
Efficient VOLE based Multi-Party PSI with Lower Communication Cost

Shuqing Zhang
Key Laboratory of Mathematics Mechanization, NCMIS, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
zhangshuqing17@mails.ucas.ac.cn

Abstract
We present a new method for doing multi-party private set
intersection against a malicious adversary, which reduces the
total communication cost to O(nlκ). Additionally, our method
can also be used to build a multi-party Circuit-PSI without
payload. Our protocol is based on Vector-OLE(VOLE) and
oblivious key-value store(OKVS). To meet the requirements
of the protocol, we first promote the definition of VOLE to a
multi-party version. After that, we use the new primitive to
construct our protocol and prove that it can tolerate all-but-
two malicious corruptions.

Our protocol follows the idea of [21], where each party
encodes the respective set as a vector, uses VOLE to encrypt
the vector, and finally construct an OPRF to get the result.
When it comes to multi-party situation, we have to encrypt
several vectors at one time. As a result, the VOLE used in [21]
and follow-up papers is not enough, that brings our idea of an
multi-party VOLE.

1 Introduction

Private set intersection(PSI) is a classic research object in
SMPC, and is widely used in practical applications such as
machine learning. In recent years, two-party PSI has been
studied fully in [12], [15], [21], [18], and the fastest protocol
can process a million items in 0.37 seconds. Along with
the development of two-party PSI, other types of PSI are
also receiving increasing attention. [21], [18] further consider
circuit-PSI following the idea of [16], which makes further
applications more convenient. [8] introduces structure-aware
PSI, which contributes to fuzzy matching. [19] considers PSI
in the unbalanced setting, obtains better efficiency. In our
article we mainly consider another kind of PSI, multi-party
PSI.

The problem of multi-party PSI was first introduced in [6].
Subsequently, a large number of theoretical protocols ([5],
[9], [11], [22], [23]) are proposed until [13] become the first
practical one. It is secure against semi-honest adversary in

MP-PSI Communication Bandwidth
[1] O(nlκ2 +nlκlog(lκ)) O(nlκ2 +nlκlog(lκ))
[7] O(n2κ+nl(κ+ρ+ logl)) O(nl(κ+ρ+ logl))
[17] O(n2κ+nl(κ+ρ+ logl)) O(l(κ+ρ+ logl))

this work O(l(nκ+ρ+ logl)) O(l(nκ+ρ+ logl))

Table 1: Comparison between our protocol and recent
MP-PSI protocols. n is the number of parties, l is the size of
each set, κ and ρ are the computational and statistical security
parameters respectively.

the dishonest-majority setting. Later, efficient multi-party PSI
protocols are further developed. [1] is the first concretely
efficient maliciously secure multi-party PSI protocol, based
on [10] which uses garbled bloom filter(GBF) and [20]. [4]
improves [13] and extends it to circuit-PSI and Quorum PSI.
[24] achieves maliciously secure multi-party PSI, but in a
model in which the two servers P0 and P1 do not collude. [14]
makes use of OKVS and forms an efficient protocol of semi-
honest MP-PSI, while in cases with collusion, more expensive
OPPRF and additional Zero-sharing are needed. [7] is more
efficient but still needs zero-share and multi calls of OPRF.
We note that [17] uses VOLE-based OPRF from [21], and
raises an MP-VOLE construction. However, it needs calling
standard VOLE n times which is still expensive. [3] gives a
different definition of MP-VOLE with construction, but there
is no MP-PSI construction.

In our work, we give a more natural definition of MP-
VOLE which is almost as efficient as two-party situation,
and use it to form a MP-PSI protocol. In Table 1, we com-
pare our protocol with several recent MP-PSI protocols in the
dishonest-majority setting and observe significant improve-
ments in communication cost. We also prove that our protocol
is secure in the presence of a malicious adversary who may
corrupt up to all but two parties.

We will discuss related articles in 1.1 below, and introduce
our protocol briefly in 1.2. In section 2, we will mention some
of the cryptographic primitives used. In section 3, we will

1

present our core contributions, first promoting MP-VOLE,
then proposing our MP-PSI protocol, and finally involving
the generalization to Circuit-PSI.

1.1 Related Works
In this subsection, we introduce some most relevant works.

1.1.1 Rindal et al.

[21] is the first work to achieve PSI based on VOLE and
OKVS (to ensure consistency, in this subsection and 1.2, we
will use the notation in [21]). The most common version of
VOLE allows two parties to sample random vectors ~A,~B,~C ∈
Fm and an element ∆ ∈ F, such that ~C = ~A∆+~B. The receiver
will hold ~A,~C while the sender will hold ~B,∆. VOLE works
very similar to OT extension, but more quickly and efficient.
OKVS encodes the data held by one party into a short vector
through a fast solution method of a system of linear equations.
In this work, the receiver uses a hash function H ′ to map the
set X into a random matrix M ∈ Fn×m and solves M~Pᵀ =
(H(x1),H(x2), . . . ,H(xn))

ᵀ for the unknown ~P ∈ Fm(assume
that the receiver holds the set X := {x1,x2, . . . ,xn} and M is
constructed to make solving linear systems simple).

Based on the tools above, we introduce the protocol in [21]
briefly. The receiver send ~A+~P to the sender who calculates
~K := ~B+∆(~A+~P). Now a crucial observation is that,

M~Kᵀ = M~Bᵀ+∆(M~Aᵀ+M~Pᵀ) = M~Cᵀ+∆M~Pᵀ.

For x ∈ X ,

H ′(x)~Kᵀ = H ′(x)~Cᵀ+∆H(x),

where H ′(x) is one of the rows in M. An OPRF can therefore
be obtained by having the receiver calculate H ′(x)~Cᵀ while
the sender computes H ′(x)~Kᵀ−∆H(x). Further development
from OPRF to PSI is trivial.

Another contribution of this article is that the authors
present an extension to Circuit-PSI, which allows the par-
ties to perform a subsequent MPC protocol after the outputs.
Recently, [18] follows the idea of it, proposes a more efficient
OKVS scheme, and achieves the most powerful PSI protocol
we know so far.

1.1.2 Qiu et al.

[17] proposes an MP-VOLE protocol mainly aimed at re-
ducing the number of LPN decodings. The protocol running
between Pi and a pivot P0 works as follows: each Pi and P0
calls standard VOLE functionality FVOLE but with the same
~A(realized by programming the input/output of P0), thus P0
does not need to decode ~A for n times. P0 then uses its own set
to compute an OKVS ~S and sends ~d =~S−~A to each Pi. This,
along with the standard VOLE, creates an OPRF between

each party and the pivot. Then the article follows the idea
of [7], and finishes their MP-PSI protocol. It is worth noting
that this article also proposes a tree structure to reduce the
communication bandwidth of the central party P0.

Compared with this article, our protocol further reduces
the number of LPN decodings. We also note that another
computational efficiency bottleneck in performing n standard
VOLE is the n calls of the FSS functionality. In our MP-VOLE
protocol, it only needs to call the FSS functionality once, thus
improving the efficiency.

1.1.3 Nevo et al.

[14] can implement a very efficient MP-PSI protocol without
collusion. The main idea of this protocol is to reduce the
multi-party PSI situation to the already well-studied two-
party PSI situation. Taking three-party PSI as an example,
party P1 selects a random key k and sends it to P2. Then P1
applies the corresponding pseudo-random function Fk(x) to
its own set, obtains corresponding values, generates an OKVS
structure S by them, and sends it to P3. Now P2 and P3 can
generate two new sets through Fk(x) and S, which satisfy their
intersection is the intersection of three parties. As a result, the
three-party PSI is simplified to two parties, and only relies on
symmetric-key primitives.

However, when there is collusion, [14] becomes much more
complicated. Expensive OPPRF is needed, and additional
zero-sharing is performed. In comparison, our protocol also
simplifies the multi-party situation to two parties, but does not
require so many complex primitives. We can further imple-
ment multi-party Circuit-PSI with a small cost in efficiency.
However, if we follow the idea of [14], it will be difficult to
achieve.

1.2 Overview of Our Results

We aim to construct a maliciously secure multi-party PSI
protocol. We make use of two main building blocks: vector-
OLE(VOLE) and oblivious key-value store(OKVS). They are
the basis of nowadays fastest two-party PSI protocol, and after
some adjustments, they can be used in our protocol.

We now introduce our protocol briefly in this subsection.
Our core tool is a promotion of VOLE. Based on 1.1.1, our
MP-VOLE allows n parties P1,P2, . . . ,Pn to sample n+1 ran-
dom vectors ~A0,~A1, . . . ,~An ∈ Fm and n−1 random elements
x1,x2, . . . ,xn−1 ∈ F, such that ~A0 = ∑

n
i=1

~Aixi, where xn = 1.
A direct idea is to imitate the distribution method before: the
party P1 will hold ~A0,~A1, while other Pi will hold ~Ai,xi−1 re-
spectively. It is a fair construction plan, and is secure under
collusion of any strict subset of the parties. However, the prob-
lem is that if we follow the idea of [21], this plan is difficult to
be used to construct a secure MP-PSI protocol. Considering
the simplified protocol in 1.1.1, one can find that there should
be one party who knows all the xi in order to compute all the

2

−xiH(·) parts. Therefore, we adjust the distribution method,
let Pn hold all the xi and ~An, P1 remain the same and other Pi
only get corresponding ~Ai. It seems that Pn knows too much
but later we prove that the scheme is secure enough for our
MP-PSI. After MP-VOLE is carried out, each (Pi)i∈[1,n−1]

encodes its set into a short vector (~Qi)i∈[1,n−1] using the same
hash functions by OKVS system, then sends (~Ai+~Qi)i∈[1,n−1]

to Pn. Pn calculates ~A′n := ~An +∑
n−1
i=1 xi(~Ai + ~Qi). As before

we can observe that

M~A′n
ᵀ
=M~An

ᵀ
+

n−1

∑
i=1

xi(M~Ai
ᵀ
+M~Qi

ᵀ
)=M~A0

ᵀ
+

n−1

∑
i=1

xiM~Qi
ᵀ
,

and for x ∈ ∩n
i=1Xi,

H ′(x)~A′n
ᵀ
= H ′(x)~A0

ᵀ
+(

n−1

∑
i=1

xi)H(xi).

An OPRF can therefore be obtained by having P0 calculate
H ′(x)~A0

ᵀ
while Pn computes H ′(x)~A′n

ᵀ−(∑n−1
i=1 xi)H(xi). Fur-

ther development from OPRF to MP-PSI and MP-C-PSI is
trivial.

Note that in our construction, the part of solving OKVS can
be operated in parallel, the method of obtaining the OPRF at
the end and further performing the intersection is also similar
to [21]. Therefore, except for the MP-VOLE part, the effi-
ciency of our protocol is approximate to the efficiency of a
two-party PSI.

2 Preliminaries

2.1 Private Set Intersection
The elementary form of Private Set Intersection (PSI) primar-
ily addresses the problem that two parties possess distinct
datasets, seek to get their intersection, while remaining en-
tirely ignorant about the elements not shared between them.
In this work, we mainly focus on the investigation of MP-PSI,
which extends the number of participating parties. We will
also mention circuit-PSI, which allows further computation
on the intersection.

We present the ideal functionality of MP-PSI in Figure 1.
Generally speaking, the elements in the respective sets Xi of
each party should be of the same size. In practice we can
make use of a collision-resistant hash function to reach the
request.

2.2 Function Secret Sharing
Informally, a function secret sharing (FSS) scheme splits a
function f : I → G into two functions f0 and f1 such that
f0(x)+ f1(x) = f (x) for every input x, and each (fb)b∈{0,1}
computationally hides f except acceptable leakage. Moreover,
the evaluation of the sub function should also hide f , which

Parameters: There are n parties P1,P2, . . . ,Pn and an
adversary A .
Functionality: Upon receiving X i from each party, the
functionality waits for the adversary to send abort ∈
{0,1}. If abort = 0, it outputs the intersection ∩n

i=1X i

to each party, otherwise it outputs ⊥ to each party.

Figure 1: Ideal functionality FMP−PSI

refuses the trivial idea of simply split the coefficient of the
function. If the function f is a point function, the scheme
is known as distributed point function(DPF), while in this
work we rely on efficient constructions of FSS schemes for
multi-point functions. Here we present the definition of FSS
and multi-point function from [2].

Definition 1 (FSS). A 2-party function secret sharing (FSS)
scheme for a class of functions F = { f : I→G} with input
domain I and output domain an abelian group (G,+), is a
pair of PPT algorithms FSS = (FSS.Gen, FSS.Eval) with the
following syntax:

- FSS.Gen(1λ, f), given security parameter λ and descrip-
tion of a function f ∈ F , outputs a pair of keys (K0,K1);

- FSS.Eval(b,Kb,x), given party index b ∈ {0,1}, key Kb,
and input x ∈ I, outputs a group element yb ∈G.

Given an allowable leakage function Leak : {0,1}∗ →
{0,1}∗, the scheme FSS should satisfy the following require-
ments:

- Correctness. For any f : I→G in F and x ∈ I, we have
Pr[(K0,K1)

R← FSS.Gen(1λ, f) : FSS.Eval(0,K0,x) +
FSS.Eval(1,K1,x) = f (x)] = 1.

- Security. For any b ∈ {0,1}, there exists a PPT sim-
ulator Sim such that for any polynomial-size func-
tion sequence fλ ∈ F , the distributions {(K0,K1)

R←
FSS.Gen(1λ, fλ) : Kb} and {Kb

R← Sim(1λ,Leak(fλ))}
are computationally indistinguishable.

Next we consider multi-point functions. It is a natural gen-
eralization of point functions. A t-point function evaluates
to 0 everywhere, except on t specified points. When specify-
ing multi-point functions we often view the domain of the
function as [n] for n = 2l instead of {0,1}l . Formally:

Definition 2 (Multi-Point Function). An (n, t)-multi-point
function over an abelian group (G,+) is a function fS,~y :
[n]→G, where S = {s1,s2, . . . ,st} is a subset of [n] of size t,
~y = (y1,y2, . . . ,yt) ∈Gkt , and fS,~y(si) = yi for any i ∈ [t], and
fS,~y(x) = 0 for any x ∈ [n]\S.

3

Parameters: There are two parties, a Sender and a Re-
ceiver. Let F be a field, m be the size of output vectors.
Functionality: Upon receiving (sender,sid) from the
sender and (receiver,sid) from the receiver.

- If the Receiver is malicious, wait for them to send
C,A ∈ Fm. Sample ∆← F and compute B :=C−
A∆. Otherwise,

- If the Sender is malicious, wait for them to send
B∈ Fm,∆∈ F. Sample A← Fm and compute C :=
B+A∆. Otherwise,

- Sample A,B← Fm,∆← F and compute C := B+
A∆.

The functionality outputs ∆,B to the Sender and C,A to
the Receiver.

Figure 2: Ideal functionality FVOLE

A Multi-Point Function Secret Sharing (MPFSS) is an FSS
scheme for the class of multi-point functions, where a multi-
point function fS,~y is represented in a natural way.

Finally, the application of MPFSS in our work requires
applying the evaluation algorithm on all inputs. Given
an MPFSS (MPFSS.Gen, MPFSS.Eval), we denote by
MPFSS.FullEval an algorithm which, on input a bit b, and
an evaluation key Kb, outputs a list of |I| elements of G cor-
responding to the evaluation of FSS.Eval(b,Kb, ·) on every
input x ∈ I (in some arbitrary specified order).

2.3 Vector OLE

The VOLE functionality, as we introduced in 1.1.1, is a two-
party functionality that selects a pair of vectors randomly,
provides it to P0, and enables P1 to learn a random linear com-
bination of these vectors. We present the VOLE functionality
in Figure 2.

In the description of this functionality, it is noteworthy that
all parameters are generated in a random manner. However,
there are certain situations in which it is beneficial to give a
party the capability to select specific parameters. Formally,
the VOLE scheme we present is called a random vector OLE.
In this work, we only focus on this particular variant of VOLE.

Furthermore, it is important to highlight that the VOLE
proposed in [2] also offers a significant advantage. It can
operate on short correlation vectors (seed1,seed2) online and
then expand them locally on both parties to produce much
longer target outputs (Expand(seed1),Expand(seed2)). Our
promotion also preserves this advantage, ensuring that our
protocol remains competitive.

- For i ∈ [m]:choose uniform vi← V , where V rep-
resent the value domain.

- Return A(Encode({(k1,v1),(k2,v2), . . . ,(km,vm)})).

Figure 3: Obliviousness Experiment ExpA(K =
(k1,k2, . . . ,km))

2.4 Oblivious Key-Value Store
Oblivious Key-Value Store(OKVS) is a data structure which
is often used to hide meaningful keys. It consists of two algo-
rithms (here we use the definition from [14]):

- Encode takes as input a set of (ki,vi) key-value pairs and
outputs an object S(or, with negligible probability, an
error indicator).

- Decode takes as input an object S, a key k and outputs a
value x.

The algorithms should satisfy:

- Correctness. If (k,v) ∈ S, then Decode(S,k) = v.

- Obliviousness. For all key domains K1,K2 of size
m and all PPT adversaries A :|Pr[ExpA(K1)] −
Pr[ExpA(K2)]| ≤ negl(κ), where the experiment
ExpA(K) is presented in Figure 3.

Additionally, in our work we need the OKVS construction
to be linear, which means:
For any k, Decode(S,k) can be expressed as a linear combi-
nation of S.

Therefore it is easily observed that, for any S = ∑Si,

Decode(S,k) = ∑Decode(Si,k).

There are several ways to form an OKVS structure in pre-
vious studies [21], [18]. They all satisfy linearity, and we will
use the construction in [18].

2.5 Learning Parity with Noise
Our construction relies on the Learning Parity with Noise
(LPN) assumption. It is like the LWE assumption, except that
the noise here is required to have a small Hamming weight
and satisfy the Bernoulli distribution instead of discrete Gaus-
sian distribution. For a finite field F, we denote by Berr(F)
the Bernoulli distribution obtained by sampling a uniformly
random element of F with probability r, and 0 with probability
1− r. We define the LPN assumption over a field F formally
below.

4

Definition 3 (LPN assumption). Let C be a probabilistic
code generation algorithm such that C(k,q,F) outputs (a
description of) a matrix A ∈ Fk×q. For dimension k = k(λ),
number of queries (or block length) q = q(λ), and noise rate
r = r(λ), the LPN(k,q,r) assumption with respect to C states
that for any polynomial-time non-uniform adversary A , it
holds that

Pr

F← A(1λ),

A R← C(k,q,F),

e R← Berr(F)q,

s R← Fk,

b← s ·A+ e

: A(A,b) = 1

≈

Pr

F← A(1λ),

A R← C(k,q,F),

b R← Fq

: A(A,b) = 1

By default, we assume that C outputs a uniformly random

matrix.

3 Multi-Party Private Set Intersection

Next we turn to our main contributions. We will define our
MP-VOLE generator first and then use it to construct our
MP-PSI protocol.

3.1 Multi-Party VOLE
We start from promoting the VOLE protocol. First, we in-
troduce the ideal functionality of MP-VOLE in Figure 4. Its
design idea is consistent with what we mentioned before in
1.1.1.

Next, we give a formal definition of MP-VOLE. We follow
the idea of [2] and allow one party to decide all the xi in
the definition, thus bringing possibilities for other subsequent
applications. In our article, however, these xi are just randomly
selected.

Within the definition, security is the most noteworthy point.
It is evident that party Pn holds the most substantial amount
of information. As a result, our security discussion revolves
around this central party. We divide the discussion into two
distinct situations: one where Pn is corrupted and the other
where Pn remains honest. In both cases, we show that the infor-
mation possessed by the adversary along with the parameters
generated by the protocol in the real world is indistinguishable
from the case where these authentic parameters are replaced
by randomly generated ones.

For simplicity, we multiply ~An by an 1.

Definition 4 (Pseudorandom MP-VOLE Generator). A Pseu-
dorandom MP-VOLE Generator is a pair of algorithms
(Setup,Expand) with the following syntax:

Parameters: There are n parties P1,P2, . . . ,Pn and an
adversary. Let F be a field. Let C be the corrupted
parties.
Functionality: Upon receiving sid from Pi.

1. If P1 is corrupted, wait for the adversary to send
~A0,~A1 ∈ Fm. Otherwise sample ~A0,~A1← Fm.

2. For i ∈ [2,n− 1], if Pi is corrupted, wait for the
adversary to send~Ai ∈Fm. Otherwise sample ~Ai←
Fm.

3. If Pn is honest, sample ~x ← Fn−1, where ~x :=
(x1,x2, . . . ,xn−1), and compute ~An := ~A0−~A1x1−
~A2x2− . . .−~An−1xn−1. Otherwise,

4. Wait for the adversary to send~x ∈ Fn−1 and ~An ∈
Fm. If ∃i ∈ [2,n− 1],Pi /∈ C , recompute ~Ai :=
(~A0−~A1x1−~A2x2− . . .−~Ai−1xi−1−~Ai+1xi+1−
. . .−~An−1xn−1−~An)/xi. Otherwise,

5. Resample ~A1 ← Fm, recompute ~A0 := ~A1x1 +
~A2x2 + . . .+~An−1xn−1 +~An.

The functionality outputs ~A0,~A1 to P1, ~Ai to Pi for i ∈
[2,n−1], ~An and~x to Pn.

Figure 4: Ideal functionality FMP−VOLE

- Setup(1λ,F,m,x1,x2, . . . ,xn−1) is a PPT algorithm that
given a security parameter λ, field F, output length
m, and scalars xi ∈ F outputs n seeds seed1, . . . ,seedn,
where seedn includes x1,x2, . . . ,xn−1.

- Expand(σ,seedσ) is a polynomial-time algorithm that
given party index σ ∈ [1,n] and a seed seedσ, outputs a
pair (~A0,~A1) ∈ Fm×Fm if σ = 1, or a vector ~Ai ∈ Fm if
σ = i, i ∈ [2,n].

The algorithms (Setup, Expand) should satisfy the follow-
ing:

- Correctness. For any fieldF and xi ∈F, for any seedi, i∈
[1,n] in the image of Setup(1λ,F,m,x1,x2, . . . ,xn−1)(for
some m), denoting (~A0,~A1)← Expand(1,seed1), and
~Ai← Expand(i,seedi), it holds that ~A0 :=~A1x1+~A2x2+
. . .+~An−1xn−1 +~An.

- Security. For any (stateful, nonuniform) polynomial-
time adversary A , corrupted parties C , U1 := { j|Pj ∈ C},
it holds that

5

– if n /∈U1,

Pr

(F,1m,~x)← A(1λ),

(seedi)i∈[1,n]
R← Setup(1λ,F,m,~x),

V1←{Expand(i,seedi)}i∈[1,n]\U1

: A(V1,~x,(seed j) j∈U1) = 1

≈

Pr

(F,1m,~x)← A(1λ),~x′ R← Fn−1,

(seedi)i∈[1,n]
R← Setup(1λ,F,m,~x),

V2←{Expand(i,seedi)}i∈U1 ,

U2←{l|~Al /∈V2},u← max(U2),

(~Al
R← Fm)l∈U2\{u},

~Au := (~A0−
u−1

∑
i=1

~Aix′i−
n

∑
i=u+1

~Aix′i)/x′u

: A((~Al)l∈U2 ,
~x′,(seed j) j∈U1) = 1

– if n ∈U1,

Pr

(F,1m,~x)← A(1λ),

(seedi)i∈[1,n]
R← Setup(1λ,F,m,~x),

V1←{Expand(i,seedi)}i∈[1,n]\U1

: A(V1,~x,(seed j) j∈U1) = 1

≈

Pr

(F,1m,~x)← A(1λ),

(seedi)i∈[1,n]
R← Setup(1λ,F,m,~x),

V2←{Expand(i,seedi)}i∈U1 ,

U2←{l|~Al /∈V2},u← max(U2),

(~Al
R← Fm)l∈U2\{u},

~Au := (~A0−
u−1

∑
i=1

~Aixi−
n

∑
i=u+1

~Aixi)/xu

: A((~Al)l∈U2 ,~x,(seed j) j∈U1) = 1

where ~x = (x1,x2, . . . ,xn−1,xn := 1),~x′ =

(x′1,x
′
2, . . . ,x

′
n−1,x

′
n := 1).

Next we present our MP-VOLE generator construction. We
use a “spreading function” just as [2] does. The function
spreadm takes as input a subset S = {s1,s2, . . . ,s|S|} of [m]
(with s1 < s2 < .. . < s|S|) and a vector~y = (y1,y2, . . . ,y|S|) ∈
F|S|, such that spreadm(S,~y) is the vector~z satisfying z j = 0
for any j ∈ [m] \ S, and zsi = yi for i ∈ [1, |S|]. Note that the
function spreadm is a linear function. Our construction is
given in Figure 5.

Now we need to show that our construction satisfies the
correctness and security defined previously. It is easy to find
that when the number of corrupt parties reaches n− 1, the

Parameters: There are n parties P1,P2, . . . ,Pn. Let F
be a field, m be the expanded length, λ be the security
parameter, k := k(λ) be the dimension and t := t(λ) be
the noise parameter of the LPN assumption.
Building blocks: A code generator C, where C(k,m,F)
defines a public matrix Ck,m ∈ Fk×m. A multi-
point function secret sharing MPFSS=(MPFSS.Gen,
MPFSS.Eval, MPFSS.FullEval).

- GMP−VOLE .Setup(1λ,F,m,x1,x2, . . . ,xn−1): Pick
a random size-t subset S of [m],n random
vectors (~a0,~a1, . . . ,~an−1)

R← (Fk)n, and n − 1
random vectors (~y1,~y2, . . . ,~yn−1)

R← (Ft)n−1.
Let s1 < s2 < .. . < st denote the ele-
ments of S. Set ~an := ~a0 − ~a1x1 − ~a2x2 −
. . . − ~an−1xn−1. Compute (K0,K1)

R←
MPFSS.Gen(1λ, fS,x1~y1+x2~y2+ . . .+xn−1~yn−1).
Set seed1 ← (F,m,K0,S,~y1,~a0,~a1),
seedi ← (F,m,S,~yi,~ai) for i ∈ [2,n − 1],
seedn← (F,m,K1,x1,x2, . . . ,xn−1,~an).

- GMP−VOLE .Expand(σ,seedσ):

– If σ = 1, parse seed1: compute
~ν0 ← MPFSS.FullEval(0,K0),~µ1 ←
spreadm(S,~y1). Output (~A0,~A1) ←
(~a0 ·Ck,m +~ν0,~a1 ·Ck,m +~µ1).

– If σ = i, i ∈ [2,n−1], parse seedi: compute
~µi← spreadm(S,~yi). Output ~Ai←~ai ·Ck,m +
~µi.

– If σ = n, parse seedn: compute ~ν1 ←
MPFSS.FullEval(1,K1). Output ~An←~an ·
Ck,m−~ν1.

Figure 5: MP-VOLE generator GMP−VOLE which realizes
FMP−VOLE

6

system is insecure: say p1, p3, p4, . . . , pn−1, pn are corrupted,
~A2 held by P2 can be easily calculated by ~A2 = (~A0−~A1x1−
∑

n
i=3

~Aixi)/x2. Luckily, we can prove that the generator is
secure when the number of corrupting parties is no more than
n−2.

Theorem 5. GMP−VOLE is a secure MP-VOLE generator
against n−2 party collusion given a secure MPFSS scheme.

Correctness. By the MPFSS correctness, it holds that
MPFSS.FullEval(0,K0) + MPFSS.FullEval(1,K1) =
spreadm(S,x1~y1 + x2~y2 + . . . + xn−1~yn−1) = ~µ1x1 +
~µ2x2 + . . . + ~µn−1xn−1. Therefore, ~A1x1 + ~A2x2 + . . . +
~An−1xn−1 + ~An = (~a1 · Ck,m + ~µ1)x1 + (~a2 · Ck,m +
~µ2)x2 + . . . + (~an−1 · Ck,m +~µn−1)xn−1 + ~an · Ck,m −~ν1 =
(~a1 +~a2 + . . .+~an−1 +~an)Ck,m +MPFSS.FullEval(0,K0)+
MPFSS.FullEval(1,K1) − MPFSS.FullEval(1,K1) =
~a0 ·Ck,m +~ν0 = ~A0.
Security. We start by proving the first security requirement
through a sequence of games.

- Game 0. Compute (seedi)i∈[1,n]
R← Setup(1λ,F,m,~x),

set
V1 ← {Expand(i,seedi)}i∈[1,n]\U1 , and send
(V1,~x,(seed j) j∈U1) to A . Denote β0 the output of
A in this game.

- Game 1. In this game, compute the input of A as before
except that K0 is computed solely from (F,m, t) using
the simulator for the secrecy of the MPFSS. Note that in
this game, K0 carries no information whatsoever about xi
and (~µi)i∈[2,n−1]. Denote β1 the output of A in this game,
by the secrecy of the MPFSS, |Pr[β1 = 1]−Pr[β0 =
1]|= negl(λ).

- Game 2. In this game, pick ~x′ R← Fn,(~Al
R← Fm)l∈U2\{u}

and set ~Au := (~A0−∑
u−1
i=1

~Aix′i−∑
n
i=u+1

~Aix′i)/x′u. There
are two differences between this game and the previous
one. The first is that we replace~x by a uniformly random
~x′. Note that the only part of (seed j) j∈U1 which depends
on x is, if P1 is corrupted, K0 ∈ seed1, while in Game
1 we have made it irrelevant. The other difference is
that we replaced several ~Al =~al ·Ck,m +~µl by uniformly
random ~A′l . Observe that ~Al is exactly a noisy linear
encoding of ~al , using the linear code Ck,m ∈ Fk(λ)×m,
with noise vectors~µl . Since seed j carries no information
about~µl , ~Al is therefore a noisy linear encoding of ~al ,
where the number of noisy coordinates is exactly t(λ),
and each noisy coordinate is masked by a uniformly ran-
dom element of F. Therefore, distinguishing Game 2
from Game 1 is equivalent to breaking |U2|−1 indepen-
dent LPN assumptions of dimension k(λ) over F, with
m samples and a noise rate t(λ)/m: denoting β2 the out-
put of A in this game, under the LPN(k(λ),m, t(λ)/m)
assumption over F, |Pr[β2 = 1]−Pr[β1 = 1]|= negl(λ).
This concludes the proof of the first security requirement.

Parameters: There are n parties P1,P2, . . . ,Pn with re-
spective sets X1,X2, . . . ,Xn. Let F be a field, κ be the
security parameter, FMP−VOLE be the MP-VOLE func-
tionality.
Protocol: Upon input (sid, Xi):

1. P1 samples and reveals r,r′ R←{0,1}κ.

2. Each (Pi)i∈[1,n−1] computes ~Qi := Encode(Li,r),
where Li := {(x,HF(x,r′))|x ∈ Xi}.

3. Each Pi sends sid to FMP−VOLE with dimen-
sion m := |~Qi| and F. The parties respec-
tively receive (~A0,~A1), (~Ai)i∈[2,n−1] and (~x :=
(x1,x2, . . . ,xn−1),~An).

4. For i ∈ [1,n− 1], each Pi sends ~A′i := ~Ai + ~Qi to
Pn, who defines ~A′n = ~An +~A′1 · x1 +~A′2 · x2 + . . .+
~A′n−1 · xn−1.

5. Pn sends Y := {H(Decode(~A′n,y,r)− (x1 + x2 +
. . .+ xn−1)HF(y,r′))|y ∈ Xn} to P1 in a random
order.

6. P1 outputs {x ∈ X1|H(Decode(~A0,x,r)) ∈ Y}.

Figure 6: Malicious protocol ΠMP−PSI which realizes
FMP−PSI

The proof for the second requirement is entirely consistent
and even simpler. Therefore, we choose to omit it.

3.2 Multi-Party PSI
After completing the construction of the tool, we move on to
the construction of the MP-PSI protocol itself. We present
our MP-PSI protocol in Figure 6. Due to the limitations of
MP-VOLE, our MP-PSI protocol can only resist n−2 corrup-
tion parties. We give the proof of correctness and security in
Theorem 6.

Theorem 6. ΠMP−PSI realizes the FMP−PSI functional-
ity against a malicious adversary in the random oracle,
FMP−VOLE −hybrid model.

Correctness.

- x in the intersection. We just need to prove that
Decode(~A0,x,r) = Decode(~A′n,x,r)− (x1 + x2 + . . .+
xn−1)HF(x,r′). Note that for each Pi, (x,HF(x,r′)) is
encoded to ~Qi. Therefore, Decode(~Qi,x,r) = HF(x,r′).
Then by the linearity of OKVS and correctness of MP-
VOLE, we have
Decode(~A′n,x,r) − (x1 + x2 + . . . + xn−1)HF(x,r′) =

7

Decode(~An +~A′1 · x1 +~A′2 · x2 + . . .+~A′n−1 · xn−1,x,r)−
(x1 + x2 + . . .+ xn−1)HF(x,r′) = Decode(~An +~A1 · x1 +
~A2 · x2 + . . .+~An−1 · xn−1,x,r)+Decode(~Q1,x,r) · x1 +
Decode(~Q2,x,r) · x2 + . . .+Decode(~Qn−1,x,r) · xn−1−
(x1 + x2 + . . . + xn−1)HF(x,r′) = Decode(~A0,x,r),
which concludes this situation.

- x /∈ X1 or x /∈ Xn. Note that in the 6th step of the protocol,
P1 only considers the elements in X1; in the 5th step
of the protocol, Pn only considers the elements in Xn.
Therefore, x is not output as part of the intersection.

- x /∈ (Xi)i∈[2,n−1]. In this situation, due to the struc-
ture of OKVS, Decode(~Qi,x,r) is overwhelmingly not
equal to HF(x,r′). Thus the values Decode(~A0,x,r) and
Decode(~A′n,x,r)−(x1+x2+ . . .+xn−1)HF(x,r′) would
not match, so x is not output as part of the intersection.

Security.
Note that in the case where multiple parties are corrupted,

the method of extracting input is the same as in the case
where one party is corrupted. Therefore, we only construct
simulators for the latter case.

- Corrupted P1. The simulator S interacts with P1 as fol-
lows:

1. S waits for A to send r,r′.

2. S plays the role of FMP−VOLE and receives ~A0,~A1
from A .

3. When A sends ~A′1, S computes ~Q1 := ~A′1−~A1. For
each of the previous HF(x,r′) queries made by A ,
S checks if Decode(~Q1,x,r) = FF(x,r′) and if so
adds x to set X1. S sends (sid,Xi) to FMP−PSI .

4. S outputs whatever P1 outputs.

- Corrupted (Pi)i∈[2,n−1]. The simulator S interacts with
Pi as follows:

1. S samples r,r′ R←{0,1}κ in stand of P1 and sends
it to A .

2. S plays the role of FMP−VOLE and receives ~Ai from
A .

3. When A sends ~A′i, S computes ~Qi := ~A′i−~Ai. For
each of the previous HF(x,r′) queries made by A ,
S checks if Decode(~Qi,x,r) = FF(x,r′) and if so
adds x to set Xi. S sends (sid,Xi) to FMP−PSI .

- Corrupted Pn. The simulator S interacts with Pn as fol-
lows:

1. S samples r,r′ R←{0,1}κ in stand of P1 and sends
it to A .

2. S plays the role of FMP−VOLE and receives ~x :=
(x1,x2, . . . ,xn−1) and ~An from A .

3. S sends ~A′i to A in stand of (Pi)i∈[1,n−1].

4. When A sends Y , S computes ~A′n = ~An + ~A′1 ·
x1 + ~A′2 · x2 + . . . + +~A′n−1 · xn−1. For each of
the previous HF(y,r′) queries made by A , S
checks if H(Decode(~A′n,y,r) − (x1 + x2 + . . . +
xn−1)HF(y,r′)) ∈ Y and if so adds y to set Xn. S
sends (sid,Xn) to FMP−PSI .

Performance Evaluation
We theoretically evaluate the performance of our protocol.

In our protocol, each party sends an encrypted OKVS vector
to the pivot, which are nmκ bits in total, here m is a small
multiple of l (if using OKVS in [21], m ≈ 2.4l). The pivot
needs to send a set of size (ρ+ 2logl)l bits. Our protocol
also requires performing an MP-VOLE of size m, but since
only short seeds need to be sent in the communication, we
can ignore this part. Therefore, the total communication cost
is O(l(nκ+ρ+ logl)). Every communication goes through
the pivot, so the bandwidth is also O(l(nκ+ ρ+ logl)). In
terms of running time, since the operations of each party can
be executed in parallel, the overall time should be consistent
with the two-party PSI protocol.

Multi-party Circuit-PSI without payload
We make use of the Circuit-PSI protocol of [21], but only if

there is no payload. Note that in essence, our multi-party PSI
protocol ultimately relies on the two-party PSI protocol of
P1 and Pn. Therefore, using the same method as [21], we can
establish an OPPRF between P1 and Pn, using P1 as the sender
to establish the cuckoo hash. In the absence of payload, we
only needs P1 to give the intersection element to the circuit
to perform subsequent operation. However, once each party
has some payload, it is undoubtedly insecure to reconstruct
the payload of each party through the input of only P1 and Pn.
We leave it as an interesting future work.

References

[1] Aner Ben-Efraim, Olga Nissenbaum, Eran Omri, and
Anat Paskin-Cherniavsky. Psimple: Practical multiparty
maliciously-secure private set intersection. In Proceed-
ings of the 2022 ACM on Asia Conference on Computer
and Communications Security, pages 1098–1112, 2022.

[2] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yu-
val Ishai. Compressing vector ole. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 896–912, 2018.

[3] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, and Peter Scholl. Efficient pseudorandom

8

correlation generators: Silent ot extension and more. In
Advances in Cryptology–CRYPTO 2019: 39th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2019, Proceedings, Part III 39,
pages 489–518. Springer, 2019.

[4] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai
Lakshmi Bhavana Obbattu, Sruthi Sekar, and Akash
Shah. Efficient linear multiparty psi and extensions to
circuit/quorum psi. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1182–1204, 2021.

[5] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo.
Multi-party privacy-preserving set intersection with
quasi-linear complexity. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer
Sciences, 95(8):1366–1378, 2012.

[6] Michael J Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In Inter-
national conference on the theory and applications of
cryptographic techniques, pages 1–19. Springer, 2004.

[7] Gayathri Garimella, Benny Pinkas, Mike Rosulek,
Ni Trieu, and Avishay Yanai. Oblivious key-value stores
and amplification for private set intersection. In Ad-
vances in Cryptology–CRYPTO 2021: 41st Annual In-
ternational Cryptology Conference, CRYPTO 2021, Vir-
tual Event, August 16–20, 2021, Proceedings, Part II 41,
pages 395–425. Springer, 2021.

[8] Gayathri Garimella, Mike Rosulek, and Jaspal Singh.
Structure-aware private set intersection, with applica-
tions to fuzzy matching. In Annual International Cryp-
tology Conference, pages 323–352. Springer, 2022.

[9] Carmit Hazay and Muthuramakrishnan Venkitasubrama-
niam. Scalable multi-party private set-intersection. In
IACR international workshop on public key cryptogra-
phy, pages 175–203. Springer, 2017.

[10] Roi Inbar, Eran Omri, and Benny Pinkas. Efficient
scalable multiparty private set-intersection via garbled
bloom filters. In International Conference on Secu-
rity and Cryptography for Networks, pages 235–252.
Springer, 2018.

[11] Lea Kissner and Dawn Song. Privacy-preserving set
operations. In Annual International Cryptology Confer-
ence, pages 241–257. Springer, 2005.

[12] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient batched oblivious prf with ap-
plications to private set intersection. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 818–829, 2016.

[13] Vladimir Kolesnikov, Naor Matania, Benny Pinkas,
Mike Rosulek, and Ni Trieu. Practical multi-party pri-
vate set intersection from symmetric-key techniques. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1257–
1272, 2017.

[14] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast
malicious multiparty private set intersection. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 1151–1165, 2021.

[15] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Psi from paxos: fast, malicious private set in-
tersection. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 739–767. Springer, 2020.

[16] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based psi with linear communication. In Advances in
Cryptology–EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May
19–23, 2019, Proceedings, Part III 38, pages 122–153.
Springer, 2019.

[17] Zhi Qiu, Kang Yang, Yu Yu, and Lijing Zhou. Mali-
ciously secure multi-party psi with lower bandwidth and
faster computation. In International Conference on In-
formation and Communications Security, pages 69–88.
Springer, 2022.

[18] Srinivasan Raghuraman and Peter Rindal. Blazing fast
psi from improved okvs and subfield vole. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 2505–2517, 2022.

[19] Amanda C Davi Resende and Diego F Aranha. Faster
unbalanced private set intersection. In Financial Cryp-
tography and Data Security: 22nd International Con-
ference, FC 2018, Nieuwpoort, Curaçao, February 26–
March 2, 2018, Revised Selected Papers 22, pages 203–
221. Springer, 2018.

[20] Peter Rindal and Mike Rosulek. Improved private set
intersection against malicious adversaries. In Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 235–259. Springer,
2017.

[21] Peter Rindal and Phillipp Schoppmann. Vole-psi: fast
oprf and circuit-psi from vector-ole. In Annual Inter-
national Conference on the Theory and Applications
of Cryptographic Techniques, pages 901–930. Springer,
2021.

9

[22] Yingpeng Sang and Hong Shen. Privacy preserving
set intersection protocol secure against malicious behav-
iors. In Eighth International Conference on Parallel and
Distributed Computing, Applications and Technologies
(PDCAT 2007), pages 461–468. IEEE, 2007.

[23] Yingpeng Sang and Hong Shen. Privacy preserving set
intersection based on bilinear groups. In Proceedings
of the thirty-first Australasian conference on Computer
science-Volume 74, pages 47–54. Citeseer, 2008.

[24] En Zhang, Feng-Hao Liu, Qiqi Lai, Ganggang Jin, and
Yu Li. Efficient multi-party private set intersection
against malicious adversaries. In Proceedings of the
2019 ACM SIGSAC conference on cloud computing se-
curity workshop, pages 93–104, 2019.

10

	Introduction
	Related Works
	Rindal et al.
	Qiu et al.
	Nevo et al.

	Overview of Our Results

	Preliminaries
	Private Set Intersection
	Function Secret Sharing
	Vector OLE
	Oblivious Key-Value Store
	Learning Parity with Noise

	Multi-Party Private Set Intersection
	Multi-Party VOLE
	Multi-Party PSI

