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Abstract. In this paper, inspired by the work of Beyne and Rijmen
at CRYPTO 2022, we explore the accurate probability of d-differential
in the fixed-key model. The theoretical foundations of our method are
based on a special matrix − quasi-d-differential transition matrix, which
is a natural extension of the quasidifferential transition matrix. The role
of quasi-d-differential transition matrices in polytopic cryptananlysis is
analogous to that of correlation matrices in linear cryptanalysis. Therefore,
the fixed-key probability of a d-differential can be exactly expressed as
the sum of the correlations of its quasi-d-differential trails.
Then we revisit the boomerang attack from a perspective of 3-differential.
Different from previous works, the probability of a boomerang distin-
guisher can be exactly expressed as the sum of the correlations of its
quasi-3-differential trails without any assumptions in our work.
In order to illustrate our theory, we apply it to the lightweight block
cipher GIFT. It is interesting to find the probability of every optimal 3-
differential characteristic of an existing 2-round boomerang is zero, which
can be seen as an evidence that the security of block ciphers adopting
half-round key XOR might be overestimated previously to some extent
in differential-like attacks.

Keywords: Boomerang attack, d-differential, Hypothesis of stochas-
tic equivalence, Correlation matrix, Quasidifferential transition matrix,
GIFT

1 Introduction

Differential attacks and their various variations have emerged as crucial techniques
for assessing the security of block ciphers in contemporary times. Differential
attack, proposed by Biham and Shamir at CRYPTO 1990 [10], analyzes a cipher
based on the probabilistic transition from an input difference to an output
difference. However, constructing differentials for iterated ciphers with a large
number of rounds can be exceptionally challenging. In the case of ciphers that



can be expressed as compositions of simple operations, the conventional approach
involves tracing sequences of intermediate differences or characteristics. The
probability of a characteristic is then estimated heuristically by multiplying the
probabilities of the intermediate differentials. Lai et al. [25] showed that the above
procedure yields the correct value of the key-averaged probability for Markov
ciphers.

One important consideration in a differential attack is that the key remains
fixed throughout the process. As a result, the actual probability may differ
significantly from the key-averaged probability. To address this challenge, Lai et
al. [25] introduced an additional assumption called the hypothesis of stochastic
equivalence. This assumption suggests that the probability associated with each
key is close to the average probability.

The use of averages in assessing probabilities is known to obscure potential
weak-key attacks, which can significantly undermine the security of certain ciphers.
Until recently, there were limited tools available to compute probabilities beyond
the average case, but in [8], Beyne and Rijmen introduced a new tool called the
quasidifferential transition matrix, which enables a more comprehensive analysis
of differential probabilities.

The role of quasidifferential transition matrix in differential cryptanalysis is
similar to that of correlation matrix in linear cryptanalysis. Like the correlation
of a linear approximation, which is precisely equal to the sum of the correlations
of all its linear trails, the fixed-key probability of a differential can be expressed
as the sum of the correlations of all its quasidifferential trails. For the first time,
the problem of exactly computing the differential probability has been solved in
the fixed-key model without any assumptions, more than three decades since the
differential cryptanalysis was proposed.

Inspired by the idea of differential cryptanalysis, i.e., exploiting non-random
pairs of input and output differences of a cipher, many variations of it were
proposed, including boomerang attack [32], polytopic attack [31] and so on. One
of the typical representatives is the boomerang attack, which combines two short
differential trails to get a long one with a high probability. It stands out for
its ability to potentially penetrate a larger number of rounds in block ciphers,
making it a compelling choice for evaluating security.

Despite the potential of boomerang attacks, it has been noted that certain
proposed instances of these attacks are incorrect. To mitigate this concern,
several tools have been developed to provide a more accurate estimation of the
probability associated with a boomerang attack. These tools serve to improve the
reliability and precision of evaluating the effectiveness of boomerang distinguishers.
In EUROCRYPT 2018, Cid et al. introduced a novel tool called Boomerang
Connectivity Table (BCT) for estimating the theoretical probability of a middle
round [15]. This development has sparked further research in the field, leading to
the proposal of various types of tables. These include the Upper BCT (UBCT) [17,33],
the Lower BCT (LBCT) [17, 29], the Extended BCT (EBCT) [13, 17], and the Double
BCT (DBCT) [21, 35]. These different tables enhance the analysis and evaluation of
boomerang distinguishers. Under specific assumptions, the aforementioned tables
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enable the estimation of the probability of boomerang distinguishers, even when
the middle part consists of multiple rounds. To reduce computational complexities,
all of these tables share a requirement: the two upper differentials and the two
lower differentials must be the same simultaneously. This condition allows for
more efficient calculations and analysis within the context of boomerang attacks.
Recently, when Li et al. [26] mounted the rectangle attack to the block cipher
GIFT [4] by introducing a new tool named Generalized BCT (GBCT), which was
a generalization of BCT and did not require the two upper differentials or the
two lower differentials to be equal. This improves the probability of the rectangle
distinguisher.

Although many tools were introduced for getting more accurate probabilities
of boomerang distinguishers, the resulting probabilities are still key-averaged ones,
as these tools implicitly rely on the assumption of stochastic equivalence. Then a
question rises naturally whether it is possible to calculate the exact probability
of a boomerang distinguisher without any assumptions. This also remains an
open question in the field of symmetric cryptography as stated in [31] in a
different way1. Also in [18], Dunkelman et al. proposed the open question: Create
a “grand unified theory” of boomerang-like attacks which will explore their hidden
relationships and treat them rigorously.

Our contributions: In this paper, we first devote to partially answering the
above questions theoretically, and then explain our theory and show how to use
it in practice through analysing the probability of one boomerang distinguisher
of GIFT. The main contributions of this paper are summarized below.

1. We generalize the framework of differential cryptanalysis proposed in [8] to
polytopic cryptanalysis. Specifically, we generalize the notion of quasidiffer-
ential transition matrix (QDTM) to d-differential, and get a matrix named
quasi-d-differential transition matrix (d-QDTM), which is obtained by perform-
ing a change-of-basis on the transition matrix describing the propagation
of probability distributions of (d + 1)-tuples through d + 1 functions (may
be equal), analogous to the construction of correlation matrix using Fourier
transformation. The role of d-QDTM in polytopic cryptanalysis is similar to
that of correlation matrix in linear cryptanalysis. For example, composition
of functions corresponding to multiplication of d-QDTMs. Therefore, as in lin-
ear/differential cryptanalysis, we can prove that the sum of the correlations
of all quasi-d-differential trails in a d-differential characteristic is equal to its
exact probability.

2. Then, we revisit the boomerang attack from a perspective of 3-differential.
Using the above theory, we can give the exact expression of the probability of

1 In [31], it is stated as follows. Another open problem is the exact determination of
the success probability of boomerang attacks and their extensions. It has correctly
been observed that the correlation between differentials must be taken into account to
accurately determine the success probability [27]. The true probability can otherwise
deviate arbitrarily from the estimated one.
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boomerang distinguisher without any assumptions for the first time. Moreover,
under the assumption that intermediate differentials are independent as
usually done in classical differential attack, we dive into the sandwich attack
and find that there is a gap between the real probability and the value
calculated in the sandwich attack framework. Actually, the probability of
boomerang distinguisher estimated in previous work under sandwich attack
framework can be seen as a kind of average.

3. In order to illustrate the theory we build, we apply it to lightweight block
cipher GIFT. For one boomerang distinguisher provided in previous work,
we find that the probability of every optimal 3-differential characteristic (in
total 213 optimal 3-differential characteristics) is zero, independently with the
round keys, i.e., all of them are impossible. The above interesting result can
be seen as an evidence that the security of block ciphers adopting half round
key XOR against the differential-like attacks is overestimated in previous
work. However, in the case of full round key XOR, for each characteristic,
there at least exists one round key such that its probability is nonzero under
the assumption that the round sub-keys are independent (Note that the
assumption does not hold for the round keys of GIFT).

Organization: In Section 2, we recall the linear and differential cryptanalysis,
and some notions in polytopic cryptanalysis. In Section 3, we introduce the
d-QDTM, an important tool in our work. In Section 4, we mainly focus on 3-
differential and prove that the sum of the correlations of all quasi-3-differential
trails in a 3-differential characteristic is equal to its exact probability. We revisit
the boomerang attack in Section 5 under the framework of 3-differential. Section
6 presents an automated search tool for quasi-3-differential trails in GIFT. Finally,
we conclude this paper in Section 7.

2 Preliminaries and Related Work

In this section, we will quickly review the linear attack and differential attack, and
the well known tools correlation matrix (CM), differential distribution table (DDT),
and quasidifferential transition matrix (QDTM). Then, we recall some notions in
polytopic cryptanalysis. The notations used in this paper are consistent with
that in [6, 7, 8] as much as possible, and will be introduced where necessary.
Throughout this paper, we abuse the notation x, which represents a random
variable over Fn

2 and also represents a vector with components belonging to Fn
2 ,

i.e., x = (x0, x1, . . . , xd), xi ∈ Fn
2 , 0 ≤ i ≤ d.

2.1 Linear Cryptanalysis

Although the present paper only focuses on differential-like cryptanalysis, it is
useful to introduce the background of linear cryptanalysis, especially the novel
tool – correlation matrices [16], which provide an important motivation for the
quasidifferentil framework of Beyne and Rijmen’s work [8].
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Let R[Fn
2 ] be the set of all functions from Fn

2 to the real number field R.
Obviously, R[Fn

2 ] is a vector space over R with dimension 2n. It is well known
that {δa | a ∈ Fn

2} is a basis of R[Fn
2 ], where the function δa is defined as δa(x) = 1

if x = a and zero elsewhere. This basis is an orthonormal basis of R[Fn
2 ] with

respect to the inner product ⟨f, g⟩ =
∑

x∈Fn
2

f(x)g(x). We call it standard basis
in the following.

There exists another well known basis for R[Fn
2 ] consisting of the additive

characters of Fn
2 . These are homomorphisms from R[Fn

2 ] to the multiplicative
group C\{0}. Because of the special structure of Fn

2 , every such homomorphism is
of the form χu(x) = (−1)u⊤x with u, x ∈ Fn

2 being column vectors. All characters
χu form an orthogonal basis for R[Fn

2 ] with respect to the above defined inner
product, i.e., ⟨χu, χv⟩ =

∑
x∈Fn

2
χu(x)χv(x) = 2nδu(v). The basis {χu | u ∈ Fn

2}
will be called the character basis throughout this paper. It is well known that
from linear algebra every function f ∈ R[Fn

2 ] can be uniquely expressed as a
linear combination of a basis for R[Fn

2 ] with coefficients in R. Therefore, f can
be written as

f =
∑

u∈Fn
2

f(u)δu =
∑

u∈Fn
2

⟨f, χu⟩
2n

χu. (1)

Now we give the define of Fourier transformation.

Definition 1 (Fourier transformation). Let f ∈ R[Fn
2 ]. The Fourier trans-

formation of f , denoted by Fnf , is also a function in R[Fn
2 ], and defined by

(Fnf)(u) = ⟨χu, f⟩ for each u ∈ Fn
2 . That is, Fnf =

∑
u∈Fn

2
⟨χu, f⟩δu.

Remark 1. we remind that in some literatures, the Fourier transformation of f ,
i.e., Fnf , belongs to R[F̂n

2 ], where F̂n
2 is the group formed by all the characters of

Fn
2 , and Fnf is defined by (Fnf)(χu) = ⟨χu, f⟩. Because there is an isomorphism

between F̂n
2 and Fn

2 , for convenience, throughout this paper we assume Fnf ∈
R[Fn

2 ].

From Definition 1 and Formula (1), we find that when f and its Fourier
transformation Fnf are respectively expressed by the character basis and the
standard basis, they have the same coefficients (up to a constant factor 1

2n ).
It is easy to see that Fourier transformation is a linear operator and changes
the character basis {χu | u ∈ Fn

2} to standard basis {δu | u ∈ Fn
2}, that is,

Fnχu = 2nδu for any u ∈ Fn
2 .

Let F : Fn
2 → Fm

2 . We define the linear operator T F : R[Fn
2 ] → R[Fm

2 ] by
T F(δx) = δF(x) for all x ∈ Fn

2 . The transition matrix of F is the coordinate
representation of T F with respect to the standard bases of R[Fn

2 ] and R[Fm
2 ]. It

is interesting that Beyne found the correlation matrix, proposed by Daemen et
al. [16], can be seen as the transition matrix of T F with respect to the character
bases of R[Fn

2 ] and R[Fm
2 ] [7]. Therefore, by the change-of-basis operation of

Fourier transformation, the correlation matrix can be defined as follows.
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Definition 2 (Correlation matrix). Let F : Fn
2 → Fm

2 . Define CF : R[Fn
2 ]→

R[Fm
2 ] as the Fourier transformation of T F. That is, CF = FmT FF−1

n , as illus-
trated in Fig. 1.

Fig. 1: The relationship between correlation matrix and transition matrix

The CM by Definition 2 is consistent with the original definition due to Daemen
et al. [16], in which the (u, v)-entry is defined by CF

u,v = 2 Pr[v⊤F(x)+u⊤x = 0]−1
with x uniform random on Fn

2 . CMs satisfy several properties, one of which is
that, for a function F = Fr ◦ Fr−1 ◦ · · · ◦ F1, it holds that

CF = CFr CFr−1 · · ·CF1 .

Expanding the above equation in coordinates yields the following identity:

CF
ur+1,u1

=
∑

u2,...,ur

r∏
i=1

CFi
ui+1,ui

. (2)

That is, the correlation of a linear approximation is equal to the sum of the
correlations of all linear trails defined by the intermediate masks u2, . . . , ur.

2.2 Differential Cryptanalysis

The central problem of differential cryptanalysis is to find a high probability
differential characteristic for a target cipher. To achieve this goal cryptanalyst
usually analyzes the propagation of differences through components, and each
component can be seen as a function F : Fn

2 → Fm
2 . Thus, the cryptanalyst

attempts to find a differential (a, b) ∈ Fn
2 ×Fm

2 such that the number of solutions
of the difference equation

F(x⊕ a)⊕ F(x) = b

is as large as possible. The difference distribution table DDTF is a 2n × 2m table
with rows and columns indexed by input and output differences, respectively.
The corresponding entries are equal to the number of solutions for a particular
differential:

DDTF
a,b = |{x ∈ Fn

2 | F(x⊕ a)⊕ F(x) = b}| = 2nPr[F(x⊕ a)⊕ F(x) = b]
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with x uniform random on Fn
2 .

Directly computing or estimating the probability of a differential for a cipher
of large input size (such as 128 bits) is computationally difficult. However, many
ciphers are of the form F = Fr ◦ Fr−1 ◦ · · · ◦ F1, where the functions Fi admit
differentials with relatively high probabilities and are usually easier to analyze.
In this case, the probability of a differential (a1, ar+1) can be estimated based
on characteristics. A characteristic is a sequence (a1, a2, . . . , ar+1) of compatible
intermediate input and output differences for each of the functions Fi. For the
sake of simplicity, we assume that the functions Fi are all n-bit functions, i.e.,
m = n. It holds that

Pr[F(x⊕ a1)⊕ F(x) = ar+1] =
∑

a2,...,ar

Pr[∧r
i=1Fi(xi ⊕ ai)⊕ Fi(xi) = ai+1]

with x1 uniform random on Fn
2 and xi = Fi−1(xi−1) for 2 ≤ i ≤ r. The probability

of a characteristic is often estimated using the assumption that intermediate
differentials are independent:

Pr[∧r
i=1Fi(xi ⊕ ai)⊕ Fi(xi) = ai+1] ≈

r∏
i=1

Pr[Fi(xi ⊕ ai)⊕ Fi(xi) = ai+1].

Combining the above three equations, we get

DDTF
a1,ar+1

/2n ≈
∑

a2,...,ar

r∏
i=1

DDTFi
ai,ai+1

/2n. (3)

Equation (3) for differential probability should be compared with Equation (2)
for liner approximation. However, there is a fundamental difference: whereas
Equation (3) is heuristic and at best true on average with respect to independent
uniform random round keys, Equation (2) holds exactly without any assumptions.
Closing the gap between Equation (3) and Equation (2) is essential to achieve a
more complete understanding of differential cryptanalysis. Recently, Beyne and
Rijmen solved the problem through introducing the following new tool.

Definition 3 (Quasidifferential transition matrix). Let n and m be two
positive integers, and F : Fn

2 → Fm
2 . The quasidifferential transition matrix DF is

a matrix with size 22m × 22n, and its ((v, b), (u, a))-entry is defined by

DF
(v,b),(u,a) = 1

2n

∑
x∈Fn

2
F(x)⊕F(x⊕a)=b

(−1)v⊤F(x)+u⊤x,

where v, b ∈ Fm
2 , u, a ∈ Fn

2 .

The role of QDTM in differential cryptanalysis is similar as that of CM in linear
cryptanalysis, so they have the similar properties. For example, for a function
F = Fr ◦ Fr−1 ◦ · · · ◦ F1, it also holds that

DF = DFr DFr−1 · · ·DF1 .
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We denote ϖi = (ui, ai) for 1 ≤ i ≤ r + 1. Expanding the above equation in
coordinates yields the following identity:

DF
ϖr+1,ϖ1

=
∑

ϖ2,...,ϖr

r∏
i=1

DFi
ϖi+1,ϖi

. (4)

When we restrict ur+1 = u1 = 0, from Equation (4), we can get that the exact
probability of differential (a1, ar+1) is equal to the sum of the correlations of all
quasidifferential trails with input and output mask-difference pairs ϖ1 = (0, a1)
and ϖr+1 = (0, ar+1), respectively. Actually, Equation (4) is more like Equation
(2), which puts the theory of differential and linear cryptanalysis on an equal
footing.

2.3 d-differences and Their Transitions

In this subsection, we recall the definitions of d-differences and their transitions.
The readers can refer to [31] for more details.

Different from original differential cryptanalysis that analyses the propagation
of difference between only two plaintexts, differential-like cryptanalysis usually
have to track the differences among multiple plaintexts. We are usually not
interested in the absolute position of texts in the state space but only in their
relative positions, i.e., their differences. The relative positions of a tuple of d + 1
texts can be defined by the differences of the last d texts with respect to the first
one, which leads to the following definition of d-difference.
Definition 4 (d-difference). For a (d+1)-tuple (m0, m1, . . . , md), its d-difference
is defined as the following d-tuple

(m1 ⊕m0, m2 ⊕m0, . . . , md ⊕m0).

We refer to the first text m0 of the (d + 1)-tuple of messages as the anchor of the
d-difference.
It is easy to see that a (d + 1)-tuple is uniquely determined by its d-difference
together with its anchor. Similar to the propagation of difference, we can define
the transition of d-differences.
Definition 5 (d-difference transition). Let F : Fn

2 → Fn
2 , α = (α1, α2, . . . , αd)

and β = (β1, β2, . . . , βd) be two d-differences over Fn
2 . We use the notation α

F−→
x

β to denote the event that F maps the (d + 1)-tuple of messages corresponding to
the d-difference α with anchor x to a (d + 1)-tuple of messages corresponding to
d-difference β with anchor F(x). More precisely, the notation α

F−→
x

β implies
that

F(x⊕ α1)⊕ F(x) = β1,

F(x⊕ α2)⊕ F(x) = β2,

· · ·
F(x⊕ αd)⊕ F(x) = βd.
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Example 1. Let (m0, m1, m2, m3) be a tuple of four plaintexts, and the corre-
sponding 3-difference be α = (m1⊕m0, m2⊕m0, m3⊕m0). For some 3-difference
β, if α

F−→
m0

β, then β = (F(m1)⊕ F(m0), F(m2)⊕ F(m0), F(m3)⊕ F(m0)).

Note that when d = 1, the d-difference is reduced to the classical difference.
Like in standard differential cryptanalysis, we are also interested in the probability
of the d-difference transition in differential-like cryptanalysis.

Definition 6 (Probability of transition). Let F, α, and β be same as in
Definition 5. The probability of the transition α

F−→ β is defined as

Pr(α F−→ β) = Pr
x

(α F−→
x

β) = #{x ∈ Fn
2 | F(x⊕ αi)⊕ F(x) = βi, 1 ≤ i ≤ d}

2n

where x is uniform random on Fn
2 .

In order to estimate the probability of d-differential for a cipher, we first
need to introduce the notion of d-differential characteristic. In fact, it is the
generalization of differential characteristic.

Definition 7 (A d-differential characteristic). Let a cipher F = Fr ◦ Fr−1 ◦
· · · ◦ F1 be a composition of r n-bits functions, and α1, α2, . . . , αr+1 ∈ Fdn

2
be a sequence of d-differences. We refer to the sequence α1, α2, . . . , αr+1 as a
characteristic over F if it satisfies α1

F1−→
x

α2
F2−−−→

F1(x)
α3 → · · · → αr

Fr−−−−−−−−−→
Fr−1◦···◦F1(x)

αr+1. That is, the (d + 1)-tuple corresponding to α1 with the anchor x follows
the trail (α1, α2, . . . , αr+1).

Then we can estimate the probability of a d-differential characteristic as we
usually do for differential characteristic, namely we make the same assumption as
in differential cryptanalysis. Therefore, we can approximate the probability of a d-
differential characteristic by considering the individual transitions as independent,
and we can further estimate the probability of a d-differential. Similar as Equation
(3), we have the following formula

Pr[∧r
i=1(αi

Fi−→
xi

αi+1)] ≈
r∏

i=1
Pr[(αi

Fi−→
xi

αi+1)].

Furthermore, the probability of a d-differential (α1, αr+1) can be estimated by

Pr[(α1
F−→
x

αr+1)] ≈
∑

α2,...,αr

r∏
i=1

Pr[(αi
Fi−→
xi

αi+1)]. (5)

We emphasize that Equation (5) is heuristic and at best true on average
with respect to independent uniform random round keys. In Section 3, we will
generalize the notion of QDTM to d-differential, and further give a formula for the
exact probability of d-differential in theoretical sound way.

Before going to next section, we give the definition of truncated d-difference,
which is useful when we describe the probability of boomerang distinguisher.
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Definition 8 (Transitions of truncated d-differences). A truncated d-
difference is an affine subspace in the linear space of d-differences. Let A, B

be two truncated d-differences, the probability of d-difference transition A
F→ B is

defined as the probability that an input d-difference, chosen uniformly at random
from A, maps to a d-difference in B:

Pr[A F→ B] = |A|−1
∑

α∈A,β∈B

Pr[α F→ β]. (6)

Note that when F is bijective on Fn
2 , usually Pr[B F−1

→ A] ̸= Pr[A F→ B], but they
have the following relationship:

|A|Pr[A F→ B] = |B|Pr[B F−1

→ A].

3 Quasi-d-differential Transition Matrices

In this section we prove that the notion of QDTM can be generalized to d-difference
and get the d-QDTM.

3.1 Quasi-d-differential Basis

Let P = Fn
2 × · · · × Fn

2︸ ︷︷ ︸
d+1 times

and R[P] be the set of all functions from P to the real

number field R. Obviously, R[P] is a vector space over R with dimension 2(d+1)n.

Definition 9 (Quasi-d-differential basis). For any (u, α) = (u, α1, . . . , αd) ∈
P, the function Bu,α : P→ R is defined by

Bu,α(x) = χu(x0)
d∏

i=1
δαi

(x0 ⊕ xi)

for every x = (x0, x1, . . . , xd) ∈ P. Then all elements in the set {Bu,α | (u, α) ∈
P} will be called the quasi-d-differential basis for R[P] in this paper.

The basis in Defintion 9 is orthogonal, which is shown in the following theorem.

Theorem 1. The quasi-d-differential basis defined in Definition 9 is orthogonal.

Proof. For arbitrary (u, α), (v, β) ∈ P, we have

⟨Bu,α,Bv,β⟩ =
∑
x∈P

χu(x0)χv(x0)
d∏

i=1
δαi(x0 ⊕ xi)δβi(x0 ⊕ xi)

=
d∏

i=1
δαi(βi)

∑
x0∈Fn

2

χu(x0)χv(x0)
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= 2nδu(v)
d∏

i=1
δαi

(βi),

which means that the quasi-d-differential basis is orthogonal.

Similar to the Fourier transformation, we can define the change-of-basis
operator Dn : R[P] → R[P] by (Dnf)(u, α) = ⟨Bu,α, f⟩, where f ∈ R[P]. It is
easy to see that Dn is a linear operator, and we also use it to represent the
corresponding matrix in the following. In fact, (Dnf)(u, α)/2n is the coordinate
corresponding to basis function Bu,α when f is expressed in the quasi-d-differential
basis, i.e.,

f =
∑

(u,α)∈P

(Dnf)(u, α)
2n

Bu,α.

3.2 Quasi-d-differential Transition Matrices
Let n and m be two positive integers and Fi : Fn

2 → Fm
2 , for 1 ≤ i ≤ d + 1. The

transition matrix of (d + 1)-tuples through d + 1 functions can be written as
the Kronecker product

⊗d+1
i=1 T Fi , which is defined as a 2(d+1)m × 2(d+1)n matrix

with coordinates(
d+1⊗
i=1

T Fi

)
(y1,y2,...,yd+1),(x1,x2,...,xd+1)

=
d+1∏
i=1

T Fi
yi,xi

=
d+1∏
i=1

δyi(Fi(xi)).

For convenience, we index the coordinates of
⊗d+1

i=1 T Fi directly by pairs of
bitvectors.
Definition 10 (Quasi-d-differential transition matrix). The quasi-d-differential
transition matrix DF1,F2,...,Fd+1 is defined as the matrix representation of the lin-
ear transformation induced by

⊗d+1
i=1 T Fi with respect to the quasi-d-differential

basis, as illustrated in Fig. 2. That is, DF1,F2,...,Fd+1 = Dm

(⊗d+1
i=1 T Fi

)
D−1

n .

Fig. 2: The quasi-d-differential transition matrix

When F1 = F2 = · · · = Fd+1 = F, for convenience, we denote DF1,F2,...,Fd+1

by DF in the following. In particular, when d = 1 and F1 = F2 = F, the above
d-QDTM becomes DF = Dm(T F ⊗ T F)D−1

n , which is the QDTM proposed in [8].

11



Note that for arbitrary f, g ∈ R[P], we have

⟨Dnf,Dng⟩ =
∑

(u,α)∈P

(Dnf)(u, α) · (Dng)(u, α)

=
∑

(u,α)∈P

⟨Bu,α, f⟩⟨Bu,α, g⟩

=
∑

(u,α)∈P

(∑
x∈P

f(x)χu(x0)
d∏

i=1
δαi

(x0 ⊕ xi)
)(∑

y∈P
g(y)χu(y0)

d∏
i=1

δαi
(y0 ⊕ yi)

)
= 2n

∑
x∈P

f(x)g(x)

= 2n⟨f, g⟩,

which implies that D−1
n = D⊤

n /2n.
To make Definition 10 more concrete, we compute the entries of DF1,F2,...,Fd+1

as follows, where (u, α) = (u, α1, . . . , αd) ∈ Fn(d+1)
2 and (v, β) = (v, β1, . . . , βd) ∈

Fm(d+1)
2 , which are clear in Fig. 2.

D
F1,F2,...,Fd+1
(v,β),(u,α) =

〈
δ(v,β),Dm

(
d+1⊗
i=1

T Fi

)
D−1

n δ(u,α)

〉

= 1
2n

〈
δ(v,β),Dm

(
d+1⊗
i=1

T Fi

)
D⊤

n δ(u,α)

〉

= 1
2n

〈
B(v,β),

(
d+1⊗
i=1

T Fi

)
B(u,α)

〉

= 1
2n

∑
x∈P

χu(x0)χv(F1(x0))
d∏

i=1
δαi

(x0 ⊕ xi)δβi
(F1(x0)⊕ Fi+1(xi))

= 1
2n

∑
x∈P

x0⊕xi=αi

F1(x0)⊕Fi+1(xi)=βi,1≤i≤d

(−1)u⊤x0+v⊤F1(x0)

= 1
2n

∑
x0∈Fn

2
F1(x0)⊕Fi+1(x0⊕αi)=βi,1≤i≤d

(−1)u⊤x0+v⊤F1(x0). (7)

In particular, when F1 = F2 = · · · = Fd+1 = F, we have

DF
(v,β),(u,α) = 1

2n

∑
x∈Fn

2

α
F−→
x

β

(−1)u⊤x+v⊤F(x). (8)

In this case, for u = v = 0, the above Equation (8) reduces to the probability of
the d-differential with input d-difference α and output d-difference β, respectively.

12



For α = β = 0, one obtains the coordinates of the CM of the function F. More
generally, the right hand side of Equation (8) can be interpreted as a kind of
correlation matrix for the function F when restricted to the values satisfying the
d-differential (α, β).

The d-QDTM has some basic and important properties, which are useful to
analyse the probability of d-differential. In next section we will present some prop-
erties for 3-differential, actually all of which can be generalized to d-differential
naturally.

4 Quasi-3-differential Trails

In this section, we restrict d = 3, because the boomerang attack can be described
by using 3-differentials, which will be clear in the next section.

4.1 Basic Properties for Quasi-3-differential Transition Matrices

First of all, we list some useful properties for 3-QDTMs in the following theorem.
The Kronecker product of two 3-QDTMs, which will be used in the following
theorem, is defined by(

DF1
1,F1

2,F1
3,F1

4
⊗

DF2
1,F2

2,F3
3,F4

4

)
(v1||v2,α1||α2),(u1||u2,β1||β2)

= D
F1

1,F1
2,F1

3,F1
4

(v1,α1),(u1,β1)D
F2

1,F2
2,F2

3,F2
4

(v2,α2),(u2,β2),

where α1, α2, β1, and β2 are all 3-differences.

Theorem 2. Let n and m be two positive integers, and Fi : Fn
2 → Fm

2 , 1 ≤ i ≤ 4.
The quasi-3-differential transition matrix DF1,F2,F3,F4 has the following properties:
(1) If each Fi is a bijective, then DF1,F2,F3,F4 is an orthogonal matrix.
(2) If Fi = (F1

i , F2
i , . . . , Fk

i ), where Fj
i : Fnj

2 → Fmj

2 ,
∑k

j=1 nj = n and
∑k

j=1 mj =
m, then DF1,F2,F3,F4 =

⊗k
j=1 DFj

1,Fj
2,Fj

3,Fj
4 .

(3) If Fi = F2
i ◦ F1

i , where F1
i : Fn

2 → Fℓ
2 and F2

i : Fℓ
2 → Fm

2 , then DF1,F2,F3,F4 =
DF2

1,F2
2,F2

3,F2
4DF1

1,F1
2,F1

3,F1
4 .

(4) If Fi(x) = Ax⊕ ci, where A is an m× n matrix and c ∈ Fm
2 , and (u, α) =

(u, α1, α2, α3) ∈ F4n
2 , (v, β) = (v, β1, β2, β3) ∈ F4m

2 , then

DF1,F2,F3,F4
(v,β),(u,α) = χv(c1)δu(A⊤v)δβ1(Aα1⊕c2⊕c1)δβ2(Aα2⊕c3⊕c1)δβ3(Aα3⊕c4⊕c1).

In particular, when A is an identity matrix and c1 = c2 = c3 = c4 = c,
i.e., Fi(x) = x ⊕ c, then DF1,F2,F3,F4

(v,β),(u,α) = χv(c)δu(v)δβ1(α1)δβ2(α2)δβ3(α3). Thus,
DF1,F2,F3,F4

(v,β),(u,α) is nonzero if and only if (u, α) = (v, β), i.e., DF1,F2,F3,F4 is a diagonal
matrix in this case.

Proof. Note that DF1,F2,F3,F4 = Dn(T F1⊗T F2⊗T F3⊗T F4)D−1
n = Dn(T F1⊗T F2⊗

T F3⊗T F4)D⊤
n /2n. Property (1) follows from the fact that T F1⊗T F2⊗T F3⊗T F4 is

a permutation matrix when Fi are bijective, 1 ≤ i ≤ 4, and the fact that Dn/
√

2n
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is an orthogonal matrix. Property (2) can be easily obtained form Equation (8).
Property (3) comes from

DF1,F2,F3,F4 = Dm(T F1 ⊗ T F2 ⊗ T F3 ⊗ T F4)D−1
n

= Dm(T F2
1 ⊗ T F2

2 ⊗ T F2
3 ⊗ T F2

4)(T F1
1 ⊗ T F1

2 ⊗ T F1
3 ⊗ T F1

4)D−1
n

= Dm(T F2
1 ⊗ T F2

2 ⊗ T F2
3 ⊗ T F2

4)D−1
ℓ Dℓ(T F1

1 ⊗ T F1
2 ⊗ T F1

3 ⊗ T F1
4)D−1

n

= DF2
1,F2

2,F2
3,F2

4DF1
1,F1

2,F1
3,F1

4 .

Property (4) can also be obtained from Equation (8).

Property (3) is interesting and important, which makes 3-QDTMs behave like
CMs, and further it allows to give the exact probability of 3-differential.

4.2 Exact Probabilities from Quasi-3-differential Trails

Motivated by the notion of quasidifferential trail, we first define the quasi-3-
differential trail, and then show that the exact expressions for the probabilities
of 3-differentials can be given in terms of the correlations of quasi-3-differential
trails. Form now on, we assume that F1 = F2 = F3 = F4, whose meaning is
that we use the same encrypt oracle to encrypt multiple plaintexts. However,
the results in this subsection can be generalized to the related-key setting easily,
where these functions differ only in additive-key operation which is easy to deal
with in practice.

Definition 11. A quasi-3-differential trail for a function E = Er ◦ · · · ◦ E2 ◦
E1 is a sequence ϖ1, ϖ2, . . . , ϖr+1 of mask-3-differential quartets, where ϖi =
(u, αi, βi, γi), 1 ≤ i ≤ r + 1. The correlation of this quasi-3-differential trail is
defined as

∏r
i=1 DEi

ϖi+1,ϖi
.

Quasi-3-differential trails with u1 = u2 = · · · = ur+1 = 0 correspond to
3-differential characteristics. Their correlation is equal to the product of one-
round probabilities of the 3-differential characteristic with 3-differences sequence
(α1, β1, γ1), . . . , (αr+1, βr+1, γr+1):

r∏
i=1

DE
(0,αi+1,βi+1,γi+1),(0,αi,βi,γi) =

r∏
i=1

Pr[(αi, βi, γi)
Ei→
x

(αi+1, βi+1, γi+1)]

with x uniform random on Fn
2 . This follows from Definition 11 and Equation (8).

Theorem 2 (3) indicates that the sum of the correlations of all quasi-3-
differential trails with input and output mask-3-differential quartets ϖ1 =
(0, α1, β1, γ1) and ϖr+1 = (0, αr+1, βr+1, γr+1) respectively, is equal to the
exact probability of the 3-differential with input 3-difference (α1, β1, γ1) and
output 3-difference (αr+1, βr+1, γr+1). Explicitly, expanding the coordinates of
DE =

∏r
i=1 DEi corresponding to this 3-differential yields

DE
ϖr+1,ϖ1

=
∑

ϖ2,...,ϖr

r∏
i=1

DEi
ϖi+1,ϖi

. (9)
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This result can be trivially generalized to d-differential, i.e., we can give the exact
probabilitiy of polytopic cryptanalysis. Actually, quasi-3-differential trails also
allow computing the probability of a 3-differential characteristic as shown in the
following theorem.

Theorem 3. Let E : Fn
2 → Fm

2 be a function and E = Er ◦· · ·◦E1. The probability
of a 3-differential characteristic with 3-differences (α1, β1, γ1), . . . , (αr+1, βr+1, γr+1)
is equal to the sum of the correlations of all quasi-3-differential trails with the
same intermediate 3-differences:

Pr[∧r
i=1(αi, βi, γi)

Ei→
xi

(αi+1, βi+1, γi+1)] =
∑

u2,...,ur

r∏
i=1

DEi

(ui+1,αi+1,βi+1,γi+1),(ui,αi,βi,γi)

with u1 = ur+1 = 0, xi = Ei−1(xi−1) for 2 ≤ i ≤ r, and x1 uniform random on
Fn

2 .

Proof. Note that the expression of DEi

(ui+1,αi+1,βi+1,γi+1),(ui,αi,βi,γi) is given by
Equation (8), thus we have

r∏
i=1

DEi

(ui+1,αi+1,βi+1,γi+1),(ui,αi,βi,γi)

= 1
2nr

∑
x1,...,xr

(αi,βi,γi)
Ei−→
xi

(αi+1,βi+1,γi+1)

r∏
i=1

(−1)u⊤
i xi+u⊤

i+1Ei(xi)

= 1
2nr

∑
x1,...,xr

(αi,βi,γi)
Ei−→
xi

(αi+1,βi+1,γi+1)

r−1∏
i=1

(−1)u⊤
i+1xi+1+u⊤

i+1Ei(xi).

Summing over u2, . . . , ur, then∑
u2,...,ur

r∏
i=1

DEi

(ui+1,αi+1,βi+1,γi+1),(ui,αi,βi,γi)

= 1
2nr

∑
x1,...,xr

(αi,βi,γi)
Ei−→
xi

(αi+1,βi+1,γi+1)

r−1∏
i=1

(∑
ui+1

(−1)u⊤
i+1xi+1+u⊤

i+1Ei(xi)
)

= 1
2n

∑
x1,...,xr

(αi,βi,γi)
Ei−→
xi

(αi+1,βi+1,γi+1)

r−1∏
i=1

δxi+1(Ei(xi)).

The right hand side is indeed equal to Pr[∧r
i=1(αi, βi, γi)

Ei→
xi

(αi+1, βi+1, γi+1)]
when writing it in terms of probabilities.
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Note that the complexity of calculating the probability of 3-differential is
very high using Equation (9), because every ϖi ∈ F4n

2 . However, Theorem 3
implies that the correlations of some quasi-3-differential trails (corresponding
to the same characteristic) may be computed together, which can reduce the
computing complexity. This is what we will do in the following subsection.

4.3 Interpretation of Quasi-3-differential Trails

The coordinates of DF can be interpreted as the correlations of linear approxima-
tions between the input and output values satisfying a certain difference equa-
tion. From Equation (8), we know that |DF

(v,β),(u,α)| never exceeds DF
(0,β),(0,α),

the probability of a 3-differential (α, β). While other quasi-3-differential trails
with nontrivial masks may also have the absolute highest correlation. Quasi-
3-differential trails with absolute correlation equaling the correlation of the
corresponding 3-differential characteristic are of particular interest. They corre-
spond to deterministic linear relations on the intermediate values which satisfy
a certain difference equation, from which we have the following useful results.
Actually, the following results are generalizations of [8, Theorem 4.2], and the
proofs will be omitted; interested readers can refer to [8].

Theorem 4. For a function E = Er ◦ · · · ◦ E1 and a 3-differential characteristic
α1, α2, . . . , αr+1 with correlation p (as quasi-3-differential trail with mask 0), it
holds that:
(1) If (u1, α1), (u2, α2), . . . , (ur+1, αr+1) is a quasi-3-differential trail with corre-
lation (−1)bp where b ∈ {0, 1}, then for any quasi-3-differential trail (v1, α1), (v2, α2),
. . . , (vr+1, αr+1) with correlation c, the correlation of the quasi-3-differential trail
(u1 + v1, α1), (u2 + v2, α2), . . . , (ur+1 + vr+1, αr+1) is (−1)bc.
(2) If the correlations of any number of quasi-3-differential trails with 3-differences
α1, α2, . . . , αr+1 and correlation ±p sum to zero, then the probability of the 3-
differential characteristic α1, α2, . . . , αr+1 is zero.

From the above theorem, we find that if (u1, α1), (u2, α2), . . . , (ur+1, αr+1)
and (v1, α1), (v2, α2), . . . , (vr+1, αr+1) are two quasi-3-differential trails with ab-
solute correlation p, then (u1 + v1, α1), (u2 + v2, α2), . . . , (ur+1 + vr+1, αr+1)
is also a quasi-3-differential trail with absolute correlation p. Therefore, the
masks (viewed as vectors, e.g., u1||u2|| . . . ||ur+1) of all quasi-3-differential trails
with absolute correlation p form a linear subspace. That is to say, the number
of all quasi-3-differential trails with absolute correlation p is a power of two.
Furthermore, for a 3-differential characteristic α1, α2, . . . , αr+1, if there exists a
quasi-3-differential trail with correlation −p, then the probability of this charac-
teristic α1, α2, . . . , αr+1 must be zero, this is because in this case the number of
quasi-3-differential trails respectively with correlation p and −p must be equal.

From the above analysis, quasi-3-differential trails with the highest absolute
correlation are important to determine the probability of the corresponding
3-differential characteristic. Similar to the discussions in [8], quasi-3-differential
trails with high correlations should not activate many differentially inactive S-
boxes, i.e., the masks of the quasi-3-differential trail should follow the 3-differences
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as closely as possible, which is more likely if the linear layer L satisfies L⊤ = L−1

by Theorem 2 (4). Liner layer with this property is commonly used in lightweight
block ciphers, including all bit-permutations.

5 Revisiting the Boomerang Attack

The boomerang attack proposed by Wagner is a variation of differential crypt-
analysis. Its main idea is to combine two short differential trails to get a long
one with a high probability.

5.1 The Boomerang Attack

The framework: In a boomerang attack, a cipher E is regarded as the compo-
sition of two sub-ciphers E0 and E1, i.e., E = E1 ◦ E0. Suppose there exists a
differential α→ β of E0 with probability p and a differential γ → δ of E1 with
probability q. The two differentials are then combined in an adaptive chosen plain-
text/ciphertext attack setting to construct a long boomerang distinguisher, as
shown in Fig. 3 (left). Initially, the boomerang attack was proposed in the single-
key setting. Later, the basic boomerang attack was extended to the related-key
setting [9].

Fig. 3: Basic boomerang attack (left), and boomerang attack in the 3-difference
view (right), the differences η and ε are allowed to take any value.

Let EK(P ) and E−1
K (C) denote the encryption of P and the decryption of C

under a key K, respectively. Suppose ∆K and ∇K are the master key differences
of the mentioned two differentials. Then the boomerang attack in the related-key
setting works as follows.
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1. K0 ← K, K1 ← K0 ⊕∆K, K2 ← K0 ⊕∇K and K3 ← K0 ⊕∆K ⊕∇K.
2. Repeat the following steps many times.
(1) P0 ← random() and P1 ← P0 ⊕ α
(2) C0 ← EK0(P0) and C1 ← EK1(P1)
(3) C2 = C0 ⊕ δ and C3 = C1 ⊕ δ
(4) P2 = E−1

K2
(C2) and P3 = E−1

K3
(C3)

(5) Check if P2 ⊕ P3 = α.

If P2 ⊕ P3 = α holds, then a right quartet (P0, P1, P2, P3) is found such that
P0 ⊕ P1 = P2 ⊕ P3 = α and C0 ⊕ C2 = C1 ⊕ C3 = δ. This event happens with
probability p2q2 under the assumption that the two differentials are independent
and the probability is obtained as

Pr[E−1(E(P0) + δ) + E−1(E(P0 + α) + δ) = α] = p2q2.

However, there maybe exists dependency between the two differential trails, which
highly affects the probability of the boomerang distinguisher. As pointed out
by Murphy in [27], there exist cases where the probabilities formulated by p2q2

are highly inaccurate. He showed that in some cases of S-box based ciphers, two
independently chosen differential trails are incompatible, making the boomerang
never return, and in other cases, the dependency leads to a higher probability
than p2q2. Further, Biryukov et al. made an improvement on exploiting the
positive dependency of boomerang distinguishers, which was named boomerang
switch [11].

The above phenomenons show that the foundations of the boomerang attacks
need to be revisited. Kidmose and Tiessen dived into the boomerang attacks and
analysed the probabilities of boomerang distinguishers theoretically in [24], and
got the following counter-intuitive result.

Theorem 5 (Theorem 1 in [24]). Assume that we have a boomerang as
described above of probability p2q2 and assume that the assumption of the inde-
pendence of differentials holds (the upper and lower differentials). Then there
exist differentials α

E−→ ε and η
E−→ δ over the whole cipher (see Fig. 3 (right))

with probabilities at least pq2 and p2q, respectively.

Theorem 5 implies that there always exist differentials that beat boomerang
distinguishers. However, in the view of 3-differential, as illustrated in Fig. 3
(right), Kidmose and Tiessen also gave the following result.

Theorem 6 (Theorem 2 in [24]). Let A be the affine subspace of all 3-
differences which correspond to an input quartet:

A = {(α, η, α⊕ η) ∈ F3n
2 | η ∈ Fn

2}.

Let B be the set of all 3-differences which correspond to a right ciphertext quartet:

B = {(ε, δ, ε⊕ δ) ∈ F3n
2 | ε ∈ Fn

2}.
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The probability of the return of the boomerang is then equal to the probability of
the truncated 3-difference transition A

E−→ B multiplied by 2n:

Pr(Boomerang returns) = 2n · Pr(A E−→ B).

From Equation (6), we have

Pr(Boomerang returns) =
∑

η,ε∈Fn
2

Pr
(

(α, η, α⊕ η) E−→ (ε, δ, ε⊕ δ)
)

≥ Pr
(

(α, α, 0) E−→ (δ, δ, 0)
)

= Pr(α E−→ δ)

which implies that for every differential, there always exists a boomerang dis-
tinguisher better than it. This result contradicts to the conclusion that there
always exist differentials that beat boomerang distinguishers coming from The-
orem 5. The root of the contradiction is the assumption of the independence
of differentials (the upper and lower differentials). In fact, some researchers
also noticed that there exists dependency between the two differential trails
in previous work, which led to the sandwich attack [19, 20], an improvement
of the boomerang attack. In a sandwich attack, E is divided into 3 parts, i.e.,

Fig. 4: The sandwich attack

E = Ẽ1 ◦ Em ◦ Ẽ0 as illustrated in Fig. 4, where the middle part Em specifically
handles the dependency and contains a relatively small number of rounds. If the
probability of generating a right quartet for Em is r, then the probability of the
whole boomerang distinguisher is

Pr[E−1(E(P0) + δ) + E−1(E(P0 + α) + δ) = α] = p̃2q̃2r,
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where p̃ (resp. q̃) is the probability of the differential of Ẽ0 (resp. Ẽ1). Let
(x0, x1, x2, x3) and (y0, y1, y2, y3) be input and output quartets for Em, where
yi = Em(xi), 0 ≤ i ≤ 3. Suppose x0⊕x1 = x2⊕x3 = β and y0⊕y2 = y1⊕y3 = γ.
Then, r was formally defined as

r = Pr[x2 ⊕ x3 = α | (x0 ⊕ x1 = β) ∧ (y0 ⊕ y2 = γ) ∧ (y1 ⊕ y3 = γ)].

In [19, 20], the probability r of Em was evaluated by experiments. In [15], a
new tool named BCT was proposed, which can calculate r theoretically when
Em is composed of a single S-box layer. When Em contains multiple rounds,
inspired by BCT, many tables were proposed to estimate the probability of
it [13, 17,21,29,33,35]. Almost all the previous work calculating the probability
of middle part Em are under the assumption that the rounds of a cipher are
independent and the round keys are random. However, for most lightweight
block ciphers, the key schedules are simple and the probability of middle part
Em obtained under the standard assumption may deviate from the real value
significantly. As far as we know, only the DBCT, proposed in [21] and further
studied in [35], can handle dependency in two rounds to some extent.

5.2 The Probabilities of Boomerang Distinguishers

In boomerang attacks, calculating the probabilities of boomerang distinguishers is
an essential step, because it directly determines the attack complexity. Although
there are many works on this topic, the exact formula of the probability of
boomerang distinguisher is unknown till now, let alone how to accurately compute
it. Most previous works under the assumption that the differential propagation
throughout the rounds are independent, and use all kinds of heuristic methods
to deal with the dependency in upper and lower trails. Recently, from the
perspective of 3-differential, Kidmose and Tiessen [24] provided a framework that
allows formulating precisely the probability of a boomerang distinguisher without
relying on independence assumptions of the trails, but only depending on the
assumption that intermediate differentials are independent as commonly made
in differential cryptanalysis. Note that for a single 3-differential characteristic,
its exact probability is given in Theorem 3 in terms of quasi-3-differential trails.
Therefore, we have the following result.

Theorem 7. For a cipher E, it can be regarded as E = Er ◦ · · · ◦E1. Assume that
the input difference of the upper differential is α and the output difference of the
lower differential is δ in the boomerang attack. Then the probability of the return
of the boomerang is equal to

Pr(Boomerang returns) =
∑

ϖ1,ϖ2,...,ϖr,ϖr+1

r∏
i=1

DEi
ϖi+1,ϖi

(10)

where ϖ1 = (0, α, η, α ⊕ η) and ϖr+1 = (0, ε, δ, ε ⊕ δ), η, ε ∈ Fn
2 , and mask-3-

differential quartets ϖi = (ui, αi, βi, γi) ∈ F4n
2 for 2 ≤ i ≤ r.
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In Theorem 7, we give the exact formula of the probability of the boomerang
distinguisher theoretically without any assumptions. This result may be helpful
to deepen the understanding of the boomerang attacks for researchers in this
area. Naturally, one may ask how accurate is the probability obtained under the
sandwich attack framework.

We find that under the assumption that intermediate differentials are inde-
pendent the probability obtained under the sandwich attack framework can be
seen as a kind of average. Specifically, if we assume that the three parts Ẽ0, Em,
and Ẽ1 are independent, then

Pr(Boomerang returns) =
∑

η,ε∈Fn
2

Pr[(α, η, α⊕ η) E−→ (ε, δ, ε⊕ δ)]

=
∑

η,ε,x,y∈Fn
2

Pr[(α, η, α⊕ η) Ẽ0−−→ (β, x, β ⊕ x)]×

Pr[(β, x, β ⊕ x) Em−−→ (y, γ, y ⊕ γ)] · Pr[(y, γ, y ⊕ γ) Ẽ1−−→ (ε, δ, ε⊕ δ)]

?=
∑

η,x∈Fn
2

Pr[(α, η, α⊕ η) Ẽ0−−→ (β, x, β ⊕ x)]
2n

×
( ∑

x,y∈Fn
2

Pr[(β, x, β ⊕ x) Em−−→ (y, γ, y ⊕ γ)]
)

×
∑

y,ε∈Fn
2

Pr[(y, γ, y ⊕ γ) Ẽ1−−→ (ε, δ, ε⊕ δ)]
2n

⋆=
(

Pr[α Ẽ0−−→ β]
)2(

Pr[γ Ẽ1−−→ δ]
)2 ( ∑

x,y∈Fn
2

Pr[(β, x, β ⊕ x) Em−−→ (y, γ, y ⊕ γ)]
)

= p̃2q̃2r,

where r =
∑

x,y∈Fn
2

Pr[(β, x, β⊕x) Em−−→ (y, γ, y⊕γ)] is equivalent to the definition
in the sandwich attack, and “⋆” comes from the following lemma.

Lemma 1 (Lemma 1 in [24]). The average of the probability for a 3-difference
(α, η, α⊕ η) to be mapped by a function F to a 3-difference of type (β, γ, β ⊕ γ)
for some γ ∈ Fn

2 overall η ∈ Fn
2 is equal to the square of the probability of the

differential α
F−→ β:

2−n
∑

γ,η∈Fn
2

Pr[(α, η, α⊕ η) F−→ (β, γ, β ⊕ γ)] =
(

Pr[α F−→ β]
)2

.

Actually, similar to the proof of the above lemma, we also have

2−n
∑

α,β∈Fn
2

Pr[(α, η, α⊕ η) F−→ (β, γ, β ⊕ γ)] =
(

Pr[η F−→ γ]
)2

.

The “?” step can be seen as a kind of average, but it maybe deviates from the
real probability significantly for some extreme cases. Therefore, estimating the
probability under the sandwich attack framework must be careful.
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If we do not care about the gap mentioned before, the remaining important
task is calculating the probability of the middle part Em in the sandwich attack.
In recent years, there are really many works on it. In the following subsection, we
will give a reasonable explanation for previous works on estimating the probability
of the middle part Em under the assumption that intermediate differentials are
independent.

5.3 The Relationships Between 3-differential and all Kinds of Tables

Since Cid et al. introduced the BCT, many tables were proposed to calculate the
probabilities of the middle part Em. In fact, these tables can be described using
3-differentials, which may be an essential language to describe the quartet-based
attacks. First, let’s recall the definitions of some tables of an S-box.
Definition 12. Let S be an n-bits S-box. The BCT, UBCT, LBCT and EBCT are
defined as (refer to Fig. 5 (left)):

BCT(α1, β2) = #{x ∈ Fn
2 | S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1},

UBCT(α1, α2, β2) = #
{

x ∈ Fn
2

∣∣∣∣ S(x)⊕ S(x⊕ α1) = α2
S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1

}
,

LBCT(α1, β1, β2) = #
{

x ∈ Fn
2

∣∣∣∣ S(x)⊕ S(x⊕ β1) = β2
S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1

}
,

EBCT(α1, α2, β1, β2) = #

x ∈ Fn
2

∣∣∣∣∣ S(x)⊕ S(x⊕ α1) = α2
S(x)⊕ S(x⊕ β1) = β2

S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1

 .

In [24, Theorem 6], the entries of BCT are expressed as

BCT(α1, β2) =
∑

η,ε∈Fn
2

#{x ∈ Fn
2 | (α1, η, α1 ⊕ η) S−→

x
(ε, β2, ε⊕ β2)}.

We can also rewrite the entries of other tables in terms of 3-differentials without
proofs as follows:

UBCT(α1, α2, β2) =
∑

η∈Fn
2

#{x ∈ Fn
2 | (α1, η, α1 ⊕ η) S−→

x
(α2, β2, α2 ⊕ β2)},

LBCT(α1, β1, β2) =
∑
ε∈Fn

2

#{x ∈ Fn
2 | (α1, β1, α1 ⊕ β1) S−→

x
(ε, β2, ε⊕ β2)},

EBCT(α1, α2, β1, β2) = #{x ∈ Fn
2 | (α1, β1, α1 ⊕ β1) S−→

x
(α2, β2, α2 ⊕ β2)}.

Recently, when Li et al. [26] mounted the rectangle attack to GIFT [4], they
introduced a new tool named GBCT, which is the generalization of BCT.
Definition 13. Let S be an n-bits S-box. The GBCT is defined as (refer to Fig.
5 (right) ):

GBCT(α1, α2, β1, β2) = #
{

x ∈ Fn
2 | S−1(S(x)⊕ β1)⊕ S−1(S(x⊕ α1)⊕ β2) = α2

}
.
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Fig. 5: Two upper (or lower) differentials are equal (left) or not equal (right).

It can be rewritten as

GBCT(α1, α2, β1, β2) =
∑

η,ε∈Fn
2

#{x ∈ Fn
2 | (α1, η, α2 ⊕ η) S−→

x
(ε, β1, ε⊕ β2)}.

Actually, the definitions of other tables can also be generalized, as done for
GBCT, as they also need not require that the two upper differentials or two lower
differentials are equal.

All the above tables are defined for one S-box, while in order to more efficiently
calculate the probabilities of boomerang distinguishers, Hadipour et al. introduced
the DBCT, which is defined for two S-boxes in a row.

Definition 14. Let S be an n-bits S-box. The DBCT is defined as (refer to Fig. 6
(left)):

DBCT(α1, β3) =
∑

α2,β2∈Fn
2

UBCT(α1, α2, β2)LBCT(α2, β2, β3)

=
∑

α2,β2∈Fn
2

( ∑
η∈Fn

2

#{x ∈ Fn
2 | (α1, η, α1 ⊕ η) S−→

x
(α2, β2, α2 ⊕ β2)}

)
×

( ∑
ε∈Fn

2

#{x ∈ Fn
2 | (α2, β2, α2 ⊕ β2) S−→

x
(ε, β3, ε⊕ β3)}

)
.

In fact, using DBCT to compute the probability of Em cannot bring any advan-
tage on accuracy compared with previous techniques, but can reduce the time
complexity. In order to improve the accuracy, we generalize the definition of DBCT
as (see Fig. 6 (right)):

DBCT∗(α1, β3) =
∑

α2,β2,γ2∈Fn
2

( ∑
η∈Fn

2

#{x ∈ Fn
2 | (α1, η, α1 ⊕ η) S−→

x
(α2, β2, γ2)}

)
×

( ∑
ε∈Fn

2

#{x ∈ Fn
2 | (α2, β2, γ2) S−→

x
(ε, β3, ε⊕ β3)}

)
.
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Fig. 6: The sketch map of DBCT (left) and DBCT∗ (right)

It is easy to see that the maximal value of DBCT∗ is greater than or equal to that
of DBCT. As a comparison, we computed the maximal values of DBCT∗ for several
sboxes and list them in Table 1, in which the maximal values of DBCT are taken
from [35]. We find that the maximal value of DBCT∗ is much bigger than that
of DBCT, which may impact the probabilities of boomerang attacks significantly.
It is noticed that, due to the existence of linear layer between successive two
S-boxes, the maximal values and distributions of DBCT and DBCT∗ may vary from
cipher to cipher even for the same S-box if we consider the effect of linear layers,
which implies that DBCT and DBCT∗ are different from other tables in essence.

Table 1: Comparing the maximal values of DBCT and DBCT∗

S-box CRAFT [5] QARMA [1] PRESENT [12] GIFT [4]
DBCT 128 48 40 40
DBCT∗ 160 120 80 72
S-box LBlock-s0 [34] LBlock-s1 [34] MIBS [22] TWNIE [30]
DBCT 40 40 32 28
DBCT∗ 64 80 68 64

At last, we stress that from the view of 3-differentials it is natural to introduce
all kinds of tables to calculate the probability of Em. From Theorem 6, the
probability of Em can be expressed as the sum-of-product of the probabilities of
one-round 3-differentials under the assumption that the intermediate differentials
are independent. When computing the value of the sum-of-product, we can
extract common factors and collect the similar terms, which can be precomputed
and stored as a look-up table, then all kinds of tables will appear naturally. Note
that introducing all kinds of tables to compute the probability cannot improve
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its accuracy. In order to improve accuracy, it needs the theory proposed in this
paper, and we will give an example in the following section.

6 Application to GIFT

GIFT is a family of block ciphers proposed by Banik et al. at CHES 2017 [4]. It
consists of two versions, i.e., GIFT-64 and GIFT-128, while in this paper we only
focus on GIFT-64, a 64-bit block cipher with a 128-bit key and with 28 rounds,
and its details will be given in next subsection.

The reasons why we choose GIFT as the target to illustrate the theory proposed
in the present paper are the following: The intuition tells us that the AddRoundKey
operation of GIFT, adopting half round key XOR, is very different from other
block ciphers, and there maybe exist some problems in the differential-like attacks.
In addition, the linear layer is a bit-permutation, and it potentially results in
quasi-3-differential trails with high absolute correlations relative to the probability
of the corresponding 3-differential characteristic.

6.1 Description of GIFT-64

Round Function. The round function of GIFT-64 consists of three operations:
SubCells, PermBits, and AddRoundKey. For convenience, we consider the 64-bit
state as 16 4-bit nibbles. The three operations of the round function are as
follows:

1. SubCells: Nonlinear S-box substitutions are applied to each nibble, as is
shown in Table 2. Its DDT is given in Table 6.

Table 2: The S-box of GIFT
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

2. PermBits: This operation maps the bit from the position i of the cipher
state to the position P64(i) as

bP64(i) ← bi, i ∈ {0, 1, . . . , 63},

where P64(i) can be calculated as

63−
{

4
⌊63 − i

16

⌋
+ 16

[
3
⌊

(63 − i) mod 16
4

⌋
+ (63 − i) mod 16

]
+ (63 − i) mod 4

}
mod 64.

3. AddRoundKey: This step adds the round key and the round constant.
In the r-th round, a 32-bit round key RKr is extracted from the key
state and is further partitioned into two 16-bit words as RKr = U ||V =
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u15 · · ·u1u0||v15 · · · v1v0, Then, U and V are XORed to the cipher state as
b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, i ∈ {0, 1, . . . , 15}. A single “1” and a
6-bit constant C = c5c4c3c2c1c0 are added to each state at bit position 63,
23, 19, 15, 11, 7, 3 respectively, i.e., b63 ← b63 ⊕ 1, b23 ← b23 ⊕ c5, b19 ←
b19 ⊕ c4, b15 ← b15 ⊕ c3, b11 ← b11 ⊕ c2, b7 ← b7 ⊕ c1, b3 ← b3 ⊕ c0.

Key Schedule. Split the master key K into 8 16-bit subkeys k7||k6||...||k1||k0 ←
K. For each round, the round key consists of the last two significant subkeys,
and then the key state is updated following k7||k6||...||k1||k0 ← k1 ≫ 2||k0 ≫
12||k7||...||k2, where ≫ i is an i-bit right rotation within a 16-bit word.

Different from other differential-like attacks, in our work we need to consider
the round constants.

Round Constants. The values of the round constants are given in table 3,
encoded to byte values for each round, with c0 being the least significant bit.

Table 3: The round constants of GIFT-64
Rounds Constants

0 - 13 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33
14 - 27 27,0E,1D,3A,35,2B,16,2C,18,30,21,02,05,0B

We refer readers to [4] for more details of GIFT.

6.2 Analysis for 3-differentials

In order to search for optimal quasi-3-differential trails, we model the propagation
of the masks for a characteristic as a Satisfiability Modulo Theories (SMT)
problem, which is similar to existing SMT-based models for finding linear trails.
To solve the SMT problem, we use Boolector [28] through its Python interface
pyboolector. The model used in this section is also similar as that provided in [8].

In [14], Chen et al. mounted a 23-round key recovery attack for GIFT-64 based
on a 19-round related key rectangle distinguisher, whose probability was claimed
to be 1. However, Ji et al. recalculated the probability of the distinguisher and
found that its probability is only 2−18 [23]. The distinguisher is listed in the
following table 4.

For this distinguisher, there are in total about 225.57 3-differential char-
acteristics. The number of optimal 3-differential characteristics is 213, and
we list all of them in table 5, where ♣ = {1,2,4,7,a,b,e,f}, ♢ = {2,a},
♡ = {1,3,5,7,9,b,c,e}, ♠ = {2,4}; and ♣̃ = {1,6}, ♢̃ = ♠̃ = {5,6}, ♡̃ =
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Table 4: The propagation of Em of the 19-round related-key rectangle distin-
guisher for GIFT-64 in [14]

Rounds E0 E1

10 β 0100 0000 0102 0200
β′ 0800 0000 060a 0600 γ′′ 0000 0906 0000 0085

11 β′′ 00a2 0000 8020 0044 γ′ 0000 050c 0a00 0000
γ 0000 0802 0100 0000

β′ = S(β), β′′ = K ◦ P (β′), γ′ = S−1(γ), γ′′ = P −1 ◦ K−1(γ′).

{3,7,b,f}. For a differential of E0, such as 0100000001020200→ 08000000060a0600→
00a2000080200044 → 0015000030500077, and a differential of E1, such as
0000010200000012→ 0000090600000085→ 0000050c0a000000→ 0000080201000000,
the corresponding 3-differential characteristic is

(0100000001020200, 0000010200000012, 0100010201020212) SubCells−−−−−→

(08000000060a0600, 0000090600000085, 08000906060a0685) AddRoundKey◦PermBits−−−−−−−−−−−−−−−−→

(00a2000080200044, 0000050c0a000000, 00a2050c8a200044) SubCells−−−−−→
(0015000030500077, 0000080201000000, 0015080231500077).

Table 5: The all possible optimal 3-differential trails of Em of the 19-round
related-key rectangle distinguisher for GIFT-64 in [14]

Rounds E0 E1

10 β 0100 0000 0102 0200 0000 0♣0♢ 0000 00♡♠

β′ 0800 0000 060a 0600 γ′′ 0000 0906 0000 0085

11 β′′ 00a2 0000 8020 0044 γ′ 0000 050c 0a00 0000
00♣̃♢̃ 0000 ♡̃0♠̃0 0077 γ 0000 0802 0100 0000

β′ = S(β), β′′ = K ◦ P (β′), γ′ = S−1(γ), γ′′ = P −1 ◦ K−1(γ′).

It is amazing that the probability of every optimal 3-differential characteristic
is zero. Such as, for the above 3-differential characteristic, there are in total
16 quasi-3-differential trails with absolute correlations equaling to the optimal
3-differential probability 2−38.83, but the sum of the correlations of the 16 quasi-
3-differential trails is always zero, independently with the round keys. Although
we did not include all quasi-3-differentials in the analysis, Theorem 4 (2) allows
concluding that the characteristic has probability zero. That is to say, this
characteristic has no contribution to the boomerang distinguisher. This is an
interesting outcome of the approach itself since previous techniques are not
able to find the fact. We remind that the above distinguisher is a related-key
distinguisher, so for different encryption/decryption oracles the round keys are
different, but it can be easily handled using formula (7).
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Table 6: DDT of GIFT’s 4-bit S-box
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2
2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0
3 0 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2
4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0
5 0 0 2 0 0 2 0 0 2 0 0 0 2 2 2 4
6 0 0 4 6 0 0 0 2 0 0 2 0 0 0 2 0
7 0 0 2 0 0 2 0 0 2 2 2 4 2 0 0 0
8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
9 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0
a 0 4 0 0 0 0 4 0 0 2 2 0 0 2 2 0
b 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0
c 0 0 4 0 4 0 0 0 2 0 2 0 2 0 2 0
d 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2
e 0 4 0 0 4 0 0 0 2 2 0 0 2 2 0 0
f 0 2 2 0 4 0 0 0 0 2 0 2 0 0 2 2

The sum of the probabilities of all the optimal 3-differential characteristics is
2−38.83 × 213 = 2−25.83 calculated under the assumption that the intermediate
differentials are independent, which is included in the probability of Em estimated
by previous techniques. Although it is indeed zero, compared with the probability
2−18 given in [23], it has little impact on the result. Therefore, in order to
accurately calculate the probability of the middle part Em of a sandwich attack,
we have to sum the correlations of all the quasi-3-differential trails, that is,
using the formula (10), but the computing complexity is so high that we cannot
complete it in a reasonable time even for a small example.

The reason why the above situation occurs is that the AddRoundKey operation
of GIFT is the so-called half-round key XOR. Recently, Baksi [2] also noticed
that half-round key XOR leads to the undesired consequence that the security
against the differential/linear attacks is overestimated. Therefore, for the new
block cipher − BAKSHEESH [3], a GIFT-like cipher, but with improved efficiency,
the designers replaced half-round key XOR with full-round key XOR.

In the following, we will explain that in the case of full round key XOR, for
each 3-differential characteristic, say (α1, α2, . . . , αr+1), there at least exists one
round key such that its probability is nonzero under the assumption that the
round keys are independent. Let E = Er ◦ · · · ◦ E1 and Ei(x) = Gi(x) ⊕ ki for
1 ≤ i ≤ r. Then by Theorem 3 and Theorem 2 (4), we have

Pr[∧r
i=1αi

E−→
xi

αi+1] =
∑

u2,...,ur

r∏
i=1

(−1)u⊤
i+1kiDGi

(ui+1,αi+1),(ui,αi)

with u1 = ur+1 = 0, xi = Ei−1(xi−1) for 2 ≤ i ≤ r, and x1 uniform random on
Fn

2 . Assume there are in total s quasi-3-differential trails for the 3-differential
characteristic (α1, α2, . . . , αr+1). For the ℓ-th quasi-3-differential trail, denoting
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the corresponding masks vector as uℓ = uℓ
2||uℓ

3|| · · · ||uℓ
r (note that uℓ

1 = uℓ
r+1 = 0),

we use cℓ to represent the sign of the correlation of this quasi-3-differential trail,
1 ≤ ℓ ≤ s, i.e.,

cℓ =
{

0 if
∏r−1

i=1 DGi

(uℓ
i+1,αi+1),(uℓ

i
,αi) > 0,

1 otherwise.

Let k = k1||k2|| · · · ||kr−1. Then, we set
u1⊤

k = c1

u2⊤
k = c2
· · ·

us⊤k = cs.

The above linear equation system has at least one solution since the round keys
are linear independent. In this case, the correlation of every quasi-3-differential
trail is

∏r
i=1(−1)u⊤

i+1kiDGi

(ui+1,αi+1),(ui,αi) > 0, so Pr[∧r
i=1αi

E−→
xi

αi+1] > 0.

7 Conclusions

In this paper, we generalized the notion of QDTMs to d-differential, and got
the d-QDTMs. Consequently, we can give the exact formula of the probability of
d-differential in the fixed-key model without any assumptions, even in the related-
key setting. In particular, we can partially answer the open problems proposed
by Tiessen and Dunkelman et al. at EUROCRYPT 2016 and EUROCRYPT
2020 theoretically, although the computing complexity is very high in practice.
Moreover, we have revisited the boomerang attack and found that there is a gap
between the real probability and the value calculated under the framework of
sandwich attack. Then, we applied our theory to lightweight block cipher GIFT.
Unfortunately, we cannot improve the probability of the boomerang distinguisher
we considered because of the constraint of computing power. It is interesting that
we found the probability of every optimal 3-differential included in the middle
part Em of the boomerang distinguisher given in [14] is zero, which can be seen as
an evidence of the intuition that the security of block ciphers adopting half-round
key XOR against the differential-like attacks is overestimated in previous works.

Finally, we hope that the theoretic result presented in this paper can help the
community of symmetric ciphers to have a better understanding of the boomerang
attack, and even can help researchers to design more efficient heuristic algorithms
for estimating the probability of boomerang distinguisher guaranteed by theory.
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