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Abstract. The Crossbred algorithm is one of the algorithms for solving
a system of polynomial equations, proposed by Joux and Vitse in 2017.
It has been implemented in Fukuoka MQ challenge, which is related to
the security of multivariate crytography, and holds several records. A
framework for estimating the complexity has already been provided by
Chen et al. in 2017. However, it is generally unknown which parameters
are actually available. This paper investigates how to select available
parameters for the Crossbred algorithm. As a result, we provide formulae
that give an available parameter set and estimate the complexity of the
Crossbred algorithm.

1 Introduction

The problem of solving systems of polynomial equations has been applied in var-
ious fields such as cryptography, coding theory, statistics, and robotics. For in-
stance, in cryptography, the security of current public key cryptography relies on
integer factorization and discrete logarithm problems, which can be solved using
a large-scale quantum computer. As a result, multivariate polynomial cryptogra-
phy, whose security is based on the hardness of solving the system of polynomial
equations, is expected to be resistant to quantum computers.

Several methods for solving a system of polynomial equations have been
proposed, such as utilizing Gröbner bases or employing the kernel search of
Macaulay matrices. Some of these methods have been widely implemented and
utilized in cryptography. Moreover, in cryptography, it is not always necessary to
find all solutions to the polynomial system. Instead, a combination of exhaustive
search for some variables and solving algorithms is often employed. BooleanSolve
[1], FXL [6], and these variants are examples of such approaches.

Crossbred algorithm is an algorithm proposed by Joux and Vitse in 2017
[13]. While BooleanSolve and FXL perform linear algebra using a Macaulay
matrix after fixing some values during exhaustive search, Crossbred algorithm
performs the exhaustive search after linear algebra on the Macaulay matrix.
This algorithm achieved several records at Fukuoka MQ Challenge [20], which
aimed to solve polynomial equations appearing in cryptography. The Crossbred
algorithm has certain parameters that control its operation, and Chen et al. [4]
already provide a framework for estimating the complexity with a parameter set.
It is expected that Crossbred has a parameter set which the complexity is lower



than that of BooleanSolve/FXL for some input polynomial systems. However, it
is unknown which parameter sets actually operate the algorithm.

1.1 Our contribution

For quadratic polynomials f1, . . . , fm in n variables and positive integers D, d,
and k, the Crossbred algorithm generates new polynomials p1, . . . , pr from
MacD({f1, . . . , fm}) whose degree in first k variables is less than or equal to d,
and performs linear algebra on Macd({f∗

1 , . . . , f
∗
m}) ∪Mac({p∗1, . . . , p∗r}) where

f∗
i and p∗i are polynomials fi and pi specialized at n− k variables, respectively.
If the following inequality holds, then one can determine whether the system is
consistent and the parameter set (k,D, d) is available:

Rank(Macd({f∗
1 , . . . , f

∗
m}) ∪Mac({p∗1, . . . , p∗r})) ≥

(
k + d

d

)
− 1.

In this paper, we introduce two inequalities (see Equation (4) and (8)) based
on the above as a necessary condition for the admissibility and study the avail-
ability of a parameter set under the converse assumption. Note that the assump-
tion is already introduced in [4] and [13]. We compute each inequality under some
regularity conditions that a polynomial system with randomly chosen coefficients
satisfies, and provide two formulae for determining the availability (see Theorem
1 and 2). Moreover, we present a formal power series description for each formula
(see Theorem 7 and 8). For example, the second formula implies that under the
above assumptions, the parameter set (k,D, d) is admissible if the coefficient of
td1t

D
2 is less than or equal to one in the two-variable power series

(1− t22)
m(1− tq2)

n

(1− t1)(1− t2)n+1
+

(1− t21)
m(1− tq1)

k

(1− t1)k+1(1− t2)
− (1− t21t

2
2)

m(1− tq1t
q
2)

k

(1− t1t2)k(1− t2)n−k+1(1− t1)
.

Furthermore, using these inequalities for finding an admissible parameter set,
we provide the complexity estimation of the Crossbred algorithm.

1.2 Related work

Finding an admissible parameter set of Crossbred using a two-variable power se-
ries was studied by the paper [7,8] and the power series in [7,8] is similar to the
above one. However, the paper uses undefined terms and a questionable claim
that could not be confirmed by our experiments in the proof for deriving the
power series (see Remark 9). In the NIST PQC standardization process for ad-
ditional digital signatures, several submissions utilize the software MQEstimator
[3] provided by Bellini et al. for security analysis. Bellini et al. [2] estimate the
complexity of the Crossbred algorithm based on the paper [7] and MQEstimator

employs the above two-variable power series to determine the admissibility of a
parameter set. Our results support the complexity estimation for the Crossbred
algorithm in MQEstimator.

2



2 Preliminaries

In this section, we introduce some notations used in this paper.
Let n,m be two positive numbers, q be a power of a prime number, and F

be the finite field of order q. For a set S, denote by ♯S the cardinality of S.
Denote by Mata×b(F) the set of a × b matrices over the field F. For a matrix
M ∈Mata×b(F), we denote by rows(M) the set of rows in M , and by cols(M)
the set of columns in M . Moreover, in this paper, we define the “corank” of M
as Corank(M) = ♯cols(M)− Rank(M).

Let F[x1, . . . , xn] be the polynomial ring in n variables over a finite field F. For
f ∈ F[x1, . . . , xn], denote by deg f the total degree of f , and by degk f the degree
of f in the first k variables x1, . . . , xk. Moreover, for a set G ⊂ F[x1, . . . , xn], the
vector space {c1gi1 + · · · + crgir | ci ∈ F, gij ∈ G} generated by G is denoted
by 〈G〉F or simply 〈G〉. For a set X = {x1, . . . , xn} of variables and a non-
negative integer d, we define Mon(X) = {xe1

1 · · ·xen
n | ei ∈ Z≥0},Mond(X) =

{xe1
1 · · ·xen

n ∈ Mon(X) | e1 + · · · + en = d}, and Mon≤d(X) = ∪di=0Moni(X).
We denote by F[x1, . . . , xn]d and F[x1, . . . , xn]≤d the vector spaces 〈Mond(X)〉
and 〈Mon≤d(X)〉, and these dimensions are coincide with the numbers

(
n+d−1

d

)
and

(
n+d
d

)
of monomials, respectively. Namely,

F[x1, . . . , xn]d ∼= F(
n+d−1

d ) and F[x1, . . . , xn]≤d
∼= F(

n+d
d ).

For f ∈ F[x1, . . . , xn] with deg f ≤ d, we see f ∈ F[x1, . . . , xn]≤d and so de-

note by vectd(f) its corresponding vector in F(
n+d
d ). Here, when we denote by

Coeff(f,m0) the coefficient of m0 ∈Mon≤d(X) in f ,

vectd(f) = (. . . ,Coeff(f,m0), . . . ) ∈ F(
n+d
d ).

Then, for F = (f1, . . . , fm) ∈ F[x1, . . . , xn]
m, we define the Macaulay matrix

Mac(F ) whose rows consist of vectd(fi) where 1 ≤ i ≤ m and d = max{deg fi}i.
Namely,

Mac(F ) =

 vectd(f1)
...

vectd(fm)

 ∈Matm×(n+d
d )(F).

Furthermore, for an integer D and F = (f1, . . . , fm) with deg f1 = · · · =
deg fm = 2, we can obtain a set XMD(F ) := {ufi | 1 ≤ i ≤ m,u ∈
Mon≤D−2(X)} and we call the operation obtaining XMD(F ) from F the eX-
tension by multiplying with Monomials (XM). For a positive integer D and
F = (f1, . . . , fm) with deg f1 = · · · = deg fm = 2, we define the Macaulay
matrix MacD(F ) of degree D as

MacD(F ) = Mac(XMD(F )) ∈MatR×(n+D
D )(F),

where R = m
(
n+D−2
D−2

)
.
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3 Crossbred algorithm

In this section, we provide a brief overview of research on the MQ problem and
describe the Crossbred algorithm.

3.1 Fukuoka MQ challenge

The following problem is called the MQ problem:

Problem 1. Given f1, . . . , fm ∈ F[x1, . . . , xn] such that deg f1 = · · · = deg fm =
2. Find (a1, . . . , an) ∈ Fn such that f1(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0.

If the number of equations in an instance is lower than that of variables, then
the instance is said to be underdetermined. Otherwise, the instance is said to be
overdetermined.

The MQ problem is known to be NP-complete [12], and it has various appli-
cations. In particular, in cryptography, multivariate polynomial cryptosystems
based on the MQ problem are actively researched due to their expected resistance
against attacks using a large-scale quantum computer. Against this backdrop,
Fukuoka MQ Challenge [20] was initiated in 2015. In this challenge, two models,
i.e. overdetermined (m ≈ 2n) and underdetermined (n ≈ 1.5m), are considered
for both encryption and signature schemes of the cryptosystem. Each model sets
different orders of a finite field, such as F2,F31, and F256, resulting in a total
of six parameter sets (see Table 3.1). The Crossbred algorithm has been imple-
mented by Kai-Chun Ning and Ruben Niederhagen [16] and Yao Sun and Ting
Li [17], achieving record-breaking results in this challenge [20].

Type Model Size Field

I Encryption m ≈ 2n F2

II Encryption m ≈ 2n F256

III Encryption m ≈ 2n F31

IV Signature n ≈ 1.5m F2

V Signature n ≈ 1.5m F256

VI Signature n ≈ 1.5m F31

Table 1. Fukuoka MQ challenge categories [20]

In the case of overdetermined instances in the challenge, it is expected that
there are only a few solutions, while for underdetermined instances, there are at
least qn−m solutions.

For solving an overdetermined MQ instance, various methods are known,
including the Crossbred algorithm [13] and algorithms based on a Gröbner basis
algorithm such as F4 [9] and F5 [10], and XL families [19]. These methods are
often combined with the exhaustive search, as described in the following section.
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On the other hand, for an underdetermined instance, it is possible to fix n−m
variables and we can reduce the instance to an overdetermined one.

Additionally, for an underdetermined instance, there is an approach by Kip-
nis, Patarin, and Goubin [14], which was further developed by Thomae and Wolf
[18], to take advantage of sufficiently large variables. Thomae and Wolf’s method
allows us to reduce an underdetermined MQ instance to an overdetermined one
with m − α equations and variables, where α = bm/nc − 1. Moreover, an im-
proved version of their method has been proposed by Furue et al. [11], which
introduces an integer k ≥ 0 and sets αk = b(m−k)/(n−k)c−1, transforming an
underdetermined instance into an overdetermined one with m−k−αk variables
and m− αk equations.

3.2 Overview of the algorithm

In this section, we consider to solve an overdetermined quadratic system F =
{f1, . . . , fm} where fi ∈ F[x1, . . . , xn], deg fi = 2, and m ≥ n. Typically, we
can use the Macaulay matrix of degree Dreg(F ) to solve the system F . The
BooleanSolve algorithm, FXL algorithm, or their variants combines it with the
exhaustive search. Indeed, after fixing n− k variables in the input system, these
algorithms determine if a resulting system has a solution by using its Macaulay
matrix and solve the system if so. More precisely, for each (ak+1, . . . , an) ∈ Fn−k,
the following steps are performed:

1. Compute a polynomial system F ∗ = {f∗
1 , . . . , f

∗
m} in k variables where f∗

i =
fi(x1, . . . , xk, ak+1, . . . , an).

2. Compute Macd(F
∗) at d = Dreg(F

∗) and determine if F ∗ has a solution.

The most costly part of this process is the linear algebra on the Macaulay
matrix Macd(F

∗), which needs to be performed qn−k times. To avoid this, Joux
and Vitse proposed the Crossbred algorithm in [13], which performs a special-
ization step of n − k variables after the linear algebra on a Macaulay matrix.
More precisely, for parameters 1 ≤ d < D, the following steps are executed:

1. By the linear algebra on MacD(F ), obtain a polynomial system P =
{p1, . . . , pr} whose degree in the first k variables x1, . . . , xk is lower than
or equal to d, namely degk pi ≤ d.

2. For (ak+1, . . . , an) ∈ Fn−k, perform the linear algebra on Macd(F
∗) ∪

Mac(P ∗) to determine if a solution exists. Here, P ∗ = {p∗1, . . . , p∗r} and
p∗i = pi(x1, . . . , xk, ak+1, . . . , an).

By combining Macd(F
∗) with Mac(P ∗), the algorithm determines if the

resulting system has a solution, whereas the previous algorithm only used
Macd(F

∗). Therefore, the Crossbred algorithm allows to take d < Dreg(F
∗)

if there exist a sufficiently number of independent polynomials p∗i .
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3.3 Description of the algorithm

First, the Crossbred algorithm generates the following matrices:

– MacD(F ): the Macaulay matrix of degree D for the input system F

– Mac
(k)
D,d(F ): the submatrix of MacD(F ) whose each row is that of MacD(F )

corresponding to a polynomial ufi such that degk u ≥ d− 1.

– M
(k)
D,d(F ): the submatrix of Mac

(k)
D,d(F ) whose each column is that of

Mac
(k)
D,d(F ) corresponding to a monomial m0 such that degk m0 ≥ d+ 1.

Next, the Crossbred algorithm performs the following steps:

1. Search vectors v1, . . . , vr in Ker(M
(k)
D,d(F )).

2. Compute a polynomial pi corresponding to viMac
(k)
D,d(F ) for each 1 ≤ i ≤ r

and obtain P = {p1, . . . , pr} such that degk pi ≤ d.

3. For (ak+1, . . . , an) ∈ Fn−k,

(a) Compute F ∗ = (f∗
1 , . . . , f

∗
ℓ ) where f∗

i = fi(x1, . . . , xk, ak+1, . . . , an) and
obtain the Macaulay matrix Macd(F

∗).

(b) Compute P ∗ = (p∗1, . . . , p
∗
r) where p∗i = pi(x1, . . . , xk, ak+1, . . . , an) and

obtain the Macaulay matrix Mac(P ∗).

(c) By the linear algebra on Macd(F
∗)∪Mac(P ∗), determine if the resulting

system in k variables has a solution.

In the next section, we further consider the following matrices.

Definition 1. Denote by M̂ac
(k)

D,d(F ) the submatrix disjoint with Mac
(k)
D,d(F ) in

MacD(F ).

Remark 1. Note that the polynomials corresponding to the rows in M̂ac
(k)

D,d(F )
do not contribute to give a new independent row outside Macd(F

∗). Namely,

if vect(g) ∈ 〈rows(M̂ac
(k)

D,d(F ))〉, then vect(g∗) ∈ 〈rows(Macd(F
∗))〉. In-

deed, vect(g) ∈ 〈rows(M̂ac
(k)

D,d(F ))〉 implies there is a linear relation g =
c1u1fi1 + · · · + csusfis such that degk uj ≤ d − 2 and deg uj ≤ D − 2. Thus
deg u∗

j ≤ d − 2 and g∗ = c1u
∗
1f

∗
i1

+ · · · + csu
∗
sf

∗
is
∈ 〈XMd(F

∗)〉. Namely,
vect(g∗) ∈ 〈rows(Macd(F

∗))〉.

4 Admissible parameter sets

In this section, we investigate an admissible parameter set for the Crossbred
algorithm and provide two formulae for obtaining admissible parameter sets.
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4.1 Strategy on our first formula

Let Xk = {x1, . . . , xk}. We consider a necessary condition for a parameter set
to be admissible.

By Remark 1, a polynomial p such that vect(p) ∈ 〈M̂ac
(k)

D,d(F )〉 do not con-
tribute to give a new independent row outside Macd(F

∗). Thus we may assume

the system P satisfies that vectD(pi) 6∈ 〈rows(M̂ac
(k)

D,d(F )〉 for any pi ∈ P . Then
Rank(P ) consists of the dimension L of the subspace V such that

〈f ∈ 〈XMD(F )〉 | degk f ≤ d〉 = V ⊕ 〈f | vectD(f) ∈ rows(M̂ac
(k)

D,d(F )〉.

When the Crossbred algorithm works (see Section 3.3), the rank of the ma-
trix Macd(F

∗) ∪ Mac(P ∗) needs at least ♯Mon≤d(Xk) − 1 and it requires
Rank(Mac(P ∗)) ≥ ♯Mon≤d(Xk)− Rank(Macd(F

∗))− 1.

Lemma 1. Let (ak+1, . . . , an) ∈ Fn−k, P = (p1, . . . , ps) ∈ F[x1, . . . , xn]
s, and

P ∗ = (p∗1, . . . , p
∗
s) ∈ F[x1, . . . , xk]

s where p∗i = pi(x1, . . . , xk, ak+1, . . . , an). Then
Rank(Mac(P )) ≥ Rank(Mac(P ∗))

Proof. Let p1, . . . , ps ∈ F[x1, . . . , xn] and (ak+1, . . . , an) ∈ Fn−k. If p1, . . . , ps are
linearly dependent, so are p∗1, . . . , p

∗
s. ut

Hence, by Lemma 1, we have

L ≥ ♯Mon≤d(Xk)− Rank(Macd(F
∗))− 1 (1)

Thus, if the parameter set (k,D, d) is admissible, then the above inequality holds.
We introduce the following assumption and will investigate a lower bound for L
for standing the above inequality (1).

Assumption 1 A parameter set (k,D, d) is admissible if and only if the in-
equality (1) holds.

Note that this assumption is considered in Joux and Vitse’s work [13] (see also
Remark 2) and Chen et al.’s work [4] (see Equation (2.5) in Section 2.2.4 of [4])
for d = 1.

We have

L = dim〈f ∈ 〈XMD(F )〉 | degk f ≤ d〉 − dim〈f | vectD(f) ∈ rows(M̂ac
(k)

D,d(F )〉.
(2)

When we consider the vector space V0 such that 〈XMD(F )〉 = V0 ⊕ 〈f ∈
〈XMD(F )〉 | degk f ≤ d〉, the leading monomials m0 of V0 are degm0 ≤ D and
degk m ≥ d + 1. Namely, dimV0 ≤ ♯{m0 ∈ Mon≤D(X) | degk m0 ≥ d + 1} =
♯cols(M

(k)
D,d(F )). Since dim〈XMD(F )〉 = Rank(MacD(F )), we have

dim〈f ∈ 〈XMD(F )〉 | degk f ≤ d〉 = dim〈XMD(F )〉 − dimV0

≥ Rank(MacD(F ))− ♯cols(M
(k)
D,d(F )). (3)
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Meanwhile, dim〈f | vectD(f) ∈ rows(M̂ac
(k)

D,d(F )〉 = Rank(M̂ac
(k)

D,d(F )) ≤

♯rows(M̂ac
(k)

D,d(F )). Thus, by Equation (2), we have

L ≥MacD(F )− ♯cols(M
(k)
D,d(F ))− ♯rows(M̂ac

(k)

D,d(F )).

By summarizing the above discussion, the inequality (1) holds if

Rank(MacD(F ))− ♯rows(M̂ac
(k)

D,d(F ))− ♯cols(M
(k)
D,d(F ))

≥ ♯Mon≤d(Xk)− Rank(Macd(F
∗))− 1. (4)

Therefore, we have the following:

Proposition 1. Under Assumption 1, a parameter set (k,D, d) is admissible if
the inequality (4) holds.

When d = 1, the matrices M̂ac
(k)

D,d(F ) and Macd(F
∗) are often empty and

the inequality (4) implies

Rank(MacD(F ))− ♯cols(M
(k)
D,1) ≥ ♯Mon≤1(Xk)− 1 = k.

It coincides with the inequality provided Joux and Vitse in [13] (see Remark 2).

Remark 2. In [13], Joux and Vitse investigate an admissible parameter k of
Crossbred algorithm with parameters d = 1 and D ∈ {3, 4}. As an admissible
parameter, they take a parameter k such that

Rank(MacD(F ))− ♯cols(M
(k)
D,d(F )) ≥ k.1

In particular, they implicitly assume Assumption 1.

4.2 Our first formula

In this subsection, we compute (4) under regularity assumptions for systems F
and F ∗. The numbers of rows and columns of a Macaulay matrix are computed
by the following remark:

Remark 3. The following assertions hold:

1. cols(M
(k)
D,d(F )) corresponds to monomials of degree ≤ D in n variables whose

degree in the first k variables is larger than or equal to d+ 1, namely,

♯cols(M
(k)
D,d(F )) =

D∑
i=d+1

D−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)
.

1 [13] actually wrote ≥ k + 1 but it does not need “ + 1”.
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2. rows(M̂ac
(k)

D,d(F )) corresponds to the set of a multiplication ufi of each
polynomial fi and a monomial u such that degk u ≤ d−2 and deg u ≤ D−2,
i.e. {ufi | u ∈Mon≤D−2(X),degk u ≤ d− 2, 1 ≤ i ≤ m}, namely,

♯rows(M̂ac
(k)

D,d(F )) = m ·
d−2∑
i=0

D−2−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)
.

Moreover, ranks ofMacD(F ) andMacd(F
∗) are computed under a regularity

assumption as follows:

Assumption 2 (Regularity assumption) Let F be a system of m quadratic
polynomials in n variables and I be the ideal generated by F . The dimension of
F[x1, . . . , xn]≤i/Ii coincides with the coefficient of ti in[

(1− t2)m

(1− t)n+1

]
where [

∑
i≥0 ait

i] =
∑

i≥0 max{ai, 0}ti.

Lemma 2. Let Sm,n = 1/(1 − t)n+1 − [(1 − t2)m/(1 − t)n+1] ∈ Z[[t]]. If the
quadratic system G satisfies the regularity assumption, then we have

Rank(Maci(G)) = Coeff
(
Sm,n, t

i
)
.

Hence, we can compute the inequality (4) as follows:

Proposition 2. Under the notations in Lemma 2, if F and F ∗ satisfy the reg-
ularity assumption, then the inequality (4) is

Coeff
(
Sm,n, t

D
)
−m ·

d−2∑
i=0

D−2−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)

−
D∑

i=d+1

D−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)
≥
(
k + d

d

)
−Coeff

(
Sm,k, t

d
)
− 1 (5)

Therefore, we have the following theorem:

Theorem 1. Let F be a quadratic system such that F and F ∗ satisfy the regu-
larity assumption. Under Assumption 1, the parameter set (D, d) is admissible
if (5) holds.

4.3 Strategy for our second formula

Define XM≤(d,D)(G) = {ug | g ∈ G, deg uk ≤ d − 2, u ∈ Mon≤D−2(X)} for
a quadratic system G. Then all elements of 〈XM≤(d,D)(F

∗)〉 are contained in
XMd(F

∗) after the specialization on the last n − k variables (see Remark 4).
In other words, the elements of 〈XM≤(d,D)(F

∗)〉 do not contribute to increasing
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the rank of Macd(F
∗) ∪Mac(P ∗). Hence, as shown in the beginning of Section

4.1, we consider the dimension L′ of the subspace V ′ such that

〈g ∈ 〈XM≤D(F )〉 | degk g ≤ d〉 = V ′⊕(〈g ∈ 〈XM≤D(F )〉 | degk g ≤ d〉∩〈XM≤(d,D)(F
∗)〉).

For an admissible parameter set, it requires that the following inequality holds
with the same reason as the inequality (1) (see Section 4.1):

♯L′ ≥Mon≤d(Xk)− Rank(Macd(F
∗))− 1. (6)

Hence we consider a lower bound for L′ under the following assumption:

Assumption 3 A parameter set (k,D, d) is admissible if and only if the in-
equality (6) holds.

By definition,

L′ = dim〈g ∈ 〈XMD(X)〉 | degk g ≤ d〉−dim(〈g ∈ 〈XMD(X)〉 | degk g ≤ d〉∩〈XM≤(d,D)(F
∗)〉).

Since 〈g ∈ 〈XMD(X)〉 | degk g ≤ d〉 ∩ 〈XM≤(d,D)(F
∗)〉 ⊆ 〈XM≤(d,D)(F

∗)〉 and
the inequality (3), we have

L′ ≥ Rank(MacD(F ))− ♯cols(M
(k)
D,d(F ))− dim〈XM≤(d,D)(F

∗)〉. (7)

Therefore, the inequality (6) holds if

Rank(MacD(F ))− ♯cols(M
(k)
D,d(F ))− dim〈XM≤(d,D)(F

∗)〉

≥ ♯Mon≤d(Xk)− Rank(Macd(F
∗))− 1. (8)

Proposition 3. Under Assumption 3, a parameter set (k,D, d) is admissible if
the inequality (8) holds.

Remark 4. Let g ∈ 〈XM≤(d,D)(F
∗)〉. Then g = u1f

∗
i1

+ · · · + usf
∗
is

(deg ui ≤
d − 2,deg ui ≤ D − 2). Hence, g∗ = u∗

1f
∗
i1

+ · · · + u∗
sf

∗
is
∈ 〈XMd(F

∗)〉 and
vect(g∗) ∈ 〈rows(Macd(F

∗)〉.

4.4 Our second formula

In this subsection, we consider computing the inequality (8), and by Remark 3
and Lemma 2 (see Section 4.2), it is sufficient to estimate dim〈XM≤(d,D)(F

∗)〉.
We introduce the bi-degree degZ2 on F[x1, . . . , xn] defined by

degZ2 = (degk,deg).

Define Mon(i,j)(X) = {u ∈ Mon(X) | degZ u = (i, j)}, F[x1, . . . , xn](i,j) =
〈Mon(i,j)(X)〉, and F[x1, . . . , xn]≤(i,j) = ⊕0≤e≤iF[x1, . . . , xn](i−e,j−e). Note that

f∗
1 , . . . , f

∗
m ∈ F[x1, . . . , xn]≤(2,2).

10



Meanwhile, we have the homogeneous system (f∗
1 )

h, . . . , (f∗
m)h ∈ F[x0, . . . , xn] by

homogenizing F ∗ with x0, i.e. (f
∗
i )

h = x2
0f

∗
i (x1/x0, . . . , xk/x0). The polynomial

ring F[x0, . . . , xn] has the bi-degree degZ2 = (deg′k,deg) where deg
′
k is the degree

in k+1 variables x0, . . . , xk. Then degZ2 xi is (1, 1) if 0 ≤ i ≤ k, (0, 1) otherwise,
and

(f∗
1 )

h, . . . , (f∗
m)h ∈ F[x0, . . . , xn](2,2).

In general, there is a correspondence

F[x1, . . . , xn]≤(i,j)
∼−→ F[x0, . . . , xn](i,j),

f(x1, . . . , xn) 7→ xj
0f(x1/x0, . . . , xn/x0),

g(1, x1, . . . , xn) ← [ g(x0, x1, . . . , xn).

(9)

Note that

〈u ∈Mon≤D | degk u ≤ d〉 =
⊕

0≤i≤d,i≤j≤D

F[x1, . . . , xn](i,j)

=

(
d⊕

i=0

F[x1, . . . , xn]≤(i,D)

)
⊕

D−1⊕
j=d

F[x1, . . . , xn]≤(d,j)

 .

The correspondence (9) induces that between I≤(i,j) := 〈u1f
∗
1 + · · ·+umf∗

m |
degk uℓf

∗
ℓ ≤ i,deg uℓf

∗
ℓ ≤ j〉 and Ih(i,j) := 〈u1(f

∗
1 )

h + · · ·+ um(f∗
m)h | degk um =

i − 2,deg ui(f
∗
i )

h = j〉. Since 〈MX≤(d,D)(F
∗)〉 ⊆

∑d
i=0 I≤(i,D) +

∑D−1
j=d I≤(d,j),

we obtain

dim〈MX≤(d,D)(F
∗)〉 ≤

d∑
i=0

dim I≤(i,D)+

D−1∑
j=d

dim I≤(d,j) =

d∑
i=0

dim Ih(i,D)+

D−1∑
j=d

dim Ih(d,j)

We can compute the right hand side of this inequality under the following reg-
ularity assumption:

Assumption 4 (Bi-graded regularity assumption) For i ≤ Dreg(m, k)
and j ≤ Dreg(m,n), dimF[x0, . . . , xn](i,j)/I

h
(i,j) coincides with the coefficient

of ti1t
j
2 in [

(1− t21t
2
2)

m

(1− t1t2)k+1(1− t2)n−k

]
where [

∑
(d1,d2)∈Z2 α(d1,d2)t

d1
1 td2

2 ] =
∑

(d1,d2)∈Z2 max{α(d1,d2), 0}t
d1
1 td2

2 .

Note that for polynomial systems with randomly chosen coefficients, we con-
firmed in our experiments that the above assumption holds.

Lemma 3. We have that dimF[x0, . . . , xn](i,j) is
(
k+i
i

)(
n−k+j−i−1

j−i

)
and coin-

cides with the coefficient of ti1t
j
2 in

1

(1− t1t2)k+1(1− t2)n−k
.

11



Lemma 4. If (F ∗)h satisfies the bi-graded regularity assumption, we have

dim〈XM≤(d,D)(F
∗)〉 ≤

d∑
i=0

Coeff(S′, ti1t
D
2 ) +

D−1∑
j=d

Coeff(S′, td1t
j
2) (10)

where

S′ =
1

(1− t1t2)k+1(1− t2)n−k
−
[

(1− t21t
2
2)

m

(1− t1t2)k+1(1− t2)n−k

]
.

Then, by Remark 3 and Lemma 2, the inequality (8) holds if

Coeff(Sm,n, t
D)−Nd,D −

d∑
i=0

Coeff(S′, ti1t
D
2 )−

D−1∑
j=d

Coeff(S′, td1t
j
2)

≥
(
k + d

d

)
− Coeff(Sm,k, t

d)− 1. (11)

Namely, then the inequality (6) holds. Therefore, we have the following theorem:

Theorem 2. Let F be a quadratic system such that F and F ∗ satisfy the regu-
larity assumption and (F ∗)h satisfies the bi-graded regularity assumption. Then,
under Assumption 3, a parameter set (k,D, d) is admissible if the inequality (11)
holds.

Remark 5. When q = 16, m = 9, and n = 8, our experiments show that the
parameter sets (k,D, d) = (3, 2, 1) and (4, 5, 4) are available in the Crossbred
algorithm. The first formula (5) can detect the availability of (k,D, d) = (3, 2, 1),
but the third formula (11) cannot. Conversely, the second formula recognizes the
availability of (k,D, d) = (4, 5, 4) but the first formula fails.

4.5 Description using the binomial coefficients and the formal
power series

In this subsection, for two inequalities (5) in Theorem 1 and (11) in Theorem
2, we present these binomial coefficient description and formal power series de-
scription. Theorem 3 and 4 are binomial-coefficient descriptions of Theorem 1
and 2, respectively. Theorem 5 and 6 are formal power series descriptions for
Theorem 1 and 2, respectively. Note that these formal-power-series description
use a slightly stronger assumption than each theorem, but they are sufficient
(see Remark 8).

Binomial coefficient description: First, for two inequalities (5) and (11), we give
these binomial-coefficient description.
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Remark 6. Let Hm,n = (1− t2)m(1− t)−n−1. Then

Coeff(Hm,n, t
i) =

m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)(
n+ i− 2ℓ− 1

i− 2ℓ

)
,

Coeff([Hm,n], t
i) = max

{
m∑
ℓ=0

(−1)ℓ
(
m

j

)(
n+ i− 2ℓ− 1

i− 2ℓ

)
, 0

}
.

Definition 2. Define Dreg(m,n) = min{i | Coeff(Hm,n, t
i) ≤ 0}.

Theorem 3. Let F be a quadratic system such that F and F ∗ satisfy the regu-
larity assumption. Under Assumption 1, the parameter set (D, d) is admissible
if

d∑
i=0

D−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)
−m·

d−2∑
i=0

D−2−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)

≥ max

{
m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)(
n+D − 2ℓ− 1

D − 2ℓ

)
, 0

}
+max

{
m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)(
k + d− 2ℓ− 1

d− 2ℓ

)
, 0

}
−1

The following remark also follows from a straightforward calculation:

Remark 7. Let H ′ = (1− t21t
2
2)

m(1− t1t2)
−k−1(1− t2)

−n+k. Then

Coeff(H ′, ti1t
j
2) =

m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)(
k + i− 2ℓ

i− 2ℓ

)(
n− k + j − i− 1

j − i

)
,

Coeff([H ′], ti1t
j
2) = max

{
m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)(
k + i− 2ℓ

i− 2ℓ

)(
n− k + j − i− 1

j − i

)
, 0

}
.

Theorem 4. Let F be a quadratic system such that F and F ∗ satisfy the regu-
larity assumption and (F ∗)h satisfies the bi-graded regularity assumption. Then,
under Assumption 3, a parameter set (k,D, d) is admissible if

d∑
i=0

D∑
j=i

max

{
m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)(
k + i− 2ℓ

i− 2ℓ

)(
n− k + j − i− 1

j − i

)
, 0

}
−

d∑
i=0

(
k + i− 1

i− 1

)(
n− k +D − i

D − i

)

≥ max


m∑
j=0

(−1)j
(
m

j

)(
n+D − 2j − 1

D − 2j

)
, 0

+max


m∑
j=0

(−1)j
(
m

j

)(
k + d− 2j − 1

d− 2j

)
, 0

−1.
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Formal power series description: We present power series descriptions for two
inequalities (5) and (11). Determining the admissibility of a parameter set is
essential when d < Dreg(m, k) and D < Dreg(m,n) (see Remark 8).

Lemma 5. The number of monomials of degree ≤ D in n variables whose degree
in the first k variables is lower than or equal to d, i.e.

∑d
i=0

∑D−i
j=0

(
k+i−1

i

)(
n−k+j−1

j

)
,

is the coefficient of td1t
D
2 in the following power series:

1

(1− t1t2)k(1− t2)n−k+1(1− t1)

Theorem 5. Let F be a quadratic system such that F and F ∗ satisfy the regular-
ity assumption. Set d < Dreg(m, k) and D < Dreg(m,n). Under the assumptions
in Proposition 2, the parameter set (D, d) is admissible if the coefficient of td1t

D
2

in the following power series is less than or equal to 1:

mt21t
2
2 − 1

(1− t1t2)k(1− t2)n−k+1(1− t1)
+

(1− t22)
m

(1− t1)(1− t2)n+1
+

(1− t21)
m

(1− t1)k+1(1− t2)
.

(12)

Proof. See Appendix A. ut

Next, we consider a formal power series description for (11). Define

S′′ =
1

(1− t1t2)k+1(1− t2)n−k
−H ′.

Since Coeff(H ′, ti1t
j
2) ≤ Coeff([H ′], ti1t

j
2), we obtain

Coeff(S′′, ti1t
j
2) ≥ Coeff(S′, ti1t

j
2). (13)

Thus, if we take S′′ as S′, then the inequality (10) still holds and it gives a lower
bound for L′, i.e. the inequality (7). As result, we obtain a slightly strong version
of Theorem 2:

Theorem 6. Let F be a quadratic system such that F and F ∗ satisfy the reg-
ularity assumption and (F ∗)h satisfies the bi-graded regularity assumption. Set
d < Dreg(m, k) and D < Dreg(m,n). Then, under Assumption 3, a parameter
set (k,D, d) is admissible if the coefficient of td1t

D
2 in the following power series

is less than or equal to 1:

(1− t21)
m

(1− t1)k+1(1− t2)
+

(1− t22)
m

(1− t1)(1− t2)n+1
− (1− t21t

2
2)

m

(1− t1t2)k(1− t1)(1− t2)n−k+1

(14)

Proof. See Appendix B. ut

Here, we can provide finite field versions of Theorem 5 and 6 as applications.
We define Dreg(m,n, q) = min{i | Coeff(Hq

m,n, t
i) ≤ 0} where Hq

m,n = (1 −
tq)n(1−t2)m(1−t)−n. Then, Assumption 2 and 4 are slightly modified as follows.
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Assumption 5 (Regularity assumption) Let F be a system of m quadratic
polynomials in n variables and I be the ideal generated by F . The dimension of
F[x1, . . . , xn]≤i/Ii coincides with the coefficient of ti in[

(1− t2)m(1− tq)n

(1− t)n+1

]
.

Assumption 6 (Bi-graded regularity assumption) For i ≤ Dreg(m, k, q)
and j ≤ Dreg(m,n, q), dimF[x0, . . . , xn](i,j)/I

h
(i,j) coincides with the coefficient

of ti1t
j
2 in [

(1− t21t
2
2)

m(1− tq1t
q
2)

k

(1− t1t2)k+1(1− t2)n−k

]
.

Then, we obtain the following theorem for Theorem 5:

Theorem 7. Let F be a system such that contains the field equations and
F and F ∗ satisfy the regularity assumption. Set d < Dreg(m, k, q) and D <
Dreg(m,n, q). Under the assumptions in Proposition 2, the parameter set (D, d)
is admissible if the coefficient of td1t

D
2 in the following power series is less than

or equal to 1:

−1 +m · t21t22 + k · tq1t
q
2 + (n− k) · tq2

(1− t1t2)k(1− t2)n−k+1(1− t1)
+

(1− t22)
m(1− tq2)

n

(1− t1)(1− t2)n+1
+

(1− t21)
m(1− tq1)

k

(1− t1)k+1(1− t2)
(15)

For Theorem 6, we obtain the following theorem:

Theorem 8. Let F be a system such that contains the field equations, F and
F ∗ satisfy the regularity assumption, and (F ∗)h satisfies the bi-graded regularity
assumption. Set d < Dreg(m, k, q) and D < Dreg(m,n, q). Then, under As-
sumption 3, a parameter set (k,D, d) is admissible if the coefficient of td1t

D
2 in

the following power series is less than or equal to 1:

(1− t22)
m(1− tq2)

n

(1− t1)(1− t2)n+1
+

(1− t21)
m(1− tq1)

k

(1− t1)k+1(1− t2)
− (1− t21t

2
2)

m(1− tq1t
q
2)

k

(1− t1t2)k(1− t2)n−k+1(1− t1)
(16)

Note that their proofs are exactly the same as Theorem 5 and 6.

Remark 8. Assume that F and F ∗ satisfies the regularity assumption. We recall
Section 3.2. In the case D ≥ Dreg(m,n), the vector space 〈XMD(F )〉 has all
monomials of degree ≤ D as a leading monomial. Hence we can obtain a suffi-
ciently number of linearly independent polynomials after the specialization on
the last n − k variables. In particular, then the parameter set is admissible. In
the case d ≥ Dreg(m, k), the Macaulay matrix Macd(F

∗) has a sufficiently large
rank and we can determine if there exists a solution. Then the parameter set is

admissible. Moreover, we do not need to perform the linear algebra on M
(k)
D,d(F ).

In particular, Crossbred algorithm becomes BooleanSolve/FXL actually.
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Remark 9. The paper [7,8] also considered the admissibility of a parameter set
but omitted certain assumptions and crucial discussions. For example, they claim

that
∑

i,j Corank(M
(k)
j,i (F ))ti1t

j
2 = H ′ (see Equation (17) in [7] and Equation (15)

in [8]) but our experiment did not support this assertion. Indeed, the columns of

M
(k)
D,d(F ) corresponds to the monomial {m0 ∈ Mon≤D(X) | degk m0 ≥ d + 1},

and the coefficient of td1t
D
2 in the denominator part of H ′, i.e. 1/(1− t1t2)

k(1−
t2)

n−k, implies ♯{m0 ∈ MonD(X) | degk m0 = d}. Hence, even if one introduce
some regularity assumption, one cannot conclude that the equality holds.

5 Complexity estimation

In this section, we provide the complexity estimation for the Crossbred algorithm
using our formulae presented in the previous section.

The framework of a complexity estimation for the Crossbred algorithm is
firstly given by Chen et al. [4]. In this section, we use a slightly detailed version
by Bellini et al. [2] for a parameter set which given by our formulae in the
previous section.

For a system of m quadratic equations in n variables, if a parameter set
(k,D, d) is admissible, the (time) complexity of the Crossbred algorithm is esti-
mated by

Cost(k,D,d)(q,m, n) = min

{
O
(
Nω

d,D

)
,O
(

3

(
n+ 2

2

)
N2

d,D ·Nitr

)}

+ O
(
m · qn−k ·

(
k + d

d

)ω)
, (17)

where 2 ≤ ω ≤ 3 is a linear algebra constant,

Nd,D =

D∑
i=d+1

D−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)
, and

Nitr = max

{
m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)(
n+ d− 2ℓ− 1

d− 2ℓ

)
, 0

}
− 1 (= Coeff([Hm,k], t

d)− 1).

Moreover, the memory complexity is estimated by

O

(
N2

d,D +

(
k + d

d

)2
)
.

In (17), the first term is the complexity estimation for searching left kernel

vectors of M
(k)
D,d in the Crossbred algorithm (see Section 3.3), and given by

the minimum value of the Gaussian elimination and a kernel search using the
block Wiedemann algorithm Nitr times [5]. The second term is the complexity
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estimation for the dense linear algebra on Mac(P ∗)∪Macd(F
∗) in the algorithm

(see Remark 10).

We obtain the complexity estimation of the Crossbred algorithm as the min-
imum value of (17) for a parameter set which is given by our formula (5) or (11).
Using the Thomae-Wolf (TW) method [18], we give the complexity estimation
for solving an MQ instance as

min
(k,D,d): admissibe

Cost(k,D,d)(q,m− α,m− α) (18)

where α = bn/mc − 1.

Remark 10. Since MacD(F ) and M
(k)
D,d(F ) become sparse matrices, we can uti-

lize the block Lanczos algorithm [15], the block Wiedemann algorithm [5], and
these modifications. However, due to the density of Mac(P ∗), the efficiency of
these algorithms is not guaranteed [4].
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Appendix

Appendix A

The inequality (5) is rewritten as

−Coeff
(
Sm,n, t

D
)
−Coeff

(
Sm,k, t

d
)
+m·

d−2∑
i=0

D−2−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)
+

D∑
i=d+1

D−i∑
j=0

(
k + i− 1

i

)(
n− k + j − 1

j

)
+

(
k + d

d

)
≤ 1.

By Lemma 2 and 5, the left hand side is the coefficient of td1t
D
2 in

−
1− (1− t22)

m

(1− t1)(1− t2)n+1
−

1− (1− t21)
m

(1− t1)k+1(1− t2)
+

mt21t
2
2

(1− t1t2)k(1− t2)n−k+1(1− t1)

18



+
1

(1− t1)(1− t2)n+1
−

1

(1− t1t2)k(1− t2)n−k+1(1− t1)
+

1

(1− t1)k+1(1− t2)
.

Arranging this power series, we have the asserted series.

Appendix B

We have
d∑

i=0

dim Ih(i,D) +

D−1∑
j=d

dim Ih(d,j) =
∑

0≤i≤d,i≤j≤D

(dim Ih(i,j) − dim Ih(i−1,j−1)), and

d∑
i=0

Coeff(S′′, ti1t
D
2 )+

D−1∑
j=d

Coeff(S′′, td1t
j
2) =

∑
0≤i≤d,i≤j≤D

{Coeff(S′′, ti1t
j
2)−Coeff(t1t2·S′′, ti1t

j
2)}

=
∑

0≤i≤d,i≤j≤D

Coeff(S′′ − t1t2S
′′, ti1t

j
2) =

∑
0≤i≤d,0≤j≤D

Coeff(S′′ − t1t2S
′′, ti1t

j
2).

Note that the last equality follows from that S′′−t1t2S′′ does not have monomials
ti1t

j
2 (i > j) as follows:

S′′ − t1t2S
′′ =

1− (1− t21t
2
2)

m

(1− t1t2)k+1(1− t2)n−k
− t1t2{1− (1− t21t

2
2)

m}
(1− t1t2)k+1(1− t2)n−k

=
1− t1t2

(1− t1t2)k+1(1− t2)n−k
− (1− t1t2)(1− t21t

2
2)

m

(1− t1t2)k+1(1− t2)n−k

=
1

(1− t1t2)k(1− t2)n−k
− (1− t21t

2
2)

m

(1− t1t2)k(1− t2)n−k
. (19)

By Lemma 4 and the inequality (13), we obtain

dim〈XM≤(d,D)(F
∗)〉 ≤

∑
0≤i≤d,0≤j≤D

Coeff(S′′ − t1t2S
′′, ti1t

i
2).

Then the inequality (11) is rewritten as

−Coeff(Sm,n, t
D) +Nd,D +

∑
0≤i≤d,0≤j≤D

Coeff(S′′ − t1t2S
′′, ti1t

i
2)

+

(
k + d

d

)
− Coeff(Sm,k, t

d) ≤ 1.

By Equation (19),
∑

0≤i≤d,0≤j≤D Coeff(S′′− t1t2S
′′, ti1t

i
2) coincides with the co-

efficient of td1t
D
2 in

1

(1− t1t2)k(1− t1)(1− t2)n−k+1
− (1− t21t

2
2)

m

(1− t1t2)k(1− t1)(1− t2)n−k+1
.

Then, as the same discussion shown in Appendix A, the inequality (6) holds if
the coefficient of td1t

D
2 in the following power series is less than or equal to 1:

(1− t21)
m

(1− t1)k+1(1− t2)
+

(1− t22)
m

(1− t1)(1− t2)n+1
− (1− t21t

2
2)

m

(1− t1t2)k(1− t1)(1− t2)n−k+1
.
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