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Abstract. GLS254 is an elliptic curve defined over a finite field of characteristic 2; it
contains a 253-bit prime order subgroup, and supports an endomorphism that can be
efficiently computed andhelps speedup some typical operations such asmultiplication
of a curve element by a scalar. That curve offers on x86 andARMv8 platforms the best
known performance for elliptic curves at the 128-bit security level.
In this paper we present a number of new results related to GLS254:
– We describe new efficient and complete point doubling formulas (2M + 4S) ap-

plicable to all ordinary binary curves.
– We apply the previously described (x, s) coordinates to GLS254, enhanced with

the new doubling formulas. We obtain formulas that are not only fast, but also
complete, and thus allow generic constant-time usage in arbitrary cryptographic
protocols.

– Our strictly constant-time implementationmultiplies a point by a scalar in 31615
cycles on an x86Coffee Lake, and 77435 cycles on anARMCortex-A55, improv-
ing previous records by 13% and 11.7% on these two platforms, respectively.

– We take advantage of the completeness of the formulas to define some extra oper-
ations, such as canonical encoding with (x, s) compression, constant-time hash-
to-curve, and signatures.Our Schnorr signatures have size only 48 bytes, and offer
goodperformance: signature generation in 18374 cycles, and verification in27376
cycles, on x86; this is about four times faster than the best reported Ed25519 im-
plementations on the same platform.

– The very fast implementations leverage the carryless multiplication opcodes of-
fered by the target platforms. We also investigate performance on CPUs that do
not offer such an operation, namely a 64-bit RISC-VCPU (SiFive-U74 core) and
a 32-bit ARM Cortex-M4 microcontroller. While the achieved performance is
substantially poorer, it is not catastrophic; on both platforms,GLS254 signatures
are only about 2x to 2.5x slower than Ed25519.

1 Introduction
Binary elliptic curves are elliptic curves defined over finite fields of characteristic 2.Compared
tomore commonly used curves such asNIST’s P-256 orCurve25519,which use prime fields,
binary curves have historically suffered from three main issues that together explain their rel-
ative disuse in practical applications and in security standards:

1. Efficient implementation of operations in binary fields is challenging on software archi-
tectures that do not offer a “carryless multiplication” opcode.



2. Some theoretical results applicable to fields of large degree (much larger than used in
practical curves) have lead to the suspicion that theremight be some theoretical weakness
in such curves.

3. Since binary fields are especially well suited to hardware implementations, several orga-
nizations filed patents on relevant implementation techniques in the late 1990s and early
2000s. As is usually observed with patents in cryptography, the main effect was a severe
reduction of appetite for using or even studying such patent-encumbered curves.

Patents expire after some delay (which depends on the jurisdiction and can vary on a per-
patent basis) and the third issue can be solved by using techniques old enough to no longer
be patented, even if they were in the past, and simply not patenting any new invention. I have
not filed any patent for anything described in this paper nor in the previous paper on (x, s)
coordinates[32], and I am not aware of any other applicable patent on these formulas and
implementation techniques.1 (This is not legal advice.)

The theoretical issues on curve weaknesses do not apply to practical curve sizes (say, fields
of about 256 bits)[28]. The main hurdle is the lingering fuzzy feeling that we, in general, do
not fully grasp the security of elliptic curves on binary fields. However, it would be inordi-
nately arrogant, even foolhardy, tobelieve thatweknowanybetter for curves over primefields.
In truth, we don’t have a proof nor even any real understanding of why discrete logarithm is a
hard problem on ordinary elliptic curves; at best, we have some notions of why index calculus
methods do not work for them. In practice, for security purposes using any curve, we rely on
the accumulated research efforts, i.e. how long such curves have “been around” and have not
been broken yet. Binary curves have been suggested for use in cryptography for as much time
as curves over prime fields, and thus should logically be considered as equally secure, as far as
we know.

This paper explores the first issue, i.e. performance. Specifically, we are interested in ob-
taining good performance results for an elliptic curve at the traditional “128-bit” security
level, on a variety of software platforms (with or without carryless multiplication opcodes),
while preserving proper security:

– The curve should offer a prime-order group abstraction, with canonical encoding and
decoding, and complete routines for adding and doubling group elements without any
special case.

– The implementation should be strictly constant-time, to avoid leaking any secret infor-
mation through timing-based side channels.

We do not try to tackle any side channel other than time. Timingmeasurements are “special”
in that they can potentially be performed by remote attackers, either over fast networks, or
using local facilities that do not require the attacker to be physically close to the target system
(crudely said, every server in a data center has a clock and canmeasure time). Other side chan-
nels more or less require the attacker to install attack-specific hardware in the vicinity of the

1Informally, if there is a patent issue, then it would probably be on the definition of the GLS254
curve itself and its endomorphism, which was described in 2009[14], though not on the use of the
endomorphism, which follows some earlier work[13] and for which relevant patents have expired. I
could not find any hint of GLS curves being patented beyond the now-expired GLV patents, but I can
certainly not guarantee the inexistence of applicable patents on the subject, or on anything else.
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target2. Moreover, while most side channels are specific to the employed hardware and usage
context, it is possible to prevent timing-based side channels in a relatively genericway, not tied
to a specific hardware model, through the programming discipline known as “constant-time
coding”, which can be summarized as not using any operation with data-dependent timing
characteristics; in particular, no memory access, either for data or code, should happen at an
address that depends on secret values. This prevents use of both lookup tables with secret
indices, and conditional jumps with secret-dependent conditions.

This work is based upon two main previous works:

– Aardal and Aranha presented in [1] a very optimized implementation of multiplication
of a curve point by a secret scalar (as would be used for instance in ECDHkey exchange),
at the 128-bit security level3. Their code held the speed records (until now) on both 64-
bit x86 (Intel Skylake-class CPUs) and 64-bit ARM (Cortex-A55). They define and use
a specific binary curve called GLS254.

– Our previous work on binary curves[32] presented a novel representation of curve ele-
ments, that allowed building a prime order group abstractionwith efficent and complete
formulas, as well as canonical point encoding and decoding in a compressed format.

We merge here these two works, with a few improvements.

– In section 2, we recall the definition of the GLS254 curve parameters, and explain how
the (x, s) coordinates are applied to that curve. A novel and efficient point doubling for-
mula, applicable to all ordinary curves onbinary fields, is described, and adapted for (x, s)
coordinates.

– Section 3 covers some high-level cryptographic algorithms that can use GLS254. We
present a custommap-to-point process for a constant-time hash-to-curve procedure; we
also specify efficient signature generation and verification algorithms, which support sig-
natures shorter than the usual Ed25519 (48 bytes instead of 64 bytes), and finally discuss
key exchange and ECDH variants.

– In section 4, we describe our implementation on 64-bit x86 CPUs with the pclmulqdq
opcode.On Intel Skylake-classCPUs,we beat the record from [1] by about 13%, down to
31615 cycles for the same “rawECDH”operation. For signatures,we sign in 18374 cycles,
and verify in 27376 cycles; the latter figure is about 4x faster than the fastest reported
Ed25519 value on that platform.

– In section 5, we discuss our implementation on a 64-bit ARM CPU, specifically the
ARM Cortex-A55 from an ODROID C4 single-board computer (the same hardware
platform as [1]). We again break the record, by about 11.7%, down to 77435 cycles. Sig-
nature generation cost is 55526 cycles, verification is 68649 cycles.

– In section 6, we explore a different platform, namely a 64-bit RISC-V core (SiFive-U74)
which does not offer a carryless multiplication opcode. Various methods to perform the

2There is no absolute rule here; modern computers can measure their own temperature and input
voltage, and that can be leveraged for side channel attacks among, for instance, logically separated con-
texts co-located on the same machine. But these are very low bandwidth side channels and their use for
attacks is still in the early theoretical, lab-demonstration stages.

3At the lower 112-bit security level, slightly better performance is achievablewith the 233-bit K-233
Koblitz curve[32].
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computations are discussed. The performance is certainly not as good as in the two pre-
vious platforms, but it is not catastrophic either; signature generation and verification
are about 2x slower than Ed25519.

– Amuch smallerARMCortex-M4microcontroller is investigated in section 7.Again, the
lack of a carrylessmultiplication opcode degrades performance; we still achieve signature
generation in 1034123 cycles, and verification in 1735470 cycles. These figures translate
to about 3x the estimated cost of Ed25519 on the same platform.

Our x86, ARMv8 and RISC-V implementations are written in Rust; they are part of the
crrl research library (version 0.8.0), available there:

https://github.com/pornin/crrl

In fact, the same source code is used for curve operations on the three platforms; only the
backend implementation of finite field operations differs.

The ARMCortex-M4 implementation is written mostly in assembly and C, and is avail-
able there:

https://github.com/pornin/gls254-cm4

A Note on Benchmarks. In this paper we present some performance measurements,
expressed in clock cycles. We will try to stick to only “large” operations (such as “verifying a
signature”), especially on large platforms, because the cost of a small routine – e.g.multiplica-
tion in a finite field – is not a well-defined value. For a given operation, one can try tomeasure
latency (how soon the output is available after the computation has started) and throughput
(how many independent operations can be executed in a given amount of time). Neither re-
ally matches the actual usage: the compiler will try to inline any small routine within its caller
and mix the instructions with other operations, so that a given routine variant might fare
worse on benchmarks, e.g. with a higher latency, but improve overall performance by having
more “free slots” in which instructions for other operations can be placed. Even if the com-
piler does not do such inlining and mixing, modern CPUs with out-of-order execution will
gleefully do it at runtime, even across function calls that seem separate in the binary, andwith
a pipeline depth that can range to 200 or more instructions. Under these conditions, it does
not make much sense to express the cost of a small routine in isolation. It can be done in a
meaningful way for assembly routines on in-order platforms; we will do it when analyzing
the ARMCortex-M4 implementation.

Benchmarks for high-level operations are performed by running the operation repeatedly
and measuring the time taken by a number of successive co-dependent executions (so that
what is really measured is the latency). Some “warm-up” executions are performed, in order
to populate all caches (code, data, branch prediction...), then 100 runs are performed, and the
cost is extracted from the time taken by the median run. For signature verification, which is
not constant-time, at least 128 distinct signatures are used, to avoid caches “learning” exactly
the relevant memory slots. All values are reported in clock cycles, under the (possibly auda-
cious!) assumption that these computations all fit in L1 cache and are somewhat independent
from the external RAMbandwidth. These methods are in line with what is commonly prac-
ticed when benchmarking cryptographic algorithms.
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2 GLS254 in (x,s) Coordinates
2.1 Binary Fields
For any integerm > 0, GF (2m) is a finite field of characteristic 2. We recall a few properties
of such fields which are relevant for implementation:

– Squaring is a field automorphism in binary fields: for any elements x and y, (xy)2 = x2y2

and (x + y)2 = x2 + y2. Thus, squarings, square roots, and sequences of such operations,
are linear and substantially less expensive to compute than multiplications. Every field
element is a quaratic residue, and has a single square root.

– Inversion canbe computedwith a variant of Fermat’s little theoremdescribedby Itoh and
Tsujii[18],whichuses relatively fewmultiplications and some sequences of squarings, the
latter being amenable to table-based implementations thanks to their linearity.

– The trace of an element x is:

Tr(x) =
m−1∑
i=0

x2
i

The trace is linear; it is always equal to 0 or 1; the trace of 0 is 0. For any field element
x, Tr(x) = Tr(x2) = (Tr(x))2. Ifm is odd, then Tr(1) = 1; however, ifm is even, then
Tr(1) = 0. There is always at least one field element of trace 1 with minimal Hamming
weight (i.e. a single non-zero bit).

– For any field element d such that Tr(d) = 0, there are two field elements x such that x2 +
x = d; if we defined as QSolve(d) one such value x, then the other one is QSolve(d) + 1.
Whenm is odd, a solution x can be efficiently found with the halftrace:

H (x) =
(m−1)/2∑
i=0

x2
2i

Note that when Tr(d) ≠ 0, thenH (d)2 + H (d) = d + Tr(d). Whenm is even, QSolve
is slightly more complicated, but can still be efficiently computed.

The GLS254 curve is defined over GF (2254). That field is itself defined as a degree-2
extension of GF (2127). The latter is obtained as the quotient ring of GF (2) [z] (the binary
polynomials in z) by the ideal generated by the irreducible polynomialM = 1 + z63 + z127.
The choice of the modulusM does not matter algebraically, as long as it is irreducible (all
finite fields with the same cardinal are isomorphic to each other); this specific polynomial
was chosen because it allows for some efficient implementations[26].

GF (2254) is then obtained by defining a formal element u such that u2 + u = 1 (there
is no such element in GF (2127)); an element x ∈ GF (2254) can then be uniquely written as
x = x0+ux1 for two values (x0, x1) ∈ GF (2127) ×GF (2127). There is a single element of trace
1 with minimal Hamming weight in GF (2254); this is u itself (thus, the trace of x is equal to
the least significant bit of x1, in a classic polynomial representation).

We define the Frobenius automorphism ϕ inGF (2254) as:

ϕ(x) = x2
127
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It can be seen that ϕ(x0 + ux1) = x0 + x1 + ux1. Moreover, for any x ≠ 0, then ϕ(x) ≠ 0, and:

xϕ(x) = x20 + x21 + x0x1

which is an element ofGF (2127). This allows computing inversions inGF (2254)with a single
inversion inGF (2127), using 1/x = ϕ(x)/(xϕ(x)).

Over GF (2254), for d = d0 + ud1, we compute QSolve(d) = x = x0 + ux1 with the
following process:

1. x1 ← H (d1)
2. If Tr127 (x1) ≠ Tr127 (d0), then: x1 ← x1 + 1
3. x0 ← H (d0 + x21 )

with Tr127 being the trace over GF (2127). The second step ensures that Tr127 (d0 + x21 ) = 0,
and therefore x20 + x0 = d0 + x21 . It can be verified that this ensures that x2 + x = d + uTr(d),
for all field elements d.

2.2 Curve Parameters and (x,s) Coordinates
We start with the GLS254 curve as used in [1] (which followed up on work presented ear-
lier[26,27]): the curve E is the set of points (x, y) ∈ GF (2254) × GF (2254) such that:

y2 + xy = x3 + Ax2 + B

for the constantsA = u and B = 1 + z27. An extra formal point, the point-at-infinityO, does
not have defined coordinates, and serves as the neutral element for the group law defined over
the curve. The curve happens to contain 2r points in total, for a prime r close to 2253:

r = 2253 + 83877821160623817322862211711964450037

The constant B has been chosen so that multiplication of a field element by B is inexpensive.
This curve is believed to offer “128-bit security”4. The fact thatGF (2254) can be defined

as a degree-2 extension of GF (2127) opens the conceptual possibility of applying the GHS
attack on the curve[15]; however, [17] offers extensive arguments on why that attack can
only work with some specific curve parameters. Aardal and Aranha verified that their spe-
cific choices for A and B are not in the class of curve parameters on which the GHS attack
can apply.

For building arbitrary cryptographyprotocols, a prime order group abstraction is required.
The GLS254 curve contains a subgroup of order r, called the points of r-torsion (i.e. exactly
the pointsP such that rP = O) and denotedE[r]. It can be shown that the points inE[r] are
exactlyO, and the curve points (x, y) such that Tr(x) = Tr(A) = 1; any point deserialization
routine can thus easily verify that a provided point (x, y) is part of the curve (by applying the
curve equation) and is furthermore in E[r] (by checking the value of Tr(x)).

However, classic point representation and formulas for computing the group law on the
curve (or its subgroup E[r]) have some drawbacks:

4Technically it is “126.5-bit security”, since generic discrete logarithm in a group of size r works
with effort about

√
r, but we can argue that each group operation is more expensive to compute than a

single bit operation; similarly,Curve25519 is often said to offer 128-bit security instead of “only” 126-bit
security, as would be inferred from its subgroup order close to 2252.
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– The point-at-infinity O does not have defined coordinates, and must thus use a special
(conventional) representation.

– The point addition formulas have some special cases in which they fail to compute the
correct result. These are all cases that involveO as one of the operands (addingO to an-
other point) or as the result (adding a point to its opposite), and also involuntary point
doublings (adding a point to another point which happens to be equal to the first one).
These formulas are said to be incomplete.

Incomplete formulas are a problem for use in cryptography because implementations must
then account for the special cases in awaywhichdoes not leak information through side chan-
nels (and in particular whether any given operation turned out to be a special case). In some
protocols, an a priori analysis can show that some operations cannot hit a special case; such
an analysis is an important part of the point multiplication routine described by Aardal and
Aranha. In the general case, we would like to have an efficient and complete point addition
routine, which would remove any such concern and avoid the need for an analysis that can
be complicated. Most preferably, the complete routine would be an application of complete
formulas, i.e. formulas that inherently work for all cases.
(x, s) coordinates, described in [32], offer such efficient and complete formulas. The ap-

plication of (x, s) coordinates to the GLS254 curve works as follows:

1. For a point (x̄, ȳ) ∈ E[r] on the original curve (with equation ȳ2 + x̄ȳ = x̄3 + Ax̄2 + B),
define:

a = A4

b = B2

¤x = x̄4

¤y = ȳ4 + B2

The point ( ¤x, ¤y) is then an element of the curve defined by the (non-short) Weierstraß
equation:

¤y2 + ¤x¤y = ¤x( ¤x2 + a¤x + b)

This map is bijective and preserves the algebraic structures of the curve; it can thus be
considered to be a mere change of representation while still being on the “same” curve.

2. The curve admits a single point of order 2, denoted N . We now replace the point P =

( ¤x, ¤y) with the point P +N = (x, y) such that:

x =
b

¤x

y =
b(¤y + ¤x)
¤x2

In effect, thismeans thatwe are representing a pointP ∈ E[r] by the pointP+N ∉ E[r];
for P, Q ∈ E[r], the representation of P +Q is then P +Q +N = (P +N ) + (Q +N ) +
N . The advantage of this convention is that the neutral element (O) is represented by
the point N , which has defined coordinates and is thus amenable to the definition of
complete formulas.
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3. Replace the y coordinate with s such that:

s = y + x2 + ax + b

Given x, the y coordinate can be recomputed from s, and vice versa.

With these conventions, we can apply the complete formulas described in [32]. The (x, s)
coordinates use an extended representation as four field elements (X :S:Z:T ), with:

Z ≠ 0

x =

√
bX

Z

s =

√
bS

Z2

T = XZ

In the first step above, we raised the initial source coordinates to the power 4 precisely so that√
b =
√
B2 = B: the formulas use multiplications by

√
b and we want these multiplications

to be inexpensive.WithA = u, the parameter a is equal toA4 = u (indeed, u is a cube root of
1 in the field).

We recall in appendix A the formulas (in pseudocode) for the relevant operations on
which the group abstraction operates (encoding to a compressed format and decoding, point
addition anddoublings, comparisons...).The complete formulas also happen tobe faster than
previously known incomplete formulas (e.g. in (x, λ) coordinates[26], a generic point addi-
tion has cost 11M + 2S, but in (x, s) coordinates this cost is lowered to 8M + 2S).

A conventional generator element G is chosen; any non-neutral element can be used as
generator, since the grouphas primeorder r.We reuse the same generator as in [1] (specifically,
from the Sage script sage/ec.sage, lines 20-28, in the companion code repository for that
paper), translated to (x, s) coordinates. Encoding the x and s coordinates into hexadecimal
strings, we have:

Gx =
√
b 0x657CB9F79AE29894B6412F20326B8675

+ u
√
b 0x14C6F62CB2E3915E3932450FF66DD010

Gs =
√
b 0x763522ADA04300F15FADCA04023DC896

+ u
√
b 0x4F69A66A2381CA6D206E4C1E9E07345A

In the notation above, we implicitly apply a conversion from the integer
∑
i di2i to the binary

polynomial
∑
i diz

i ; moreover, the hexadecimal strings match the expected internal represen-
tation as “scaled affine” coordinates, i.e. extended coordinates withZ = 1, which is why there
is an additional

√
b scaling factor.

In the next two subsections we also present novel formulas for computing point dou-
blings, and a succinct description of the efficient curve endomorphism that can be leveraged
to speed some operations up.

2.3 New Doubling Formulas
For this subsection, we first switch back to the general case of a short Weierstraß curve. Sup-
pose that the curve has equation ȳ2 + x̄ȳ = x̄3 + Ax̄2 + B. Coordinates x̄ and ȳ are normally
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represented with some sort of fractional system (e.g. projective coordinates) so that group
operations on the curve can be expressed in a few number of additions, subtractions and
multiplications in the field.

In a binary field, addition and subtraction are the same operation, and since it basically
boils down to a bitwise XOR, we ignore its cost when comparing formulas. We similarly ig-
nore the cost of multiplying any field element by the constant A: for any non-zero field ele-
mentC , the change of variable y ↦→ y+Cx is a curve isomorphism thatmaps that equation to
another shortWeierstraß equationwhere the constantA is replaced withA+C2 +C (but B is
unchanged). In that way, the constantA can always be arranged to be any other field element
with the same trace. In particular, whenm is odd, then one can always haveA = 0 or 1; when
m is even, Tr(1) = 0, but there is always at least one field element with trace 1 and minimal
Hamming weight (inGF (2254) as defined previously, this is u) such that multiplication byA
can be made as inexpensive as an addition in the field.

Formula costs are typically expressed in terms of generic multiplications of field elements
(M), squarings (S), and multiplications by the constant B (mb). In some curves, in particular
GLS254, B is chosen so that multiplication by B has low cost (much lower than that of a
generic multiplication). In software architectures that do not offer a carryless multiplication
opcode, squaring cost is typically around 1/10th of multiplication cost, and the number of
multiplications in a formula is the dominant factor; when a carrylessmultiplication opcode is
available, squaring cost will often be between 0.5 and 0.75 times the multiplication cost. For
point doublings, the previously best known formulas have cost 2M + 4S + 2mb (from [5], as
an improvement over an idea from [20]), but are applicable only to curves such that A = 1;
whenA = 0, the cost is 2M+5S+2mb. As we saw, whenworking over a binary fieldGF (2m)
for an even m, Tr(0) = Tr(1) = 0, and trace-1 curves cannot use either A = 0 nor A = 1;
indeed, GLS254 uses A = u instead.

We present here formulas which achieve cost 2M + 4S + 2mb for all ordinary binary
curves with a short Weierstraß equation, regardless of the value of A. We suppose that the
(x̄, ȳ) coordinates use the extended representation (X̄ :Ȳ :Z̄:T̄ ) with:

Z̄ ≠ 0

x̄ =
X̄

Z̄

ȳ =
Ȳ

Z̄2

T̄ = X̄ Z̄

In that case, the double of point (X̄ :Ȳ :Z̄:T̄ ) can be computed as (X̄ ′:Ȳ ′:Z̄′:T̄ ′), with:

Z̄′ = T̄ 2

D̄′ = (X̄ +
√
bZ̄)2

X̄ ′ = D̄′2

T̄ ′ = X̄ ′Z̄′

Ȳ ′ = (Ȳ (Ȳ + D̄′ + T̄ ) + (a + b)Z̄′)2 + (a + 1)T̄ ′

(We consider multiplication by
√
b and by b to have the same cost mb; this is indeed the case

for the implementations described in this paper.)

9



The formulas above are complete, provided that the point-at-infinityO is represented as
a quadruplet (X :0:0:0) for any X ≠ 0.

In the case ofGLS254, the source point is obtained in a different representation on a non-
short Weierstraß equation. We can use the formulas above, provided that we add conversion
steps. Suppose that we receive a point (X :S:Z:T ) ((x, s) coordinates for point P + N , with
P ∈ E[r]) and want to compute n ≥ 1 successive doublings, i.e. obtain 2nP +N :

1. Convert the source value to a point (X̄ :Ȳ :Z̄:T̄ ) in the curve with shortWeierstraß equa-
tion ȳ2 + x̄ȳ = x̄2 + ax̄2 + b2, with the following formulas:

X̄ =
√
bX

T̄ =
√
bT

Z̄ = Z

Ȳ =
√
bS + X̄2 + aT̄

2. Apply the n doublings in the shortWeierstraß extended representation, using the formu-
las presented above.

3. Convert back the result to our (x, s) extended representation:

X =
√
bZ̄

S =
√
b(Ȳ + (a + 1)T̄ + X̄2)

Z = X̄

T =
√
bT̄

Note that the first step yields a representation ofP+N in the shortWeierstraß curve; however,
since there is at least one doubling, the point obtained at the start of the third step is in E[r],
and the final conversion formulas include the addition of N to obtain a proper extended
(x, s) representation. It is easily verified that the formulas are complete (i.e. they also work if
the orignal input point isN ).

The overall cost of n successive doublings in extended (x, s) coordinates is then n(2M +
4S + 2mb) + 2S + 6mb. Previously published formulas[32] computed n point doublings
with cost n(3M + 4S +mb) + 3mb; these new formulas are faster whenmultiplication by

√
b

is relatively inexpensive and n is large enough, although the exact threshold depends on the
implementation platform. In our code, for x86 with the pclmulqdq opcode, we use these
new formulas when n ≥ 2; on ARM Cortex M4, squarings and multiplications by b or

√
b

are fast enough that the new formulas are always better.

2.4 The GLS254 Endomorphism
GLS254 is a GLS curve[14], which means that it was defined in such a way that an efficient
endomorphism can be computed on it, and the endomorphism can speed up computations.
Namely, on the original curve (with the short Weierstraß equation ȳ2 + x̄ȳ = x̄3 + Ax̄2 + B),
we define a formal value α (which is not in GF (2254) but in a degree-2 extension GF (2508))
such that α2 + α = A; then the endomorphism is ψ such that:

ψ (x̄, ȳ) = (ϕ(x̄), ϕ(ȳ) + ϕ(x̄) (ϕ(α) + α))
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with ϕ being the Frobenius automorphism. The construction is explained in the Galbraith-
Lin-Scott paper; ψ can be verified to be an endomorphism on the curve such that, for any
point P, ψ (ψ (P)) = −P, so that ψ really is the multiplication of the point P by a scalar
which is a square root of −1modulo r. In GLS254, applying these definitions to A = u, we
find that ϕ(α) + α = u.

Applying the formulas above through our change of variables, (x, s) coordinates, and rep-
resentation of point P with P + N , we obtain the translated endomorphism ζ which we
will use thereafter. If (x, s) is a group element (with x = x0 + ux1 and s = s0 + us1), then
ζ (x, s) = (x′, s′), with:

x′ = ϕ(x) = (x0 + x1) + ux1
s′ = ϕ(s) + (u + 1)ϕ(x) = (s0 + s1 + x0) + u(s1 + x0 + x1)

In extended (X :S:Z:T ) coordinates, the formulas for ζ become the following:

X ′ = ϕ(X ) = (X0 + X1) + uX1
S′ = ϕ(S) + (u + 1)ϕ(T ) = (S0 + S1 + T0) + u(S1 + T0 + T1)
Z′ = ϕ(Z) = (Z0 + Z1) + uZ1
T ′ = ϕ(T ) = (T0 + T1) + uT1

As can be seen, all these formulas only imply a few additions in GF (2127) and can thus be
computed very efficiently.

With the definitions above, for any group element P, ζ (P) = µP, with:

µ = 108110115148377375347170251625214377052
38749575629098770843741413709931738644

For any integer k in the 0 to r − 1 range, we can obtain a “split” version as a pair of signed
integers (k0, k1) such that:

k = k0 + µk1 mod r

k20 < r

k21 < r

The method is the same as in the original GLV paper[13]. We start with two integers e and f
such that e2 + f 2 = r, and µ = e/f mod r; such integers are easily found with some known
methods such as Lagrange’s algorithm for lattice basis reduction. We have:

e = 85070591730234615854573802599387326102
f = 85070591730234615877113501116496779625

We then compute:

c = bkf /re
d = bke/re
k0 = k − de − cf
k1 = df − ce

11



Since it is guaranteed that |k0 | and |k1 | are lower than
√
r ≈ 2126.5, the computations of k0

and k1 can be performed over signed 128-bit integers, simply truncating higher bits.
The main cost is computing the rounded divisions bke/re and bkf /re. Since r is close to

a power of two, some shortcuts are possible:

1. Write r = 2253 + r0; the integer r0 is somewhat lower than 2126.
2. Given k, compute g = ke + (r − 1)/2 and split it at the 253-bit mark into g = g0 + 2253g1

(with 0 ≤ g0 < 2253).
3. Compute g1r0; if that value is lower than or equal to g0, then bke/re = g1; otherwise,
bke/re = g1 − 1.

The gist of the method above is that bke/re = bg/rc; then, we use 2−253 as an approxima-
tion of 1/r, and adjust the result by subtracting 1 if necessary (1/r is in fact slightly lower
than 2−253, so the simple shift by 253 bits may overestimate the quotient, but with k < r,
that overestimate cannot exceed 1). The second rounded division (bkf /re) is computed in
the same way. Since this entails only integer multiplications with limited ranges, an efficient
and constant-time implementation can be obtained.

3 High-Level Algorithms
3.1 Hash-to-Curve
Given a generic map of field elements to curve points, such that a curve point can have only a
limited number of antecedents through that map, a hash-to-curve process can be defined[8]
tomap some arbitrary input data to curve elements, such that curve points are selectedwith a
distribution indistinguishable from a uniformly random choice, and their discrete logarithm
with regard to the conventional generator point is unknown:

1. Hash the input with a suitable classic hash function, such that the output can be split
into two sub-sequences that are both mapped to field elements with negligible selection
bias.

2. Map each field element to a curve point.
3. Add the points together.

A suitablemap can be obtainedwith some generic methods described by Shallue and van
de Woestijne[35] and later optimized by Ulas[38]. We present here a variant, which can be
efficiently implemented and yields an (x, s) representation of a point P + N for P ∈ E[r].
The input is a sequence of 256 bits.

1. The input sequence consists of bits (hi) for i = 0 to 255. We first map that sequence to
a field element c ∈ GF (2254):

c =
126∑
i=0

hiz
i + u

(
1 +

126∑
i=2

hi+128z
i

)
Thus, bits h127, h128, h129 and h255 are ignored for obtaining c (bit h128 will be used in a
later step; the other three bits will remain unused). Note that the choice of c implies that
Tr(c) = 1 and Tr(c/z) = 0.
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2. Compute the field elementsmi for i = 1 to 3:

m1 = c

m2 = c + z2

m3 = c + c2/z2

then, for each mi , the value ei = b/mi . It can be verified that Tr(mi) = 1 for all i, and
e1 + e2 + e3 = 0.

3. Set (m, e) = (mi , ei) for the lowest i such that Tr(ei) = 0. Since e1 + e2 + e3 = 0, they
cannot all three have trace 1, and the (m, e) pair is well-defined.

4. Set d =
√
m. Since Tr(d) = Tr(m) = 1, we can compute w = QSolve(d), which is then

such that:
d = w2 + w + a

Since QSolve can return two possible solutions (w and w + 1), we select the one such
that the least significant bit of wmatches the source bit h128 (i.e. we forcibly set the least
significant bit of w to h128).
At that point, we have e = b/d2 with Tr(e) = 0; these are the exact conditions for
successful and unambiguous decoding of w into a group element, as described in [32]
(section 4.3), which we then apply in the following steps.

5. Compute:

f = QSolve(e)
x = df

There are two solutions to the equation f 2 + f = e and it is not specified which one is re-
turned by QSolve; we normalize it by choosing the solution that implies that Tr(x) = 0.
In other words, if Tr(x) ≠ 0, thenwe add d to x. Since Tr(d) = 1, this always unambigu-
ously selects the value of x.

6. Set s = xw2.
7. Convert (x, s) to the extended coordinate system:

X = x

S = s
√
b

Z =
√
b

T = x
√
b

Since Tr(x) = 0, the obtained point is necessarily equal to P +N for some P ∈ E[r].

Each valuew can correspond to a unique group element (this is how the compressed encoding
works). For a givenw, there is a uniquematching d, which can itself be obtained from atmost
three possible valuesmi . Valuesm1 andm2 eachhave a unique antecedent c, whilem3 canhave
at most two antecedents c. Since h129 is ignored, we obtain that the process above follows a
map from GF (2254) to the order-r group, such that any group element has at most eight
antecedents. This is enough for the hash-to-curve process (with two invocations of the map).

13



3.2 Signatures
Schnorr signatures[34] are an efficient mechanism for building digital signatures out of a
prime order group. Such a signature is, nominally, a triplet (R, c, s) where R is a group ele-
ment (the commitment), c is the challenge, and s the response. Both s and c are scalars (integers
modulo the group order r). If the public key is the group element Q, then the signature is
acceptable for a message m if and only if R = sG − cQ and c = h(R,Q,m) for some hash
function h that takes as inputs the point R, the public key Q, and the message m, and out-
puts a scalar. The signature is generated by first choosing a secret scalar k (thatmust be chosen
uniformly, andmust be used for one signature instance only), then computingR = kG, then
cwith the hash function h, and finally s = k+ cd, where d is the private key such thatQ = dG.

A Schnorr signature can be readily compressed by omitting either R or c. If c is omit-
ted, then the verification process recomputes it from R, Q andm with the hash function h;
this is method chosen by the classic scheme Ed25519. It leads to 64-byte signatures, that fur-
thermore support the batched verification process that was the main point of the original
Ed25519 paper[3]. However, instead of omitting c, one can omit R, in which case R is re-
computed with R = sG − cQ during the verification. This opens the possibility of using a
challenge c which is shorter than the group order r. This was already noticed by Schnorr in
his original paper[34]. Neven, Smart and Warinschi offer extensive analysis on why c can be
made about half shorter than rwhilemaintaining the expected security level[24]. This allows
making signatures shorter (48 bytes instead of 64 bytes, at the 128-bit security level), and also
speeds up the verification, as was remarked for jq255 curves[31]. This shorter format does not
support batch verification as in Ed25519, but since itmakes each verification faster, this is not
necessarily a problem.

ForGLS254, we apply an extra improvement. In jq255 curves, the challenge c is obtained
as a 16-byte sequence (truncated BLAKE2s output), which is then interpreted as an integer
in the 0 to 2128− 1 range. The analysis in [24] relies on a generic groupmodel where informa-
tion about a group element is obtained only when a computation outputs that exact group
element; thus, it does not rely on the possible challenge values to be consecutive integers in
a given range. What matters for security is that the challenge c is obtained as the output as
a hash function which is secure against random-prefix preimages and second-preimages; this
is achieved if we use a ”secure” hash function and the truncation/conversion process yields a
scalar chosen uniformly in a set of size 2128.

We can thus compute c as follows:

1. Hash the public key Q, commitment R and messagem together with a generic purpose
hash function such as BLAKE2s, and truncate the output to 16 bytes.

2. Split that 16-byte string into two 8-byte strings, which are each interpreted as integers c0
and c1, respectively. These integers are in the 0 to 264 − 1 range.

3. The challenge is c = c0 + µc1 (with µ being the square root of −1 modulo r that corre-
sponds to the endomorphism ζ from section 2.4).

Two distinct 16-byte hash outputs necessarily yield distinct challenge values; indeed, if
c = c′, then (c0 − c′0, c1 − c′1) is a vector in the lattice L = {(i, j) ∈ Z × Z | i + µj = 0 mod r}.
A shortest basis in that lattice is ((e, f ), (f,−e)) with the values e and f shown in section 2.4,
where both vectors have norm

√
r ≈ 2126.5; no vector in the lattice can be shorter than that,

except the null vector. However, |c0 − c′0 | < 265 and |c1 − c′1 | < 265, leading to a vector norm
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that is lower than 266, considerably smaller than
√
r. Therefore, if c = c′, then c0 = c′0 and

c1 = c′1. It follows that the definition of the computation of c shown above does not alter the
security of Schnorr signatures, compared to the more classic case of c being a plain 128-bit
integer.

The point of this special definition of c is that it further speeds signature verification up.
In Ed25519-style signatures, the verification equation isR = sG − cQ, which can use Straus’s
algorithm[36] with a window optimization. If we assume a window size of w bits, meaning
that we process scalar bits by groups of w, and a “window” is a table of points iG or iQ for
1 ≤ i ≤ 2w−1, then for an n-bit curve, this computation needs about n point doublings
and 2n/w extra point additions. The Antipa et al optimization[2] can reduce the cost by
splitting the challenge c using some heuristic methods, in particular Lagrange’s algorithm,
which can be implemented at a relatively low cost[29]; the number of extra point additions
is not changed (still 2n/w), but the number of point doublings is halved, down to n/2.

Using a half-size challenge c, as suggested by Schnorr and used in jq255 curves, offers
some additional speed-ups: there is no longer a need for running Lagrange’s algorithm, and
the number of extra point additions is lowered to 1.5n/w; the number of point doublings is
still n/2.

The new challenge computation process shown above, applicable to GLS254, keeps the
number of extra point additions at 1.5n/w, but again halves the number of point doublings,
down to n/4, which yields an extra speed-up. Indeed, the recomputation ofR can be written
as:

R = sG − cQ
= (s0 + µs1)G − c0Q − µc1Q
= s0G − c0Q + s1ζ (G) − c1ζ (Q)

assuming that s was split into s0 + µs1 as described in section 2.4. Here, the s0 and s1 inte-
gers have size n/2 bits, but they are applied to known fixed pointsG and ζ (G); each of these
integers can be further split into two n/4-bit halves, since a window over 2n/4G can be pre-
computed. The computation ofR can thus be reduced to a linear combination of six points
with coefficients of size n/4 bits, hence doable in n/4 point doublings and 6n/4w extra point
additions. Moreover, the application of ζ in GLS254 is fast enough that half of the windows
can be omitted: for an integer i, the value iζ (Q) can be dynamically obtained as ζ (iQ).

3.3 ECDH and raw ECDH
By “raw ECDH”, we designate the core functionality of an ECDH key exchange with the
specific properties used in [1]:

– An encoding of a group element is received. This is an uncompressed representation
which contains the two affine coordinates, over a total of 64 bytes. This value is public.

– The group element is decoded, which entails verifying that the two provided coordinates
match the curve equation.

– The point is multiplied by a secret scalar, and the result is encoded into a new 64-byte
sequence using the same uncompressed representation.
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We use this functionality for benchmarks mainly because it was used that way by Aardal and
Aranha; this makes the benchmarks directly comparable with each other. Since we use (x, s)
coordinates, we expect the two coordinates to be in “scaled affine” format, i.e. to be theX and
S values in an extended representation (X :S:1:X ). Some notable features of raw ECDH are
the following:

– The input point is public; thus, computations on that point, before using the secret
scalar, do not need to be constant-time. This is leveraged in [1] in particular for build-
ing their 2-dimensional window and normalizing it to affine coordinates.

– Our implementation returns early if the input point is not a valid representation of a
group element (i.e. the coordinates of a curve point P + N with P ∈ E[r]). The curve
equation and the trace of X are thus verified.

– Our code currently accepts the neutralN as input. It could be easily rejected at negligible
cost by checking that the provided X coordinate is not zero.

– The secret scalar k is provided as an array of 32 bytes, with unsigned little-endian encod-
ing.OurRust-based implementations verify that the scalar is in the 0 to r−1 range, while
our implementation for ARM Cortex M4 accepts any value in the 0 to 2256 − 1 range,
and implicitly reduces it modulo r. In both cases, the split of k into k0 + µk1, to be used
with the endomorphism ζ , is included in the measured performance.

For a stricter and safer key exchange in general, we also implement “ECDH” (not the raw
version), along the lines of the similar functionality for the jq255 curves:

– Exchanged points use the more size-efficient 32-byte compressed format.
– The shared key is obtained through a systematic derivation with a hash function, using

not only the result of the point multiplication but also the received point (peer public
key) and the recipient’s own public key (corresponding to the used secret scalar). The
resulting key is thus bound to the used keys, and fully unbiased.

– The input point is not considered public. All processing is constant-time; if the point is
incorrect, then a “shared” key is still produced (in a way which is indistinguishable from
a success by outsiders). This allows use of ECDH in some protocols, such as password-
based key exchanges, in which a success/failure might leak important information on
low-entropy secrets.

– Theneutral point is considered invalid, so that the input fully contributes to the resulting
secret.

4 x86 Implementation
4.1 Test Platform
We consider here a 64-bit x86 platform, running under the Linux operating system (Ubuntu
22.04). The CPU is an Intel i5-8259U “Coffee Lake” running at 2.3 GHz; TurboBoost is
disabled, and measurements are made with the timestamp counter on single-threaded code
running on an otherwise idle machine.

The Coffee Lake is part of a large family of Intel cores derived from the Skylake (first de-
ployed in 2015). The Skylake, Kaby Lake, Cannon Lake and Coffee Lake differ in processing
technology, number of cores and cache sizes (especially L3 cache size), but should all have
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identical timing behaviour on computations such as the ones we consider here, which all fit
in L1 caches for both code and data[12]. Aardal and Aranha used a Kaby Lake platform for
benchmarks; we verified that their code yields the exact same measured performance on our
test platform.

Our implementation is written in the Rust programming language, which is convenient
for that kind of code: it offers a programming model with access to about the same CPU fea-
tures as C, and through the same code generator backend (LLVM, also used by the C com-
piler Clang). Its syntax supports operator overloading, which is convenient for implementing
operations on finite fields and curve points with notations close to themathematical descrip-
tion. Our code is part of crrl, a growing open-source library meant for research purposes
on cryptographic algorithms; the features described here are part of version 0.8.0:

https://github.com/pornin/crrl/tree/v0.8.0

The curve implementation is in the src/gls254.rs source file, while the finite field back-
ends are in src/backend/w32/ (32-bit backends) and src/backend/w64/ (64-bit back-
end). For the 64-bit backend using the pclmulqdq opcode (through compiler intrinsics),
the following compilation command is used:

RUSTFLAGS="-C target-cpu=skylake" cargo bench \
--no-default-features -F gls254,gls254bench

The option used in RUSTFLAGS instructs the Rust compiler to generate and optimize code
for a Skylake-classCPU; in particular, this enables the use ofpclmulqdq, which is supported
by Skylake-class CPUs but not by all CPUs that follow the standard 64-bit x86ABI. This also
enables AVX2 opcodes, which are leveraged by our code in several places. The bench com-
mand compiles some benchmark code (in benches/gls254.rs) which performs timing
measurements; it also instructs the compiler to use “release mode”, i.e. to optimize the out-
put for speed. The feature flags disable compilation of anything that is not directly required
for GLS254 support (the gls254bench feature enables the raw ECDH functions, which
are nominally only for benchmarks); this greatly reduces compilation time, as crrl features
a growing list of cryptographic algorithms, and is also a bit “heavy-handed” on function in-
lining, which is good for speed but bad for compilation time.

All our benchmarks use the Rust compiler version 1.72.1 (from September 13th, 2023).
The specific backend forGF (2254) operations on x86 with pclmulqdq is located in file

src/backend/w64/gfb254_x86clmul.rs. Intrinsics, not inline assembly, are used to
access all the relevant CPU features.

4.2 Raw ECDH Performance
Obtained performance on raw ECDH is summarized in table 1, compared with the values
reported by Aardal and Aranha[1]. Each variant name is a combination of a dimension (1DT
or 2DT) and a window size (2 to 5). One-dimensional variants use a window with points iP
for integers i and source point P, while two-dimensional variants use a combined window
with points iP + jζ (P) for pairs of integers (i, j). The window size is the number of integer
bits that are processedper iteration; in otherwords, each iterationwithwindow sizen involves
n point doublings, followed by either two (1DT) or one (2DT) point lookup(s) and addition.
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For some reason, Aardal and Aranha use an off-by-one notation for the window size, i.e. our
“2DT-2” is described by them as “2DT with w = 3”.

Variant This work Previous work[1]
1DT-3 35383 -
1DT-4 31615 36480
1DT-5 31785 -
2DT-2 32583 35739
2DT-3 32275 38076

Table 1: Performance of raw ECDH on Intel x86 Skylake-class CPUs, using pclmulqdq.
Values are in clock cycles.

We thus increase the processing speedby about 13.0% (equivalently, the computation cost
is reduced by 11.5%). The gain comes from several sources, discussed below.

New Formulas. The (x, s) formulas for point addition do not, in fact, contribute much
to the speed gain. Since the window points are normalized to affine in both our implemen-
tation and the previous work, the point additions in the main algorithm loop are mixed ad-
ditions, for which (x, λ) coordinates offer formulas which have about the same cost as the
corresponding mixed (x, s) additions. The main gain here comes from the use of the new
doubling formulas (section 2.3), which favour long sequences of doublings; this is why the
1DT variants are faster than the 2DT variants in our code.

Inversions. For inversions inGF (2127), Aardal andAranha use two distinct implementa-
tions: both use the same addition chain for the exponent, but one optimizes some sequences
of squarings with large lookup tables that allow processing the input one byte at a time, while
the other one sticks to plain squarings in a loop. The former is faster but inherently not
constant-time, which is why it is used only for normalizing the window (working over the
input point only, which is public), while the conversion to affine of the output point (which
is secret) uses the latter inversion code.

In our code, we use a single constant-time inversion routine; long sequences of squarings
are optimized with tables with 128 elements which are processed bit by bit, so that constant-
time discipline is maintained. AVX2 intrinsics are used to read tables efficiently; the CPU can
read a full 32-byte chunk of data (i.e. two table entries) in a single opcode. Experimentally, we
achieve a table processing speed of about 0.75 cycle per table entry; the table is more efficient
than performing squarings for sequences of 12 or more squarings. We also use a different
addition chain:

1→ 2→ 3→ 6→ 7→ 14→ 28→ 42→ 84→ 126

This chain implies the same number (9) of field multiplications than the one used in [1], but
only needs two tables (for sequences of 14 and 42 squarings), while their chain uses three
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or four tables (for steps with 18, 48, 30, and optionally 12 squarings); this lowers L1 cache
pressure.

In total, our constant-time inversion inGF (2254) uses about 750 cyles, which is close to
the non-constant-time table-based inversion of [1] (rated at 628 cycles), andmuch better than
their constant-time function (1965 cycles).

Squarings. A squaring in a binary field is the combination of an “expansion” step, and a
reduction. The expansion is a squaring over binary polynomials: data bits are simply moved,
with an extra zero inserted between any two successive bits. The expansion can be performed
with pclmulqdq, which, in Rust syntax with compiler intrinsics, looks as follows:

let d0 = _mm_clmulepi64_si128(a, a, 0x00);
let d1 = _mm_clmulepi64_si128(a, a, 0x11);

However, it is also possible to use only bitwise operations, and the pshufb opcode, for
the same operation:

let m16 = _mm_set1_epi8(0x0F);
let shk = _mm_setr_epi8(

0x00, 0x01, 0x04, 0x05, 0x10, 0x11, 0x14, 0x15,
0x40, 0x41, 0x44, 0x45, 0x50, 0x51, 0x54, 0x55);

let t0 = _mm_shuffle_epi8(
shk, _mm_and_si128(a, m16));

let t1 = _mm_shuffle_epi8(
shk, _mm_and_si128(_mm_srli_epi16(a, 4), m16));

let d0 = _mm_unpacklo_epi8(t0, t1);
let d1 = _mm_unpackhi_epi8(t0, t1);

This variant uses the convenient fact that while pshufb is nominally an opcode for shuffling
bytes, it can be used as a generic parallel application of any 4 → 8 lookup table (this was
already remarked by Hamburg for an AES implementation[16]) if the data is used as index
operand instead. This code usesmore instructions than the one usingpclmulqdq, but it also
has lower latency,which improves performance for long sequences of successive squarings, i.e.
exactly what is used in inversions.

In GF (2254), we obtain the reverse effect. Our code receives the two parts of the in-
put as two 128-bit values (__m128i) and assembles them into a single 256-bit AVX2 value
(__m256i). The two expansion sequences above can then be merged into a single one:

let a = _mm256_setr_m128i(a0, a1);

let m16 = _mm256_set1_epi8(0x0F);
let shk = _mm256_setr_epi8(

0x00, 0x01, 0x04, 0x05, 0x10, 0x11, 0x14, 0x15,
0x40, 0x41, 0x44, 0x45, 0x50, 0x51, 0x54, 0x55,
0x00, 0x01, 0x04, 0x05, 0x10, 0x11, 0x14, 0x15,
0x40, 0x41, 0x44, 0x45, 0x50, 0x51, 0x54, 0x55);

let t0 = _mm256_shuffle_epi8(
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shk, _mm256_and_si256(a, m16));
let t1 = _mm256_shuffle_epi8(

shk, _mm256_and_si256(_mm256_srli_epi16(a, 4), m16));
let d0 = _mm256_unpacklo_epi8(t0, t1);
let d1 = _mm256_unpackhi_epi8(t0, t1);

This is followed by the reduction code, where we again stick toAVX2 to performboth reduc-
tions in parallel for the cost of one. In total, this implementation has a higher latency than the
pclmulqdq code (mainly because the movements of data between the low and high AVX2
lanes have 3-cycle latency), but a better throughput: even though AVX2 is, in many respects,
two SSE2 units running side-by-side, it can only perform one 64 × 64→ 128 carryless mul-
tiplication at a time, not two. Experimentally, using this variant of squarings in GF (2254)
yielded a gain of about 1000 cycles in our code.

Window Construction. The construction of the 2DTwindow benefits from a fewmi-
nor optimizations. Like [1], we use some specialized functions for doubling or tripling an
affine point, and for adding a point P to ζ (P). However, we also scrape a few more cycles by
noticing that the resulting points have related Z coordinates: when computing both P + Q
and P − Q, the two results have the same Z coordinates. Moreover, if 1/Z is computed, then
1/ϕ(Z) is obtained with the Frobenius operator, which is much faster that inverting ϕ(Z)
separately. Of course, Montgomery’s trick is used to mutualize inversions, but these minor
optimizations save some multiplications inGF (2254).

4.3 High-Level Algorithm Performance
In table 2, we compare our implementation of GLS254 with the best reported Ed25519 im-
plementation on the same platform. That implementation happens to be crrl itself: we
compared it with OpenSSL as distributed with the operating system, curve25519-dalek ver-
sion 4.0.0[10], and the C implementations in eBACS[4]; crrl code is slightly faster than all
these, especially for signature verification, thanks to the use of theAntipa et al optimization5.

5curve25519-dalek supports batch verification, which reduces the per-verification cost below the
single-verification cost of crrl. We consider here only the stand-alone case.
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Operation GLS254 Ed25519
decode 1231 9483
encode 824 7512
mul 30767 103338
mulgen 15912 38596
hash_to_curve 4190 -
load_skey 16529 47403
sign 18374 49090
verify 27376 108719

Table 2: Performance comparison of GLS254 and Ed25519 for high-level operations on
Intel Skylake. Values are in clock cycles.

The operations in table 2 are:

– decode: decoding of a point from its 32-byte (compressed) encoding. The decoding in-
cludes validation of the input; for GLS254 (but, crucially, not for Ed25519, which has
“cofactor issues”), this includes verification that the point is part of the proper prime-
order subgroup. The output of decode is the in-memory representation in relevant ex-
tended coordinates.

– encode: the reverse operation of decode.
– mul: multiplication of a (decoded) point by a scalar.
– mulgen: same as mul, when it is statically known that the point to multiply is the con-

ventional generator, for which precomputed tables of multiples are included6.
– hash_to_curve: the hash-to-curve process over a small input, which involves two exe-

cutions of the map described in section 3.1.
– load_skey: decoding of the private key from32bytes, and recomputation of the public

key (i.e. mulgen). It would of course be possible to store the encoded public key along
with the private key, making this operation much faster; it has been reported, though,
that allowing the private and public key to be provided separately implies a risk of key
confusion, in which non-matching keys are used, with deleterious effects. Forcing the
public key to be systematically recomputed is thus a safer API in general.

– sign: production of a signature (48 bytes) over a given short message (which can be a
hash value corresponding to a larger input data), using a given private key. The private
key is expected as an already loaded in-memory object (i.e. a prior call to load_skey).
The signature is produced in encoded format (i.e. bytes).

6The crrl library deliberately limits the size of such tables, so that the compiled code is not huge,
and everything remains in L1 cache with room to spare. For GLS254, four tables of 16 elements are in-
cluded, for a total of 4096 bytes of data; for Ed25519, the tables use 6144 bytes, because its affine points
use the “Duif representation” with three coordinates per point. Some minor speed improvements in
benchmarks can be obtained with larger tables, but these would not necessarily translate to actual ben-
efits when the code is integrated into a larger application, because use of the cryptographic primitive
would kick more application data out of L1 cache.

21



– verify: verification of a signature, against a given public key and short message. The
signature is provided as a sequence of bytes. The public key is expected in the already
decoded in-memory format; the reported cost is thus the per-verification cost when pro-
cessingmultiple signatures against the samepublic key.Toget the verification cost against
an encoded public key, add the decode cost (which is quite low, for GLS254).

We see that, roughly speaking, GLS254 provides signatures which are not only smaller
(48 bytes instead of 64 bytes) but also substantially faster (by a factor of 2.5x to 4x) than
Ed25519 signatures. They also do not suffer from cofactor issues or non-canonical encodings
since all operations in GLS254 enforce canonicality for a prime order group.

As a side note, the OpenSSL implementation of RSA, a thoroughly optimized piece of
code with handmade assembly, takes about 57000 cycles for signature verification with the
common 2048-bit key size and the usual e = 65537 public exponent. RSA is normally as-
sumed to offer very fast signature verification. OurGLS254 signature verification happens to
be twice faster! And that is using considerably shorter signatures (48 bytes instead of 256), at
arguably a higher security level (RSA-2048 security is accounted at between 89 and 112 bits,
depending on how CPU and RAM costs are extrapolated)7.

5 ARMv8 Implementation
5.1 Test Platform
For the ARMv8 implementation, we use an ODROID C4 single-board computer, from
Hardkernel. This is the exact same test platform as used by Aardal and Aranha. The oper-
ating system is again Linux (Ubuntu 22.04) in 64-bit mode. The CPU uses ARM Cortex-
A55 cores. This is not a workstation-level system; it is more representative of relatively pow-
erful embedded systems. In our Rust implementation, the relevant code is located in the
src/backend/w64/gfb254_arm64pmull.rs source file. It uses the NEON intrinsics
for SIMD operations, and in particular the pmull and pmull2 opcodes, that compute 64×
64→ 128 carryless multiplications.

For compilation, we use the target-cpu=cortex-a55 compiler flags. The same com-
piler version (Rust 1.72.1) as the x86 platform is used8.

5.2 Raw ECDH Performance
Table 3 shows the performancewe achieve on this platform; refer to section 4.2 for the variant
naming scheme.

7Public key operations with RSA can be made much faster if using e = 3. However, for a variety of
reasons, many of which more related to psychological impact and mythology than science, small RSA
exponents are frowned upon, and the newest FIPS 186-5 standard[25] explicitly mandates that emust
be at least 65537.

8Indeed, the very same compiler is used, with cross-compilation to the aarch64-unknown-
linux-gnu platform; this yields much faster compilation times than running the Rust compiler on
the ODROID, especially since the latter uses a not-very-fast microSD card for storage.
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Variant This work Previous work[1]
1DT-3 84902 -
1DT-4 78303 92460
1DT-5 83900 -
2DT-2 77435 86525
2DT-3 85238 91682

Table 3: Performance of raw ECDH on ARM Cortex-A55, using NEON. Values are in
clock cycles.

We again obtain a speed improvement (of about 11.7%) over the previous record. For
this platform, the 2DT-2 code turns out to be slightly better than the 1DT-4 code, although
the difference is slight. The optimization notes listed in section 4.2 for the x86 platform also
roughly apply here, though with some variations:

– Thememory bandwidth of theA55 ismuch lower than that of the x86,with amaximum
of only 64 bits per cycle. This increases the cost of point lookups (which is why the 1DT-
5 variant is substantially more expensive that 1DT-4) and also of tables for optimizing
sequences of squarings in inversions. Our inversion routine thus forgoes such tables. We
also use a different addition chain, though it does not make much of a difference:

1→ 2→ 3→ 6→ 7→ 14→ 21→ 42→ 63→ 126

– There is no equivalent of the x86 pshufb opcode in NEON. On the other hand, the
carrylessmultiplication opcode has high throughput (one per cycle) and very low latency
(two cycles).

– NEONopcodes have in general two variants, which operate over either 64-bit or 128-bit
values. The A55 can in general “pair” the 64-bit variants (i.e. execute two instructions in
the same cycle, as long as they don’t have a dependency relationshipwith each other), but
not 128-bit variants. Thus, operations such as reductions inGF (2127) can typically be ex-
pressed with either 64-bit or 128-bit opcodes, and which variant turns out to yield the
best performance depends on the usage context (the 64-bit code involves more instruc-
tions but gives the compilermore options for reorganizing code). Inour implementation,
we use a mixture of both.

Integer Multiplications are Not Constant-Time. A disappointing feature of the
ARM Cortex-A55 is that its 64-bit multiplications are not constant-time: their latency is 3
cycles, but only 2 cycles if one or both of the operands fits in 32 bits. A consequence is that
basically none of the usual elliptic curve implementations is constant-time on this platform.

The GLS254 raw ECDH implementation from [1] ismostly constant-time since integer
multiplications are used only in operations over the scalar; hence, only the scalar-splitting step
(for use of the curve endomorphism) may potentially leak information. The probability of
hitting a problematic case is very low (a random64-bit value has only probability 2−32 of hav-
ing its32 topbits equal to zero) and in a key exchange setup, an active attacker targeting a given
secret scalar cannot make that scalar vary. Thus, it can be argued that the non-constant-time
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properties of theA55multiplications are not a practical issue in that case. A similar reasoning
could bemade for digital signatures, since secret scalars are not under adversarial control, and
the probability of hitting a “bad case” is very low;moreover, a properly randomized signature
generator cannot bemade to repeat any specific per-signature secret scalar k value, preventing
the attacker from repeating experiments in order to amplify the side channel signal (which is
only a 1-cycle difference).

For elliptic curve implementations using prime fields, and in particular for ECDH, in
which a target implementation is made to work with an attacker-provided point that can
exercise the side channel, this is more problematic. A possible mitigation, at least for point
coordinates, is to randomize the internal point representation (basically multiplying the Z
coordinate by a random value, and adjusting the other coordinates accordingly), though its
effectiveness should be assessed.

In any case, to remove any remaining uncertainty about the non-constant-time multipli-
cations,we chose to restrict our code toonly 32-bit values (and32×32→ 64multiplications)
for all operations on scalars,whenworking on anARMplatform.The cost of splitting a scalar
is thus raised, but the overhead remains slight when comparedwith full curve operations (the
scalar splitting cost is still lower than 1000 cycles).

5.3 High-Level Algorithm Performance
In table 4, we compare our implementation of GLS254 with Ed25519 on the ARMCortex-
A55. Again, crrl turns out to be the best Ed25519 implementation in general, but wemust
note that for the X25519 function (specialized key exchange over Curve25519), there is at
least the very good implementation fromLenngren[22],which leverages theNEONfloating-
point operations and performs the operation in less than 160000 cycles.

For comparison, curve25519-dalek generates and verifies Ed25519 signatures in about
199000 and 560000 cycles, respectively, on our test system;OpenSSL’s performance is worse,
at 313000 and 633000 cycles, for the same operations. eBACSdoes not have anyA55 timings;
it lists two sets of measurements for the slightly older ARMCortex-A53, which for this code
should have timings similar to that of the A559, amounting to about 211000 and 591000
cycles for signing and verifying, respectively.

9TheA53, as typically foundonRaspberry Pi-3 single-board computers, doesnot support the large-
input carryless multiplication ocode pmull; GLS254 would be much slower on such an A53 CPU.
However, for Ed25519, there is no use of carrylessmultiplications, and the integer opcodes have timings
similar to that of theA55.TheA55has improvedmemorymanagement andbranchprediction, but this
should have little impact on an Ed25519 implementation which should entirely fit in L1 cache.
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Operation GLS254 Ed25519
decode 3506 34514
encode 1746 15979
mul 76219 400473
mulgen 46295 151159
hash_to_curve 13243 -
load_skey 48651 170901
sign 55526 175136
verify 68649 384541

Table 4: Performance comparison of GLS254 and Ed25519 for high-level operations on
ARMCortex-A55. Values are in clock cycles.

We again find thatGLS254 allows signature operations to be performedmuch faster than
for Ed25519 (up to 5.6x for signature verifications). Part of the relative slowness of Ed25519
may be attributed to a lack of optimization efforts specific to that platform; however, there is
no doubt that GLS254 is a much faster curve on such systems.

6 RISC-V Implementation
6.1 Test Platform
RISC-V is an open instruction set architecture that includes a barebone “full RISC” core
with only a few instructions, and a large list of standardized (but optional) extensions. It is an
increasingly popular ISA for all kinds of small and large embedded systems because it is, by
design, a royalty-free ISA which can be used in custom hardware designs without licensing
costs.

Our test system is a VisionFive 2 single-board computer (by StarFive). It uses a JH7110
CPU, itself built out of SiFive U74 cores. These cores follow the RV64I variant (64-bit, base
integer computations) along with extensions M (integer multiplications and divisions), A
(atomic operations on memory), F and D (single and double-precision floating point), C
(compressed 16-bit instructions), Zba (accelerated address generation, mostly one-cycle in-
structions to compute x + vy for integers x and y, and v a small power of two) and Zbb (basic
bit manipulation, e.g. word rotation opcodes)10. The I, M, A, F and D combination is often
abbreviated as “G”, and, combined with the C extension, make up the riscv64gc architec-
ture which is one of the main architectures supported by LLVM (and thus both the Rust
and Clang compilers). Crucially, that core does not support the Zbc extension (nor its sub-
set Zbkc); the Zbc extension is the one that includes carryless multiplication opcodes. This
system is then a representative of what happens withGLS254 implementations when no car-
ryless multiplication opcode is provided.

For compilation, we use the following flags:

10It also supports a few extensions related to control registers, which are not relevant here, except for
the cycle counter, which we use for benchmarking purposes.
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RUSTFLAGS="-C target-cpu=sifive-u74 -C target-feature=+zba,+zbb" \
cargo bench --no-default-features -F gls254,gls254bench

In our code, both the Zba and Zbb opcodes provide some important performance improve-
ments; we have to enable them explicitly because the SiFive-U74 is itself a configurable design,
and any hardware vendor integrating U74 cores in a chip may or may not include either ex-
tension. The relevant source code file is src/backend/w64/gfb254_m64.rs.

ISA details and instruction timing characteristics are important for implementation effi-
ciency:

– 64-bit multiplications use distinct opcodes to obtain the low (mul) and high (mulhu)
halves of the 128-bit result. The CPU can issue one of either instruction at every clock
cycle, and they have 3-cycle latency. They appear to be constant-time (the SiFive-U74
manual does not mention any timing variation, and we could not detect any early return
with special inputs such as zero). The RISC-V ISA documents that if mul and mulhu
are used in that order, with no intervening instruction in between, and working over the
same source operand registers, then someRISC-V implementationsmay notice that they
both work on the same mathematical operation and take advantage of it for better per-
formance; this does not appear to be the case for theU74.A practical consequence is that
a 64 × 64→ 128multiplication costs twice as much as a 64 × 64→ 64multiplication,
in terms of instruction throughput at least.

– TheRISC-Vdoes not inherently support carry propagation; there is no “add-with-carry”
opcode. Inorder toperformcarrypropagation (e.g.when addingbig integers represented
over several 64-bit limbs), the output carry value must be obtained by comparing the re-
sult with one of the operands. A complete add-with-carry operation, with both input
and output carries, needs a sequence of five opcodes and a 4-cycle latency (for the out-
put carry). This does not matter much for GLS254 (since binary fields do not use carry
propagation), but it impacts curves over prime fields.

– The RISC-V has a large but not infinite number of general purpose registers: there are
32 registers, one of which being always equal to zero. Register pressure can be a bottle-
neck for some operations, since memory traffic to and from the stack must use instruc-
tions that cannot be assumed to execute “in parallel” at little cost, because the CPU does
not have extensive superscalar abilities. Compounding the effect is that fixed integer con-
stants typically consume extra registers: a few opcodes can use an immediate value as an
operand, but only up to 12 bits in size, and larger constants must be loaded from RAM
into registers, or with multi-instruction sequences with a relatively large cost.

6.2 Implementing Binary Field Operations
6.2.1 Multiplications

In the absence of efficient carrylessmultiplication opcodes, the implementation of operations
inGF (2254) is challenging. Multiplications are, in practice, the most expensive.

In some heavily parallel usage contexts (e.g. when trying to break discrete logarithm),
it can be worthwhile to split the work into individual bit operations, amenable to bitslic-
ing; asymptotically fast algorithms such as Cantor-Kaltofen[9] can then provide good per-
formance. However, practical usage for a curve such as GLS254 is far for allowing parallel
execution of dozens of multiplications in the field.
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For “normal” curve usage, the multiplication of two field elements is normally reduced
to multiplication of smaller binary polynomials through one or several layers of Karatsuba-
Ofman variants[19]. A multiplication of x and y in GF (2254) is first reduced to three multi-
plication inGF (2127):

(x0 + ux1) (y0 + uy1) = x0y0 + u2x1y1 + u(x0y1 + x1y0)
= x0y0 + (u + 1)x1y1 + u((x0 + y0) (x1 + y1) + x0y0 + x1y1)
= x0y0 + x1y1 + u((x0 + y0) (x1 + y1) + x0y0)

Each individual multiplication in GF (2127) can then be broken into three 64 × 64 → 128
multiplications on binary polynomials. Optionally, each of these can be further broken into
three 32×32→ 64 carrylessmultiplications, and so on. Compared to big integermultiplica-
tion, Karatsuba-Ofman is easier on binary polynomials because there is no carry propagation
to worry about, and no enlargement of values when adding them together.

A popularmethod for computing binary polynomialmultiplications is the use of lookup
tables[7] to process a multiplier a few bits at a time. Such methods are unfortunately inher-
ently not constant-time, unless they are degraded to bit-by-bit processing,which is simple but
expensive.

Another option,which is increasingly attractive onmodernprocessorswith fast constant-
time multipliers, is to leverage integer multiplications. The trick is to separate data bits with
enough zeros to absorb andultimatelymask out the carries.Consider polynomials c =

∑
i ciz

i
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∑
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i , and an integer w > 0. We can “mask out” bits in c and d, leaving only one
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If the number of non-zero bits in either of the masked versions of c or d is less than 2w,
then the inner sum fits overw bits and cannot overflow into the next slot. Moreover, the least
significant bit of the sum of individual bit values (here the cwjdwi−wj single-bit products) is
equal to the exclusive or, i.e. the sum in GF (2), of these bits. We can thus simply compute
the product as integers of the masked c and d, and apply the same mask on the output, to get
the product of the masked c and d as binary polynomials.

This method was rediscovered several times. The earliest description seems to be from
Knuth[21],whoproposed it as an exercise (andprovided the solution) inTheArt ofComputer
Programming11. Another early publication is from Fischer and Paterson in 1974[11].

Withw-bit spacing, polynomials up tow(2w−1) bits canbe processed in all generality. For
64-bit polynomials, we hit a small hurdle, which is that w = 4 is almost, but not quite suffi-
cient: whenmultiplying two 64-bit polynomials with 4-bit spacing, themaximumHamming
weight of each masked operand is 16, and one of the sums of bits implied in the product can
go up to 16, which does not fit over 4 bits and may spill out in the next bit. Using 5-bit spac-
ing would raise the number of required integer multiplications from 16 to 25, and increase

11Exercise 4 of section 4.6, page 363, 401, or 420 of the first, second or third edition, respectively.
Solution is on page 536, 617, or 671.

27



register pressure. This can however be fixed by using bit reversal. For binary polynomials of
up to n bits (i.e. degree up to n − 1), define the bit-reversal function revn:

revn

(
n−1∑
i=0

ciz
i

)
=

n−1∑
i=0

cn−1−iz
i

It then holds that, for any two binary polynomials c and d of degree less than n:

rev2n−1 (cd) = revn (c)revn (d)

This means that we can obtain the higher bits of a product of binary polynomials by using
the lower bits of the product of the bit-reversed polynomials. This is interesting for 64-bit
operands, becausewhile 4-bit spacing is not sufficient for the full product, it is enough for the
low half of the 64-bit product (the spill-in-next-slot only happens near the start of the higher
half). While obtaining low and high halves separately seems to double the number of integer
multiplications, this is only apparent: as noted earlier, on our RISC-V test platform, the low
and high halves of an integer product are obtained from two separate opcodes, and full-width
64 × 64 → 128 multiplications already cost twice as much as truncated 64 × 64 → 64
multiplications. Moreover, handling low and high halves separately reduces the number of
used registers at any one time, which helps performance because register pressure appears to
be a bottleneck for this code.

Bit reversal itself has some overhead. The Zbb extension includes the rev8 instruction,
which reverses the order of bytes; however, the complementary brev8 instruction, which
reverse the order of bits within each byte of its input operand, is part of the Zbkb extension
and the SiFive-U74 does not have it. After an initial rev8, wemust thus finish the bit reversal
with some masking and shifts. This last step can be merged with the split of the values into
4-bit spacing masked polynomials.

This implementationmethod, with 64-bit multiplications, 4-bit spacing and bit reversal,
yielded the fastest code we could design on our test platform for GLS254.We also considered
a variant, which is only slightly slower in practice:

– Handle the highest bit of oneGF (2127) operand separately; split the rest into three 42-bit
words. The other operand is split into three words of size 42, 42 and 44 bits12.

– Use a Karatsuba-Ofman variant to reduce the product to six 42 × 44 products13.
– Perform each 42 × 44 multiplication as two 21 × 44 multiplications. Note that each

individual 21 × 44 multiplication can use 3-bit spacing (since the first operand, after
masking, would have at most Hamming weight 7), and its result always fits on 64 bits,
thus requiring only the mul opcode and using a single output register.

12In our code, we use a slightly redundant 128-bit representation of elements of GF (2127), which
we fully reduce only when encoding. Thus, in general, values have 128 bits. Here, we apply the strict
reduction on the first operand, and then split out the top bit, while the second operand is not fully
reduced.

13Toom-3 multiplication[37] could allow reducing the GF (2127) product to only 5 smaller mul-
tiplications, but Bodrato[6] remarked that this necessarily implies a division by an “uneasy” constant,
i.e. not zi for some integer i. Moreover, at least one of the 5 smaller multiplications would have both
operands of size 43 bits or more, which would be inconvenient and induce extra costs.
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The implementation of this method is included (commented out) in our source code, in case
it is useful on a different target architecture in which it would turn out to be faster than the
64-bit version with bit reversal and 4-bit spacing.

6.2.2 Squarings

Squaring is a much faster operations in binary fields. Integers with w-bit spacing can again
be used; in our implementation, we use 32 → 64 squarings with 4-bit spacing. The Rust
implementation of that operation is simple:

#[inline(always)]
fn expand_32(x: u64) -> u64 {

let x0 = x & 0x1111111111111111;
let x1 = x & 0x2222222222222222;
let x2 = x & 0x4444444444444444;
let x3 = x & 0x8888888888888888;

#[inline(always)]
fn sq_lo(x: u64) -> u64 {

x.wrapping_mul(x)
}

let y0 = (sq_lo(x0) ^ sq_lo(x2)) & 0x1111111111111111;
let y1 = (sq_lo(x1) ^ sq_lo(x3)) & 0x4444444444444444;

y0 ^ y1
}

Here, we use the sq_lo() inline function to compute a truncated integer squaring (in Rust,
truncation is detected and reported as an error in debug mode, unless a “wrapping multi-
plication” was explicitly used). A squaring in GF (2127) only needs four invocations of this
function; since we inline it, the loading of the masking constants in registers will presumably
be shared among the four invocations.

6.3 Raw ECDH and High-Level Algorithm Performance
We list in table 5 the performance of ourGLS254 implementation. For Ed25519, the compar-
ison point is (again) our own code, which was especially optimized for that specific test plat-
form[33]. Notably, classic Ed25519 implementations (e.g. curve25519-dalek, OpenSSL...)
use 51-bit limbs in a way that maximizes parallelism, with five independent addition chains
on 128-bit product outputs; such code was designed initially to map to the abilities of the
Intel CPUs at that time, for which multiplications and carry propagation had relatively large
latency. However, on our RISC-V platform, latency is not as much a problem as instruction
throughput, and carry propagation is very expensive in that respect. The Ed25519 implemen-
tation incrrl (in thesrc/backend/w64/gf255_m51.rs file) splits product outputs and
performs additions on low and high words separately. This specific optimization effort low-
ered crrl’s Ed25519 cost to about 158000 and 304000 cycles for signing and verifying, com-
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pared to 176000 and 444000 for curve25519-dalek, and 446000 and 1022000 forOpenSSL.
There does not appear to be any RISC-V measurement in eBACS14.

Operation GLS254 Ed25519
raw ECDH, 1DT-3 775889 -
raw ECDH, 1DT-4 670156 -
raw ECDH, 1DT-5 678120 -
raw ECDH, 2DT-2 710039 -
raw ECDH, 2DT-3 679575 -
decode 14385 18898
encode 7466 16185
mul 666618 333775
mulgen 352999 128443
hash_to_curve 47549 -
load_skey 367947 152027
sign 377698 158023
verify 636398 304249

Table 5: Performance comparison of GLS254 and Ed25519 for high-level operations on
SiFive-U74. Values are in clock cycles.

As shown in the table, GLS254 signatures on that specific platform appear to about 2.1x
to 2.4x slower than Ed25519. This is certainly not good performance, but it is arguably not
catastrophic either; for instance, the SSH client and server on the test machine use OpenSSL
for cryptographic operations, in particular Ed25519, and OpenSSL’s code for Ed25519 ap-
pear to be even slower than our own code for GLS254. The CPU can nominally run at
1.5 GHz15 and at that frequency, 636398 cycles are less than half a millisecond.

7 ARM Cortex-M4 Implementation
7.1 Test Platform
Weuse an STM32F407microcontroller, in an STM32F407G-DISC1 evaluation board. The
CPU can be run at up to 168MHz, though at that speed accesses to Flash memory (for con-
stant data and code) cannot be performedwithout extra wait states; on-board caches are then
used. To avoid cache effects, we run our test code at 24MHz, and caches are disabled.

14The list of “computers” includes two RISC-V system using SiFive-U54 cores, but they do not
appear in the list of signature-related results.

15For some unknown reason, our test machine seems to remain stuck at 1 GHz; this is probably
some incompatibility between the specific Linux kernel version that we use and the board circuitry that
allows dynamic frequency scaling. In any case, this does not impact our benchmarks, since we use the
cycle counter register, and the whole computation fits in L1 cache.
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Our code is written in assembly and C and is available there:

https://github.com/pornin/gls254-cm4

The assembly code implements the computations overGF (2127) andGF (2254), and the core
elliptic curve operations (additions, sequences of doublings...). The C code supports scalars
and high-level algorithms such asmultiplication of a point by a scalar; thatC code is compiled
with optimization flags -Os (to optimize for binary size rather than speed), but this does not
matter much for performance since almost all the computation time is spent in the assembly
code, which is not impacted by compiler optimization levels.

Timings on an ARM Cortex-M4 are usually rather straightforward: the CPU can issue
at most one instruction per cycle, and the output of the instruction is available at the next
cycle. However, a few things are worth noting:

– Memory accesses have an extra latency. A load operation for an aligned 32-bit word takes
2 cycles. There are opcodes that can read n values in n + 1 cycles (ldrd, ldm, pop,...).
Single-word stores can be performed in a single cycle, because the write is done in the
background over the next cycle as well; but that holds only if the next instruction is not
doing memory accesses, otherwise the CPU stalls for an extra cycle. Opcodes that write
multiple words (strd, stm, push,...) need n + 1 cycles for nwords.

– OurM4 is technically a “M4F”, i.e. it has a floating-point unit.Wedonotuse the floating-
point operations (which are single-precision only), butwe use the floating-point registers
as a temporary data storage space which is somewhat faster than the stack (we can read
two 32-bit words, or write two 32-bit words, into the floating-point registers in only 2
cycles). This yields an overall speed improvement of about 3%.

– The M4 core design does not include caches. However, that design from ARM is inte-
grated by the hardware vendor into amicrocontroller, which includes someRAM,Flash,
andpossibly caches and other elements.When theCPU issues read orwrite accesses, they
go through an interconnection matrix that decides what element the access targets, and
arbitrates between accesses from several sources (e.g. some peripheral might be able to
doDMA independently of theM4 core). Caches may be applied at that level. Thus, any
memory access may incur delays that depend on the accessed address, in ways which are
not documented in theCortex-M4manual, since these delays come fromcircuit elements
which are outside of the M4 core.
For instance, it appears that some addresses in the Flash space trigger an extra load delay
of a few cycles (they apparently correspond to the boundaries of Flash cells). Similarly,
theM4 performs instruction fetches and data accesses on separate busses, but they both
go through the interconnection matrix and may end up in the same space (e.g. the Flash
cells), in which they may conflict and induce extra stalls. We noticed that, in particular,
some code sequences with 32-bit instructions which are not 32-bit aligned may suffer
from extra delays, even though that should not matter for the M4 core itself.

Anoteworthy element of our code is that it does not use the registerr9. The standardABI
for ARMv7-M (AAPCS32) states that the role of this register is platform-specific. It might
be a plain data register, fully usable by application code, but it may also be reserved by the
implementation for use by, for instance, position-independent code or thread-local storage.
Notably, it might be reserved at all times in case it is to be used by asynchronously-invoked
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code (e.g. signal handlers), so that in some operating systems it must never be modified, and
saving/restoring it in a given function is not sufficient16. In our test platform with no ac-
tual operating system, and disabled interrupts, we could certainly use r9, but, for maximum
portability, we refrain from ever touching that register.

7.2 Raw ECDH and High-Level Algorithm Performance
Table 6 lists performance achieved by our implementation. We did not find any optimized
implementation of Ed25519 for the M4; the best reported X25519 code on the M4 is from
Lenngren[23], who obtained a cost of 476275 cycles on the M4F (548873 cycles if not us-
ing the floating-point registers17); X25519 would functionally be close to raw ECDH on
GLS254. We estimate that an optimized Ed25519 implementation might hope for signing
in about 350000 cycles, and verifying in 650000 cycles (using the Antipa et al optimization).

Operation Time (cycles)
raw ECDH, 1DT-4 1673324
decode 21939
mul 1651923
hash_to_curve 92369
load_skey 1016515
sign 1034123
verify 1735470

Table 6: Performance of GLS254 on ARMCortex-M4.

GLS254 signatures are about three times slower than Ed25519 on the M4. Again, this is
not very good performance, but it is not atrocious either; at 24 MHz, signature verification
takes about 72 milliseconds.

Since theM4 uses an in-order pipeline with very few latency effects, we canmeaningfully
define and measure the performance of individual operations. Our code uses, inside the as-
sembly code, an internal ABI that differs from the standard ABI in that we do not save any
register value (of course, appropriate register saving and restoring instructions are included at
the interface betweenC and assembly).We count in the cost of a function all the instructions
that constitute that function along the internal ABI, including the return statement (bx lr
or pop { pc }) but excluding the call opcode itself (bl), which is accounted in the cost of
the caller. Under these rules, we obtain the following elementary costs:

– Squaring inGF (2127): 66 cycles.
– Multiplication inGF (2127): 598 cycles.

16It seems that early incarnations of Apple’s iOS had the requirement that r9 never be modified,
even transiently.

17RunningLenngren’s code on our test platform yields a higher value, at 563310 cycles, possibly due
to one of these undocumented alignment or Flash stall effects.
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– Squaring inGF (2254): 183 cycles.
– Multiplication inGF (2254): 1875 cycles.
– Inversion inGF (2254): 14554 cycles.

A complete raw ECDH execution with the 1DT-4 strategy implies a grand total of 728 mul-
tiplications, 693 squarings and 2 inversions in GF (2254). These operations thus account for
81.57%, 7.58% and 1.74% of the total cost, respectively. Everything else, including the scalar
splitting, constant-time window lookups, and general loop management, make up for 9.11%
of the total cost only. This highlights how much the bottleneck is in the multiplications in
GF (2254).

In our code (file gls254-cm4.s), themacro MM32 implements a sequence of 51 instruc-
tions which computes a 32× 32→ 64multiplication of binary polynomials. This sequence
is executed 19872 times in rawECDH, totalling to 60.6% of the total cost. This is the primary
target for optimization. It uses 4-bit spacingwith umull and umlal opcodes; one interesting
point is that with 4-bit spacing, masked values have Hamming weight at most 8, and a maxi-
mum value of 8 can be obtained only in a single 4-bit slot in the 64-bit output. We can thus
add as integers two such 64-bit outputs provided that they are such that the up-to-8 value is
not the same slot for both. This is valuable, because umlal performs a multiplication and a
64-bit addition in one cycle in total, whereas amultiplication followed by a two-registerXOR
would require three cycles (one umull and two eor).

An additional important issue is that the MM32 sequence consumes all registers (one reg-
ister holds the mask constant 0x11111111 and is preserved; all other registers are modified).
This implies in return a lot of datamovement between registers and the stack (or the floating-
point registers), which impacts performance.

ForX25519, Lenngren achieves amultiplication inGF (2255−19) in as little as 173 cycles,
more than 10 times faster than our code inGF (2254); for squarings, the ratio is less dire (106
vs 183 cycles). The overall performance ratio is “only” 3.5x for raw ECDH thanks to the fact
thatGLS254 operations use fewer operations thanCurve25519 for point doublings, and also
thanks to the important savings due to the curve endomorphism.

8 Conclusion
We presented optimized formulas and implementations of the GLS254 curve. The salient
points are the following:

– Our formulas support a convenient prime-order group abstraction, amenable to build-
ing arbitrary cryptographicprotocols. Inparticular, the formulas are complete (no special
case), can be implemented in constant-time code, and encoding/decoding is canonical in
a verifiable way. There is no cofactor issue.

– The ease and safety resulting from the formula completeness does not come at a per-
formance cost. In fact, the formulas make the whole code slightly faster than previous
implementations.

– On small architectureswithout a carrylessmultiplication opcode, the performance is still
lagging, compared with curves using prime-order fields, in particular the jq255 curves,
andCurve25519.The important optimization target for suchplatforms is the implemen-
tation of binary polynomial multiplication. The achieved performance is not abysmal.
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Elliptic curve cryptography is a slightly endangeredfield– the currentmood is at themove
to “post-quantum” cryptographic algorithms, which should (hopefully) resist breaking at-
tempts by quantum computers; such machines, if they ever exist in a practical way, should
break classical asymmetric algorithms such as ECDH and EC-based Schnorr signatures with
relative ease. It is conceivable that attempts at building quantum computers never overcome
their current technological hurdles. In any case, some deployed systems have put strong bets
on quantum computers never becoming a reality (many blockchain-based systems, for in-
stance, have committed assets measured in the trillions of US dollars to the idea that elliptic
curve cryptography will remain unbreakable). GLS254 represents the current state-of-the-
art in achievable performance of pre-quantum asymmetric cryptography; it is a good candi-
date for specialty pre-quantum deployments that need the high performance, and the short
48-byte signatures are convenient for bandwidth-constraind usage. As for the post-quantum
world, the GLS254 performance can serve as a decent target to achieve; some lattice-based
systems already rival such speeds, thoughwith substantially larger public keys and signatures.
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A Curve Formulas
We recall here the relevant formulas, in pseudocode (Python syntax). Points are in (X :S:Z:T )
coordinates. Fixed constants are a = u (a), a2 = u + 1 (aa), b = 1 + z54 (b) and

√
b = 1 + z27

(sqrt_b).

A.1 Point Addition
Generic point addition, from [32] (section 5.1).

# Addition in the group, XSZT coordinates.
def point_add(P1, P2):

(X1, S1, Z1, T1) = P1
(X2, S2, Z2, T2) = P2
X1X2 = X1*X2
S1S2 = S1*S2
Z1Z2 = Z1*Z2 # for mixed addition (Z2 == 1), Z1Z2 = Z1
T1T2 = T1*T2
D = (S1 + T1)*(S2 + T2)
E = aa*T1T2 # aa == a^2; this disappears if a == 0
F = X1X2**2
G = Z1Z2**2
X3 = D + S1S2
S3 = sqrt_b*(G*(S1S2 + E) + F*(D + E))
Z3 = sqrt_b*(F + G)
T3 = X3*Z3
return (X3, S3, Z3, T3)

Addition cost is 8M+2S+2mb in all generality. For curveswith a = 0, onemultiplication
is saved (we do not need T1T2 at all), but GLS254 uses a = u.

Mixed addition applies when one of the operands (e.g. P2) is in “scaled affine” coordi-
nates, i.e. Z2 is equal to 1 (and T2 is then equal to X2). In that case, the computation of Z1Z2
is trivial, and the cost is 7M + 2S + 2mb.

Affine addition corresponds to the case of both operands being in scaled affine coordi-
nates (Z1 and Z2 are both 1). This allows further optimizations: T1T2 is equal to X1X2, Z1Z2
is equal to 1, and G is equal to 1. The overall cost is then 5M + 1S + 2mb.

A.2 Point Negation and Subtraction
Negation is simply adding X to S. Subtraction is achieved by negation followed by addition.

# Negate a point.
def point_negate(P1):

(X1, S1, Z1, T1) = P1
return (X1, S1 + X1, Z1, T1)
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A.3 Point Doubling
Successive point doublings, as described in section 2.3 of this paper. A single doubling is ob-
tained by setting n = 1.

# n successive doublings, with n >= 1.
def point_xdouble(P1, n):

(X1, S1, Z1, T1) = P1
X = sqrt_b*X1
T = sqrt_b*T1
Z = Z1
Y = sqrt_b*S1 + X**2 + a*T
for i in range(0, n):

D = (X + sqrt_b*Z)**2
Z = T**2
X = D**2
E = D + T
T = X*Z
Y = (Y*(Y + E) + (a + b)*Z)**2 + (a + 1)*T

X3 = sqrt_b*Z
S3 = sqrt_b*(Y + (a + 1)*T + X**2)
Z3 = X
T3 = sqrt_b*T
return (X3, S3, Z3, T3)

Cost for n doublings is n(2M + 4S + 2mb) + 2S + 6mb.

A.4 Comparisons
Two group elements can be compared with each other with cost 2M ([32], section 5.5)

# Point equality check
def point_equals(P1, P2):

(X1, S1, Z1, T1) = P1
(X2, S2, Z2, T2) = P2
return S1*T2 == S2*T1

When testing whether a given point is the group neutral elementN , it suffices to check
whether its X coordinate is zero:N is the only such group element.

A.5 Encode/Decode
Encoding maps a group element to a field element w. The encoding is canonical: a given w
can have a single antecedent, which the decoding process retrieves. This follows [32], section
4.3; the encoding of the neutral element can usew0 = 0 (no other group element in GLS254
maps to zero).
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# Point encoding.
def point_encode(P):

(X, S, Z, T) = P
if X == 0:

return 0
else:

return sqrt(S / T)

Note: inversion in the field is normally implemented with a single inversion inGF (2127),
which itself uses Itoh-Tsujii[18]. A natural consequence of that algorithm is that the inverse
of zero is (formally) defined as zero. In this specific case, this is convenient: it allows simply
doing the division of S by T and not having any special case for the neutralN , since we want
to obtain a zero result forN .

Decoding is somewhat more complicated:

# Point decoding.
def point_decode(w):

if w == 0:
return N

d = w**2 + w + a
e = b/(d**2)
if trace(e) == 1:

raise Exception("invalid input")
f = qsolve(e)
x = d*f
if trace(x) != 0:

x += d
s = x*(w**2)
X = x
S = sqrt_b*s
Z = sqrt_b
T = sqrt_b*s
return (X, S, Z, T)

A.6 Map to Curve
The following pseudocode implements the process described in section 3.1.
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# Mapping 32 bytes into a group element.
def point_map(hh):

# Set from specific bits in the input.
h = copy_of(hh)
h[127] = 0
h[128] = 1
h[129] = 0
h[255] = 0
c = bits_to_field(h)

m1 = c
m2 = c + z**2
m3 = c + (c/z)**2
e1 = b/m1
e2 = b/m2
e3 = b/m3
if trace(e1) == 0:

(m, e) = (m1, e1)
elif trace(e2) == 0:

(m, e) = (m2, e2)
else:

(m, e) = (m3, e3)
d = sqrt(m)
w = qsolve(d)
w[0] = hh[128]
f = qsolve(e)
x = d*f
if trace(x) == 1:

x += d
s = x*(w**2)
return (x, sqrt_b*s, sqrt_b, sqrt_b*x)

B High-Level Specifications
High-level operations are key pair generation, public-key encoding and decoding, hash-to-
curve, key exchange, and signatures. For all these operations, we reuse the same rules are
the double-odd Jacobi quartics jq255e and jq255s[30,31], and specified as part of the C2SP
project:

https://c2sp.org/jq255

The following adaptations are used:

– Agroup element is encoded into a field elementwith the process described in sectionA.5.
A field element is then encoded into bytes using a little-endian convention:
• An element k ∈ GF (2127), with k =

∑126
i=0 kiz

i , is encoded into 16 bytes v0 to v15,
with vj =

∑7
i=0 ki+8j2

i . Note that 0 ≤ v15 < 128 (the top bit of byte v15 is zero).
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• An element x = x0 +ux1 ∈ GF (2254) is encoded into 32 bytes by concatenating the
encodings of x0 and x1, in that order.
• Upon decoding, it is verified that the top bits of bytes v15 and v31 of the input are
both zero. If either of these bits is set, then the input is rejected as invalid.

– When generating or verifying a signature, the “challenge” value c is computed as a 16-byte
sequence cv. In jq255e and jq255s, cv is interpreted as an integer c (in the 0 to 2128 − 1
range) with the unsigned little-endian convention; for GLS254, cv is split into two 8-
byte halves, which are both turned into integers (c0 for the first half, c1 for the second
half) with the unsigned little-endian convention. The challenge value is then c = c0+µc1,
as described in section 3.2.

The rest of the jq255 specification is used “as is”.
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