
Elementary Remarks on Some Quadratic Based
Identity Based Encryption Schemes

Paul Cotan1,2 and George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania
{paul.cotan,tgeorge}@dcti.ro

2 Simion Stoilow Institute of Mathematics of the Romanian Academy
21 Calea Grivitei, Bucharest, Romania

Abstract. In the design of an identity-based encryption (IBE) scheme,
the primary security assumptions center around quadratic residues, bi-
linear mappings, and lattices. Among these approaches, one of the most
intriguing is introduced by Clifford Cocks and is based on quadratic
residues. However, this scheme has a significant drawback: a large ci-
phertext to plaintext ratio. A different approach is taken by Zhao et al.,
who design an IBE still based on quadratic residues, but with an en-
cryption process reminiscent of the Goldwasser-Micali cryptosystem. In
the following pages, we will introduce an elementary method to accel-
erate Cocks’ encryption process and adapt a space-efficient encryption
technique for both Cocks’ and Zhao et al.’s cryptosystems.

1 Introduction

The development of identity based encryption (IBE) began in 1984 when Shamir
formulated its basic principles in [23]. However, he left the practical construction
of such a scheme as an open problem. In 2001, the first IBE schemes were pro-
posed by Boneh and Franklin [6], who used bilinear mappings, and by Cocks [11],
who utilized quadratic residues, respectively.

The Cocks’ encryption scheme processes messages on a bit-by-bit basis, where
each encrypted bit is represented as a pair of two integers. Decryption involves
calculating the Jacobi symbol of one of the two integers in each pair. Therefore,
Cocks’ IBE has a large ciphertext to plaintext ratio, and thus is efficient only for
small messages. A space-efficient IBE based on quadratic residues was introduced
in [7]. Unfortunately, their solution is based on a quartic deterministic time-
complexity algorithm, and thus is infeasible to use in practice. To address this
issue, Jhanwar and Barua [4,18] introduced an efficient probabilistic algorithm.
However, their scheme, along with several other variations [13, 14], have been
shown to be insecure [22]. A different approach was taken in [24]. Their proposal
resembles the Goldwasser-Micali [16] cryptosystem. Their solution also has a
large ciphertext to plaintext ratio: to encrypt a bit we need four integers.

Our paper focuses on Cocks’ and Zhao et al.’s IBE schemes [11, 24]. In the
first part of the paper we introduce a different method for generating the spe-
cial random numbers t required by Cocks’ encryption algorithm. The generation
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method bears similarity to the Goldwasser-Micali encryption, with the primary
distinction being the distribution of one of the public parameters. While this
method may seem obvious, it is worth noting that all previous papers dealing
with Cocks’ IBE have relied on a trial-and-error method based on Jacobi sym-
bols to generate the t values. Therefore, our method lowers the complexity of
generating t values from at least O(M(2λ) log 2λ) to O(M(2λ)), where λ is a
security parameter and M(·) denotes the complexity of a multiplication.

In the second part of our work, we use some elementary remarks to reduce
the bandwith requirements for both Cocks’ and Zhao et al.’s IBE schemes with
2 and 4 bits per ciphertext, respectively. The changes made to achieve this
improvement, do not introduce any additional overhead to the encryption pro-
cess. It is worth noting that both IBEs have been recommended for symmetric
key encapsulation. Consequently, the additional bits can serve various purposes,
such as authenticating the encapsulation package. Since our changes involve only
comparison operators and differences, coupled with our reduced bit usage per
encapsulation, we believe that our proposal is preferable when compared to the
original schemes.

Structure of the paper. In Section 2, we introduce the fundamental notions used
throughout the paper. In Section 3, we present a computationally efficient variant
of Cocks’ IBE. Section 4 discusses two space-efficient IBEs. Finally, we conclude
in Section 5.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. The action
of selecting a random element x from a sample space X is denoted by x

$←− X,
while x← y represents the assignment of value y to variable x.

The Jacobi symbol of an integer a modulo an integer n will be represented by
Jn(a). We consider the sets QRn and QNRn of quadratic and, respectively, non-
quadratic residues modulo an integer n. Jn denotes the sets of integers modulo
n with Jacobi symbol 1.

2.1 Identity-Based Encryption

An IBE scheme [5] comprises four probabilistic polynomial-time (PPT) algo-
rithms, denoted as Setup, KeyGen, Enc, and Dec. The first algorithm takes the
security parameter as input and produces the master secret key along with the
system’s public parameters as output. The subsequent algorithm takes an iden-
tity id, the master secret key, the public parameters as input, and yields a private
key associated with id as output. The third algorithm, labeled Enc, accepts a
message m, an identity id, and the public parameters as input, encrypting m
using a key derived from id to produce the ciphertext c. The final algorithm,
Dec, decrypts the ciphertext c using the private key associated with id, yielding
the original message m.
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Cocks’ IBE scheme. The first IBE based on the qr assumption3 was in-
troduced in [11]. The original scheme was defined for primes of type p ≡ q ≡
3 mod 4. Later on, this scheme was generalized in [19] to any prime numbers p
and q. We further present the IBE scheme provided in [19].

Setup(λ): Given a security parameter λ, generate two primes p, q > 2λ and
compute their product n = pq. Randomly generate an integer u ∈ Jn \QRn.
The public parameters are pp = {n, u,H}, where H : {0, 1}∗ → Jn is a
cryptographic hash function. The master secret key is msk = {p, q}.

KeyGen(pp,msk, id): Let R = H(id). If R ∈ QRn, then compute r ≡ R1/2 mod
n. Otherwise, computes r = (uR)1/2 mod n. The private key is r.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {−1, 1},
compute the hash value R = H(id) and randomly choose two values t1, t2

$←−
Zn such that Jn(t1) = Jn(t2) = m. Also, calculate

c1 = t1 +
R

t1
mod n and c2 = t2 +

uR

t2
mod n.

Return the ciphertext C = (c1, c2).
Dec(pp, r, C): On input pp, a secret key r and a ciphertext C, compute

m =

{
Jn(c1 + 2r) if r2 ≡ H(id) mod n;

Jn(c2 + 2r) otherwise.

Remark 1. Cocks’ IBE scheme does not provide anonymity [7]. As a result, sev-
eral techniques have been introduced to address this issue [2, 19–21]. Among
these, the most efficient method is the one described in [20], which is a simpli-
fied version of the approach presented in [19].

Zhao et al.’s IBE scheme. An alternative IBE scheme relying on the qr
assumption was presented in [24]. Specifically, the scheme operates with polyno-
mials modulo n, where the primes p and q are selected such that p ≡ −q mod 4.
This scheme was subsequently extended and generalized in [12] to accommodate
arbitrary values of p and q. We further provide the scheme’s description as given
in [12].

Setup(λ): Given a security parameter λ, generate two primes p, q > 2λ and
compute their product n = pq. Randomly generate two integers u, y ∈ Zn

such that Jp(u) = Jq(u) = −1 and Jp(y) = −Jq(y). The public parameters
are pp = {n, u, y,H}, where H : {0, 1}∗ → Jn is a cryptographic hash
function. The master secret key is msk = {p, q}.

KeyGen(pp,msk, id): Let R = H(id). If R ∈ QRn, then compute r ≡ R1/2 mod
n. Otherwise, computes r = (uR)1/2 mod n. The private key is r.

3 This assumption states that an adversary trying to decide if a random element is
from Jn \QRn or QRn has a negligible success probability.
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Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {0, 1},
compute the hash value R = H(id) and randomly choose two polynomials
f(x), f(x) of degree 1 from Zn[x]. Also, calculate

g(x) = f(x)2 mod (x2 −R) and g(x) = f(x)2 mod (x2 − uR).

Return the ciphertext C = (ym · g(x), ym · g(x)).
Dec(pp, r, C): On input pp, a secret key r and a ciphertext C = (c(x), c(x)),

compute

m′ =

{
Jn(c(r)) if r2 ≡ H(id) mod n;

Jn(c(r)) otherwise.

Remark 2. Although Zhao et al.’s IBE scheme is not anonymous [24], it can be
made so by using the anonymization technique described in [9, 10].

3 Computational Efficient IBE

In this section, we present an efficient method for generating the random t values
used in Cocks’ IBE. Although the method employed is elementary, it is worth
noting that all the papers built upon Cocks’ work, generate t values until the
Jacobi symbol reaches the desired value.

3.1 Cocks’ IBE Efficient Version

We further present the proposed encryption algorithm. To make the proposed
scheme work, we incorporate a public element e ∈ Zn \ Jn into the setup algo-
rithm. Note that the t values can be interpreted as a Goldwasser-Micali cipher-
text [16].

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {−1, 1},
compute the hash value R = H(id) and randomly choose two values x1, x2

$←−
Zn. Set ti ≡ e(1−m)/2x2

i mod n for i ∈ {1, 2}. Also, calculate

c1 = t1 +
R

t1
mod n and c2 = t2 +

uR

t2
mod n.

Return the ciphertext C = (c1, c2).

3.2 Performance Analysis

To determine the efficiency of our proposal, we consider the following complexi-
ties for µ-bit integers

– Multiplication [17]: M(µ) = O(µ logµ),
– Jacobi symbol [8]: O(M(µ) logµ).
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Without loss of generality, we further assume that p mod 8 ≤ q mod 8. To
further accelerate the encryption process, we can select e as follows

e =


−1 p ≡ −q mod 4,

2 p ≡ 1 mod 8 and q ≡ 5 mod 8,

2 p ≡ 3 mod 8 and q ≡ 7 mod 8,

ē otherwise,

where ē is random element from Zn \ Jn. Therefore, generating t values comes
down to

t =


n− x2 e = −1,
x2 + x2 e = 2,

ēx2 otherwise.

In the original scheme, generating a t value amounts to computing at least an
Jacobi symbol. Therefore, we obtain a complexity of at least O(M(2λ) log 2λ).
In our proposal, we obtain the following complexity

O(M(2λ)) e = −1,
O(M(2λ)) e = 2,

O(2M(2λ)) otherwise.

We further provide the reader with benchmarks for Cocks’ original scheme
and for our proposal. We ran the encryption algorithm for both schemes on
a CPU Intel i7-8700 3.20 GHz and used GCC to compile it (with the O3
flag activated for optimization). Note that for all computations we used the
GMP library [1]. To calculate the running times we used the native C++ func-
tion clock(). To obtain the average running time in seconds we chose to en-
crypt 1000 128/192/256-bit messages. According to NIST [3], the modules of
size 3072/7680/15360 offer 128/192/256-bit security. Therefore, we wanted to
simulate a key distribution scenario.

The results are provided in Table 1. Please take note that the percentages
represent the time improvement relative to the original version. We can clearly
see that our proposal significantly reduces encryption time by at least 50%.

4 Space Efficient IBEs

In [19], the author introduces a variant of Cocks’ IBE that allows one to de-
rive the encryption of −m from the original ciphertext. Additionally, the au-
thor presents a bandwidth-saving approach for this variant. In this section, we
show that this technique can be easily adapted to Cocks’ and Zhao et al.’s IBE
schemes.

We further impose the restriction p ≡ q mod 4. This implies that Jp(−1) =
Jq(−1), and therefore Jn(−1) = 1. Using this restriction, we are able to restrict
the ciphertexts interval from {1, . . . , n− 1} to {1, . . . , (n− 1)/2}.
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Key Original Proposal
Length e = −1 e = 2 e = ē e = −1 e = 2 e = ē

128 bits 27.2190 23.1005 25.9760
10.1901 8.55514 10.1151
(62.56%) (62.96%) (61.06%)

192 bits 118.701 114.695 115.931
50.6101 48.9982 52.1820
(57.36%) (57.28%) (54.99%)

256 bits 360.541 355.493 354.617
167.129 164.818 173.592
(53.64%) (53.63%) (51.04%)

Table 1. Average Encryption Time (ms)

4.1 Cocks’ IBE Compact Version

We remind the reader that Cocks’ ciphertext takes the following form

c1 = t1 +
R

t1
mod n and c2 = t2 +

uR

t2
mod n.

We can see that

Jn(−c1 + 2r) = Jn(−t1 −R · t−1
1 + 2r) =

= Jn(−(t1 − r)2 · t−1
1 ) = Jn(t1),

and Jn(−c2 + 2r) = Jn(t2). Thus, the decryption algorithm works as intended
with any ciphertexts of the form (±c1,±c2). Therefore, we propose the following
encryption algorithm aimed at minimizing the bandwith overhead.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {−1, 1},
compute the hash value R = H(id) and randomly choose two values t1, t2

$←−
Zn such that Jn(t1) = Jn(t2) = m. Also, calculate

c′1 = t1 +
R

t1
mod n and c′2 = t2 +

uR

t2
mod n.

Define

c1 = min(c′1, n− c′1) and c2 = min(c′2, n− c′2),

and return the ciphertext C = (c1, c2).

Remark 3. Remark that the technique outlined in this section does not interfere
with the security proofs of Cocks’ IBE provided in [15, 19]. Furthermore, the
methods of anonymization outlined in [2, 19–21] can be effectively applied to
this variant as well.
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4.2 Zhao et al.’s IBE Compact Version

Using the trick presented in Section 4.1, we can also make Zhao et al.’s IBE
scheme more compact. Let f(x) = a · x + b and f(x) = a · x + b. When we
compute c(x) and c(x) we obtain

c(x) = c0 · x+ c1 = [2yma] · x+ [ym(a2R+ b2)]

c(x) = c0 · x+ c1 = [2yma] · x+ [ym(a2uR+ b
2
)]

Therefore, when r2 ≡ H(id) mod n we obtain that

Jn(c0 · r + c1) = Jn(y
m · (2ar + a2R+ b2)) = Jn(y

m · (ar + b)2) = Jn(y)
m,

Jn(c0 · r − c1) = Jn(y
m · (2ar − a2R− b2)) = Jn(−ym · (ar − b)2) = Jn(y)

m,

Jn(−c0 · r + c1) = Jn(y
m · (−2ar + a2R+ b2)) = Jn(y

m · (ar − b)2) = Jn(y)
m,

Jn(−c0 · r − c1) = Jn(y
m · (−2ar − a2R− b2)) = Jn(−ym · (ar + b)2) = Jn(y)

m,

since Jn(−1) = 1. Similarly, for the case r2 ≡ uH(id) mod n we obtain

Jn(c0 · r + c1) = Jn(c0 · r − c1) = Jn(−c0 · r + c1) = Jn(−c0 · r − c1).

Hence, the decryption algorithm works as intended with either of the following
ciphertext versions

(±c0 · x± c1,±c0 · x± c1).

Therefore, we can use the following encryption algorithm to save bandwith.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {0, 1},
compute the hash value R = H(id) and randomly chooses two polynomials
f(x), f(x) of degree 1 from Zn[x]. Also, calculate

g(x) = f(x)2 mod (x2 −R) and g(x) = f(x)2 mod (x2 − uR)

and let

(c′0 · x+ c′1, c
′
0 · x+ c′1) = (ym · g(x), ym · g(x)).

Define

c0 = min(c′0, n− c′0) and c1 = min(c′1, n− c′1)

c0 = min(c′0, n− c′0) and c1 = min(c′1, n− c′1),

and return the ciphertext C = (c0 · x+ c1, c0 · x+ c1).

Remark 4. Note that this space-saving technique does not interfere with the se-
curity proof of Zhao et al.’s IBE provided in [24]. Additionally, the anonymization
technique described in [9, 10] can also be applied to this version.
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5 Conclusion

In this paper, we have introduced a method for accelerating the Cocks IBE
scheme. Additionally, through the application of elementary operations, we man-
aged to reduce the bandwidth requirements of both the Cocks and Zhao et al.
IBEs.
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