide range of requirements
and preferences. For example, quadratic voting [1,2] allows the voter have bud-
gets of credits which are converted to counted votes according to their square
root. Delegated voting [5] allows users to delegate their voting power to trusted
individuals or entities. Property-based voting [3] differentiates signers based on
the properties of their non-fungible tokens used in voting.

Introducing predicate aggregate signatures. Motivated by above applica-
tions and many other relevant ones, in this paper, we are studying a general
problem for aggregating signatures and keys on multiple messages, while en-
suring that the signers satisfy some public predicate without disclosing their
identities. We call such a cryptographic primitive predicate aggregate signatures,
PAS for short.

More specifically, let us consider a set of users denoted as U = {ui}i∈[n] and
a collection of messagesM = {mj}j∈[k] drawn from a predefined message space.
Users choose the messages to sign. There is also a combiner, who aggregates
the corresponding signatures and signer identities/public keys into one succinct
certificate/proof/signature and shows a description ∆ of signers (like the num-
ber) on each message. The signature also confirms the legitimacy of both the
signers and signatures, ensuring that the signers and the description adhere to
a particular public predicate P , i.e., P (S1, . . . , Sk, ∆) = 1, where each Si ⊆ U is
a subset of users.

For example, in the anonymous reputation system, the rate-once policy re-
quires that each signer can only sign once at most. It means there is no duplicate
signer in each subset, and all subsets are disjoint, i.e., Si ∩ Sj = ∅ for any i 6= j.
Another example is the onchain voting system with special policy. Besides show-

1 There are also other types of rating systems, such as Uber/Airbnb, that are based
on accumulation on each transaction, so each user may rate on the same service
provider more than once. We only consider the common version as a motivational
example for our primitive.
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ing the number of voters, the property policy [3] requires that some of the voters
have special properties. By representing the property via index, the combiner
can assure the policy is satisfied by proving that some voters’ indices belong to
a specific range, e.g., there is at least one voter in the subset who is a senior
member with an index smaller than 50.

Inefficiencies of existing primitives. Despite that there are many relevant
research on signature aggregation, anonymous authentication, and others, none
of them gives a PAS in a satisfying way (as shown in Table 1). We first give a
simple categorization of existing relevant primitives, and briefly describe insuf-
ficiency of each type, and defer a more detailed comparison to the full version.
Besides that most of the primitives do not support a general policy validation
on the signers, each of them lack some other critical properties. Jumping ahead,
we will show that some of concrete instantiations of our PAS directly advance
the state of the art of several of those well-studied primitives, see Table 2.

Table 1. Comparisons of relevant primitives.

Primitives Trans. setup Flexi. thld. Agg across msgs1 Anony. Signer Policy

Thld Sig. [37] × × × X ×
Multi-Sig [13] X X × × ×
Agg-Sig. [14] X X X × ×

Graded Sig. [28,10] X X × X ×
Compact Cert. [33] X X × × ×
Thld-ring Sig. [18] X × × X ×

Attri-based Sig. [32] × × × X X2

Our PAS. X X X X X

1 Agg across msgs means signatures can be compressed among different messages.
2 The predicate in this setting is applied to one single user’s attribute set, while we

consider predicate across multiple users.

Signature aggregations. Multi-signatures [13], aggregate signatures [14], thresh-
old signatures [37] and several other relevant ones allow one to compress signa-
tures from different users. Besides they usually have no anonymity guarantee, the
former two have to explicitly provide the signer identities/public keys thus the
total proof size and verification cost still remains at least linear to the threshold
(which is usually linear to the total number of users); threshold signature, on
the other hand, can have one single public key for verification, but via a trusted
setup, when its threshold is fixed, and it does not support signature aggregation
across multiple messages. Multi-key homomorphic signatures [29] evaluates the
messages signed by different users but it does not protect the privacy of signers.
All signers’ identities are public which is not suitable for our anonymous setting.

Anonymous primitives. Anonymity oriented signatures such as ring signatures
[35,17] and the linkable [31] and threshold versions [18], usually do not require
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the identities of the ring being aggregated, and often with a fixed threshold.
Scored anonymous credential [21] is used for privacy-preserving reputation en-
forcement. The user’s reputation is decided by some service provider. While we
are considering the reputation voting setting where a set of users rate a product
by signing.

Attribute-based signatures (ABS) [32] allow a user to attest that his at-
tributes satisfy certain predicate. Anonymity can be implicitly ensured if two
users have the same attribute set. However, ABS requires a trusted key genera-
tion center, it does not consider signature aggregations, or policies across multi-
ple users. In our context, each user independently generates their own keys, and
our goal is to have the flexibility to aggregate signatures and apply predicates
across multiple users.

Generic constructions. Generic zk-SNARKs could certainly provide a path for
feasibility. By collecting numerous signatures from signers, the combiner can
create a zk-SNARK proof that guarantees the existence of sufficient valid partial
signatures satisfying the public predicate, while concealing the signers’ identities
and revealing only the counts. However, the generation of zk-SNARK proofs
remains prohibitively expensive, and it relies on trusted setups and unfalsifiable
assumptions. Some recent efforts have focused on constructing dynamic threshold
signatures2 [27,22] directly in the AGM model [26], whose actual security is not
well-understood, and may have subtle vulnerabilities [38]. While we focus on
building the PAS on classical and more standard assumptions.

1.1 Our Contributions

In this article, we formulate, construct and analyze the new primitive of predicate
aggregate signatures to address remaining issues.

Formulating PAS. We give a formal definition and security models for predicate
aggregate signatures.

As mentioned above, it allows registered users (public keys, identities known
and made public) to sign on multiple messages and these signatures can be
aggregated by a combiner who hides these signers’ identities. The final signature
only reveals a description of signers and guarantees that the signers and this
description satisfy the public predicate. 3

We formally define the security model of predicate aggregate signatures. It
enjoys the following features simultaneously which advances existing primitives.

2 They are a kind of special threshold signature that supports the dynamic choice of
thresholds for each time of signature generation.

3 In later, we would use the dynamic threshold as an example of the description. It
reveals the number of users who have signed on the message. We choose it as the
example for three reasons: (1) For a simpler presentation that shows how we can get
our final construction step by step; (2) the dynamic threshold is a natural feature of
our motivated anonymous reputation system; (3) the dynamic threshold aggregate
signature itself might be of independent interests, and indeed it already advances
the state of the art of several relevant signatures.
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– Transparent setup: users generate pk, sk on their own, and a setup algorithm
only publishes public parameters for the system.

– Signer anonymity: the adversary (not the combiner) cannot get any infor-
mation about each individual signer identity/public key (e.g., whether he
signed on a particular message) except the public description from the fi-
nal signature, even if the adversary corrupts all users, including the target
himself.

– Unforgeability: the adversary cannot convince the verifier, if it does not col-
lect enough signatures, or the predicate is not satisfied. To facilitate such a
notion, we generalize the classical proof of knowledge, and define a signer
identity extractor.

Efficient constructions from standard assumptions. We proceed in several
steps towards the full construction, with concrete efficient instantiations. Our
starting point is the BLS aggregate signature [14]. It allows the combiner to
aggregate a set of partial signatures on multiple messages.

Transparent setup. First of all, each user generates his secret-public key pair
(ski = xi, pki = gxi), and registers pki. To avoid the known rogue-key attacks
[14], we first let each user run proof of knowledge of xi during the registration.
The system simply includes pk1, . . . , pkn and some common parameter g1, . . . , gn
as public parameters and makes them available to everyone.

Succinct size solution. We start with the core building block of dynamic thresh-
old aggregate signature. This can be considered as the special case where the
predicate only requires the threshold counting is correct.

An intuitive idea is letting the combiner do more work: not only the partial
signatures are aggregated, but their respective public keys are also compressed
into a compact version. To protect signer anonymity, it also adds some blind
factors to the compressed public keys and signatures. However, anonymity in-
troduces a concern regarding the correctness of compressed public keys. Specif-
ically, there is no guarantee that these compressed public keys are part of the
legitimate/registered public key set.

Therefore, the combiner needs to produce an additional proof for the mem-
bership relation and duplication checks (that there are indeed t signatures from
t distinct signing keys). A näıve attempt for the latter would be proving pairwise
difference on all the compressed signing keys, which will yield a quadratic size
proof. Some techniques in relevant primitives such as graded signatures [28] and
signature of reputation [10] got around the challenge and sorted the public keys
first, to do a sequential proof that pki 6= pki+1, which can push down the proof
size to be linear. However, that is still quite cumbersome.

Alternatively, we observe that instead of proving relations among signer keys
directly, we may leverage the published public keys in the public parameter.
First, we can represent the included keys as a binary vector b = (b1, ..., bn), i.e.,
bi = 1, if pki is in (has signed on the message), and 0 otherwise, and commit b
in a succinct way (via vector commitment). Then we can prove an alternative
statement that the committed vector is indeed binary. Now the Hamming weight
of this vector will be corresponding to the threshold. Two remaining parts: (i)
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each bit value is assigned correctly; (ii) Hamming weight is correctly computed.
For (i), observe that when each pki is directly taken in as part of the system

parameter, the “aggregated public keys” p̂k = Πipk
bi
i can be seemed as another

“commitment” to the binary vector. We can establish the validity of the bit
assignment by demonstrating that the previously committed binary vector is
identical to the one contained in p̂k. While for (ii), Hamming weight can again
be derived directly from inner product of the bit vector and all 1 vector, and
proven using the efficient inner product argument from Bulletproofs [19].

Now we have a construction framework from the inner product argument
and “binary” proof (that proves a committed vector is binary), which can be
instantiated via Bulletproofs [19], yielding a signature of logarithmic size relative
to the number of all users.

In the multiple (say k) messages setting, signers are divided into multiple
sets depending on the message they have signed. A natural method is running
the above proof generation for k times, so the total communication cost would
have a multiplicative factor of k. Fortunately, by exploring the above technique
further, we can generate a proof for k values on the knowledge of n-length binary
vectors. In this way, these k proofs can be aggregated into one single proof for
a (k · n)-length binary vector. As a result, we achieve a communication cost of
O(k + log n+ log k), comprising k aggregated public keys and additional proofs
of size O(log n+ log k).

Reduce verification time. However, the above signature still requires a linear
verification time (for example, even reading in all the public keys). To also reduce
verification time, we propose a new proof system for the inner product and binary
relations with structured parameters, that can reduce the verification time also
to logarithmic.

There were previous efforts improving verification cost [23,30], in [23], the au-
thors achieve logarithmic size and logarithmic verification time for inner product
argument and range proof using structured reference string with highly correlated
parameters in the form of g, gx1 , gx2 , . . . , gxlogn , gx1·x2 , gx1·x3 , gx2·x3 , gx1·x2·x3 . . .,
that separates the parameter into two parts: linear proving parameter and log-
arithmic verification parameter.

Unfortunately, as we would like a transparent setup, and public keys are gen-
erated by users themselves randomly, and then included as the public parameter,
which clearly inconsistent with these structured parameters.

To work around this, we need to redesign the parameter generation and the
statement for the proof. Besides the binary vector, we also commit the public
keys via structure preserving commitment of [6] (also called AFGHO commit-
ment). Introducing structured parameters into it is still compatible with the
random generated public keys. Given these two commitments, we can prove an-
other element is the inner pairing product of the two committed vectors. We
observe that demonstrating the well-formedness of the aggregated public key is
equivalent to proving that its bilinear map is equal to the inner pairing prod-
uct between a binary vector and all public keys. Now we prove the validity of
p̂k by directly leveraging inner product argument between two committed vec-
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tors. One of these vectors is a binary vector, whose correctness is guaranteed
by a binary proof, while the other comprises all the public keys. By adjusting
the AFGHO commitment with structured parameters, these proofs achieve ef-
ficiency with logarithmic communication costs and verification times. We refer
detailed description in Sec. 4.1.

Achieve anonymity. In the anonymous setting with a blind factor r, where
p̂k = Πipk

bi
i · g̃r, several challenges arise when applying the previous method.

These challenges include proving the last position of the binary vector is 1 and
handling commitments of public keys together with the random factor g̃r. These
challenges are exacerbated by the anonymity requirements. See Sec. 4.1 for de-
tailed discussion.

To mitigate these issues, a new approach is proposed. First, b and r are
committed separately using distinct commitment keys, and proofs are generated
for each. Then, by combining these two commitments, we can prove the presence
of both a binary vector and a blind factor in specific positions. Subsequently, an
inner pairing product argument is applied to these vectors, ensuring the well-
formedness of the blinded aggregated public key.

Generic predicate. Then to lift the construction to support any arithmetic predi-
cate on the signer identities, we observe that both techniques for the core building
block is via Fiat-Shamir transformation on Σ-protocols. We can add the extra
proof of predicate satisfaction similarly via Bulletproof with our optimized ver-
ification time, then use the classical And proof to bind them. The final proof is
with logarithmic size and verification time, while its security can be based on
the standard SXDH assumption.

Efficient instantiations for concrete predicates. As discussed above, such a special
PAS with dynamic threshold already gives a better construction of multiple
relevant signatures, as shown in Table 2.

We also give a concrete construction for the concrete predicate that all signer
sets are also disjoint (that denotes the rate-once policy in the motivational ap-
plication of anonymous reputation system).

It is a challenging task for the combiner to demonstrate the disjoint nature of
all of these subsets of signers. In general, it would require comparing every pair
of them and proving that they are indeed disjoint. However, this approach would
necessitate a quadratic number of comparisons, leading to additional significant
communication and computation cost.

It is worth noting that the binary feature can also be utilized in this case.
Specifically, each public key subset can be represented as a binary vector. The
addition of two binary vectors corresponds to the union of the corresponding
subsets, including duplicate elements if any. In case the resulting sum vector
remains binary, it implies that there are no duplicate elements in the union set,
thereby indicating that the two sets are disjoint. By extending this approach to
the k -subsets scenario, where we add all these binary vectors, we can demonstrate
that all of the public key subsets are indeed disjoint.

Applications and extensions. Our PAS (including the building block alone)
implies many interesting primitives such as threshold signature, aggregate signa-
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ture, multi-signature, ring signature, threshold ring signature, etc; more impor-
tantly, our efficient construction with different instantiations of concrete predi-
cates, can improve the state of the art of all those primitives. More specifically,
when using our dynamic threshold aggregate signature, we can directly yield the
first multi-signature, aggregate signature, graded signature and threshold signa-
ture with both O(log n) communication and verification cost, while the state-of-
the-art construction of them (from standard assumptions except zk-SNARKs or
AGM directly) are all having linear costs. See Table 2.

Table 2. Advancing relevant primitives.1

Primitives Commun. Cost Verify Cost. Generation Cost.

Multi-Sig. [13] O(n)2 O(n) O(n)
Agg-Sig. [14] O(n)3 O(n) O(n)

Graded Sig. [28,10] O(n) O(n) O(n)
Thld-ring Sig. [7] O(logn) O(n) O(n)

Using our PAS? O(logn) O(logn) O(n)

1 In the comparison, we restrict only to the single message case in
our PAS. If there are k messages to be signed, all others have a
multiplicative factor k, while we only have an additive factor.

2,3 Although their signatures can be aggregated, the signers’ iden-
tities should also be transmitted which leads to linear communi-
cation cost, except recent ones [22,27] that rely on zk-SNARKs
or AGMs directly.

? The last row means using our PAS with dynamic threshold as ∆,
it implies the above primitives and advances their performance.

For multiple users and multiple messages, the combiner generates a PAS with
threshold tj for each mj . It implies the aggregate signature and hides the signers’
identities. For multiple users and one message, a PAS with threshold t implies
that t different signers have signed on the message. It implies the threshold
signature with transparent setup and dynamic threshold t and threshold ring
signature with threshold t. It also naturally implies the multi-signature with t
signers and the graded signature which indicates there are t different signers.
When there is only one signer and one message, it implies the ring signature and
attribute-based signature. The signer himself works as the combiner and shows
the threshold is 1 with the proof of satisfying the predicate. It is equivalent to
validating the signer’s attribute. More details can be found in Sec. 6.

Anonymous reputation systems. Recent works on the anonymous reputation sys-
tems [12,11,24] achieve full anonymity at the cost of linear communication cost
and quadratic verification complexity. We allow the combiner to know the signer
identities and let the number of signers be the description. It generates a PAS
which reveals the reputation states and its size is just logarithmic and can be
verified in logarithmic time.
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Onchain voting system. Certain voting policies necessitate that voters possess
a particular property [3], and it can be denoted by their identity index. For
instance, within an organization, senior members are associated with indices
smaller than a threshold. The combiner’s task is to demonstrate that among the
signers, there is at least one whose index is lower than a specified threshold. In
our design, relying on the binary vector, the combiner only needs to prove the
existence of a single position in the vector where the value is 1 and the position
is smaller than a specified threshold.

Extensions. We can also easily support further advanced properties such as dy-
namic join, weighted, accountability and more.

– New users can seamlessly join the system without causing any disruptions
to existing users. The process of joining is transparent and does not have
any adverse effects on other users. It just involves changing a single global
public key in a publicly verifiable way.

– In the PAS scheme, each user can associate their public key with a weight and
the ∆ is defined as the total weight of the signers. As a result, when gener-
ating the PAS signature, it discloses the total weight of the signers involved.
So our PAS also supports the weight aggregation feature like [33,20,22].

– Our PAS can be extended to support the accountability by adding an extra
identities encryption layer. It is similar with the method of TAPS [15].

2 Preliminary

We use bold letter for vector, for example a = (a1, ..., an) ∈ Znq . We use ◦ to
denote the Hadamard product: a ◦ b = (a1 · b1, ..., an · bn) for a, b ∈ Znq . We
use [k] to denote the integers in {1, 2, ..., k}. On input the security parameter
1λ, a group generator G.Gen(1λ) produces public parameters G.pp = (q,G, g),
where q is a prime of length λ, and G is a cyclic group of order q with gener-
ator g. Similarly, a bilinear group generator BG.Gen(1λ) produces public pa-
rameters BG.pp = (q,G1,G2,GT , g, g̃, e) where G1 = 〈g〉,G2 = 〈g̃〉,GT are
groups of order q. The map e : G1 × G2 → GT defines gT = e(g, g̃), the
map is bilinear, (for all a, b ∈ Zq, e(ga, g̃b) = e(g, g̃)ab) and non-degenerate
(for all generators g of G1, g̃ of G2, GT = 〈e(g, g̃)〉). We assume G1 6= G2

and we are working on Type III groups [6] who do not have efficiently com-
putable homomorphisms between G1 and G2. We use [a]1, [b]2, [c]T denotes the
element ga, g̃b, gcT in G1,G2,GT respectively. We use [x]1 denotes the vector
(gx1 , ..., gxn) ∈ Gn1 for x = (x1, ..., xn) ∈ Znq . We write all groups additively, e.g.,

[a]1 + [b]1 = [a + b]1 denotes ga · gb = ga+b, b · [a]1 = [ab]1 denotes (ga)b = gab,
[x]1 + [y]1 = [x+ y]1 denotes (gx1 , ..., gxn) ◦ (gy1 , ..., gyn) = (gx1+y1 , ..., gxn+yn),
[x]1 ◦y = (gx1y1 , ..., gxnyn), [x]y1 =

∑n
i=1 yi · [xi]1 = Πn

i=1g
xiyi . For a, b ∈ Znq , let

〈a, b〉 :=
∑n
i=1 ai · bi denote the inner product between a, b. For [a]1 ∈ Gn1 and

[b]2 ∈ Gn2 , let 〈[a]1, [b]2〉 := e([a]1, [b]2) =
∑n
i=1 e([ai]1, [bi]2) denote the inner

pairing product between [a]1, [b]2. Given a vector v = (v1, ..., vn) with even n,
we denote v` = (v1, ..., vn/2) and vr = (vn/2+1, ..., vn). For k ∈ Z∗q we use kn to
denote the vector containing the first n powers of k, i.e., kn = (1, k, k2, ..., kn−1).



10 T. Qiu and Q. Tang

2.1 Assumptions

Definition 1 (DDH assumption). Let (q,G, g)← G.Gen(1λ) be a group gen-
erator. The DDH assumption holds for G.Gen if the following distributions are
indistinguishable: (g, ga, gb, gab : a, b←$Zq) and (g, ga, gb, gc : a, b, c←$Zq)

Definition 2 (DLOG assumption). Let (q,G, g) ← G.Gen(1λ) be a group
generator. The DLOG assumption holds for G.Gen if for all PPT adversary A we
have: Pr[A(q,G, g,X) = x|(q,G, g)← G.Gen(1λ), x←$Zq, X = gx] ≤ negl(λ)

Definition 3 (SXDH assumption [6]). Let (q,G1,G2,GT , e, g, g̃)← BG.Gen(1λ)
be a bilinear group generator. The SXDH assumption holds for BG.Gen if DDH
assumption holds for G1 and G2.

Definition 4 (co-CDH assumption[14]). Let (q,G1,G2,GT , e, g, g̃)← BG.Gen(1λ)
be a bilinear group generator. The co-CDH assumption holds for BG.Gen if for
all PPT A, given [a]1, [b]2 where a, b←$Zq, the probability that A can produce
[ab]1 is negligible.

Definition 5 (DPair assumption [6]). Let (q,G1,G2,GT , e, g, g̃)← BG.Gen(1λ)
be a bilinear group generator, n = poly(λ). The double-pairing (DPair) assump-
tion holds for BG.Gen if for all PPT adversary A, given [r]1←$G1, the proba-
bility that A can produce [a]2, [b]2 ∈ G2 s.t. e([r]1, [a]2) + e(g, [b]2) = [0]T and
a, b 6= 0 is negligible.

Definition 6 (ML-Find-Rep assumption [23]). Let (q,G, g) ← G.Gen(1λ)
be a group generator, n = poly(λ) which a power of 2, ν = log n. The ML-
Find-Rep assumption holds for G.Gen if for all PPT adversary A we have:
Pr[A(q,G, [r], X)→ a ∈ Znq s.t. [r]a = [0]∧a 6= 0|(q,G, g)← G.Gen(1λ), (x1, ...,
xν)←$Zνq , r = (1, x1, x2, x1x2, ..., x1 · · ·xν)] ≤ negl(λ).

Definition 7 (DPair-ML assumption). Let (q,G1,G2,GT , e, g, g̃)← BG.Gen(1λ)
be a bilinear group generator, n = poly(λ) which a power of 2. The DPair-ML
assumption holds for BG.Gen if for all PPT adversary A, given [r]1 ∈ Gn1 , where
r = (1, x1, x2, x1x2, ..., x1 · · ·xν) for (x1, ..., xν)←$Zνq , the probability that A can
produce [s]2 ∈ Gn2 s.t. e([r]1, [s]2) = [0]T is negligible.

The DPair-ML assumption is implied by the SXDH assumption and ML-
Find-Rep assumption.

2.2 Cryptographic Primitives

Due to space constraints, we introduce some cryptographic primitives here briefly
and defer the detailed preliminaries to the full version.

Commitment A commitment scheme allows one to commit to a chosen value
secretly, with the ability to only open to the same committed value later. A
commitment scheme Πcmt consists of the following PPT algorithms:
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Setup(1λ)→ pp: generates the public parameter pp.
Com(m; r) → com: generates the commitment for the message m using the
randomness r.
Hiding. A commitment scheme is said to be hiding if the commitment does not
reveal any information about the committed value.
Binding. A commitment scheme is said to be binding if a commitment can only
be opened to one value.
Additively homomorphic. A commitment is additively homomorphic if for any
values m1,m2 and randomness r1, r2: Com(m1; r1) + Com(m2; r2) = Com(m1 +
m2; r1 + r2).

Pedersen Commitment For messages m ∈ Znq and any i ∈ {1, 2, T}, the
Pedersen commitment is defined by:
Setup(1λ)→ pp: g←$Gni , h←$Gi.
Com(m; r)→ com: Com(m; r) = gm · hr ∈ Gi where r←$Zp.

The Pedersen commitment is additively homomorphic, perfectly hiding and
computationally binding under the DLOG assumption.

AFGHO Commitment Abe et. al. [6] defined a structure preserving commit-
ment to group elements. In this case we have the message space Gn2 :
Setup(1λ) → pp: Run (q,G1,G2,GT , e, g, g̃) ← G(1λ), the commitment key
ck1 := g←$Gn1 .
Com(m; r) → com: for [m]2 ∈ Gn2 , Com([m]2; [r]2) = 〈ck1, [m]2〉 + e(g, [r]2)
where [r]2←$G2.

To commit to messages in G1, we can just interchange the role of G1 and G2

in the above construction with ck2 ∈ Gn2 .
The AFGHO commitment is additively homomorphic, perfectly hiding and

computationally binding under the SXDH assumption.

Structured AFGHO Based on the updatable common reference string tech-
nique of Daza et al. [23], we give the modified AFGHO commitment with struc-
tured commitment keys ck1, ck2 which are generated as below.

(pp, [r]1 ∈ G1,ck1 = [r]1 ∈ Gn1 , vk1 = [x]2 ∈ Gν2) ∈ L1
Com ⇔

[r1]1 = [r]1 ∧ ∀i ∈ [ν],∀j ∈ [2i−1], [r2i−1+j ]1 = xi[rj ]1

(pp, [s]2 ∈ G2,ck2 = [s]2 ∈ Gn2 , vk2 = [y]1 ∈ Gν1) ∈ L2
Com ⇔

[s1]2 = [s]2 ∧ ∀i ∈ [ν],∀j ∈ [2i−1], [s2i−1+j ]2 = yi[sj ]2

where r, xi←$Zq and s, yi←$Zq for all i ∈ [ν].
The structured AFGHO commitment is additively homomorphic, perfectly

hiding and computationally binding under the SXDH and DPair-ML assump-
tions.

Zero-Knowledge Arguments of Knowledge (ZKAoK) A zero-knowledge ar-
gument of knowledge is a cryptographic protocol involving two parties: a prover
and a verifier. In this protocol, the prover’s objective is to provide convincing
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proof to the verifier that a certain statement is true, without revealing any in-
formation about the underlying witness.

It consists of three PPT algorithms Setup, P, and V. The setup algorithm
outputs a common reference string σ on inputting a security parameter λ. The
prover P and the verifier V are interactive algorithms. As the output of this
protocol, we use the notation 〈P,V〉 = b, where b = 1 if V accepts and b = 0 if
V rejects. The proof is public coin if an honest verifier generates his responses
to P uniformly.

Argument of knowledge. (Setup,P,V) is called an argument of knowledge for
the relation R if it satisfies the following two definitions.

Perfect completeness. The prover can persuade the verifier if it possesses a wit-
ness that attests to the truth of the statement.

Computational witness-extended emulation. Whenever an adversary that pro-
duces an acceptable argument with some probability, there exist an emulator
who can produce a similar argument with the same probability and provide a
witness w simultaneously. It implies soundness which asserts that no PPT ad-
versary can persuade the verifier when the statement is false. It also assures
knowledge soundness which guarantees the existence of an extractor capable of
producing a valid witness for the statement.

Honest-verifier special zero-knowledge (HVSZK). Given the verifier’s challenge
values, it is possible to simulate the entire argument without witness efficiently.

BLS aggregate signature We briefly review the BLS signature scheme and
its signature aggregation mechanism [14]. Given an efficiently computable non-
degenerate pairing e : G1×G2 → GT in groups G1,G2,GT of prime order q. Let
g and g̃ be generators of G1 and G2 respectively, a hash function H :M→ G1:

– KeyGen(): the user chooses sk←$Zq, outputs (pk, sk) for pk ← g̃sk ∈ G2.

– Sign(sk,m): output σ ← H(m)sk ∈ G1.

– Vrfy(pk,m, σ): output 1 if e(σ, g̃) = e(H(m), pk), otherwise, output 0.

– Signature Aggregation: Given triples (pki,mi, σi) for i ∈ [n], anyone can
aggregate the signatures σ1, ..., σn into a single group element σ̂ ← Πi∈[n]σi ∈
G1. Verification can be done by checking that if

e(σ̂, g̃) = e(H(m1), pk1) · · · e(H(mn), pkn).

For all same messages it just needs to check if e(σ̂, g̃) = e(H(m1), Πn
i=1pki).

It is unforgeable under the co-CDH assumption.

The rogue public-key attack and defense. Note that the aggregate public key
Πn
i=1pki suffers the rogue public-key attack [9]. To prevent it, we use the Proof-

of-Possession (PoP) mechanism [34] in the registered key model. In this approach,
each party is required to provide a proof that they possess the private key corre-
sponding to their public key. This proof can be included during the setup phase
and ensures that only legitimate key owners can participate. In this paper, we
implicitly assume the presence of PoP proofs for the public keys.
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3 Predicate Aggregate Signatures

In this section, we formalize the predicate aggregate signatures and establish
the security model for this concept. Predicate aggregate signatures enable users
to sign multiple messages according to some predefined public policy, and these
individual signatures can be aggregated by a combiner, preserving the anonymity
of the signers. The resulting aggregate signature discloses only a brief description
of the involved signers (e.g., count of signers for each message, total weight of
signers, etc) and provides assurance that these signers and the description satisfy
the specified policy denoted by a public predicate function.

This notion addresses the need for efficient and privacy-preserving signature
schemes that allow for the signing of multiple messages while ensuring adherence
to a given predicate. The security model encompasses the privacy of signers and
the unforgeability of the predicate aggregate signature.

3.1 Syntax

In general, there are three parties in the system: signers who sign on the mes-
sage; the combiner, who generates a predicate aggregate signature with a public
description of the involved signers and proves that these signers and the descrip-
tion satisfy a public predicate; the verifier who verifies the correctness of the
predicate aggregate signature.

• Setup(1λ) : On the security parameter λ, the system public parameters pp
are generated. The message space is set as M = {mj}j∈[k]. There is a public
policy Ω which decides the computation rule of the signers description ∆
and the predicate function PΩ .
It also includes the key generation of users. Each user ui generates his secret
key ski and public key pki pair and broadcasts the public key. The combiner
(or any other parties) collects the public keys and publishes the aggregation
key ak and verification key vk which contains PΩ .

• ParSign(ski,mj) : For a message mj chosen from M , the user i signs on it
using his secret key ski and sends (pki,mj , σij) to the combiner.

• ParVrfy(pk,mj , σ) : On receiving (pki,mj , σ), anyone can verify it.
• Combine(ak, {Sj}j∈[k],{{σij}i∈Sj}j∈[k], {mj}j∈[k]) : When receiving sets of

signatures {{σij}i∈Sj}j∈[k] on the message mj from different signers w.r.t.
index sets {Sj}j∈[k] (called signer sets) where each Sj ⊆ [n], the combiner
generates a signature Σ for the message set M = {mj}j∈[k] with corre-
sponding description ∆ of these signer sets. It also proves that the signer
sets and ∆ satisfy the public predicate PΩ decided by some policy Ω, i.e.,
PΩ(S1, ..., Sk, ∆) = 1.

• Verify(vk,M,∆,Σ) : Given the verification key vk, messages M = {mj}j∈[k],
description ∆, the PAS signature Σ, anyone can check the validness by run-
ning Verify(vk,M,∆,Σ) and outputs one bit b ∈ {0, 1} indicating if it is
valid.
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Remark 1. ∆ is the description of signers in S1, ..., Sk whose partial signatures
are used to generate the final PAS signature. It is computed via a deterministic
function F specified in the policy Ω from the signer sets: ∆ = F (S1, ..., Sk). Note
that it cannot display the signer identities plainly, since it ruins the anonymity
directly. Although it is computed deterministically, in many cases, it leaks very
little information about the signers. For example, it could be the size of each
signer set, the combined weight of signers within each signer set, or simply
demonstrating that the number exceeds a certain minimum threshold.

Remark 2. PΩ is the predicate decided by the public policy Ω which takes
the signer sets and a description as input. PΩ(S1, ..., Sk, ∆) = 1 indicates that
S1, ..., Sk, ∆ satisfy the rule according to Ω.

3.2 Model

Correctness If enough valid signatures under different public keys are used
to produce the signature Σ on the messages mj for j ∈ [k], the description ∆
and the signer sets satisfy the public predicate PΩ(S1, ..., Sk, Ω) = 1, then the
verification for (M,∆,Σ) always outputs 1.

Anonymity The signer identities are hidden from the public. The PAS signa-
ture only discloses a description of the signer sets and whether they satisfy the
predicate according to the public policy. Given any two valid signatures Σ0, Σ1

with the same descriptions and predicates from different signer sets on the same
messages set M , they are indistinguishable even to some of these signers.

Unforgeability The adversary cannot generate a valid signature on multiple
messages if it does not have enough signatures from different signers on each
message, or the signer sets and the description do not satisfy the predicate.

Oracles We define the following oracles to model the adversary’s ability. There
is an honest user table HU, a corrupted user table CU and a queried message
table QM which are initialized as empty.

– add(i): Add a new user ui to the system. If i has not been queried before, run
the key generation algorithm (pk∗, sk∗)← KeyGen, set (pki, ski) = (pk∗, sk∗)
and output pki. Add (ui, pki, ski) to the honest user table HU.

– corrupt(pki): Corrupt an honest user in the system. If pki ∈ HU, output
ski, delete (ui, pki, ski) from HU and add (ui, pki, ski) to CU.

– sign(pki,m): If pki /∈ HU, ignore it. Otherwise, run σ ← ParSign(ski,m) and
add (pki,m) to QM, output σ.

Anonymity This property ensures that signer identities are hidden from the
public. Only the combiner knows the signer identities. Others just know the
description of the signers and the signer sets with the description satisfy the
public predicate. Formally speaking, given any two valid signatures Σ0, Σ1 from
different signer sets on the same messages M with the same description ∆ and
both satisfy the predicate, nobody can distinguish them except the combiner.
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In the anonymity definition, even the signers will not be able to distinguish two
PAS signatures for the maliciously chosen messages with same thresholds. The
anonymity experiment Expanony between an adversary A and a challenger C is
formalized as follows.

– A receives the public parameters including the description function F and
public predicate PΩ specified by the policy Ω.

– A adds users to the system, it can query signatures of any signers on any
messages and even corrupt all users. The global aggregation key ak and
verification key vk are setup and given to A.

– A chooses a set of messages M = {mj}j∈[k], and two sets of index sets
S0 = {S0

j }j∈[k] and S1 = {S1
j }j∈[k] where each S0

j , S
1
j ⊆ [n]. Then it gen-

erates partial signatures σu,j ← ParSign(sku,mj), σv,j ← ParSign(skv,mj)
for all j ∈ [k], u ∈ S0 and v ∈ S1 and let D0 = {{σu,j}u∈S0}j∈[k], D1 =
{{σv,j}v∈S1}j∈[k]. It sends (M,S0, S1, D0, D1) to C.

– C computes ∆0 = F (S0), ∆1 = F (S1) and checks these partial signatures. It
aborts, if there exists any invalid partial signature or S0 = S1 or ∆0 6= ∆1

or PΩ(S0, ∆0) 6= 1 or PΩ(S1, ∆1) 6= 1. Otherwise, continue.
– C randomly chooses one bit b ← {0, 1} and sends A a predicate aggre-

gate signature Σ with M generated from signatures of Db by running Σ ←
Combine(ak, Sb, Db,M).

– A outputs a guess b′.
– Outputs 1 if b′ == b, otherwise, outputs 0.

Definition 8. A predicate aggregate signature is anonymous if any PPT adver-
sary in the Expanony can only guess the bit correctly with probability negligibly
close to 1

2 , i.e., |Pr[Expanony(A, λ) = 1]− 1
2 | ≤negl(λ).

Unforgeability This property ensures that given the public policy, any adver-
sary cannot generate a valid signature on multiple messages if it does not have
enough signatures on the messages or the signer sets and their description do
not satisfy the predicate.

It contains two properties: (1). A can not produce a valid PAS signature
which contains an honest signer who has never signed on that message. (2).
All signer sets w.r.t. the messages must adhere to the specified predicate. It is
infeasible for A to generate a valid PAS signature with a signer sets description
but the signer sets and the description are unsatisfied for the predicate.

Note that due to the anonymity requirement, the signer identities are hidden
and only their description is shown. So it is hard to decide whether A has broken
the predicate satisfaction property. To address this dilemma, we introduce an
extractor E that has the ability to reveal the signers’ identities for each message
from the predicate aggregate signature. It is inspired by the knowledge extractor
for the knowledge soundness in zero-knowledge proof of knowledge.

Formally speaking, the unforgeability experiment Expunforge works as follows:

– A receives the public parameters and the public predicate.
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– A can add users to the system then gets the aggregation key ak and verifi-
cation key vk.

– A is an adaptive adversary, it can interact with E via querying oracles. It
can then query signatures of any signers on any messages and corrupt users.

– A outputs a tuple (M,∆,Σ).
– On a valid (M,∆,Σ), E outputs the signers’ identities S1, ..., Sk.

A wins and the experiment outputs 1 only if (M,∆,Σ) is valid w.r.t. vk and
at least one of the following conditions is satisfied:

– ∃ ij ∈ Sj , such that ij ∈ HU and (pkij ,mj) /∈ QM;
– PΩ(S1, ..., Sk, ∆) 6= 1.

The first condition meansA has never queried the corrupt oracle on pkij or sign
oracle on (pkij ,mj). It models that A generates a valid PAS signature without
enough valid partial signatures.

Definition 9. A predicate aggregate signature is unforgeable if any PPT ad-
versary in the above experiment can only win with negligible probability, i.e.,
Pr[Expunforge(A, λ) = 1] ≤negl(λ)

4 Constructions

In this section, we give the construction of the predicate aggregate signature.
Formally speaking, the combiner aims to prove the knowledge of signatures and
signers satisfying the following relation:

RPAS = {pk1, . . . , pkn,m1, . . . ,mk, Ω,∆; {σi1}i∈S1
, . . . , {σik}i∈Sk :

ParVrfy(pki,mj , σij) = 1 ∀i ∈ Sj , j ∈ [k];

Sj ⊆ [n],∀j ∈ [k];PΩ(S1, ..., Sk, ∆) = 1}

where pk1, . . . , pkn are all the public keys, m1, . . . ,mk are the candidate mes-
sages, Sj contains the indices of users who have signed on the message mj , σij
is the signature from user i on message mj . PΩ is the predicate function decided
by the public policy Ω.

The predicate function can be very simple that outputs 1 as long as the
description ∆ is correct and there is no other requirements on the policy. For
any general policy that can be described by an arithmetic circuit, the predicate
can be converted into a circuit and proved using the efficient zero-knowledge
argument for arbitrary arithmetic circuits which have been studied in [16,19,23].

In this section, we mainly consider the anonymous reputation system with
the rate-once policy as a non-trivial example. Here the description is the number
of signers in each subset (∆ = {tj}j∈[k] where tj = |Sj |) and all users can only
sign once even for different messages. It means the signer sets for all messages
are disjoint. We define the public predicate as follows:

PΩ(S1, ..., Sk, ∆) =

 1, if ∆ = {tj}j∈[k], Sj ⊆ [n], |Sj | = tj ,∀j ∈ [k];
∧Sj0 ∩ Sj1 = ∅, ∀j0, j1 ∈ [k], j0 6= j1

0, otherwise.
(1)
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4.1 Construction Overview

Our starting point is the pairing-based BLS aggregate signature (see Sec. 2.2).
Let n be the number of users in the system. On receiving a set of partial signa-
tures σij on each message mj ∈ M from signer i ∈ [n], the combiner generates
the aggregate signature σ̂ and publishes it with the index set Sj ∈ [n] of signers
on message mj for verification. The verifier computes the verification key for mj

w.r.t. Sj : p̂kj = Πi∈Sjpki for j ∈ [k]. Subsequently, it verifies the validity of σ̂.
An intuitive idea is letting the combiner also compress the public keys into

a compact version which can be used for verifying the aggregated signature. To
protect the privacy of signers, it also adds blind factors to the compressed public
keys and respective aggregated signatures. The crux of our construction now
revolves around proving the correctness of the compressed public keys without
using linear descriptions while still enabling duplication checks.

We start from the single message case. Given all the public keys pk =
(pk1, ..., pkn) ∈ Gn2 and a set S ⊆ [n], let pkS = {pki}i∈S ⊆ {pki}i∈[n] to
denote a subset of all public keys w.r.t. S. The blinded aggregation of public
keys of pkS is: p̂kS = Πi∈Spki · g̃rS where rS is the blind factor. Note that S
determines a binary vector bS = (b1, ..., bn), bi = 1 if i ∈ S, otherwise, bi = 0.

The combiner (or prover P) computes a commitment B on bS and proves
that the committed bS is a binary vector whose Hamming weight is t. Then P
proves that p̂kS can be expressed in the form of pkv · g̃r where v is same as the

bS in B and it knows the blind factor r. It means that p̂kS contains t different
signers. Combined with an aggregate signature σ̂ and a message m, the valid
tuple (p̂kS ,m, σ̂), the verifier can be convinced that the message has been signed
by t different users.

For multiple messages m1, ...,mk case, the index set of signers who have

signed on mj is Sj and their aggregated public keys are p̂kj for j ∈ [k]. Here P
proves the knowledge of corresponding binary vectors bj whose Hamming weight
is tj and the knowledge of blind factor rj and the signer sets S = {S1, ..., Sk}
and thresholds T = {t1, ..., tk} satisfy the public predicate PΩ .

Considering the rate-once policy in the anonymous reputation system as
a concrete example, the predicate is denoted by PΩ(S, T ) := |Sj | = tj ,∀j ∈
[k]∧Sj0∩Sj1 = ∅, ∀j0, j1 ∈ [k], j0 6= j1. Due to the binary feature, we observe that
proving subsets disjoint can be achieved by demonstrating that the summation
of all binary vectors is still binary with a Hamming weight t =

∑
j∈[k] tj .

In summary, we formulate this process in the following relation:

R1 = {{p̂kj ,mj , tj}kj=1, σ̂; b1, . . . , bk, r1, ..., rk :

e(σ̂, g̃) = e(H(m1), p̂k1) · · · e(H(mk), p̂kk)

∧ p̂kj = pkbj · g̃rj ∧ bj ∈ {0, 1}n ∧ tj = 〈1n, bj〉,∀j ∈ [k]

∧ b = Σj∈[k]bj ∈ {0, 1}n}

(2)

Strawman scheme from Bulletproofs In general, the public keys are group
elements. It can be integrated with the public parameters of Bulletproofs which
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are also group elements. Then we use Pederson commitment to commit the
binary vector and prove the correctness of the aggregated public keys. The com-
biner has p̂k = Πn

i=1pk
bi
i · gr and generates B = Πn

i=1g
bi
i ·hr. It generates binary

proof on B with parameter (g1, ..., gn, h) and another binary proof on B · p̂k with

parameter (g1 · pk1, ..., gn · pkn, h · g). It implies that p̂k shares the same binary
vector and randomness in B, so it is well-formed. Here the binary proof can be
constructed from Bulletproofs [19] with logarithmic size. The final construction
comes with almost the same cost.

For multiple k messages case, instead of generating k individual proofs, we
generate a proof for k values on the knowledge of n-length binary vectors. It
aggregates k proofs into one proof of a kn-length binary vector (k · n bits) via a
random challenge value z and Schwartz-Zippel lemma. It is similar with the ag-
gregated range proofs of Sec. 4.3 in [19]. As a result, we achieve a communication
cost of O(k+log n+log k) which is just logarithmic to the parameter n. However,
the verification time scales linearly with the total bit length, denoted as O(k ·n).
This places a significant burden on the verifier, prompting us to explore more
efficient construction methods that offer sublinear verification times.

Construction with Logarithmic Verifier Daza et al [23] improves Bullet-
proofs to achieve both logarithmic size and verification time. But it cannot be
applied to our setting in the same way as above. Since it relies on structured
parameters which are incompatible with the randomly chosen public keys. Inte-
grating the public keys with these parameters would violate their structure and
render the technique useless.

Plain case without anonymity. We start from the single message case without
anonymity. We assume that the proof of possession has been done to prove the
knowledge of secret key for each public key. We aim to prove that a given p̂k ∈ G2

can be expressed in the form of pkb where b is a binary vector. Note that the
pairing e(g,pkb) =

∑n
i=1 e(g, pk

bi
i ) =

∑n
i=1 e([bi]1, pki) = 〈[b]1,pk〉. Instead of

directly proving the form of p̂k, we compute the map e(g, p̂k) at first. By the
bilinear property, it is sufficient to prove that the map result is also an inner
pairing product between [b]1 and pk. To this end, we leverage an inner pairing
product (IPP) argument. It asserts that a given element in GT is the inner
pairing product between two vectors in Gn1 and Gn2 which are committed with
AFGHO commitments. By imposing a specific structure on the commitment key
(similar to [23], as we introduced in Sec. 2.2), the verification time is reduced to
logarithmic in relation to n.

The remaining issue is proving the form of these two committed vectors. pk
are public, so the commitment can be verified publicly. For [b]1, we develop a
binary proof in which the verification time is also logarithmic to n. It proves
the committed vector consists of elements which is either [0]1 or [1]1. Thus,
b ∈ {0, 1}n.

Anonymous case. Now we consider the anonymous setting with a blind factor r:
p̂k = pkb · g̃r and e(g, p̂k) = 〈([b]1, g), (pk, g̃r)〉. When we attempt to follow the
above method, some issues happen. The combiner needs to take additional work
on proving: (i) the last position of the binary vector is 1; (ii) the public keys are
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committed together with a random element g̃r and he knows r. The first task
requires another invocation of binary proof and it is unclear how to prove the
discrete logarithm of a committed group element without leaking r or g̃r.

By the bilinear property, we also have e(g, p̂k) = 〈([b]1, g
r), (pk, g̃)〉. Even

though the latter vector (pk, g̃) is publicly known, the situation remains chal-
lenging because the binary proof mechanism does not inherently support proving
the presence of a random value within the vector. Another observation is that
e(g, p̂k) = 〈[b]1,pk〉 + r · eT . One may consider to extract r · eT and prove the
knowledge of r. But it would leak b and violate the anonymity.

To mitigate these issues, we commit b and r with different commitment keys
and generate the proofs for them separately. Afterward, by combining these
two commitments, we can ascertain the presence of both a binary vector and
a blind factor in designated positions. Then we can apply the inner pairing
product argument on these vectors and proves the well-formedness of the blinded
aggregated public key.

For k messages setting with k aggregated public keys, the aggregation tech-
nology on kn-length binary vector can also be applied as we outlined in the
strawman scheme.

In the next section, we introduce our inner pairing product argument and
binary proof with logarithmic communication cost and logarithmic verification
time. They can be rendered non-interactive by applying the Fiat-Shamir heuris-
tic [25]. In Sec. 4.3, we present our PAS signature scheme with the rate-once
policy in the anonymous reputation system.

4.2 Succinct Proofs with Logarithmic Verifier

Inner Pairing Product Argument We consider an argument for inner pair-
ing product between two vectors vi ∈ Gni committed with structured AFGHO
commitments with generators (ck3−i, eH) ∈ Gni × GT for i ∈ {1, 2} where
eH = e(gH , g̃), gH ←$G1. In this section, we assume that the dimension n is
a power of 2. If necessary, it is straightforward to add padding to the inputs to
ensure this condition is met. Formally, we define a language:

(pp, P,C1, C2, [r]1, ck1, vk1,[s]2, ck2, vk2, eH) ∈ LIPP ⇔
([r]1, ck1, vk1) ∈ L1

Com ∧ ([s]2, ck2, vk2) ∈ L2
Com∧

∃v1 ∈ Gn1 ,v2 ∈ Gn2 , rC1
, rC2

, rP ∈ Zq :

C1 = 〈v1, ck2〉+ rC1
· eH ∧ C2 = 〈ck1,v2〉+ rC2

· eH∧
P = 〈v1,v2〉+ rP · eH

Common input: (pp, [r]1, [s]2, vk1, vk2, eH), P, C1, C2 ∈ GT
P input: (ck1, ck2), v1 ∈ Gn1 ,v2 ∈ Gn2 , rC1

, rC2
, rP ∈ Zq

Statement: (pp, P, C1, C2, [r]1, ck1, vk1, [s]2, ck2, vk2, eH) ∈ LIPP

P and V proceed the protocol ΠIPP as follows:
If n = 1:

C1 = e(v1, ck2) + rC1
· eH , C2 = e(ck1, v2) + rC2

· eH , P = e(v1, v2) + rP · eH
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- P samples s1←$G1, s2←$G2, rD1 , rD2 , rT1 , rT2 ←$Zq and computes:
D1 = e(s1, ck2) + rD1

· eH , D2 = e(ck1, s2) + rD2
· eH

T1 = e(s1, v2) + e(v1, s2) + rT1 · eH , T2 = e(s1, s2) + rT2 · eH
- P sends D1, D2, T1, T2 to V
- V replies with c←$Z∗q
- P computes and sends:
u1 = v1 + c · s1, u2 = v2 + c · s2,
r1 = rC1

+ c · rD1
, r2 = rC2

+ c · rD2
, r3 = rP + c · rT1

+ c2 · rT2

- V accepts if:
C1 + c ·D1 = e(u1, ck2) + r1 · eH∧
C2 + c ·D2 = e(ck1, u2) + r2 · eH∧
P + c · T1 + c2 · T2 = e(u1, u2) + r3 · eH

Else n > 1, the reduce procedure:
- P samples r1`, r2`, rP`, r1r, r2r, rPr ←$Zq and computes:
C1` ← 〈v1`, ck2r〉+ r1` · eH , C2` ← 〈ck1r,v2`〉+ r2` · eH ,
P` ← 〈v1r,v2`〉+ rP` · eH ,
C1r ← 〈v1r, ck2`〉+ r1r · eH , C2r ← 〈ck1`,v2r〉+ r2r · eH ,
Pr ← 〈v1`,v2r〉+ rPr · eH
- P sends C1`, C2`, P`, C1r, C2r, Pr
- V replies with c←$Z∗q
- P computes:
v′1 ← v1`c+ v1rc

−1 ∈ Gn′1 , v′2 ← v2`c
−1 + v2rc ∈ Gn′2 ,

r′C1
= rC1 + r1` · c2 + r1r · c−2, r′C2

= rC2 + r2` · c−2 + r2r · c2,
r′P = rP + rP` · c−2 + rPr · c2
ck′1 = cck1` + c−1ck1r, ck

′
2 = c−1ck2` + cck2r,

[r′]1 ← {ck′1}1, [s′]2 ← {ck′2}1 (picks the first elements of ck′1, ck
′
2)

- P sends [r′]1, [s′]2 to V.
- V checks the following equations and aborts if any fails:

e([r′]1 − c[r]1, [1]2) = e(c−1[r]1, [xν ]2), e([1]1, [s
′]2 − c−1[s]2) = e([yν ]1, c[s]2)

Update vk′1 = [x′]2 ← ([xi]2)i∈[ν−1] and vk′2 = [y′]1 ← ([yi]1)i∈[ν−1]
- Both compute
C ′1 ← c2C1` + C1 + c−2C1r, C

′
2 ← c−2C2` + C2 + c2C2r,

P ′ = c−2P` + P + c2Pr,
- The reduced statement is (pp, P ′, C ′1, C

′
2, [r

′]1, ck
′
1, vk

′
1, [s

′]2, ck
′
2, vk

′
2, gH , eH) ∈

LIPP with the new witnesses (v′1,v
′
2, r
′
1, r
′
2, r
′
P ).

Theorem 1. The protocol presented is a Public Coin, HVSZK, interactive ar-
gument of knowledge for the relation LIPP with O(log n) round complexity, O(n)
prover complexity, and O(log n) communication and verification complexity un-
der the SXDH and DPair-ML assumptions.

The proof for Theorem 1 follows a similar structure to those found in [19,23,30].
Due to page constraints, we refer readers to the full version for detailed elabo-
ration.
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Binary Proofs with Logarithmic Verifier We consider an argument for a
binary vector b = (b1, . . . , bn) ∈ {0, 1}n with Hamming weight t. This binary
vector is equivalent to a vector v ∈ Gn1 where each element is either [0]1 or [1]1,
and the number of [1]1 is precisely t. Formally, we define a language:

(C, [r]2, ck2, vk2, eH , t) ∈ LBin ⇔
([r]2, ck2, vk2) ∈ L1

Com∧
∃b ∈ {0, 1}n, rC ∈ Zq, s.t. :

C = 〈[b]1, ck2〉+ rC · eH ∧ 〈1n, b〉 = tj ,

P proves that 〈1n, b〉 = t∧ b ◦ b′ = 0n ∧ b′ = b−1n. Using random y, τ ∈ Z∗q
from V, these constraints can be re-written as:

〈b− τ · 1n,yn ◦ (b′ + τ · 1n + τ2 · 1n)〉 = τ2 · t+ δ(y, τ)

where δ(y, τ) = (τ − τ2) · 〈1n,yn〉 − τ3〈1n,1n〉 ∈ Zq. Thus the binary proof can
be reduced to one inner pairing product argument. Concretely, P and V engage
in the following protocol ΠBin:

- On input b ∈ {0, 1}n, P computes:
b′ = b− 1n, [b]1 ∈ Gn1 and [b′]2 ∈ Gn2 , rB1

, rB2
←$Zq,

commits to [b]1 and [b′]2:
C = B1 = 〈[b]1, ck2〉+ rB1 · eH , B2 = 〈ck1, [b′]2〉+ rB2 · eH ,
chooses blinding vectors and commits them:
u1,u2←$Znq , rU1

, rU2
←$Zq,

U1 = 〈[u1]1, ck2〉+ rU1
· eH , U2 = 〈ck1, [u2]2〉+ rU2

· eH ,
sends B1, B2, U1, U2 to V
- V sends challenges y, τ ←$Z∗q to P
- P computes ck′1 ← ck1 ◦ y−n,
define the following polynomials:

l(X) = b− τ · 1n + u1 ·X ∈ Znq [X]

r(X) = yn ◦ (b′ + τ · 1n + u2 ·X) + τ2 · 1n ∈ Znq [X]

p(X) = 〈l(X), r(X)〉 = p0 + p1 ·X + p2 ·X2 ∈ Znq [X]

Next, P needs to convince V that p0 = t · τ2 + δ(y, τ).
- P chooses φ1, φ2←$Z∗q and computes:
P1 = p1 · e(g, g̃) + φ1 · eH , P2 = p2 · e(g, g̃) + φ2 · eH
- P sends P1, P2 ∈ GT to V
- V sends x←$Z∗q to P
- P computes:
[l]1 = [l(x)]1 = [b− τ · 1n + u1 · x]1 ∈ Gn1 ,
[r]2 = [r(x)]2 = [yn ◦ (b′ + τ · 1n + u2 · x) + τ2 · 1n]2 ∈ Gn2
P = 〈[l]1, [r]2〉 ∈ GT , φx = φ2 · x2 + φ1 · x ∈ Zq
µ1 = rB1

+ rU1
· x, µ2 = rB2

+ rU2
· x ∈ Zq

P sends [l]1, [r]2, P, φx, µ1, µ2 to V
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V computes ck′1 in the same way and computes:
Q1 = B1+x·U1−τ ·〈[1]1, ck2〉, Q2 = B2+x·U2+τ ·〈ck′1, [yn]2〉+τ2·〈ck′1, [1n]2〉
checks whether

P + φx · eH
?
= (t · τ2 + δ(y, τ)) · e(g, g̃) + x · P1 + x2 · P2

Q1
?
= 〈[l]1, ck2〉+ µ1 · eH , Q2

?
= 〈ck′1, [r]2〉+ µ2 · eH

Note that the communication and verification cost are linear to n. To reduce
them, P does not send [l]1, [r]2 directly, and V just computes vk′1 ← vk1◦ȳ, where

ȳ = (1, y−1, · · · , y−2ν−1

), rather than ck′1. To make sure V still can compute Q2,
P computes Y = 〈ck′1, [yn]2〉 = 〈ck1, [1n]2〉 and Γ = 〈ck′1, [1n]2〉.
P sends Γ to V and proves its correctness as follows:
Let Γν = Γ , ck′1ν = ck′1, for i = ν − 1 to 1:

P sends Mi = ck′
12i

1i ∈ G1, where ck′1i ∈ G2i

1 is the left half of ck′1(i+1);

V aborts if e(Mi, ([1]2 + vk′1(i+1))) 6= Γi+1,

where vk′1(i+1) is the i+ 1-th element of vk′1,
otherwise let Γi = e(Mi, [1]2) and continue;

After ν − 1 steps without abort, V can be convinced that Γ is correct:
Γ = 〈ck′1, [1n]2〉 and its computation time is O(ν) = O(log n).
Thus, V can compute Q2 = B2 + x · U2 + τ · Y + τ2 · Γ in O(log n) time.
Thereafter, P runs the inner pairing product argument protocol ΠIPP with

V: LIPP(pp, P,Q1, Q2, [r]1, ck
′
1, vk

′
1, [s]2, ck2, vk2)

Theorem 2. The binary proof has perfect completeness, HVSZK and computa-
tional witness extended emulation under the SXDH and DPair-ML assumptions.

Proof. The binary proof is a special case of the aggregated binary proof in The-
orem 3 with k = 1. It can be regarded as a corollary of Theorem 3.

Aggregated Binary Proofs The prover is similar to the prover for a binary
proof with k·n bits except the following modifications. Without loss of generality,
we assume that k · n is still a power of 2. It proves that the committed values
are k · n bits and they are the concatenation of k blocks. The number of 1’s
in the j-th block is tj : b = (b1|| · · · ||bk) for all j ∈ [k] where bj ∈ {0, 1}n and
〈1n, bj〉 = tj . Formally, we define a language:

(C, [r]2, ck2, vk2, eH , {tj}j∈[k]) ∈ LaBin ⇔
([r]2, ck2, vk2) ∈ L1

Com∧
∃b ∈ {0, 1}n, rC ∈ Zq, s.t. :

C = 〈[b]1, ck2〉+ rC · eH ∧ 〈1n, bj〉 = tj ,∀j ∈ [k].

We convert b to [b]1 ∈ Gkn1 , and commit it into B = 〈[b]1, ck2〉+rB ·eH where
rB ←$Zq and all tj are public. The protocol in the former section is modified as
follows:

l(X) = b− τ · 1k·n + u1 ·X ∈ Zk·nq [X]
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r(X) = yk·n ◦ (b′ +τ ·1k·n+u2 ·X)+

k∑
j=1

τ j+1 · (0(j−1)·n||1n||0(k−j)·n) ∈ Zk·nq [X]

δ(y, τ) = (τ − τ2) · 〈1k·n,yk·n〉 −
∑k
j=1 τ

j+2 · 〈1n,1n〉
The verification check needs to include each tj :

P + φx · eH = ((

k∑
j=1

(tj · τ j+1) + δ(y, τ)) · e(g, g̃) + x · P1 + x2 · P2

Q2 needs to be updated to

Q2 = B2 + x · U2 + τ · Y +

k∑
j=1

τ (j+1) · 〈ck′1j , [1n]2〉

where ck′1j consists of the ((j − 1) · n+ 1)-th element to the (j · n)-th element of

ck′1.

Theorem 3. The aggregated binary proof has perfect completeness, HVSZK and
computational witness extended emulation under the SXDH and DPair-ML as-
sumptions.

The proof is analogous to that of the Range proof in [19], Appendix C. Due
to page limitations, we defer the formal proof to the full version.

4.3 Efficient Construction from BLS Signatures

• Setup(1λ) In this phase, the system parameters are generated, especially,
the common reference string. On input the security parameter 1λ, it produces
the public parameters for the BLS scheme ppbls = {G1,G2,GT , e(·, ·), H1(·)}.
Here G1,G2 are asymmetric groups, e : G1 × G2 → GT is the Type III
bilinear pairing operation, and H1 : {0, 1}∗ → G1 is the hash function.
H2 : {0, 1}∗ → Zq is another hash function. Let k be the number of poten-
tial messages, n be the maximum number of users. W.l.o.g., we assume they
are power of 2. The setup algorithm additionally outputs the structured com-
mon reference string crs = (ppcom, [r]1, ck1, vk1, [s]2, ck2, vk2) as we described
in Sec. 2.2. Note that ck1 = (ck11|| · · · ||ck

j
1|| · · · ||ck

k
1 || · · · ||ck

2k
1 ) ∈ G2kn

1 , ckj1
denotes the ((j − 1)n + 1)-th element to the jn-th element of ck1. ck2 =
(ck12|| · · · ||ck

k
2 || · · · ||ck

2k
2 ) ∈ G2kn

2 . Especially, let ck′1 = (ck11|| · · · ||ck
k
1) ∈ Gkn1 ,

ck′2 = (ck12|| · · · ||ck
k
2) ∈ Gkn2 and we use ck∗1, ck

∗
2 to denote the first element

of ckk+1
1 , ckk+1

2 respectively. Output pp = (ppbls, crs, H2).
Each user generates his secret key ski←$Zq and public key pki = [ski]2 ∈ G2

and broadcasts the public key with proof of knowledge of secret key.
The combiner or any other parties collects the public keys pk = (pk1, ..., pkn)
and publishes the commitments of them as K1 = 〈ck11,pk〉, ...,Kk = 〈ckk1 ,pk〉.
It also publish the aggregation key ak = (pp,pk) and the verification key
vk = (ppcom, ppbls, [r]1, vk1, [s]2, vk2,K1, ...,Kk)
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• ParSign(mj , ski) For a message mj chosen from the message spaceM, the
user ui signs on it using his secret key ski and sends (pki,mj , σij) to the
combiner where σij = H(mj)

ski .
• ParVrfy(pki,mj , σij) On receiving (pki,mj , σij), the combiner verifies it.

Output 1 if e(H(mj), pki) = e(σij , g̃), otherwise output 0.
• Combine(ak, {pki,mj , σij}j∈[k]) When collecting a set of {pki,mj , σi}, the

combiner verifies them one by one. If all of them are valid, the combiner does
as follows:

- Let Sj ⊆ [n] be the indices of signers who have signed on mj , set bj =
(b1j , ..., bnj) ∈ {0, 1}n, such that bij = 1 if i ∈ Sj , otherwise, bij = 0 and
tj =

∑n
i=1 bij ;

- Let b = (b1|| · · · ||bk), compute the commitment to [b]1 ∈ Gkn1 :
B = 〈[b]1, ck

′
2〉+ rB · eH where rB ←$Zq and generate the binary proof

πaBin from ΠaBin w.r.t. the language LaBin(C, [r]2, ck
′
2, vk

′
2, eH , {tj}j∈[k]);

- For j = 1 to k, mj ∈M , choose rj ←$Zq, compute sub-aggregated public

keys p̂kj = Πi∈Sjpki·g̃rj = Πn
i=1pk

bij
i ·g̃rj = pkbj ·g̃rj and sub-aggregated

signatures σ̂j = Πi∈Sjσi ·H(mj)
rj ;

- For the k sub-aggregated public keys p̂kj , compute P̂K = Πk
j=1p̂k

z(j−1)

j =

pkb1 · pkzb2 · · ·pkzk−1bk · g̃r∗ = (pk||pkz|| · · · ||pkzk−1

)(b1||···||bk) · g̃r∗ ,
where z = H2({p̂kj , σ̂j}j∈[k], B, πaBin) and r∗ =

∑k
j=1 rj · zj−1.

- Compute X = r∗ ·e(g, ck∗2)+rX ·eH and generate πpok (via the Schnorr’s
protocol [36]) to prove the knowledge of r∗ and rX ;

- Compute Q = B+X = 〈[b]1, ck
′
2〉+e(gr

∗
, ck∗2)+(rB +rX) ·eH , it means

Q = 〈([b]1, g
r∗), (ck′2, ck

∗
2)〉+ (rB + rX) · eH ∈ GT , so we know Q is the

commitment of a binary vector and a randomness;

- Compute K = 〈(ck′1, ck
∗
1), (pkzk , g̃)〉, E = 〈[b]1,pk

zk〉+r∗ ·e(g, g̃) ∈ GT ,

where pkzk = (pk||pkz||...||pkzk−1

) ∈ Gkn2 ;
- Based on E,Q,K, generates πIPP fromΠIPP w.r.t. the language LIPP(E,Q,
K, ck1, vk1, ck2, vk2, eH) to prove that E is the inner pairing product of
vectors v1,v2 which are committed in Q and K: E = 〈v1,v2〉+ rE · eH ,
where v1 = (gb1 , ..., gbkn , gr

∗
, [0]1, ..., [0]1) ∈ G2kn

1 and bi ∈ {0, 1}, r∗ ∈
Zq which has been proved via πaBin and πpok, v2 = (pkzk , g̃, [0]2, ..., [0]2) ∈
G2kn

2 which is public.4

- Generate the proof πdisj to prove all signer sets are disjoint: Sj0 ∩ Sj1 =
∅,∀j0, j1 ∈ [k], j0 6= j1. It requires the combiner additionally prove that

P̂K
′

=
∏k
j=1 p̂kj can be expressed in the form of pkb′ · g̃r′ using the

same method as above, where r′ =
∑k
j=1 rj , b′ =

∑k
j=1 bj is also a

binary vector with
∑
j∈[k] tj ones.

- Output the signature Σ ← ({p̂kj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj)
with the thresholds T = {tj}j∈[k] as ∆.

4 We pad ‘zeros’ in v1,v2 since the dimension of commitment keys for LIPP is 2kn,
which is a power of 2.
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• Verify(vk,M, T,Σ) ParseΣ = ({p̂kj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj),
T = {tj}j∈[k], compute:

z′ = H2({p̂kj , σ̂j}j∈[k], B, πaBin), σ̂ =
∏
j∈[k] σ̂j , Q = B +X,

K = K1 + · · ·+ Kz′j−1

j + · · ·+ Kz′k−1

k + e(ck∗1, g̃),

P̂K =
∏k
j=1 p̂k

z′(j−1)

j , E = e(g, P̂K), P̂K
′

=
∏k
j=1 p̂kj , t̂ =

∑
j∈[k] tj .

Accept if all the following conditions are satisfied:
- z′ = z;
- Vrfy({p̂kj ,mj}j∈[k], σ̂) = 1;
- πaBin is valid w.r.t. B, T ;
- πpok is valid w.r.t. X;
- πIPP is valid w.r.t. Q,K,E;

- πdisj are valid w.r.t. P̂K
′
, t̂.

General Predicate Satisfiability Proofs In our specific setting, where we
aim to prove the predicate regarding the relations among signer sets, we focus
on the committed binary vector. It serves as the representation of signers for
different messages and plays a crucial role in our proof construction.

Recall that Daza et al. [23] proves that the committed vectors satisfy some
circuits. By following the protocol of zero-knowledge SNARK for circuit satisfi-
ability in [23] but with AFGHO commitment (which is also homomorphic same
as the Pedersen commitment), we can obtain a circuit satisfiability proof that
is compatible with our previous inner pairing product and binary proofs. Both
communication cost and verification complexity are logarithmic to the size of
the circuit.

5 Analysis

5.1 Performance Analysis

We first analyze the performance related to the inner pairing product and binary
proofs. The inner pairing product and binary proof protocols require ν = log(k·n)
rounds, where each round involves communication and computations. In each
round, the size of the witness is halved. It leads to a communication complexity
of O(ν) since the communication cost is constant in each round. The prover’s
computation complexity in round i is O(2ν−i+1). As a result, the overall prover
complexity is O(2ν) since ν rounds are performed. On the other hand, the veri-
fier’s computation cost remains constant at O(1) since it only needs to perform
a fixed number of operations in each round. Consequently, the verifier’s overall
complexity is O(ν). For the predicate satisfaction proof with generic arithmetic
circuit, the communication cost and verification complexity are logarithmic to
the size of the circuit, which is O(log |C|). The prover’s computation complexity
is O(|C|).

In the Combine phase, the combiner needs to verify the partial signatures,
generate the sub-aggregated public keys and sub-aggregated signatures and the
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computation cost is O(n). The final signature contains additional aggregated
public keys and signatures and thresholds w.r.t. each message. It leads to O(k)
communication cost. On the final signature, the verifier checks the sub-aggregated
signatures with the respective message and sub-aggregated public key. It involves
the O(k) computation complexity. Then it verifies the correctness of these sub-
aggregated public keys by checking these proofs.

In summary, the communication cost is O(k + ν + log |C|) = O(k + log k +
log n + log |C|), the prover complexity is O(2ν + |C|) = O(k · n + |C|), and the
verifier complexity is O(ν + log |C|) = O(log k + log n + log |C|). For the special
case of rate-once policy, the communication cost is O(k+log k+log n), the prover
complexity is O(k · n), and the verifier complexity is O(k + log k + log n).

5.2 Security Analysis

Theorem 4 (Anonymity). The predicate aggregate signature is anonymous in
the random oracle model under the SXDH assumption.

Proof. Based on the rate-once policy in the anonymous reputation system, the
predicate has been explained in Equation (1) and the description ∆ is defined
as ∆ = T = {tj}j∈[k]. In the anonymous experiment, ∆0 = T0, ∆1 = T1 and
it is required that T0 = T1 for the challenge sets S0, S1. Given the signature
Σ = ({p̂kj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj), and thresholds T = {tj}j∈[k].
Note that T,K leak nothing since they are the same in both challenges with
identity sets S0, S1. We design the hybrid games as follows:

– Greal : This game is the same as the experiment, challenger chooses b←$ {0, 1}
and generates the signature Σb honestly under the identities in Sb.

– G1 : This game is similar with G0 except that the proofs πaBin, πpok, πIPP, πdisj
are simulated without witness.

– G2 : This game is similar with G1 except that the sub-aggregated public keys
and signatures are generated randomly without using b as follows: for j ∈ [k],

choose uj ←$Zq and set p̂k
′
j = g̃uj ∈ G2 and σ̂′j = H(mj)

uj ∈ G1 such that

e(H(mj), p̂k
′
j) = e(σ̂′j , g̃).

– G3: This game is similar with G2 except that B,X are also chosen randomly
independently: B′, X ′←$GT . Note that the proofs πaBin, πpok, πIPP, πdisj are
simulated without using witnesses. They can still be verified.

Compare G1 with Greal, the only difference is that these proofs are simulated.
Since these proofs are zero-knowledge under the SXDH assumptions in the ran-
dom oracle model, the probability of distinguishing G1 from Greal is negligible.
We have that |Pr[Greal(A, λ) = 1]− Pr[G1(A, λ) = 1]| ≤ negl(λ).

Compare G2 with G1, in G1, p̂kj = Πi∈Sbj pki · g̃
rj , σ̂j = Πi∈Sbσi · H(mj)

rj

where rj ←$Zq, so they are uniformly random and each pair satisfies e(H(mj), p̂kj) =

e(σ̂j , g̃). In G1, p̂k
′
j and σ̂′j are also random elements in G1,G2 respectively, and

satisfy the same kinds of relation. P̂K
′

is generated from these random p̂k
′
j and
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z, so is E′. Thus ({p̂kj , σ̂j}j∈[k], z, p̂k, E) and ({p̂k
′
j , σ̂
′
j}j∈[k], z′, P̂K

′
, E′) have the

same distribution. The probability that they can be distinguished is 0. We have
that |Pr[G1(A, λ) = 1]− Pr[G2(A, λ) = 1]| = 0.

Compare G3 with G2, in G2, B is the structured AFGHO commitment of
[b]1, X is the Pedersen commitment of r∗. Since these commitments are perfect
hiding, they are indistinguishable from the random B′, X ′ in G3. We have that
|Pr[G2(A, λ) = 1]− Pr[G3(A, λ) = 1]| = 0.

In G3, A’s view is independent of b. Thus, A just outputs a random guess b̂
in G3, so its advantage is 0: Pr[G3(A, λ) = 1]− 1/2 = 0. In summary, we have

|Pr[Expanony(A, λ) = 1]− 1/2| = |Pr[Greal(A, λ) = 1]− 1/2|
≤|Pr[Greal(A, λ) = 1]− Pr[G1(A, λ) = 1]|+ |Pr[G1(A, λ) = 1]− Pr[G2(A, λ) = 1]|

+ |Pr[G2(A, λ) = 1]− Pr[G3(A, λ) = 1]|+ |Pr[G3(A, λ) = 1]− 1/2| ≤ negl(λ)

Theorem 5 (Unforgeability). The predicate aggregate signature is unforge-
able in the random oracle model under the co-CDH, SXDH and DPair-ML as-
sumptions.

Proof. First of all, we assume that the proof of possession has been done to
prove the knowledge of secret key for each public key. Based on the rate-once
policy in the anonymous reputation system, the predicate has been explained as
in Equation (1). So in the unforgeability experiment, the adversary A wins if for
the extracted identities sets S1, ..., Sk, at least one of the following happens:

1. ∃ ij ∈ Sj , such that A has never queried the corrupt oracle on pkij or sign
oracle on (pkij ,mj);

2. ∃ j ∈ [k], s.t. tj 6= |Sj |;
3. ∃ ij ∈ Sj and it appears more than once in Sj ;
4. ∃ Si and Sj which overlap: Si ∩ Sj 6= ∅.

We reduce the security of our scheme to the security of the underlying BLS
signature which is unforgeable under co-CDH assumption, and non-interactive
ZKAoK which is sound and knowledge sound under SXDH and DPair-ML as-
sumptions. We elaborate it case by case.
Extract the identities and randomness: A outputs a non-trivial PAS forgery Σ =
({p̂kj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj) on message set M = {mj}kj=1 with

threshold T = {tj}kj=1. Due to the witness extended emulation of ΠaBin, ΠIPP and
the knowledge soundness of Πpok, there exists an extractor E who can extract

the signer identities bj , rj such that p̂kj = pkbj · g̃rj as follows.
E can run the extractor χaBin for πaBin to extract the committed elements

[b]1 ∈ Gkn1 and randomness rB ∈ Zq s.t. B = 〈[b]1, ck2〉 + rB · eH and b ∈
{0, 1}kn. E can rewind A on different z. For each z, E runs the extractor χpok

for πpok to extract the committed element r∗ ∈ Zq and randomness rX ∈ Zq
s.t. X = r∗ · e(g, ck∗2) + rX · eH and runs the extractor χIPP for πIPP to extract
the committed elements v1 ∈ G2kn

1 ,v2 ∈ G2kn
2 and randomness rQ, rK , rE ∈ Zq

s.t. E = 〈v1,v2〉+ rE · eH , Q = 〈v1, (ck2, ck
∗
2)〉+ rQ · eH , K = 〈(ck1, ck∗1),v2〉+
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rK · eH . We know that v1 = ([b]1, [r
∗]1, [0]1, ..., [0]1), v2 = (pkzk , g̃, [0]2, ..., [0]2).

Otherwise, it breaks the DPair-ML assumption. So E = 〈v1,v2〉 + rE · eH =

e(g, Ĝ) + e(gH , g̃
rE ), where Ĝ = pkzk

b
· g̃r∗ . We also have P̂K =

∏k
j=1 p̂k

z(j−1)

j ∈
G2 s.t. E = e(g, P̂K). It means that P̂K = Ĝ and rE = 0, otherwise, it breaks the

DPair assumption by finding a non-trivial pair (N1, N2) = (Ĝ/P̂K, g̃re) ∈ G2
2 s.t.

e(g,N1)+e(gH , N2) = [0]T . Thus P̂K can be expressed in the form of pkzk
b
· g̃r∗ .

Repeating this for k different challenges z with the randomness r∗, we can
compute rj for j ∈ [k] s.t. r∗ =

∑k
j=1 rj · zj−1 for each challenge and each sub-

aggregated public key p̂kj is in the form of pkbj · g̃rj by Schwartz-Zippel lemma,
where bj is the j-th block in the extracted b.

(1) Suppose that P1=Pr[A wins and violates condition 1] is non-negligible. We
prove that if A wins, we can use it in a black-box manner to construct an attacker
B to break the unforgeability of the underlying BLS signature. B receives the BLS
parameter ppbls and the target BLS public key pk∗. It can also query the BLS
signing oracle Signbls(·) on pk∗ and any message. B can emulate the experiment
for A as follows.

Setup: B generates crs and sets pp = (ppbls, crs). B chooses an index î←$ [n] and
sets pkî = pk∗. For other i ∈ [n], i 6= î, it generates the secret keys ski←$Zq and
sets public keys pki = [ski]2 ∈ G2. B sends pp and all public keys to A.

Emulate Corrupt and Sign oracles: For corruption oracle corrupt(·): if A cor-
rupts pkî, B aborts. Otherwise, for other identity corruption, B responds with
the secret key ski. Note that Ais not allowed to corrupt all public keys.

For signing oracle sign(·, ·): if A queries on (pkî,m), B forwards m to its
Signbls oracle and replies A with the signature it received. Otherwise, for other
signer identities, B generates the signature on the message using secret key ski.

Breaking BLS Unforgeability : A outputs a non-trivial PAS forgery Σ on message
set M = {mj}kj=1 with threshold T = {tj}kj=1. By the knowledge soundness,
B can works like E as above to extract the signer identities bj , rj such that

p̂kj = pkbj · g̃rj . Based on each bj , we obtain the identity subset Sj = {i|bji =

1, bji ∈ bj} for j = 1 to k and S = ∪kj=1Sj . Note that the non-triviality of the
forgery implies that S includes at least one honest signer, who A did not corrupt.
Otherwise, it proceeds as follows. B aborts if the target identity î is not included
in S or î ∈ Sj w.r.t. a message mj but A has queried sign oracle on (pkî,mj).
Otherwise, B can locate the identity subset Sĵ w.r.t. the message mĵ in which

the target identity î ∈ Sĵ and p̂kĵ = pkbĵ · g̃rĵ . Given σ̂j , the randomness rj and

all other identities ij ∈ Sĵ , ij 6= î, B can computes their signatures σij on the
message mĵ and gets σi∗j = σ̂/(

∏
i∈S∗j \{i∗j }

σi ·H(mĵ)
rj ) which is a valid signature

of the target identity on mĵ that A has never queried. So it is a successful BLS
forgery and B wins.

Success Probability : Let εA be the probability with which A outputs a valid
forgery. It is easy to see that B breaks the unforgeability of BLS signature if it
does not abort. We compute the lower bound of the probability with which B
does not abort. Firstly, since î is chosen uniformly at random, A does not corrupt
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pkî with probability at least 1/n. Let δ be the probability with which B extracts

the witness successfully. Then the probability that î ∈ I is at least 1/n. Let qH
be the number of queries on the random oracle, qS be the number of queries on
the signing oracle, the probability that A has never queried on (pkî,mĵ) is at

least (1− 1
n·qH ) · (1− 1

n·qH−1 ) · · · (1− 1
n·qH−qS ) = n·qH−qS−1

n·qH . Finally, we obtain

the success probability of B is εB ≥ εA · n·qH−qS−1n3·qH . Due to the unforgeability of
the BLS signature, εB is negligible, so εA is also negligible.
(2) Suppose that P2=Pr[A wins and violates condition 2] is non-negligible. It
implies that A generates a valid binary proof for tj with an incorrect witness
whose Hamming weight is not tj . It contradicts with the statement of πaBin which
breaks the soundness of the underlying ZKAoK.
(3) Suppose that P3=Pr[A wins and violates condition 3] is non-negligible. It
implies that A generates a valid binary proof with an incorrect witness which
contains a number larger than 1. It also contradicts to the statement of πaBin, so
the soundness is broken.
(4) Suppose that P4=Pr[A wins and violates condition 4] is non-negligible. It
implies that A generates a valid binary proof for the sum of commitments with
an incorrect witness which contains a number larger than 1. It contradicts to
the statement of πdisj.

In summary, Pr[Expunforge(A, λ) = 1] = P1 + P2 + P3 + P4 ≤ negl(λ).

6 Applications and Extensions

Our PAS can be used to construct many other types of signatures by invoking
the Combine algorithm as a blackbox to compress the final signature. Letting dy-
namic threshold be the specific description and predicate function only requires
the correctness of the threshold, our efficient scheme for single message also im-
proves their state-of-the-art works in terms of trust model (relies on trusted party
or non-standard assumptions) and efficiency as shown in Table 2. We explain
them as follows.

(1) Our PAS implies threshold signatures with transparent setup 5 Each
signer generates their public key and secret key by themselves. Some of them
sign on the same message and send to the combiner. Taking the valid partial
signatures as input, the combiner runs the Combine algorithm to generate the
final PAS signature with a threshold t. The verifier can be convinced that there
are t different signers sign on this message.

(2) We get a multi-signature by letting everyone sign on the same message,
aggregation is done via the Combine algorithm and the predicate only requires
that the threshold number is correct.

5 Our dynamic threshold aggregate signature with transparent setup also offers a solu-
tion for multiverse threshold signature (MTS) [8]. For any subset of users interested
in forming a universe with a specific threshold, the aggregation and verification keys
can be computed from their public keys. Then run the Combine algorithm to get a
PAS signature with the number of signers.
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(3) We get an aggregate signature which hides the signer identities from PAS,
where aggregation is done via Combine algorithm and the predicate function is
specified according to the concrete rule.

(4) We get a graded signature by letting everyone sign on the same message,
aggregation is done via the Combine algorithm and the predicate only requires
that the number of signers is correct. It ensures each of them can sign only once
without leaking their identities.

(5) We get a threshold ring signature with prefixed threshold t by setting
there is a single message and the predicate function always outputs 1 and mod-
ifying the verification algorithm a bit. Via the Combine algorithm, a PAS sig-
nature is produced. Now besides verifying whether it is valid, the verifier also
checks whether the number of signers in PAS is larger than t. If yes, it is a valid
threshold ring signature, otherwise not. When t is 1, it is a ring signature.

Anonymous reputation system An anonymous reputation system enables
users to rate products they have purchased. The primary security guarantee of-
fered by such systems is privacy, allowing users to write reviews anonymously for
any purchased products. However, to prevent abuse or misuse, a rate-once policy
is implemented. This means that if a user attempts to write multiple reviews
for the same product, their reviews will become publicly traceable or linked. It
requires the final signature is linear to the number of signer and the verification
time is quadratic. Recent works on the anonymous reputation systems [12,11,24]
achieve full anonymity at the cost of linear communication cost and quadratic
verification complexity.

We consider a relaxed but reasonable setting where a combiner is allowed to
know the signers’ identities. It can be the shopping website who knows the user
accounts when they login. But it cannot manipulate the final result even colludes
with some of users. It cannot violate the rate-once policy and cannot generate
review on behalf of other honest users. Malicious users and combiner cannot
rate more than once or forge any other honest user’s signature. The combiner
produces a PAS in which the thresholds disclose the reputation states, and both
the size and the verification time are logarithmic in the number of all users.

Onchain voting system In more extensive scenarios, there might exist more
intricate voting policies that can be defined as conditions based on the identities
of the voters. For instance, in blockchain governance, such as Decentralized Au-
tonomous Organizations (DAOs), determinations might be reached by the entire
community, provided their accounts possess a significant number of tokens. Cer-
tain policies necessitate that voters possess a particular property [3], and it can
be denoted by their identity index. For instance, within an organization, senior
members are associated with indices smaller than a threshold. The combiner’s
task is to demonstrate that among the signers, there is at least one whose index is
lower than a specified threshold. In our design, relying on the binary vector, the
combiner only needs to establish the existence of a single position in the vector
where the value is 1 and the position is smaller than a specified threshold.
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6.1 Extensions

Dynamic join. New users can seamlessly join the system without causing any
disruptions to existing users. The process of joining is transparent and does not
have any adverse effects on other users. A new user broadcasts his public key
with PoP for registration. On verifying its validness, the combiner updates its
aggregation key by adding this public key. Other honest verifier can also update
the verification key by including the new public key in the commitment of all
public keys. These updates are publicly verifiable and incur only a constant cost.

Weight aggregation. In the PAS scheme, each user can associate themselves with
an additional weight. This weight represents their significance or influence within
the system. The weight vector w is public where each weight value wi binds with
a public key pki. In the Combine algorithm, the combiner additionally computes
the sum of weights W = 〈b,w〉 as the description ∆. As a result, when the PAS
generates a signature, it discloses the total weight of the signers involved. So our
PAS also supports the weight aggregation like [33,20,22].

Accountability. Our PAS focuses on the privacy of signers, and it can be extended
to support the accountability by adding an extra identities encryption layer.
This approach bears similarity to the method employed in TAPS [15]. In this
extended system, the description pertains to the minimum threshold required for
the number of signers. The combiner also encrypts both the count of signers and
their identities. The predicate function ensures that they are correctly encrypted
under the specified public key, and that the size of the signer set surpasses the
minimum threshold.

6.2 Open problems

More efficient scheme. Although our construction achieves logarithmic verifica-
tion time, the verifier needs to do the pairing operation in each round which
is expensive. Is it possible to design a more efficient PAS scheme in which the
verifier only needs to preform constant number of pairing operations and loga-
rithmic group operations? One possible direction is studying the technology in
Dory [30]. We leave it to the future work.

Multiple layers combination. In the current setting, our primary objectives in-
clude ensuring signer anonymity, improving efficiency, and accommodating di-
verse predicate requirements for the signers of different messages, which are
orthogonal to aggregate multiple (already aggregated) signatures and proofs on
different messages. Considering the “more layers combination” feature together
with our goals presents challenges, and at this stage, it is unclear how to achieve
it, which would be a very interesting open question for future study.
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