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Abstract
We prove that two variants of the Fujisaki-Okamoto (FO) transformations are selective opening

secure (SO) against chosen-ciphertext attacks in the quantum random oracle model (QROM), as-
suming that the underlying public-key encryption scheme is one-way secure against chosen-plaintext
attacks (OW-CPA). The two variants we consider are FO̸⊥ (Hofheinz, Hövelmanns, and Kiltz, TCC
2017) and U̸⊥

m (Jiang et al., CRYPTO 2018). This is the first correct proof in the QROM.
The previous work of Sato and Shikata (IMACC 2019) showed the SO security of FO̸⊥ in

the QROM. However, we identify a subtle gap in their work. To close this gap, we propose a new
framework that allows us to adaptively reprogram a QRO with respect to multiple queries that are
computationally hard to predict. This is a property that can be easily achieved by the classical ROM,
but is very hard to achieve in the QROM. Hence, our framework brings the QROM closer to the
classical ROM.

Under our new framework, we construct the first tightly SO secure PKE in the QROM using
lossy encryption. Our final application is proving FO̸⊥ and U̸⊥

m are bi-selective opening (Bi-SO)
secure in the QROM. This is a stronger SO security notion, where an adversary can additionally
corrupt some users’ secret keys.

Keywords: Selective opening security, quantum random oracle model, Fujisaki-Okamoto trans-
formation, tight security

1 Introduction
Public-key encryption (PKE) schemes are a central topic in cryptography. Their widely accepted security
notion is indstinguishability against chosen-ciphertext attacks (IND-CCA), which states that confiden-
tiality holds even if an adversary A can adaptively decrypt ciphertexts of its choice, except the challenge
ciphertext. This is a security notion in the single-user, single-challenge setting, namely, only one user’s
public key and one challenge ciphertext are exposed to an adversary.

Its multi-user, multi-challenge counterpart is an arguably more realistic setting. Selective opening
(SO) security [BHY09, BHK12] is a notion in a multi-challenge setting, where an adversary is given
multiple challenge ciphertexts under a single public key and aims at learning some information about
the encrypted messages. On top of that, the adversary can open a subset of the challenge ciphertexts
and reveal the corresponding messages and randomness used to generate those ciphertexts. SO security
guarantees the confidentiality of the remaining unopened challenge ciphertexts. The recent notion, Bi-SO
security [LYHW21], can be viewed as a stronger variant of the SO security in a multi-user setting, where
the adversary is additionally given multiple users’ public keys and it can corrupt some of their secret
keys.
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The aforementioned opening capability is motivated by the fact that cryptographic information is
technically hard and expensive to erase in practice and an adversary may break into an encrypter’s
computer and learn the used randomness. In some applications, such as secure multi-party computation,
it is even required to reveal the messages and randomness to make a user’s computation publicly verifiable.

Technically speaking, it is challenging to construct a SO secure PKE. At a first glance, one may
think that IND-CCA security implies SO security, since each ciphertext is generated using independent
randomness. However, this is not true in general. We refer [HR14] for an overview and useful further
reading. We highlight that, from a provable-security point of view, to answer an opening query, a security
reduction should be able to ‘explain’ how it generates a challenge ciphertext by returning the randomness,
but in many cases the reduction do not even know the randomness itself. Hybrid arguments are one of
the examples, namely, the reduction cannot explain a ciphertext where a challenge is embedded. This
is also the inherent reason why the recent updated proof of Sato and Shikata [SS22] is incorrect. In
the recent years, a great amount of effort has been put into defining the right notion of SO security
[BHY09, BHK12, HR14] and construct efficient SO-secure public-key encryption schemes [FHKW10,
HLOV11, Hof12, HJKS15, HP16, LYHW21].
Notions of Selective Opening Security. Currently, there are two types of notions have been
studied in the literature, the indistinguishability-based (IND-based) ones (weak-IND-SO and full-IND-
SO) [BHY09, BHK12] and the simulation-based (SIM-based) one (SIM-SO) [BHY09]. They are not
polynomial-time equivalent to each other. In this paper we only consider the SIM-based one. Informally,
SIM-SO security states that for every SO adversary its output can be efficiently simulated by a simulator
that sees only the opened messages. Unlike its IND-based counterpart, SIM-SO does not require the
message distribution chosen by the adversary to be efficiently resamplable, conditioned on the opened
messages (cf. [BHY09]). Previous work showed that SIM-SO-CCA and full-IND-SO-CCA notions are
the strongest SO security [BHK12, BDWY12, HR14]. However, only SIM-SO-CCA has been realized so
far [FHKW10, HLOV11, Hof12, HJKS15, HP16]. It is similar for Bi-SO security, and only SIM-based
notion is considered so far [LYHW21]. For simplicity, we will not write ‘SIM’ in the following.
Our Goal: Selective Opening Security in the QROM. SO secure PKE schemes are constructed
in idealized models [HJKS15, HP16] and in the standard model [BHY09, FHKW10, HLOV11, Hof12].
Constructions in idealized models are more efficient and hence more relevant to practice. In particular,
this paper considers schemes in the random oracle model (ROM).

The increasingly threat that quantum computers can break most widely deployed public-key cryp-
tosystems has driven research in the direction of building post-quantum secure public-key primitives,
including PKE schemes and key encapsulation mechanisms (KEMs). Currently, the National Insti-
tute of Standards and Technology (NIST) in the US has come to a conclusion for the post-quantum
standards. Kyber [SAB+20], NTRU [CDH+20], and Saber [DKR+20] were three finalists in the last
round for the KEM/PKE category. They all use variants of the Fujisak-Okamoto (FO) transformation
[FO99a, FO99b, FO13, HHK17]. It is interesting to consider whether these FO transformations are
secure in the SO setting.

The FO transformation turns a relatively weak PKE (e.g. a One-Way CPA secure one) into an
IND-CCA secure one. Recently, the FO transformation and its variants have been widely analyzed in
both the classical ROM and the quantum (accessible) ROM (QROM) [TU16, HHK17, SXY18, JZC+18,
KSS+20], but mostly with a focus on establishing IND-CCA security. An exception is the work of Heuer
et al.[HJKS15] which studied the SO security of the FO transformation in the ROM.

For post-quantum security, proofs in the QROM are more desirable than those in the (classical)
ROM, since it models quantum adversaries in a more realistic manner. In this setting, a quantum
adversary interacts with a classical network, where “online” primitives (such as encryption) are classical,
and computes “offline” primitives (such as hashing) on its own in superposition.

The work of Sato and Shikata [SS19] proved the SO security of the FO transformation in the QROM.
To the best of our knowledge, this is the only work considers SO security in the QROM. However,
we identified a subtle gap in their security proof1. Even worse, this gap cannot be closed, even if we
relax the notion to the weaker, non-adaptive SO security as in [LLHG18], where an adversary is not
allowed to adaptively open a challenge ciphertext, but commits all its opening indices after seeing the
challenge ciphertexts. From a technical point of view, closing the gap in [SS19] requires new proof

1The authors confirmed this to us.
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techniques in the QROM that allow a security reduction to adaptively reprogram multiple RO-queries
in one security game without changing the view of an adversary, where the reprogrammed points are
computationally hidden. This is a property not achievable by existing well-known techniques, such as
[Unr14b, Unr14a, KSS+20, GHHM21]. We provide more discussion about it in Section 1.2.

1.1 Our Contributions
We revise the selective opening security in the QROM and prove that two “implicit rejection” variants of
the FO transformation (namely, FO⊥̸ [JZC+18] and U⊥̸m [HHK17]) are SO-CCA secure if the underlying
PKE is one-way CPA (OW-CPA) secure in the QROM. Here we consider PKE schemes, namely, com-
bining KEM FO⊥̸ (or U⊥̸m) with one-time pad and a message authentication code (MAC). The one with
FO⊥̸ is the same scheme considered in [SS19], but ours is the first correct proof in the QROM. Since the
proofs for FO⊥̸ and U⊥̸m are similar, we leave the one for U⊥̸m in Supp. Mat. H, and there we only prove
the Bi-SO-CCA for U⊥̸m , since it implies SO-CCA security.

Our core technical contribution is a computational adaptive reprogramming framework in the QROM
that enables a security reduction to adaptively and simultaneously reprogram polynomially many RO-
queries which are computationally hidden from a quantum adversary. This is a property cannot be
provided by previous techniques in the QROM, such as the (adaptive) one-way to hiding (O2H) lemma
[Unr14b, Unr14a], the semi-classical O2H lemma [AHU19], and the measure-rewind-measure O2H lemma
[KSS+20]. Our framework brings the QROM closer to the classical ROM, and it generalizes and improves
the adaptive reprogramming framework by Grilo et al.[GHHM21].
Tight SO Security from Lossy Encryption in the QROM. Our second contribution is a tightly
SO-CCA secure PKE from lossy encryption [BHY09, HJR16]. This is the first tight scheme in the
QROM. A recent work of Pan, Wagner, and Zeng has constructed the first tightly multi-user (without
corruptions), multi-challenge IND-CCA in the QROM [PWZ23], but it did not get extended to the
(stronger) SO setting. Another related work is also due to Pan and Zeng [PZ22], where a compact and
tightly SO-CCA secure PKE is proposed in the classical random oracle model. However, it is unclear if
it can be transformed to the QROM. Our result on tight SO security is established in the QROM, and
it improves both aforementioned work.
Bi-SO Security of FO Transformations. As another application of our framework, we prove that
the aforementioned variants of FO transformation, namely, FO⊥̸ and U⊥̸m , are furthermore Bi-SO-CCA
secure [LYHW21] in the QROM, assuming OW-CPA security of the underlying PKE scheme. This
notion is stronger than the SO-CCA security, since it additionally allows secret key corruption for the
adversaries. The only known Bi-SO-CCA secure construction is in the classical ROM. Our work is the
first one in the QROM.
Impacts on the NIST Finalists. The NIST finalists Kyber and Saber use tweaked verions of trans-
formation FO⊥̸, and NTRU uses U⊥̸m . Hence, analysis of these FO transformations is more fundamental
than directly analyzing these concrete schemes. Although our results strongly indicate that the NIST
finalists are SO-CCA secure and Bi-SO-CCA in the QROM, we leave the formal proof of it as a future
direction, and we are optimistic that our approaches can be extended naturally in achieving it.

1.2 Technical Details
We provide some details about our technical contribution, computational adaptive reprogramming frame-
work.
Our Starting Point. The work of Heuer et al.[HJKS15] is the first one proving that practical PKEs via
the OAEP and FO transformation are SO-CCA secure in the (classical) ROM. Their work considered the
original FO transformation [FO13]. Motivated by Heuer et al.’s work, we can show that the combination
of FO⊥̸ and one-time pad is SO-CPA secure in the classical ROM by adaptively reprogramming the
ROs. Here we describe some key idea. Note that our final goal is SO-CCA, but for the simplicity of our
discussion here, we only consider SO-CPA.

A ciphertext of message m in the FO⊥̸ transformation, (e, d), is defined as follow:

e := Enc0(pk, r;G(r)) for r $←M′

d := H(r, e)⊕m (1)

3



where Enc0 is the randomized encryption algorithm of a OW-CPA secure PKE with message space M′,
G(r) is the explicit randomness used in Enc0, and G,H are two hash functions with suitable domains
and ranges. Public and secret keys of FO⊥̸ is the same as those of the OW-CPA secure PKE, and the
decryption is defined in the straightforward way. We refer Figure 6 for the full description.
Efficient Openability in the ROM. To show the SO-CPA security, we require “efficient openability”
of ciphertexts [BHY09, FHKW10]. This property states that one can generate some ciphertexts and later
they can be efficiently opened to arbitrary messages by using some trapdoor (in the standard model) or
reprogramming ROs (in the ROM) in a suitable way. In the classical ROM, our ciphertexts (defined by
Equation (1)) have efficient openability. More precisely, a security reduction R can choose random r∗i ,
R∗i , and d∗i and return the challenge ciphertexts (Enc0(pk, r∗i ;R∗i ), d∗i )1≤i≤µ to the SO-CPA adversary A.
For these challenge ciphertexts, the reduction R can open a ciphertext (Enc0(pk, r∗i ;R∗i ), d∗i ) to arbitrary
message mi by reprogramming G(r∗i ) := R∗i and H(r∗i , e∗i ) := d∗i ⊕ mi. Moreover, R will embed the
OW-CPA challenge to one of the unopened ciphertexts. Here, r∗i are only computationally hidden from
the adversary.

For the SO-CPA security, the aforementioned reprogramming is required to be adaptive, since an
adversary can submit an opening query adaptively. Moreover, a SO-CPA adversary can submit multiple
opening queries in one security game or hybrid. Therefore, our reprogramming strategy should be able
to reprogram multiple RO-queries in one security game. We call this last requirement as multi-point
reprogramming. We stress that hybrid arguments are already not useful for SO security. This is because
a standard hybrid argument will embed a OW-CPA challenge into the SO-CPA ciphertexts one-by-one.
After it is embedded to the i-th ciphertext, G(r∗i ) cannot be reprogrammed to R∗i , since R∗i is unknown
to the reduction R. Thus, the opening query cannot be correctly answered.
Existing Approaches in the QROM. Reprogramming a quantum (accessible) RO is highly non-
trivial, since a query in superposition can be viewed as a query that might contain all possible input
values at once. To correctly reprogram a value to a particular QRO query, it needs to measure and extract
classical preimages of a quantum query, which will cause a change in the adversary’s view. Although
many works have been done to provide reprogrammability in the QROM [Unr14a, Unr14b, AHU19,
KSS+20, GHHM21], reprogramming in the QROM is still much more challenging than in the ROM.

For the SO security, the situation is more complicated. Essentially, existing approaches (such as
[Unr14a, Unr14b, AHU19, KSS+20, GHHM21]) cannot easily achieve the requirements for SO security
in the QROM. We use the semi-classical O2H lemma [AHU19] as an example to elaborate on this. Fix a
random set S ⊆ X . Let H,H ′ : X → Y be two different ROs such that, for all x ∈ X \ S, H(x) = H ′(x)
(denoted by H \ S = H ′ \ S). The semi-classical O2H lemma states that a quantum adversary A cannot
tell the difference between H and H ′ by giving only quantum access to them, unless A finds an element
from S. Here set S needs to be defined before defining H and H ′.

In the work of Sato and Shikata [SS19], their security proofs viewed S as the set containing all the
randomness used in the opened ciphertexts (cf. the step between Game1 and Game2 in [SS19, Section
3.1] and the one between Game5 and Game6 in [SS19, Section 3.2]). Essentially, S is equivalent to the set
of opening indices which are adaptively decided by the adversary A. However, to use the semi-classical
O2H lemma, S must be fixed at the beginning of the security game, even before generating the public key.
Therefore, this technical gap in their proofs cannot be closed, and it will be the case, even if we consider
the weaker, non-adaptive variant of SO security as in [LLHG18], namely, an adversary cannot adaptively
open challenge ciphertexts, but commits to opening indices after receiving the challenge ciphertexts.

The recent measure-rewind-measure O2H lemma [KSS+20] has a similar flavor as the semi-classical
O2H lemma, and it does not allow to define S adaptively. The adaptive O2H lemma [Unr14a] allow us
to reprogram a single query adaptively. However, we require adaptive reprogramming multiple queries
for SO security, since if we only reprogram wrt one opening query, an adversary can distinguish the
simulation by opening multiple ciphertexts.
Our Approach. To solve the technical difficulties, we propose the computational adaptive reprogram-
ming framework. It is more general than the algorithmic O2H lemma [Unr14a] and the adaptive re-
programming framework [GHHM21] in the sense that our framework allows a reduction to reprogram
polynomial many RO queries in the QROM. Different to the work of Grilo et al., our reprogrammed
points can be only computationally hidden from the adversary.

In a nutshell, our framework considers two security games, NonAda and Ada. The RO H ′ in

4



NonAda will never be reprogrammed, but the RO H in Ada will be adaptively reprogrammed for
multiple times according to the adversary’s behavior. We require H ′ \S = H \S, but S can be modified
adaptively by a security reduction. Intuitively, an adversary A can distinguish NonAda and Ada if it
queries x ∈ S. This event can be detected easily in the classical setting, but is problematic in the quantum
setting. Our high-level approach is to bound the probability of this event by randomly measuring A.
Details are given in Section 3. We stress that our approach is not a “hybrid argument” extension of
the existing techniques. In fact, as pointed out by Bellare, Hofheinz, and Yilek [BHY09], it is unknown
if a simple hybrid argument is useful in proving SO security. Very unfortunately, the latest revision2

of [SS19] is a concrete example for why it does not work. The proof of their Lemma 1 is essentially a
hybrid argument. A counterexample is simply: Imagine an adversary opens each index with probability
1/2, then their OPEN oracle will abort with overwhelming probability and thus their hybrid argument.
More Comparison with Related Work. Recently, Grilo et al. proposed the adaptive reprogram-
ming framework [GHHM21] and used it to give a QROM proof for Fiat-Shamir’s signatures. The main
difference between our work and Grilo et al.’s work is that their framework requires the reprogram-
ming points to have high statistical entropy, while our framework requires the reprogramming points
are computationally hard to find (which cover the case of statistical entropy). When proving the SO
security of the FO transformation, their framework cannot be used since the reprogramming points are
computationally hidden by OW-CPA security of some underlying PKEs.

We also compare our framework to the measure-and-reprogram framework of Don, Fehr, and Majenz
[DFM20] and the lifting theorem in [YZ21] that are used to prove security of the Fiat-Shamir (FS)
signature in the QROM. In a nutshell, the difference between our frameworks is similar to that between
the security proofs of the FO encryption and FS signature in the classical setting. More precisely, in the
proof of FO encryption, we argue that it is infeasible for an adversary to learn the reprogramming points
and thus we can reprogram the random oracle without changing the adversary’s view. However, in the
proof of FS signature, an adversary can learn the reprogramming points, since they are the hash values of
signing messages and some (public) commitments of the Σ protocol. Hence, the measure-and-reprogram
framework is conceptually different to us and cannot be used in proving SO or Bi-SO security in the
QROM. The lifting theorem (cf. [YZ21, Theorem 4.2]) has a similar flavor as the measure-and-reprogram
framework.

Finally, we are aware of a recent revision of the Sato-Shikata work [SS22], but it uses a hybrid
argument and, as explained earlier, hybrid arguments are not useful even in the classical ROM. As a
simple counter-example, in the proof of their Theorem 1, imagine an adversary that opens each ciphertext
with probability 1/2 (or some non-negligible probability). Then their Hybrid(i∗) aborts with probability
1/2.
Future Work. We leave exploring more applications of our computational adaptive reprogramming
framework as a future direction, since reprogramming a (quantum) random oracle on multiple computa-
tionally hidden points is an interesting technique and we are optimistic that it may yields new applica-
tions. Moreover, we are optimistic that our approach can work for the simulatable DEM framework of
SO secure PKEs. We leave a formal treatment of it as another future direction.

2 Preliminaries
Let n be an integer. [n] denotes the set {1, ..., n}. Let X and Y be two finite sets and f : X → Y be a
function. f(X ) := {f(x)|x ∈ X}. x $← X denotes sampling a uniform element x from X at random. If S
is a subset of X , then X\S denotes the set {x ∈ X |x /∈ S}. Let A be an algorithm. If A is probabilistic,
then y ← A(x) means that the variable y is assigned to the output of A on input x. If A is deterministic,
then we write y := A(x). We write AO to indicate that A has classical access to oracle O. We write
T(A0) ≈ T(A1) if the running times of A0 and A1 are polynomially close to each other. All (quantum)
algorithms are (quantum) probabilistic polynomial time, unless we state it.
Games. We use code-based games [BR06] to define and prove security. We implicitly assume that
Boolean flags are initialized to false, numerical types are initialized to 0, sets are initialized to ∅, while
strings are initialized to the empty string ϵ. Pr[GA ⇒ 1] denotes the probability that the final output

2https://eprint.iacr.org/archive/2022/617/20230108:160413
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GA of game G running an adversary A is 1. Let Ev be an (classical and well-defined) event. We write
Pr[Ev : G] to denote the probability that Ev occurs during the game G.

2.1 Public-Key Encryption
A Public Key Encryption (PKE) scheme PKE consists of three algorithms (KG,Enc,Dec) and a message
space M that is assumed to be efficiently recognizable. The three algorithms work as follows:

• The key generation algorithm KG, on input the security parameter λ, outputs a public and secret
key pair (pk, sk). pk also defines a finite randomness space R := R(pk) and a ciphertext space
C := C(pk). For sake of simplicity, in this paper, we ignore the input λ and simply write the
process as (pk, sk)← KG.

• The encryption algorithm Enc, on input pk and a message m ∈M, outputs a ciphertext c ∈ C. We
also write c := Enc(pk,m; r) to indicate the randomness r ∈ R explicitly.

• The (deterministic) decryption algorithm Dec, on input sk and a ciphertext c, outputs a message
m′ ∈M or a rejection symbol ⊥ /∈M.

Definition 2.1 (PKE Correctness). A PKE scheme PKE := (KG,Enc,Dec) with message space M is
(1− δ)-correct if

E
[

max
m∈M

Pr [Dec(sk, c) ̸= m : c← Enc(pk,m)]
]
≤ δ,

where the expectation is taken over (pk, sk)← KG and randomness of Enc. PKE has perfect correctness
if δ = 0.

Definition 2.2 (Collision Probability of Key Generation). Let

ηPKE := max [Pr [pk0 = pk1 : (pk0, sk0)← KG, (pk1, sk1)← KG]]

be the collision probability of KG of PKE. The maximum is taken over all pk0, pk1. In this paper, we
assume that for any OW-CPA-secure PKE, ηPKE = negl(λ)

We focus on two security notions for PKE: onewayness under chosen-plaintext attacks (OW-CPA) and
selective-opening security under chosen-ciphertext-attacks (SO-CCA). Let PKE := (KG,Enc,Dec) be a
PKE scheme with message space M and ciphertext space C.

Definition 2.3 (OW-CPA). For an adversary A, its advantage against OW-CPA security of PKE is
defined as

AdvOW-CPA
PKE (A) := Pr

[
m′ = m∗ : (pk, sk)← KG,m∗ $←M,

c∗ ← Enc(pk,m∗),m′ ← A(pk, c∗)
]
.

PKE is OW-CPA secure if for all PPT adversaries A, AdvOW-CPA
PKE (A) = negl(λ).

We also use MAC schemes that have one-time strong existential unforgeability under chosen message
attack (otSUF-CMA) as building block. Let MAC := (Tag,Vrfy) be an one-time MAC scheme with key
space Kmac. The otSUF-CMA security game is given in Figure 1.

Definition 2.4 (otSUF-CMA). For a forger F , its advantage against otSUF-CMA security of MAC is
defined as

AdvotSUF-CMA
PKE (F) := Pr[otSUF-CMAFMAC ⇒ 1]

MAC is otSUF-CMA secure if for all F , AdvotSUF-CMA
PKE (F) = negl(λ).

One-time MAC schemes can be constructed by using pair-wise independent hash function family, and
they are otSUF-CMA secure against unbounded adversaries. Here Tag cannot be queried with quantum
superposition.
(Adaptive) Selective Opening Security. Selective Opening (SO) security preserves confidentiality
even if an adversary opens the randomnesses of some ciphertexts. We use simulation-based approach
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GAME otSUF-CMAF
MAC

01 b := 0, Kmac $← Kmac

02 (m∗, τ∗)← FTag,Vrfy()
03 if (m∗, τ∗) ̸= (m0, τ0)
04 and Vrfy(Kmac, m∗, τ∗) = 1
05 b := 1
06 return b

Tag(m) // Only one query

07 τ ← Tag(Kmac, m)
08 (m0, τ0) := (m, τ)
09 return τ

Vrfy(m, τ)

10 return Vrfy(Kmac, m, τ)

Figure 1: Security games one-time MAC schemes

to define SO security as in [HJKS15]. We consider the SO security against Chosen-Plaintext Attacks
(SO-CPA) and Chosen-Ciphertext Attacks (SO-CCA), respectively.

We note that a non-adaptive variant of SO security has been used in [LLHG18], where an adversary
must declare the opening index set I after receiving the challenge ciphertexts, while our SO security is
adaptive in the sense that Open can be asked adaptively. Intuitively, our adaptive security is harder to
achieve, since an adversary can change its opening queries after seeing the answers of previous ones.

GAME REAL-SO-ATKA
PKE

01 (pk, sk)← KG
02 Ma ← ADec(pk)
03 for i ∈ [µ] :
04 m[i] := mi ←Ma

05 ri
$←R

06 c[i] := Enc(pk, mi; ri)
07 out← AOpen,Dec(c)
08 return Rel(Ma, m, I, out)

Open(i) // i ∈ [µ]

09 I := I ∪ {i}
10 return (mi, ri) // REAL-SO-ATKPKE
11 return mi // IDEAL-SO-ATKPKE

GAME IDEAL-SO-ATKS
PKE

12 Ma ← S
13 for i ∈ [µ] :
14 m[i] := mi ←Ma

15 m′′[i] := |mi|
16 out← SOpen(m′′)
17 return Rel(Ma, m, I, out)

Dec(c) // for c /∈ c
18 if ATK = “CCA”
19 m := Dec(sk, c)
20 return m
21 return ⊥

Figure 2: The SO security games for PKE schemes.

Definition 2.5 (SO security). Let PKE be a PKE scheme with message spaceM and randomness space
R and A be an adversary against PKE. For security parameter λ, µ := µ(λ) > 0 is a polynomially
bounded function. Let Rel be a relation. We consider two games defined in Figure 2, where A is run in
REAL-SO-ATKPKE and a SO simulator S in IDEAL-SO-ATKPKE. Ma is a distribution over M chosen by
A, and A is not allowed to issue Open queries before it outputsMa and receives challenge ciphertexts c.
Messages sampled from Ma may be dependent on each other. Dec is not available in SO-CPA security.

We define the SO-ATK (ATK = ‘CPA’ or ‘CCA’) advantage function

AdvSO-ATK
PKE (A,S, µ,Rel)

:=
∣∣∣Pr

[
REAL-SO-ATKAPKE ⇒ 1

]
− Pr

[
IDEAL-SO-ATKSPKE ⇒ 1

]∣∣∣ ,
PKE is SO-ATK secure if, for every adversary A and every PPT relation Rel, there exists a simulator S
such that AdvSO-ATK

PKE (A,S, µ,Rel) ≤ negl(λ).

(Adaptive) Bi-Selective-Opening Security. In this paper, we also consider a stronger SO security
definition: Bi-SO-ATK [LYHW21]. This security definition considers a multi-user setting and allows
the adversary to corrupt some users (namely, obtains their secret keys) adaptively. The Bi-SO-ATK
definition in [LYHW21] is non-adaptive, that is, the SO adversary is required to tell the game simulator
which users it wants to corrupted and which challenge ciphertexts it wants to open at once. In this paper,
we enhance the security definition to be adaptive. The adversary can adaptively issues Open queries
and Corrupt queries in any order. The enhanced definition is also simulation-based. If A corrupts a

7



GAME REAL-Bi-SO-ATKPKE

01 for j ∈ [p]: (pkj , skj)← KG
02 Ma ← ADec(pk1, ...pkp)
03 for j ∈ [p]:
04 for i ∈ [µ]
05 m[j, i] := mj,i ←Ma

06 rj,i
$←R′

07 c[j, i] := Enc(pk, mj,i; rj,i)
08 out← AOpen,Corrupt,Dec(c)
09 return Rel(Ma, m, J, I, out)

Open(j, i) // for j ∈ [p], i ∈ [µ]

10 I := I ∪ {(j, i)}
11 return (mj,i, rj,i) // REAL-Bi-SO-CPAPKE
12 return mj,i // IDEAL-Bi-SO-CPAPKE

Corrupt(j) // for j ∈ [p]

13 J := J ∪ {j}, mj := ∅
14 for i ∈ [µ] : mj [i] := m[j, i]
15 return (skj , mj) // REAL-Bi-SO-CPAPKE
16 return mj // IDEAL-Bi-SO-CPAPKE

GAME IDEAL-Bi-SO-ATKPKE

17 Ma ← S
18 for j ∈ [p]:
19 for i ∈ [µ]
20 m[j, i] := mj,i ←Ma

21 m′′[j, i] := |mj,i|
22 out← SOpen,Corrupt(st, m′′)
23 return Rel(Ma, m, J, I, out)

Dec(j, c)

24 if ATK = “CCA”
25 if ∃i ∈ [µ] s.t. c = c[j, i]
26 m := ⊥
27 else m := Dec(skj , c)
28 return m
29 return ⊥

Figure 3: The Bi-SO-ATK security game for PKE schemes

user j, then the messages of challenge ciphertexts that encrypted by j are also revealed (see Items 15
and 16).

Definition 2.6 (Bi-SO security). Let PKE be a PKE scheme and A be a Bi-SO adversary against PKE.
For security parameter λ, let µ := µ(λ) and p := p(λ) that are both polynomially bounded. Let Rel be a
relation. We consider two games defined in Figure 3, where A is run in REAL-Bi-SO-ATKPKE and a Bi-SO
simulator S in IDEAL-Bi-SO-ATKPKE. Ma is a distribution over M chosen by A, and A is not allowed
to issue Open or Corrupt queries before it outputsMa and receives challenge ciphertexts c. Messages
sampled from Ma may be dependent on each other. Dec is not available in Bi-SO-CPA security.

We define the Bi-SO-ATK (ATK = ‘CPA’ or ‘CCA’) advantage function

AdvBi-SO-ATK
PKE (A,S, p, µ,Rel)

:=
∣∣∣Pr

[
REAL-Bi-SO-ATKAPKE ⇒ 1

]
− Pr

[
IDEAL-Bi-SO-ATKSPKE ⇒ 1

]∣∣∣ .
PKE is adaptive Bi-SO-ATK secure if, for any adversary A and PPT relation Rel, there exists a simulator
S such that AdvBi-SO-ATK

PKE (A,S, p, µ, λ) = negl(λ).

Security in the quantum random oracle model. The (Bi-)SO security of PKE schemes contain-
ing hash functions can be analyzed in the quantum random oracle model (cf. Section 2.2). If we model
a hash function H as quantum random oracle, then the adversary A has quantum access to H during
the SO security games (e.g., Figure 7).

2.2 Quantum computation
We refer to [NC16] for detailed background about quantum mechanism. Here we only recall some
necessary notations and lemmas.

Pure quantum states can be described by qubits. For a λ-bit-string x, |x⟩ ∈ C2λ denotes the (pure)
quantum state of x encoded in the standard computational basis. Quantum register is used to store
multiple qubits. In this paper, we assume that any polynomially long object x can be encoded as a
(unique) bit string, and if we “store” x in a quantum register X, |x⟩ is the quantum state of this register.
A λ-qubits quantum superposition state |ϕ⟩ can be written as

∑
x∈{0,1}λ αx|x⟩ where

∑
x∈{0,1}λ |αx|2 = 1.

By performing measurement on a quantum state, we obtain classical information about the state,
and the state collapses after measurement. Let |x⟩ be an quantum state, x′ ← Measure(|x⟩) denote the
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process that |x⟩ is measured and the measurement outcome is x′. We assume that all measurement are
performed with respect to the standard computational basis.

Let O : X → Y be an random oracle with sets X ,Y. We implicitly assume that the elements in X
and Y are expressed as bit strings. In quantum random oracle model (QROM)[BDF+11], the oracle O
are described as the unitary transformation UO : |x⟩|y⟩ → |x, y ⊕ O(x)⟩, and the adversary can query
random oracles on quantum states. For an quantum adversary A, the notation A|O⟩ indicates that A
has quantum access to the UO. Without loss of generality, we directly write O to denote the unitary UO.

In this paper, we say an event is classical if it can be determined by only using classical algorithm
(namely, without using any quantum mechanism).

Lemma 2.7 gives a probabilistic bound for adversary (has a quantum access to oracles) to distinguish
h(s, ·) and h′, where s is secret, h and h′ are QRO and have the same image set. When the image is
large enough, the adversary cannot distinguish these two oracles.

Lemma 2.7 (Lemma 2.2 in [SXY18]). Let k be an integer. Let h : X ′ × X → Y and h′ : X → Y be
two independent random oracles. If an unbounded time quantum adversary A that queries h at most qh

times, then we have∣∣∣∣Pr
[
1← A|h⟩,|h(s,·)⟩()

∣∣s $← X ′
]
− Pr

[
1← A|h⟩,|h

′⟩()
]∣∣∣∣ ≤ 2qh/

√
|X ′|

3 Computational adaptive reprogramming in the QROM
We propose a computational adaptive reprogramming framework in the QROM. In Supp. Mat. A, we
will review Unruh’s adaptive O2H lemma [Unr14a] and discuss why our lemma (namely, Lemma 3.1)
cannot be proved by using hybrid arguments of Unruh’s adaptive O2H lemma.

LetA be an adversary that has quantum access toH : X → Y and takes in0 as input and terminates by
outputting outn. During its execution, A outputs some outi and then takes ini+1 as input (0 ≤ i ≤ n−1).
We view A as a (n+ 1)-stage adversary, (A0, ...,An), where Ai takes ini as input and outputs outi. Here
in0, out0, in1, ..., inn, and outn can be arbitrary classical information. In this paper, we consider post-
quantum setting where adversaries have quantum access to hash functions. The classical information
in0, out0, in1, ..., inn, outn capture the interaction between A and the security game simulator, and they
will be specified in a concrete use of our framework.

We write A = (A0, ...,An) to divide A into n+1 stages for better analysis. By writing outi ← Ai(ini)
we mean that at stage i A receives input ini and outputs outi at the end of the stage. The index
indicates the stage number of A. So, all Ai are the same adversary A in different stages, and they
share the quantum registers of A. The same notation (of dividing A into different stages) is also used in
Unruh’s adaptive O2H lemma [Unr14a].

Games NonAda and Ada (as in Figure 4) are used to define our framework. A has quantum access
to H which is either H or Hi. In NonAda, H will never get reprogrammed, while in Ada different stages
of A will have access to different ROs Hi. That is, Ai queries Hi, and according to Ai’s output outi Hi

will be reprogrammed and become Hi+1 (cf. Items 07, 17 and 18). To formalize this, we define three
algorithms INIT, Fs, and Repros in Figure 4 as:

• The initialization algorithm INIT outputs ((s, in0),H,H0) (cf. Items 01 and 11), where s is some
parameter that used in a security reduction, in0 is the initial input to A, and H and H0 are two
random oracles. Here the tuple ((s, in0),H,H0) may have an arbitrary joint distribution.

• Fs takes outi as input and computes (ini+1, in′i+1), where ini+1 is the input to Ai+1 and in′i+1
is the information for reprogramming Hi. Here in′i+1 is used to capture the fact that H can be
reprogrammed according to Ai’s behavior, and the algorithm Repros (described below) will take it
as input. To make our lemma general and useful for a wider class of applications, we only require
that Fs does not have access to random oracles.

• Repros is defined to reprogram H in Ada (cf. Item 17). Repros takes in′i and Hi−1 as input. It
returns a random oracle Hi which is from reprogramming Hi−1. The concrete reprogramming
operation of Repros depends on the concrete use of our framework. Here we only require Repros to
be deterministic.

Let Si be a set such that H\Si = Hi \Si (namely, for all x ∈ X , if x ∈ Si, then H(x) ̸= Hi(x)). A can
only distinguish Ada and NonAda, if it queries a x ∈ Si (where i ∈ {0, ..., n}). Since A’s QRO queries
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GAME NonAdaA

01 ((s, in0), H, H0)← INIT
02 H := H
03 out0 ← A|H⟩

0 (in0)
04 Γ[0] := out0
05 for i = 1 to n:
06 (ini, in′

i)← Fs(outi−1)
07 H := H
08 outi ← A|H⟩

i (ini)
09 Γ[i] := outi

10 return Γ

GAME AdaA

11 ((s, in0), H, H0)← INIT
12 H := H0

13 out0 ← A|H⟩
0 (in0)

14 Γ[0] := out0
15 for i = 1 to n:
16 (ini, in′

i)← Fs(outi−1)
17 Hi := Repros(in′

i, Hi−1)

18 H := Hi

19 outi ← A|H⟩
i (ini)

20 Γ[i] := outi

21 return Γ

Figure 4: Games NonAda and Ada used in Lemma 3.1. The main difference between two games is
highlighted with gray box. In both games, A is divided into n + 1 stages, namely, (A0, ...,An). The
input and output of A in each stage are classical information because we consider post-quantum settings.
The list Γ stores A’s outputs in each stage. Fs is a deterministic algorithm that provides inputs for each
stage of A. Repros is a deterministic algorithm that reprograms QROs. For a concise presentation, we
assume that Ai takes Ai−1’s final state as its initial state. In our framework, H0 can be different to H.

B|H⟩
i (in0): //H is defined as in Ada

01 t∗ $← [qi]
02 for j = 0 to i− 1:
03 outj ← A|H⟩

j (inj)
04 Output outj to Ada
05 Receive inj+1 from Ada

06 Run A|H⟩
i (ini) until it issues t∗-th quantum query to H

07 Let |φ⟩ be the t∗-th quantum query to H
08 x′ ← Measure(|φ⟩)
09 return x′

Figure 5: Algorithm Bi (used in Lemma 3.1) plays Game Ada (where i ∈ [n]). Bi proceeds identically
with (A1, ...,Ai), except that Bi measures the t∗-th QRO query issued by Ai and then outputs the
measurement outcome.

are superposition states, we need to define extractor Bi as in Figure 5 to bound the difference between
NonAda and Ada. This follows the works in [Unr14a, SXY18, KSS+20].

Lemma 3.1 formalizes our framework. Its proof is postponed in Supp. Mat. C.

Lemma 3.1 Let A be an adversary that can be divided into (n+1) stages as in Figure 4 and has quantum
access to random oracle H (= H in NonAda or Hi in Ada). Let Ev be a classical event that may be
raised by A in NonAda or Ada. Suppose that A queries H at most qi times in its i-th stage and at
most q := q0 + · · · qn times in total during the game. Then for all algorithms INIT, Fs, and Repros (as
described earlier), there exists adversaries Bi for i ∈ {0, ..., n} (shown in Figure 5) such that∣∣∣Pr

[
Ev : NonAdaA

]
− Pr

[
Ev : AdaA

]∣∣∣
≤

n∑
k=0

k∑
i=0

2qi Pr
√[

x′ ← BHi s.t. x′ ∈ Si : AdaBi
]
, (2)

where Si is a set such that H\Si = Hi\Si. Such an Si is defined by the operations in Repros. Pr
[
Ev : NonAdaA

]
and Pr

[
Ev : AdaA

]
are the probabilities that A triggers Ev in NonAda and in Ada, respectively.

Discussions on Lemma 3.1. In Ada, reprogramming the RO is captured by algorithm Repros. How the
reprogramming is done will be specified in a concrete use of Lemma 3.1. This is to make our framework
general. The difference between NonAda and Ada is that between H and Hi caused by Repros.
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Concretely, in i-th stage, Repros will define a set Si such that H \Si = Hi \Si. For any k ∈ {0, ..., n},
if A queries H with an x ∈ ∪0≤i≤kSk before the end of its k-th stage, then A can distinguish NonAda
and Ada. To bound this in the quantum setting, our approach is to randomly measure A’s queries to H,
which is captured by Bi (in Figure 5). The advantage of A distinguishing NonAda and Ada is bounded
by the probability that Bi’s output falls into Si.
More Discussions on F and Repro in Figure 4. When defining our framework, we do not make any
requirement on the efficiencies of Fs and Repros. However, when we use this framework to construct
(efficient) reduction, Fs and Repros are required to be efficient (namely, running in quantum probabilistic
polynomial time) and the description of QRO is polynomially bounded [BDF+11, Zha12, KLS18]. For
instance, we can use a 2q-independent hash function [Zha12] and the list of reprogramming points (which
are inputs to the hash and polynomial-bounded) to describe this QRO.
Why our Framework covers the Work of Grilo et al.. By specifying Fs and Repros, we can
describe Grilo et al.’s framework using our framework. In Grilo et al.’s framework [GHHM21], the i-th
output of A is a distribution outi := pi. Fs can be defined as, on input pi, it samples a reprogramming
point (xi, x

′
i) from pi and an independently random yi and outputs (ini+1 := (xi, x

′
i), in′i+1 := (xi, x

′
i, yi))3.

Repros can be defined as, on input in′i+1 := (xi, x
′
i, yi), it reprograms the QRO H := H[(xi, x

′
i) → yi]

and returns the reprogrammed QRO. Their framework implicitly requires that the probability bound for
A to learn xi, x

′
i (before seeing them) is information-theoretic. Namely, pi should have enough entropy.

Some important advantage of our framework, compared with Grilo et al.’s [GHHM21], are as follows:
• Grilo et al.’s framework requires the reprogramming points have high entropy and it is hard to find

them even for unbounded adversary, while our framework does not have such restrictions. If A is
a PPT adversary, our framework provides efficient extractors Bi’s to bound the difference of A in
NonAda and Ada. In our proofs, we need to instantiate INIT,Fs, and Repros efficiently. This
Bi can be used to do a reduction in breaking some computational hard problem, for instance, the
OW-CPA security. However, the Grilo et al.framework cannot be used to do any efficient reduction.

• Our framework allows NonAda and Ada to start from different QROs, while the Grilo et al.framework
starts from the same QRO. Starting from different QROs allows us to consider more complicated
cases of adaptive reprogramming. All security proofs in this paper are examples for this, and for
SO and Bi-SO security we require this.

• Our framework also supports delayed analysis. In some complicated proofs, the difference between
non-reprogramming and reprogramming games cannot be immediately bounded, and we may need
extra game sequences to postpone such a bound. Our framework supports delayed analysis, since
we can use extra game sequences to bound the winning probability of Bi (i.e. Bi outputs x ∈ Si).
In particular, our tightly-secure SO-CCA PKE scheme in Section 5 requires delayed analysis.

4 Selective Opening Security of Fujisaki-Okamoto’s PKE in the
QROM

We prove the selective-opening (SO) security of two Fujisaki-Okamoto(FO)-style PKE schemes in the
QROM. As a warm-up, our first scheme is SO secure against chosen-plaintext attacks (SO-CPA), and the
scheme follows the idea of hybrid encryption. It offers a simple example about how to use our framework.
Our second scheme is SO secure against chosen-ciphertext attacks (SO-CCA). It is the same scheme as
in [SS19, Section 3.2], but our proof is showing adaptive SO-CCA security, while the original proof in
[SS19] has a subtle gap and the gap still exists even if we consider the non-adaptive security notion (cf.
discussion in Introduction).

In both schemes, let PKE := (KG0,Enc0,Dec0) be a (1− δ)-correct PKE scheme with message space
M′, ciphertext space C′, and randomness space R′. Let G :M′ →R′ be a hash function.

4.1 Selective Opening Security against Chosen-Plaintext Attacks
Let H : R′ ×C′ →M be a hash function. Our first PKE scheme wPKE = (wKG,wEnc,wDec) (where ‘w’
stands for weak) with message space M and is defined as in Figure 6. Theorem 4.1 states that wPKE is
adaptive SO-CPA secure when modeling G and H as QROs.

3The randomness for sampling can be included in s, since it is captured by the game simulator.
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wKG
01 (pk, sk)← KG0
02 return (pk, sk)

wEnc(pk, m ∈M)
03 r $←M′

04 e := Enc0(pk, r; G(r))
05 K := H(r, e)
06 d := K ⊕m
07 return (e, d)

wDec(sk, (e, d))
08 r′ := Dec0(sk, e)
09 K := H(r′, e)
10 m := K ⊕ d
11 return m

Figure 6: A SO-CPA secure PKE scheme wPKE = (wKG,wEnc,wDec)

Game G0-G3
01 (pk, sk)← KG0
02 Ma ← A|G×H⟩(pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma, ri

$←R′

05 Ri := G(ri)
06 Ri

$←R′ // G2-G3
07 ei := Enc0(pk, ri; Ri)
08 Ki := H(ri, ei) // G1
09 Ki

$←M // G2
10 di := Ki ⊕mi // G1-G2
11 di

$←M\{d1, ..., di−1} // G3
12 c[i] := (ei, di)
13 if ∃i ̸= j s.t. Ki = Kj

14 abort // G1-G2
15 out← AOpen,|G×H⟩(c)
16 return Rel(Ma, m, I, out)

Open(i)

17 I := I ∪ {i}
18 return (mi, ri)

H(r, e)

19 if ∃i ∈ I s.t. (r, e) = (ri, ei) // G2-G3
20 return Ki // G2
21 return di ⊕mi // G3
22 return h(r, e)

G(r)

23 if ∃i ∈ I s.t. r = ri // G2-G3
24 return Ri // G2-G3
25 return g(r)

Figure 7: Games G0-G3 for proving Theorem 4.1.

Theorem 4.1 If PKE is OW-CPA secure, then wPKE in Figure 6 is adaptive SO-CPA secure (Def-
inition 2.5). Concretely, for security parameter λ and µ := µ(λ) (polynomially bounded), for any
SO-CPA adversary A and relation Rel, there exist a simulator S and an adversary Bow such that
T(S) ≈ T(A) ≈ T(Bow) and

AdvSO-CPA
wPKE (A,S, µ,Rel) ≤ 2(nOp + 1)2q

√
2µAdvOW-CPA

PKE (Bow) + µ2

|M|
+ µ2

|M′|
+ 2µq√

|R′|
,

where µ, qG, qH , and nOp are the maximum numbers of A’s challenge ciphertexts, A’s queries to G,H,
and Open, respectively. q = qG + qH .

Proof. Let h : R′ × C′ →M and g :M′ → R′ be two internal quantum-accessible random oracles that
are used to respond queries to H and G, respectively. Following the convention in [KLS18, SXY18], in
our proof we simulate H and G using two internal quantum-accessible random oracles h : R′ × C′ →M
and g :M′ →R′, respectively.

Our proof consists a sequence of games defined in Figure 7. We will use our framework in Section 3
to finish the proof. To fit into the syntax of our framework, we combine G and H as one random oracle
G × H such that G × H(r′, r, e) := (G(r′),H(r, e)). If A only queries G(r′), we view it as querying
G×H(r′, r, e) for some dummy (r, e) and ignoring H(r, e) in the response. A can query G×H at most
q = qH + qG times. This was also used in [JZC+18]. G0 is equivalent to REAL-SO-CPAwPKE, thus

Pr
[
REAL-SO-CPAAwPKE ⇒ 1

]
= Pr

[
GA0 ⇒ 1

]
Game G1: If in the challenge ciphertexts there exist Ki and Kj for i ̸= j such that Ki = Kj , then

we abort the game. Such Ki and Kj collide only if ri and rj collide or H(ri, ei) and H(rj , ej) collide
with different ri and rj . By birthday bounds, and we have

∣∣Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ µ2

|M|
+ µ2

|M′|
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Game G′
1-G′

2

01 ((s, in0), H, H0)← INIT
02 Initialize A1,0 with

the final state of A0 in INIT
03 H := H // G′

1
04 H := H0 // G′

2

05 out0 ← A|H⟩
1,0 (in0)

06 Γ[0] := out0
07 for i = 1 to nOp:
08 (ini, in′

i) := Fs(outi−1)
09 Hi := Repros(in′

i, Hi−1) // G′
2

10 H := Hi // G′
2

11 outi ← A|H⟩
1,i (ini)

12 Γ[i] := outi

13 return Rel(Ma, m, I, Γ[nOp])

Fs(out)
14 parse i := out
15 parse (Ma, m, r, R, c) := s
16 I := I ∪ {i}
17 ri := r[i], mi := m[i], (ei, di) := c[i]
18 in := (mi, ri), in′ := (mi, ri, ei, di)
19 return (in, in′)

Repros(in′, (G×H))

20 parse (m, r, e, d) := in′

21 G′ := G[r → R]
22 H ′ := H[(r, e)→ d⊕m]

// Namely, we set H(ri, ei) := Ki

// and denote the new oracle as H ′

23 return G′ ×H ′

INIT

24 I := ∅
25 (pk, sk)← KG0

26 Ma ← A|g×h⟩
0 (pk)

27 Let g′ and h′ be internal QROs.
28 for i ∈ [µ]:
29 m[i] := mi ←Ma, r[i] := ri

$←M′

30 Ri := g(ri), R[i] := Ri

31 ei := Enc0(pk, ri; Ri)
32 Ki := h(ri, ei), di := Ki ⊕mi // By G1, all Ki’s are different.
33 c[i] := (ei, di)
34 s := (Ma, m, r, R, c), in0 := c
35 S0 := {ri}i∈[µ] × {(ri, ei)}i∈[µ]
36 G := g, H := h

37 Let G0 ×H0 be a QRO such that G0 ×H0(x) :=
{

g × h(x), (x /∈ S0)
g′ × h′(x), (else)

// Namely, (G0 ×H0)\S0 = (G×H)\S0
38 return ((s, in0), (G×H), (G0 ×H0))

Figure 8: Constructions of INIT,Fs, and Repros and games G′1 and G′2. G′ := G[ri → Ri] (similarly,
H ′ := H[(ri, ei) → Ki]) means that we set G′(ri) := Ri and G′(r) := G(r) for r ̸= ri. Oracles
g, g′ : M′ → R′, and h, h′ : R′ × C′ → M are four independent internal quantum-accessible random
oracles.

Game G2: Ri and Ki in the challenge ciphertexts are chosen randomly, instead of using G and H.
If A queries Open(i), then we reprogram G and H such that G(ri) := Ri and H(ri, ei) := Ki.

In the following, we use Lemma 3.1 to bound the difference between G1 and G2. In G2, A’s Open
queries will make QRO G × H reprogrammed, while in G1, QRO G × H does not get reprogrammed.
So, we can view G1 and G2 as concrete cases of NonAda and Ada, respectively. For simplicity, we
denote A := (A0, (A1,0, ...,A1,nOp

)), where A0 is the initial stage of A and cannot query Open, and
(A1,0, ...,A1,nOp

) is the stage that A receives the challenge ciphertexts c and can query Open. Let
A1 := (A1,0, ...,A1,nOp

). A1’s initial state is the final state of A0. A1,k is defined with respect to Open
queries:

• Before any Open query (i.e., at the 0-th stage), A1,0 takes in0 := c as input and outputs the first
opening index out0 := (i1).

• At k-th stage (1 ≤ k ≤ nOp− 1), A1,k receives ink = (mik
, rik

) as the result of the (k− 1)-th Open
query and finishes the stage by outputting the (k + 1)-th opening index outk := (ik+1)

• Finally, at the nOp stage, A1,nOp
receives innOp

= (minOp
, rinOp

) and terminates by outputting
outnOp

= out (the final output of SO adversary).
To formally show why G1 and G2 are concrete cases of NonAda and Ada, respectively, in Figure 8,

we define INIT, Fs, Repros, G′1 and G′2. Games G′1 and G′2 are only defined to show how our proof
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follows the syntax of our framework. They have the same forms as NonAda and Ada.
Now we argue that G1 and G2 are concrete cases of NonAda and Ada, respectively. Namely, G1

and G2 in Figure 7 are equivalent to G′1 and G′2 in Figure 8, respectively. Firstly, algorithm INIT in
Figure 8 run the codes from Item 01 to Item 12 in Figure 7. Since in A0’s view, G1 is the same as G2
(it does not see any challenge ciphertexts), the distribution of Ma and m in G1 is the same as the one
in G2, and thus the output of INIT and the final state of A0 in INIT in G′1 are the same as those in G′2.
Secondly, Fs simulates the Open oracle and Repros simulates the reprogramming operations on G and
H. In G′1, G and H will not be reprogrammed, but in G′2, G and H will be reprogrammed, according
to A’s output. This is the same as in G2.

Moreover, when running A1,k, our Repros defines a set

Sk := {(r, (r′, e′)) | ∃i ∈ [µ]\Ik s.t. r = ri or (r′, e′) = (ri, ei)} (3)

where Ik := {i1, ..., ik} is the opening index set I in A1’s k-th stage. Answers of G ×H on Sk are only
different in G1 (i.e., NonAda) and G2 (i.e., Ada). For k = 0, S0 is defined at line 35 and I0 = ∅.

Now we consider the probability that Rel(Ma,m, I, out) = 1. I and out are determined by A1. Ma

is output by A0, and m is determined by Ma. Since in A0’s view, G1 is the same as G2 (since it does
not see challenge ciphertexts), thus the distribution of Ma and m in G1 is the same as the one in G2.
Therefore, the probability difference between the classical event that Rel(Ma,m, I, out) = 1 in G1 and
the similar event in G2, is determined by the probability difference between the event that A1 outputs
a particular (I, out) (i.e., Γ in Figure 8) in G1 and the similar event in G2. Therefore, we have∣∣Pr

[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣≤ ∣∣∣Pr
[
G′A1

1 ⇒ 1
]
− Pr

[
G′A1

2 ⇒ 1
]∣∣∣ + 2µq√

|R′|
(4)

This bound includes a term 2µq√
|R′|

, since A0 also has quantum access to |G ×H⟩, and this term is the
probability that the first stage (i.e., A1,0) of A1 learns ri before seeing challenge ciphertexts. Such
probability is only information-theoretic.

We now use Lemma 3.1 to bound Equation (4). Since G′1 is a NonAda game and G′2 is an Ada
game, by Lemma 3.1, there exist adversaries Bi (0 ≤ i ≤ nOp), which take in0 = c as its input and output
x ∈ Sk where the set Si is defined in (3), such that

∣∣∣Pr
[
G′A1

1 ⇒ 1
]
− Pr

[
G′A1

2 ⇒ 1
]∣∣∣ ≤ nOp∑

k=0

k∑
i=0

2qi

√
Pr

[
x← Bi s.t. x ∈ Si : G′Bi

2

]
(5)

Here Bi proceeds the same as (A1,0, ...,A1,i) except that it randomly measures a QRO query issued by
A1,i. Moreover, since A1,0’s initial state is the final state of A0, Bi starts with state of A0 (cf. Item 07).

Based on Bi, we construct an adversary Bow
i (in Figure 9) to breaks OW-CPA security of PKE. By

the construction of Bow
i , if A1 does not open t∗, and r or r′ equals the solution of e∗, then Bow

i wins. So
the winning probability for Bow

i to breaks the OW-CPA challenge is:

AdvOW-CPA
PKE (Bow

i ) = 1
2
µ− nOp

µ

1
µ− nOp

Pr [x← Bi s.t. x ∈ Si] ,

and thus we have
Pr

[
x← Bi s.t. x ∈ Si : G′Bi

2

]
≤ 2µAdvOW-CPA

PKE (Bow
i ) (6)

Let Bow be the adversary that has highest advantage against PKE among {Bow
i }i∈{0,...,n}. Then

equation (6) can be written as:

Pr
[
x← Bi s.t. x ∈ Si : G′Bi

2

]
≤ 2µAdvOW-CPA

PKE (Bow), for ∀i ∈ [µ] (7)

By combining Equations (4) to (7), we have

∣∣Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣ ≤ 2(nOp + 1)2q

√
2µAdvOW-CPA

PKE (Bow) + 2µq√
|R′|

14



Bow
i (pk∗, e∗) // (pk∗, e∗) is a OW-CPA challenge of PKE

01 I := ∅
02 ((s, in0), (G×H), (G0 ×H0))← INIT // INIT is defined in Figure 8 and

// it uses pk∗ instead of KG0
03 parse (Ma, m, r, R, c) := s
04 parse c := in0
05 t∗ $← [µ], (et∗ , dt∗ ) := c[t∗]
06 c[t∗] := ( e∗ , dt∗ ), in0 := c // embed the challenge
07 Initialize Bi with A0’s final state in INIT.
08 if i = 0: goto line 18
09 out0 ← B|G0×H0⟩

i (in0)
10 if out0 = t∗: abort
11 (in1, in′

1) := Fs(out0) // Fs is defined in Figure 8
12 (G1 ×H1) := Repros(in′

1, (G0 ×H0)) // Repros is defined in Figure 8
13 for j = 1 to i− 1:
14 outj ← B

|Gj ×Hj ⟩
i (inj)

15 if outj = t∗: abort
16 (inj+1, in′

j+1) := Fs(outj)
17 (Gj+1 ×Hj+1) := Repros(in′

j+1, (Gj ×Hj))
18 (r′

0, (r′
1, e′))← B|Gi×Hi⟩

i (ini) // perform measurement
19 b $← {0, 1}, r∗ := r′

b // randomly choose a solution
20 return r∗

Figure 9: The constructions of OW-CPA adversaries Bow
i for i ∈ {0, ..., nOp}. Bow

i simulates G′2 (which
is a concrete case of Ada in Figure 4) for Bi to break PKE. F and Repro are defined as in Figure 8.

Game G3: We change the generation of Ki and di. Now we firstly sample di uniformly at random,
and replace all Ki as di ⊕ mi. This change is conceptual since in G2, all Ki are independently and
uniformly random. In G1, we excluded any collision of Ki, so, in G3, it is equivalent to sample di in a
collision-free way. Therefore, we have

Pr
[
GA2 ⇒ 1

]
= Pr

[
GA3 ⇒ 1

]
Construction of SO simulator. We construct a SO simulator S that is simulating G3 for A and
interacts with the IDEAL-SO-CPASwPKE game. The simulation process is shown in Figure 10. Obviously,
S can perfectly simulates G3. So, we have

Pr[GA3 ⇒ 1] = Pr[IDEAL-SO-CPASwPKE ⇒ 1]

In conclusion, for any SO-CPA adversary A, there exists efficient simulator S such that∣∣ Pr[REAL-SO-CPAAwPKE ⇒ 1]− Pr[IDEAL-SO-CPASwPKE ⇒ 1]
∣∣

≤ 2(nOp + 1)2q

√
2µAdvOW-CPA

PKE (Bow) + µ2

|M|
+ µ2

|M′|
+ 2µq√

|R′|
.

4.2 Selective Opening Security against Chosen-Ciphertext Attacks
Let MAC = (Tag,Vrfy) be a MAC scheme with key space Kmac, and let H : R′×C′ →M×Kmac be a hash
function, where C is the ciphertext space of PKE. The second PKE scheme sPKE = (sKG, sEnc, sDec)
(Figure 11) is a combination of a modular Fujisaki-Okamoto’s transformation FO⊥̸ [PKE, G,H] [JZC+18,
HHK17], one-time pad, and the one-time MAC scheme MAC. It has similar structure with the scheme
in [HJKS15, SS19].

This scheme is adaptive SO-CCA secure when modeling G and H as QROs, as stated in Theorem 4.2.
The main difference between the proof of Theorem 4.2 and the one of Theorem 4.1 is that the simulator
needs to simulate the decryption oracle for the adversary. We use the encrypt-then-hash technique
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SOpen′

01 Chooses QROs g, h at random
02 I = ∅
03 (pk, sk)← wKG
04 Ma ← A(pk)
05 Outputs Ma and receives m′′

06 for i ∈ [µ]
07 ri

$←M′, Ri
$←R′

08 ei := Enc0(pk, ri; Ri)
09 di

$←M\{d1, ..., di−1}
10 c[i] := (ei, di)
11 out← AOpen,|G×H⟩(c)
12 return out

Open(i)

13 I := I ∪ {i}
14 Queries Open′ on i and receives mi

15 return (mi, ri)

H(r, e)

16 if ∃i ∈ I s.t. (r, e) = (ri, ei)
17 return di ⊕mi

18 return h(r, e)

G(r)

19 if ∃i ∈ I s.t. r = ri

20 return Ri

21 return g(r)

Figure 10: The simulator S of the proof of Theorem 4.1.

sKG
01 (pk, sk)← KG0
02 k $←M′

03 pk′ := pk
04 sk′ := (sk, k)
05 return (pk′, sk′)

sEnc(pk, m ∈M)
06 r $←M′

07 e := Enc0(pk, r; G(r))
08 (K, Kmac) := H(r, e)
09 d := K ⊕m
10 τ := Tag(Kmac, d)
11 return (e, d, τ)

sDec((sk, k), (e, d, τ))
12 r′ := Dec0(sk, e)
13 if r′ = ⊥
14 or e ̸= Enc0(pk, r′; G(r′))
15 (K, Kmac) := H(k, e)
16 else (K, Kmac) := H(r′, e)
17 if Vrfy(Kmac, τ) = 1
18 m := K ⊕ d
19 else m := ⊥
20 return m

Figure 11: A SO-CCA secure PKE scheme sPKE = (sKG, sEnc, sDec)

(widely used in CCA proof of PKE [JZC+18, KSS+20, SXY18]) to simulate decryption oracle without
using the secret key and add a MAC verification in the decryption so that the adversary cannot forge
valid MAC codes for any unopened cipheretext. The proof of Theorem 4.2 is given in Supp. Mat. F.

Theorem 4.2 If PKE is OW-CPA secure and δ-correct, and MAC is otSUF-CMA secure, then the
PKE scheme sPKE in Figure 11 is adaptive SO-CCA secure (Definition 2.5). Concretely, for security
parameter λ and integer µ := µ(λ) (polynomially bounded) for any SO-CCA adversary A and relation
Rel, there exist a simulator S and adversaries Bow and F such that T(S) ≈ T(A) ≈ T(Bow) ≈ T(F)
and

AdvSO-CCA
sPKE (A,S, µ,Rel)

≤ 3µAdvotSUF-CMA
MAC (F) + 6(nOp + 1)2q

√
2µAdvOW-CPA

PKE (Bow) + µAdvotSUF-CMA
MAC (F)

+ 2qH√
2k

+ 16(µ+ nDec + q + 1)2δ + µ2

|M|
+ µ2

|Kmac|
+ 6µq√

|R′|
+ µnDec

|C′| − nDec
+ (2 + µ)q√

|M′|

where µ, qG, qH , nOp, and nDec are the maximum numbers of A’s challenge ciphertexts, A’s queries to
G,H,Open, and Dec, respectively. q = qG + qH .

5 Tight SO-CCA Security from Lossy Encryption
In this section, we show that if the underlying PKE is a lossy encryption [BHY09, HJR16], then the
construction in Figure 11 is tightly SO-CCA secure. We recall the notion of lossy encryption from
[HJR16].

Definition 5.1 (Lossy Encryption [HJR16]). Let PKE1 := (KG1,Enc1,Dec1) be a PKE scheme with
message space M′ and randomness space R′. PKE1 is lossy if it has the following properties:
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• PKE1 is correct according to Definition 2.1.

• Key indistinguishability: We say PKE1 has key indistinguishability if there is an algorithm LKG1
such that, for any adversary B, the advantage function

Advind-key
PKE1

(B) := |Pr [B(pk1)⇒ 1]− Pr [B(lpk1)⇒ 1] |

is negligible, where (pk1, sk1)← KG1 and (lpk1, lsk1)← LKG1.

• Lossiness: Let (lpk1, lsk1)← LKG1 and m,m′ be arbitrary messages inM′, the statistical distance
between Enc1(lpk1,m) and Enc1(lpk1,m

′) is negligible.

• Weak Openability: Let (lpk1, lsk1) ← KG1, m and m′ be arbitrary messages, and r be arbitrary
randomness. For ciphertext c := Enc1(lpk1,m; r), there exists an algorithm open1 such that
open1(lsk1, lpk1, c, r,m

′) outputs r′ where c = Enc1(lpk1,m
′; r′) and r′ is distributed uniformly.

open1 can be inefficient.

The lossiness definition can be extended to a multi-challenge version using a hybrid argument. Since
it is only a statistical property, the hybrid argument will not affect tightness of the computational
advantage.

Definition 5.2 (Multi-Challenge Lossiness). Let (lpk1, lsk1) ← LKG1, µ be the number of challenge,
and m1,m

′
1, ...,mµ,m

′
µ be arbitrary messages in M′. Multi-challenge Lossiness requires that statistical

distance between {Enc1(lpk1,mi)}i∈[µ] and {Enc1(lpk1,m
′
i)}i∈[µ] is negligible. We write the distance as

ϵm-ind-enc
PKE1

.

5.1 Construction
Let PKE1 = (KG1,Enc1,Dec1) be a lossy encryption with message space M′, randomness space R′,
ciphertext space C′, and an opening algorithm open1. Let MAC = (Tag,Vrfy) be a MAC scheme with
key space Kmac, and G : M′ → R′,H : R′ × C′ → M×Kmac be two hash functions. Our PKE scheme
sPKE = (sKG, sEnc, sDec) is defined in Figure 12, which has the same structure with the scheme in
Figure 11.

sKG
01 (pk1, sk1)← KG1
02 k $←M′
03 pk := pk1
04 sk := (sk1, k)
05 return (pk, sk)

sEnc(pk = pk1,m ∈M)
06 r $←M′
07 e := Enc1(pk1, r;G(r))
08 (K,Kmac) := H(r, e)
09 d := K ⊕m
10 τ ← Tag(Kmac, (e, d))
11 return (e, d, τ)

sDec((sk1, k), (e, d, τ))
12 r′ := Dec1(sk1, e)
13 if r′ = ⊥

or e ̸= Enc1(pk1, r
′;G(r′))

14 (K,Kmac) := H(k, e)
15 else (K,Kmac) := H(r′, e)
16 if Vrfy(Kmac, (e, d), τ) = 1
17 m := K ⊕ d
18 else m := ⊥
19 return m

Figure 12: A PKE scheme sPKE = (sKG, sEnc, sDec) based on lossy encryption PKE1.

Theorem 5.3 shows that sPKE is tightly SO-CCA secure when modeling G and H as QROs. Al-
though there is a loss µ to the otSUF-CMA security of the underlying MAC, if one can use a perfectly
otSUF-CMA secure MAC (e.g., the efficient one implicitly in [KPW15]), it will not affect the security
loss of sPKE and thus sPKE is tight.

Theorem 5.3 If PKE1 is a lossy encryption scheme and (1−δ)-correct, and MAC is otSUF-CMA secure,
then the PKE scheme sPKE in Figure 12 is adaptive SO-CCA secure (Definition 2.5). Concretely, for
security parameter λ and integer µ := µ(λ) (which is polynomially bounded) for any SO-CCA adversary
A and relation Rel, there exist a simulator S and an adversary F with T(S) ≈ T(A), T(F) ≈ T(A),
and

AdvSO-CCA
sPKE (A,S, µ,Rel)
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≤ Advind-key
PKE1

(A) + 3µAdvotSUF-CMA
MAC (F)

+ 6(nOp + 1)2q

√
ϵm-ind-enc

PKE1
+ µq

|M′|
+ 16(µ+ nDec + q + 1)2δ

+ (2 + µ)q√
|M′|

+ 6µq√
|R′|

+ µ2

|M′|
+ µ2

R′
+ µ2

|Kmac|
+ µnDec

|C′ − nDec|
+ µ2

|M|

where µ, qG, qH , nOp, and nDec are the maximum numbers of A’s challenge ciphertexts, A’s queries to
G,H,Open, and Dec, respectively. q = qG + qH .

The proof of Theorem 5.3 is given in Supp. Mat. D. Roughly, we firstly use the encrypt-then-
hash technique [JZC+18, KSS+20, SXY18] to change security games so that the simulator can simulate
decryption oracle without using secret key. Then, we switch the public key of PKE1 to the lossy mode. By
the key indistinguishability of PKE1, the adversary cannot detect such modification, and the simulation
of decryption oracle still works. However, we cannot use the lossiness of PKE1 now, since there are
several correlations between challenge ciphertexts and the QROs. Therefore, at the end of the proof,
we use our adaptive reprogramming framework in Section 3 and delayed analysis to derelate QROs and
challenge ciphertexts, and argue that the adversary cannot learn any information of unopened challenge
ciphertexts.
Instantiation from LWE. The Regev encryption scheme as defined in [GPV08] is essentially a lossy
encryption, and we can use it to instantiate our generic construction in Figure 12. For completeness, we
describe the lossy encryption in Supp. Mat. E. Our resulting SO-CCA secure PKE is unfortunately only
almost tight, since the LWE-based lossy encryption loses a factor depending on the security parameter.

6 Bi-SO security in the QROM
In this section, we show that two PKE schemes are Bi-SO-CCA secure in the QROM. The first scheme
is based on a modular FO transformation FO⊥̸ [JZC+18, HHK17] (Section 6.1). The second scheme is
based on another modular FO transformation U⊥̸m [HHK17] (Section 6.2).

6.1 Bi-SO Security of FO̸⊥

We show that a multi-user version of sPKE (Figure 11) is Bi-SO-CCA-secure in the QROM. Using the
same building blocks PKE = (KG0,Enc0,Dec0) and MAC as sPKE, we propose sPKEbi (in Figure 13). This
scheme can be viewed as a combination of a modular FO transformation FO⊥̸ [PKE, G,H] in [JZC+18,
HHK17], one-time pad, and the a MAC scheme MAC. Moreover, in sPKEbi, each user includes its public
key as an input to the hash functions G,H,H ′.

Theorem 6.1 shows that sPKEbi is Bi-SO-CCA secure when modeling G and H as QROs. The proof
of Theorem 6.1 is more complicated than the proofs of Theorem 4.2, since we also need to simulate
Corrupt oracle. But the proof idea is similar: we change the games so that the game simulator can
use the encrypt-then-hash technique to simulate Dec (as we did in the proof of Theorem 4.2). To use
our framework, we divide A1 with respect to Corrupt and Dec, since the operations of Corrupt also
reprograms G×H. The proof of Theorem 6.1 is given in Supp. Mat. G.

Theorem 6.1 If PKE is OW-CPA secure, then the PKE scheme sPKEbi in Figure 13 is adaptive
Bi-SO-CCA secure (Definition 2.6). Concretely, for any Bi-SO-CCA adversary A and relation Rel,
there exist a simulator S and adversaries Bow and F such that T(S) ≈ T(A) ≈ T(Bow) ≈ T(F) and

AdvBi-SO-CCA
sPKEbi

(A,S, p, µ,Rel)

≤ 6(nCo + nOp + 1)2q

√
2pµAdvOW-CPA

PKE (Bow) + pµAdvotSUF-CMA
MAC (F) + pηKG0

+ 3pµAdvotSUF-CMA
MAC (F) + pµnDec

|C′| − nDec
+ p2µ2 + p2

|M′|
+ p2µ2

R′
+ p2µ2

|M|
+ p2µ2

|Kmac|

+ 6pµq√
|R′|

+ 16p(µ+ nDec + q + qH′ + 1)2δ +
2(nCo + 1)2√pqH′ + 2pqH′ + pµq√

|M′|
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sKGbi

01 (pk, sk)← KG0
02 k $←M′

03 pk′ := pk
04 sk′ := (pk, sk, k)
05 return (pk′, sk′)

sEncbi(pk, m ∈M)
06 r $←M′

07 e := Enc0(pk, r; G(pk, r))
08 (K, Kmac) := H(pk, r, e)
09 d := K ⊕m
10 τ ← Tag(Kmac, d)
11 return (e, d, τ)

sDecbi((pk, sk, k), (e, d, τ))
12 r′ := Dec0(sk, e)
13 if r′ = ⊥
14 or e ̸= Enc0(pk, r′; G(pk, r′))
15 (K, Kmac) := H ′(pk, k, e)
16 else (K, Kmac) := H(pk, r′, e)
17 if Vrfy(Kmac, τ) = 1
18 m := K ⊕ d
19 else m := ⊥
20 return m

Figure 13: A Bi-SO-CCA secure PKE scheme sPKEbi = (sKG, sEnc, sDec)

where p, µ, qG, qH , qH′ , nOp, nCo, and nDec are the number of user in the games, the maximal number
of challenge ciphertexts per users, A’s queries to G,H,H ′,Open, Corrupt, and Dec, respectively.
q = qG + qH .

6.2 Bi-SO security of U̸⊥m
Let PKE = (KG0,Enc0,Dec0) be a deterministic PKE scheme with public space PK′, plaintext spaceM′,
ciphertext space C′, and plaintext distribution DM′ . Lett MAC be a one-time MAC as in sPKEbi. Let
H,H ′ : PK′ × C′ →M×Kmac be two hash functions. We define sPKEm

bi as in Figure 14. sPKEm
bi can be

viewed as a combination of U⊥̸m [HHK17], one-time pad and one-time MAC. Similar to sPKEbi, each user
includes its public key into the input of hash functions.

sKGm
bi

01 (pk, sk)← KG0
02 k $←M′

03 pk′ := pk
04 sk′ := (pk, sk, k)
05 return (pk′, sk′)

sEncm
bi(pk, m ∈M)

06 r ← DM′

07 e := Enc0(pk, r)
08 (K, Kmac) := H(pk, r)
09 d := K ⊕m
10 τ ← Tag(Kmac, d)
11 return (e, d, τ)

sDecm
bi((pk, sk, k), (e, d, τ))

12 r′ = Dec0(sk, e)
13 if r′ = ⊥
14 (K, Kmac) := H ′(pk, k, e)
15 else (K, Kmac) := H(pk, r′)
16 if Vrfy(Kmac, τ) = 1
17 m = K ⊕ d
18 else m = ⊥
19 return m

Figure 14: A Bi-SO-CCA secure PKE scheme sPKEm
bi = (sKGm

bi, sEncm
bi, sDecm

bi)

Here we consider a variant of OW-CPA security: DM′ -OW-CPA security, namely, OW-CPA security
with challenge messages chosen following DM′ . The definition of DM′ -OW-CPA is given in Definition H.1.
Moreover, we require that PKE is rigid correct [BP18], namely, for all (pk, sk) generated from KG0,
ciphertext e, and plaintext r, (e = Enc0(pk, r)) if and only if (Dec0(sk, e) = r). Theorem 6.2 shows that
sPKEm

bi is Bi-SO-CCA secure when modeling G and H as QROs. The proof of Theorem 6.2 is similar to
Theorem 6.1, and is given in Supp. Mat. H.

Theorem 6.2 Let PKE be a deterministic PKE with perfect correctness and rigidity. If PKE is DM′-
OW-CPA secure, then the PKE scheme sPKEm

bi in Figure 14 is adaptive Bi-SO-CCA secure (Defini-
tion 2.6). Concretely, for any Bi-SO-CCA adversary A and relation Rel, there exist a simulator S and
adversaries Bow and F such that T(S) ≈ T(A) ≈ T(Bow) ≈ T(F) and

AdvBi-SO-CCA
sPKEbi

(A,S, p, µ,Rel)

≤ 6(nCo + nOp + 1)2q
√

2pµAdvOW-CPA
PKE,DM′ (Bow) + pµAdvotSUF-CMA

MAC (F)

+ 3pµAdvotSUF-CMA
MAC (F) + 6pµq

2ϵDM′
+ pµnDec

|C′| − nDec
+ p2µ2 + p2

|M′|
+ p2µ2

|M|

+ pηKG0 + p2µ2

|Kmac|
+

2(nCo + 1)2√pqH′ + 2pqH′ + pµq√
|M′|
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where p, µ, qH , qH′ , nOp, nCo, and nDec are the maximum numbers of user in the games and A’s chal-
lenge ciphertexts per users, A’s queries to H,H ′,Open, Corrupt, and Dec, respectively. ϵDM′ is the
minimum entropy of DM′ .
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Supporting Material

A Review of Adaptive One-way-to-hiding
Let HF := {{0, 1}∗ → {0, 1}n} be a set containing all functions that have {0, 1}∗ as domain and {0, 1}n

as codomain. Let A = (A0,A1) be an adversary that has quantum access to a QRO H and queries it at
most q0 + q1 times. Unruh’s adaptive OW2H lemma [Unr14a, Lemma 15] can be described as follows:
let

PA0 := Pr
[
b′ = 1 : H $← HF ,m← AH0 (), x $← {0, 1}l, b′ ← AH1 (x,H(x||m))

]
PA1 := Pr

[
b′ = 1 : H $← HF ,m← AH0 (), x $← {0, 1}l,

B $← {0, 1}n, b′ ← AH1 (x,B)
]

PC := Pr
[
(x′||m′) = (x||m) : H $← HF ,m← AH0 (), x $← {0, 1}l,

B $← {0, 1}n, j $← [q0], x′||m′ $← CH(j, x,B)
]

where q0, q1 are the numbers of time A0,A1 queries H respectively. C is an algorithm that has quantum
access to H and on input (j, B, x), runs AH1 (x,B) until its j-th query, measures the QRO query in the
computational basis, output the measurement outcome. Then∣∣PA0 − PA1 ∣∣ ≤ 2q1

√
PC + q02−l/2+2

The bound given in this adaptive OW2H lemma includes two parts: the first part is roughly the
search bound of quantum adversaries to find a uniformly random x given H(x||m) (i.e., q02−l/2+2), and
the second part is the advantage of A1 to distinguish two QROs: H(x||m)→B and H, where H(x||m)→B is
the same as H except that H(x||m)→B(x||m) = B. Note that this advantage is described by the extracting
algorithm C.

Unruh’s adaptive OW2H lemma cannot be used to prove the bound of our reprogramming framework
Figure 4 via hybrid arguments. This is because:

• The initial oracles of Ada and NonAda in our framework are not necessarily the same. In this
case, our framework considers a stronger QROM adaptive reprogramming setting than the adaptive
OW2H (and the adaptive reprogramming framework in [GHHM21]).

• Even if the initial oracles are the same, in our framework, sets Si may not independent to each
other, and thus each intermediate hybrid games in the hybrid argument may not independent.
This makes it hard to modify the adaptive OW2H lemma to fit in our framework and use hybrid
argument. More details will be given in Remark C.1.

B More Background about Quantum Computation

Trace Distance. Trace distance (TD) is used to measure how “close” two quantum states are, infor-
mally, the distance between the distributions of their measurement outcome. For pure states |x1⟩, |x2⟩,
TD[|x1⟩, |x2⟩] = TD[|x1⟩⟨x1|, |x2⟩⟨x2|]. Following [NC16], if {αi}i (e.g., the distribution of some random
variable α that Pr[α = i] = αi) and {α′i}i are two distributions with the same index set, then we write
TD[{αi}i, {α′i}i] as the L1-distance of the two distributions:

TD [{αi}i, {α′i}i] = 1
2

∑
i

|αi − α′i|

Here introduces some lemmas used in the proof of Lemma 3.1. For pure states, Lemma B.1 shows
that the euclidean distance of two pure states bound their trace distance.

Lemma B.1 (Lemmas 3 and 4 in [AHU19]). If |ϕ0⟩ and |ϕ1⟩ are two pure quantum states, then
TD[|ϕ0⟩, |ϕ1⟩] ≤ ∥|ϕ0⟩ − |ϕ1⟩∥
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We are interested in the trace distance of two pure states that obtains from an algorithm A interacts
with different QROs, where these QROs have the same output distribution except on some specific points.
Lemma B.2 and Lemma B.3 give bounds of such trace distances.

Lemma B.2 Let |φ⟩ be a quantum state with registers X,Y (storing elements of sets X and Y) and S
be a subset of X . Let f ′ and f be two functions with the same preimage set X and image set Y such
that for all x ∈ X\S, f(x) = f ′(x). Let Uf : |x, y⟩ → |x, y⊕ f(x)⟩ and Uf ′ : |x, y⟩ → |x, y⊕ f ′(x)⟩ be the
unitary transformations corresponding to f and f ′, respectively. Then we have

TD [Uf |φ⟩, Uf ′ |φ⟩] ≤ 2∥PS |φ⟩∥

where PS is a projector that projects the the content of X-register of |φ⟩ into the subspace spanned by S,
i.e., PS =

∑
t∈S |t⟩⟨t|.

Lemma B.2. For any state |x⟩ (in the same space as |φ⟩), we have Uf (I − PS)|x⟩ = Uf ′(I − PS)|x⟩
by conditions of Lemma B.2. This is because (I − PS) projects the input state onto the orthogonal
complement of the subspace spanned by S. Moreover, (Uf −Uf ′) are norm-2 operator since both Uf and
Uf ′ are unitary. Therefore, by Lemma B.1,

TD [Uf |φ⟩, Uf ′ |φ⟩] ≤ ∥Uf |φ⟩ − Uf ′ |φ⟩∥ = ∥(Uf − Uf ′)PS |φ⟩∥ ≤ 2∥|φ⟩∥

Lemma B.3 Let |φ0⟩ be a quantum state with registers X,Y (storing elements of sets X and Y) and
S be a subset of X . Let f ′ and f be two functions with the same preimage set X and image set Y such
that for all x ∈ X\S, f(x) = f ′(x). Let Uf : |x, y⟩ → |x, y⊕ f(x)⟩ and Uf ′ : |x, y⟩ → |x, y⊕ f ′(x)⟩ be the
unitary transformations corresponding to f and f ′, respectively. We consider two quantum states:

|ϕ⟩ := TqUfTq−1Uf ...T1UfT0|φ0⟩
|ψ⟩ := TqUf ′Tq−1Uf ′ ...T1Uf ′T0|φ0⟩,

where Tq, ..., T0 are unitaries. Then we have

TD [|ϕ⟩, |ψ⟩] ≤
q−1∑
i=0

2∥PSTiUf ′ ...T1Uf ′T0|φ0⟩∥

where PS is a projector that projects the the content of X-register of |φ0⟩ into the subspace spanned by
S, i.e., PS =

∑
t∈S |t⟩⟨t|.

Lemma B.3. This proof is similar to the proof of Unruh’s OW2H lemma in [Unr14a]. Let |ϕi⟩ :=
TiUf ...T1UfT0|φ0⟩ and |ψi⟩ := TiUf ′ ...T1Uf ′T0|φ0⟩ for 0 ≤ i ≤ q − 1, and let |ψ0⟩ = T0|φ0⟩ = |ϕ0⟩. We
have |ϕi⟩ = TiUf |ϕi−1⟩ and |ψi⟩ := TiUf ′ |ψi−1⟩ for 1 ≤ i ≤ q, and

TD [|ϕi+1⟩, |ψi+1⟩] = TD [TiUf |ϕi⟩, TiUf ′ |ψi⟩]
= TD [Uf |ϕi⟩, Uf ′ |ψi⟩] (Unitary preserves TD)
≤(∗) TD [Uf |ϕi⟩, Uf |ψi⟩] + TD [Uf |ψi⟩, Uf ′ |ψi⟩]
≤ TD [|ϕi⟩, |ψi⟩] + 2∥PS |ψi⟩∥, (By Lemma B.2)

where (∗) is by triangle inequality. Therefore, we have

TD [|ϕ⟩, |ψ⟩] = TD [|ϕq⟩, |ψq⟩]− TD [|ϕ0⟩, |ψ0⟩] (= 0)

≤
q−1∑
i=0

2∥PS |ψi⟩∥ =
q−1∑
i=0

2∥PSTiUf ′ ...T1Uf ′T0|φ0⟩∥
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Mixed states and density operators. Mixed quantum states will be described using density oper-
ators. If a quantum system is in state |xi⟩ with probability pi, then the density operator of this system
can be written as

∑
i pi|xi⟩⟨xi|. Let Ψ and Φ be two density operators, the trace distance between Ψ

and Φ is written as TD[Ψ,Φ]. For an quantum adversary A, it can be modeled as a sequence of unitary
transformations U,UO, ..., U, UO [BDF+11, Unr14b], where U is the transition unitary of A (we can also
model it as Un, UO, ..., U1, UO, which does not influence our results in this paper). We directly write O
to denote the unitary UO.

C Proof of Lemma 3.1
Before proving Lemma 3.1, we introduce some variables and notations. Following [Unr14a, Unr14b,
KSS+20], we assume that A consists of three quantum registers A,X, and Y without loss of generality,
where A is used to store A’s internal state, and X and Y are used to store quantum random oracle
queries.

• Γi(i ∈ {1, .., n}): Γi = (out0, ..., outi−1), where outj is the output of Aj for 0 ≤ j ≤ i− 1. That is,
Γi stores all outputs of A’s first i-th stages (i.e., (A0, ...,Ai−1)). We define Γn+1 := Γ (the final
output of games NonAda and Ada) and Γ0 := ∅.

• U : the state transition unitary operation of A.

• Uini
(or simply Ui): the unitary transformation that models the operations of A when A receives

ini in its i-th stage. Without loss of generality, we can assume that Fs is deterministic (since if F
is not deterministic, we can include all randomness in s). So, ini is determined by outi for fixed
parameter s. This means that, if we fixed A’s output list Γi of its previous i stages (from 0 to
i− 1), then ini and Ui are determined.

• H,H,Hi: the unitary operations of quantum oracle access to QRO H. Specifically, H : |a, x, y⟩ →
|a, x, y ⊕H(x)⟩. In NonAda, H = H and H is independent of Γi. While in Ada, H = Hi in A’s
i-th stage (i.e., the QRO that Ai queries is Hi in Ada) and Hi is dependent to Γi. These unitary
transformations do not influence registers A and X.

• |φ0⟩, |ϕs,in0,Γi
⟩, |ψs,in0,Γi

⟩ (1 ≤ i ≤ n). Let |φ0⟩ be the initial state of A before receiving in0. For
fixed environment parameter s, initial input in0, and previous outputs Γi of A, the final state of
Ai (A’s i-th stage) in NonAda is |ϕs,in0,Γi

⟩, and the final state of Ai in Ada is |ψs,in0,Γi
⟩. By the

notations introduced above, |ϕs,in0,Γi⟩ and |ψs,in0,Γi⟩ can be written as:

|ϕs,in0,Γi
⟩ = (UH)qiUi(UH)qi−1Ui−1...(UH)q0U0|φ0⟩

|ψs,in0,Γi
⟩ = (UHi)qiUi(UHi−1)qi−1Ui−1...(UH0)q0U0|φ0⟩.

Similarly, we define the final state of A0 in NonAda (resp., in Ada) as |ϕs,in0,Γ0⟩ := (UH)q0U0|φ0⟩
(resp., |ψs,in0,Γ0⟩ := (UH0)q0U0|φ0⟩). Without loss of generality, we define |ϕs,in0,Γ−1⟩ := |ψs,in0,Γ−1⟩ :=
|φ0⟩ to deal with boundary cases.
Here we do not write up the measurement operations of A’s outputs in the state, this is because
in our framework, we require that A’s outputs are classical information.

We also define several probabilities that will be used in the proof:

• βs,in0 : We define βs,in0 := Pr [(s, in0) = (s′, in′0) : (s′, in′0,H,H′)← INIT] as the probability that INIT
outputs a specific (s, in0).

• αs,in0(Γi) and α′s,in0
(Γi) (1 ≤ i ≤ n+1): αs,in0(Γi) is the probability that A’s output list in NonAda

is Γi right after its first i stages (i.e., (A0, ...,Ai−1)). Similarly, α′s,in0
(Γi) is the probability that

A’s output list in Ada is Γi right after its first i stages. To deal with boundary cases, without loss
of generality, we define αs,in0(Γ0) = α′s,in0

(Γ0) = 1.
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• αs,in0,Γi(outi) and α′s,in0,Γi
(outi) (0 ≤ i ≤ n): for fixed (s, in0) and Γi, αs,in0,Γi(outi) is the prob-

ability that Ai outputs outi in NonAda conditioned on (s, in0) and Γi. Similarly, α′s,in0,Γi
(outi)

is the probability that Ai outputs outi in Ada conditioned on (s, in0) and Γi. We also define
αs,in0,Γi

(outi, ..., outj) (resp., α′s,in0,Γi
(outi, ..., outj)) as the probability that, conditioned on (s, in0)

and Γi, Ai outputs outi, Ai+1 outputs outi+1 ..., and Aj outputs outj in NonAda (resp., in Ada).

Lemma 3.1. Let Φn be the density operator (cf. Supp. Mat. B) of A’s final state (which is also the final
state of An so here we add the index n) in NonAdaA and Ψn be the density operator of A’s final state
in AdaA. By the notation introduced before, these operators can written as:

Φn =
∑

s,in0,Γn

βs,in0αs,in0(Γn)|ϕs,in0,Γn⟩⟨ϕs,in0,Γn | (8)

Ψn =
∑

s,in0,Γn

βs,in0α
′
s,in0

(Γn)|ψs,in0,Γn
⟩⟨ψs,in0,Γn

| (9)

Similarly, we can define Φk(0 ≤ k ≤ n) be the density operator of Ak’s final state in NonAdaA and
Ψk be the density operator of Ak’s final state in AdaA.

Φk =
∑

s,in0,Γk

βs,in0αs,in0(Γk)|ϕs,in0,Γk
⟩⟨ϕs,in0,Γk

| (10)

Ψk =
∑

s,in0,Γk

βs,in0α
′
s,in0

(Γk)|ψs,in0,Γk
⟩⟨ψs,in0,Γk

| (11)

Since the event Ev is a classical event, the probability that Ev happens in NonAdaA equals to the
probability that a binary measurement on the final state of A outputs 1 (indicating the event occurs).
Similarly, Pr

[
Ev : AdaA

]
equals to the probability that such measurement outcome is 1. We still can

use trace distance to bound the probability difference. By (8) and (9),∣∣∣Pr
[
Ev : NonAdaA

]
− Pr

[
Ev : AdaA

]∣∣∣ = TD [Φn,Ψn]

= TD
[ ∑

s,in0,Γn

βs,in0αs,in0(Γn)|ϕs,in0,Γn⟩⟨ϕs,in0,Γn |,∑
s,in0,Γn

βs,in0α
′
s,in0

(Γn)|ψs,in0,Γn
⟩⟨ψs,in0,Γn

|
]

≤ TD
[
{βs,in0αs,in0(Γn)}s,in0,Γn

, {βs,in0α
′
s,in0

(Γn)}s,in0,Γn

]
+

∑
s,in0,Γn

βs,in0α
′
s,in0

(Γn)TD [|ϕs,in0,Γn⟩, |ψs,in0,Γn⟩] , (12)

where (12) comes from the strong convexity of trace distance [NC16, Theorem 9.3]. Here we give a
brief explanation of Equation (12). The quantity on the left of “+” measures the distance between
A’s distributions of Γn(= (out0, ..., outn−1)) in NonAda and Ada. The quantity on the right of “+”
measures the probability difference between A’s “behaviors” in NonAda and Ada if A has the same
distribution of Γn in these two games.

The LHS trace distance bound the probability difference betweenA’s output distributions of (out0, ..., outn−1),
and these outputs are determined when A completed its first n stages (i.e., (A0, ...,An−1)). Therefore,
this trace distance can be bounded by the trace distance between the final states of An−1 in NonAda
and Ada. That is,

TD
[
{βs,in0αs,in0(Γn)}s,in0,Γn

, {βs,in0α
′
s,in0

(Γn)}s,in0,Γn

]
≤ TD [Φn−1,Ψn−1] ,

and so we have

TD [Φn,Ψn] ≤ TD [Φn−1,Ψn−1] +
∑

s,in0,Γn

βs,in0α
′
s,in0

(Γn)TD [|ϕs,in0,Γn⟩, |ψs,in0,Γn⟩] .
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We can get similar inequalities for 1 ≤ k ≤ n. For k = 0, we have TD [Φ0,Ψ0] ≤
∑

s,in0
βs,in0TD [|ϕs,in0,Γ0⟩, |ψs,in0,Γ0⟩].

By a simple induction, we have

TD [Φn,Ψn] ≤
n∑

k=0

∑
s,in0,Γk

βs,in0α
′
s,in0

(Γk)TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩] . (13)

To bound (13), we firstly fix k and focus on this quantity∑
s,in0,Γk

βs,in0α
′
s,in0

(Γk)TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩] , (14)

which can be bounded via applying Lemma B.3 (k + 1) times, since here |ϕs,in0,Γk
⟩ and |ψs,in0,Γk

⟩ have
the same distribution of Γk. We firstly fix s, in0 and Γ, and look at TD [|ϕs,in0,Γk

⟩, |ψs,in0,Γk
⟩].

TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩]
= TD

[
(UH)qkUk|ϕs,in0,Γk−1⟩, (UHk)qkUk|ψs,in0,Γk−1⟩

]
≤ TD

[
(UH)qkUk|ϕs,in0,Γk−1⟩, (UH)qkUk|ψs,in0,Γk−1⟩

]
+ TD

[
(UH)qkUk|ψs,in0,Γk−1⟩, (UHk)qkUk|ψs,in0,Γk−1⟩

]
≤ TD

[
|ϕs,in0,Γk−1⟩, |ψs,in0,Γk−1⟩

]
+

qk−1∑
j=0

2∥PSk
(UHk)jUk|ψs,in0,Γk−1⟩∥,

where the last inequality comes from Lemma B.3 (our framework assumed that Hk\Sk = H\Sk for some
set Sk). By induction, we have similar inequalities for 1 ≤ i ≤ k, and thus

TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩] ≤ TD [|ϕs,in0,Γ0⟩, |ψs,in0,Γ0⟩]

+
k∑

i=1

qk−1∑
j=0

2∥PSi
(UHi)jUi|ψs,in0,Γi−1⟩∥.

TD [|ϕs,in0,Γ0⟩, |ψs,in0,Γ0⟩] can be also bounded by using Lemma B.3, since |ϕs,in0,Γ0⟩ = (UH)q0U0|φ0⟩ and
|ψs,in0,Γ0⟩ = (UH0)q0U0|φ0⟩. Therefore,

TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩] ≤
k∑

i=0

qi−1∑
j=0

2∥PSi
(UHi)jUi|ψs,in0,Γi−1⟩∥. (15)

Now we have ∑
s,in0,Γk

βs,in0α
′
s,in0

(Γk)TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩]

≤
∑

s,in0,Γk

βs,in0α
′
s,in0

(Γk)
k∑

i=0

qi−1∑
j=0

2∥PSi(UHi)jUi|ψs,in0,Γi−1⟩∥

=
k∑

i=0

∑
s,in0,Γk

βs,in0α
′
s,in0

(Γk)
qi−1∑
j=0

2∥PSi
(UHi)jUi|ψs,in0,Γi−1⟩∥

=
k∑

i=0

[( ∑
s,in0,Γi

βs,in0α
′
s,in0

(Γi)
qi−1∑
j=0

2∥PSi
(UHi)jUi|ψs,in0,Γi−1⟩∥

)
(

∑
outi,...,outk−1

α′s,in0,Γi
(outi, ..., outk−1))(= 1)

]

=
k∑

i=0

( ∑
s,in0,Γi

βs,in0α
′
s,in0

(Γi)
qi−1∑
j=0

2∥PSi
(UHi)jUi|ψs,in0,Γi−1⟩∥

)
=

k∑
i=0

2qi

( ∑
s,in0,Γi

qi−1∑
j=0

βs,in0α
′
s,in0

(Γi)
1
qi

(
√
∥PSi(UHi)jUi|ψs,in0,Γi−1⟩∥)2)
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≤
k∑

i=0
2qi

√√√√ ∑
s,in0,Γi

qi−1∑
j=0

βs,in0α
′
s,in0

(Γi)
1
qi
∥PSi

(UHi)jUi|ψs,in0,Γi−1⟩∥2, (16)

where (16) comes from Jensen’s inequality for concave functions. Now consider the adversary Bi in
Figure 5. Bi firstly chooses a uniformly random t∗ ← [qi]. Then it simulates Ada for A and performs
projective measurement on A’s t∗ RO-query in A’s i-th stage in computational basis. For fix t∗, s, in0,
the pure state of A right before the measurement is (UHi)t∗−1Ui|ψs,in0,Γi−1⟩ , and Γi, and the probability
that the measurement outcome falls into Si is ∥PSi(UHi)t∗−1Ui|ψs,in0,Γi−1⟩∥2, so

∑
s,in0,Γi

qi−1∑
j=0

βs,in0α
′
s,in0

(Γi)
1
qi
∥PSi(UHi)jUi|ψs,in0,Γi−1⟩∥2

= Pr
[
x′ ← BHi s.t. x′ ∈ Si : AdaBi

]
. (17)

Combining (13), (16), and (17), we get

TD [Φn,Ψn] ≤
n∑

k=0

∑
s,in0,Γk

βs,in0α
′
s,in0

(Γk)TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩]

=
n∑

k=0

∑
s,in0,Γk

βs,in0α
′
s,in0

(Γk)TD [|ϕs,in0,Γk
⟩, |ψs,in0,Γk

⟩]

≤
n∑

k=0

k∑
i=0

2qi Pr
√[

x′ ← BHi s.t. x′ ∈ Si : AdaBi
]
.

Remark C.1 We note that using Unruh’s adaptive OW2H Lemma (cf. Supp. Mat. A and [Unr14a]) and
a simple hybrid argument is not sufficient to prove our reprogramming framework. The main reason is
that the intermediate hybrids cannot be simulated using Unruh’s adaptive OW2H Lemma.

Consider a Hybrid i ∈ {0, ..., n} where (A0, ...,Ai) are interacting with the same QRO as in NonAda
(namely, H that has never been reprogrammed), and (Ai+1, ...,An) are interacting with the same QRO
as in Ada (namely, Aj interacts with Hj for i + 1 ≤ j ≤ n and Hj gets reprogrammed). To bound
the difference between Hybrids i and i + 1, we could consider using a “single-point” reprogramming
framework, such as the adaptive OW2H Lemma [Unr14a]. However, it is unclear how the reduction can
simulate Hi+2, ...,Hn such that H\Sj = Hj\Sj for i + 2 ≤ j ≤ n, since the reduction may not know
Si+2, ..., Sn. The reduction does not always know these sets that can be arbitrary. For instance, it can
be the case that Si+2 ⊂ Si+1. Now, knowing Si+2, the reduction already breaks the adaptive OW2H
lemma without using A.

The framework in [GHHM21] can be proven by hybrid argument because the proof of their lemma
knows S0, ..., Sn (which are equivalent to LO according to their notion).

D Proof of Theorem 5.3
Theorem 5.3. Let h : M′ × C′ → M × Kmac and g : M′ → R′ be internal quantum-accessible ROs
which are used to respond the queries to H and G, respectively. Similar to the proof of Theorem 4.1,
to match the syntax of our framework, we combine G and H as one random oracle G × H where
G×H(r′, r, e) := (G(r′),H(r, e)). A can query G×H at most q = qH + qG times.

During the proof, we implicitly assume that A will not query Dec on (e, d, τ) with (e, d) = (ei, di)
before seeing the challenge ciphertexts c. Since ri’s are independent of A’s view before it sees c, the
probability that A queries Dec on such ciphertexts is µnDec

|C′−nDec| + µq√
|M′|

, where the second term is the
bound to search G(ri) and H(ri) given quantum access to G × H. Moreover, we also assume that
there is no collision among outputs of ri’s, Ri’s, Ki’s, and Kmac

i ’s. This introduce collision bounds
µ2

|M′| + µ2

R′ + µ2

|M| + µ2

|Kmac| . For simplicity, we just add these probability into our final bound, and do not
consider it in the game sequences.
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Games G0-G5

01 (pk1, (sk1, k))← sKG, pk := pk1
02 Ma ← ADec,|G×H⟩(pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma

05 ri
$←M′

06 Ri := G(ri)
07 ei := Enc1(pk, ri;Ri)
08 (Ki,K

mac
i ) = H(ri, ei)

09 di := Ki ⊕mi

10 τi := Tag(Kmac
i , di)

11 c[i] := (ei, di, τi)
12 out← AOpen,Dec,|G×H⟩(c)
13 return Rel(Ma,m, I, out)

H(r, e)
14 if e = Enc1(pk, r;G(r)) // G3-G5
15 return h1(e) // G3-G5
16 return h(r, e)

Dec(c = (e, d, τ)): for c /∈ c
17 r′ := Dec1(sk, e) // G0-G3
18 if r′ = ⊥

or e ̸= Enc1(pk, r′;G(r′)) // G0-G3
19 (K,Kmac) := h(k, e) // G0
20 (K,Kmac) := h′(e) // G1-G3
21 else (K,Kmac) := h(r′, e) // G0-G2
22 else (K,Kmac) := h1(e) // G3
23 (K,Kmac) := h1(e) // G4
24 if Vrfy(Kmac, τ) = 1
25 m := K ⊕ d
26 else m := ⊥
27 return m

Open(i)
28 I := I ∪ {i}
29 return (mi, ri)

G(r)
30 return g(r) // G0-G1, G5
31 return g′(r) // G2-G4

Figure 15: Games G0-G5 for the proof of Theorem 5.3.

In games G0-G5 (shown in Figure 15), we use the encrypt-than-hash technique so that the decryption
oracle can be simulated without secret key. Since PKE1 may not be perfectly-correct, we need games G2
and G5 to deal with the correctness of PKE when using the encrypt-than-hash technique.

In games G6-G8 (shown in Figure 16), we firstly switch the public key to a lossy key. Then, we use
the framework in Lemma 3.1 to de-relate Ri from QROs G and H. Finally, by using multi-challenge
lossiness of PKE1, we bound the probability that A learns ri before opening c[i].

Game G0: This game is equivalent to REAL-SO-CCAAsPKE, so

Pr[REAL-SO-CCAAsPKE ⇒ 1] = Pr[GA0 ⇒ 1]

Game G1: The Dec oracle computes (K,Kmac) = h′(e) rather than h(k, e) if r′ = ⊥ or e ̸=
Enc1(pk1, r

′; g(r′)), where h′ : M′ × C′ → M× Kmac is an internal quantum-accessible random oracles
independent of h and g. By Lemma 2.7, we have∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ 2qH/
√
|M′|

Game G2: We restrict the range of G to be the “good” randomness space defined by (pk, sk). Namely,
we define the set

R′good(pk1, sk1, r) := {r′ ∈ R′ | Dec1(sk1,Enc1(pk1, r; r′)) = r}

and let g′ :M′ →R′ be a quantum-accessible random oracle such that g′(r) is sampled uniformly from
R′good(pk1, sk1, r). If PKE is (1− δ)-correct (see Definition 2.1), then∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ 8(µ+ nDec + qG + qH + 1)2δ.

The proof is given in Supp. Mat. D.1.

Game G3: We set H(r, e) = h1(e) if e = Enc1(pk1, r;G(r)), where h1 : C′ →M×Kmac is an internal
quantum-accessible random oracle independent of h and h′. Since the randomness generated by G (i.e., g′)
is always a “good” randomness, Enc1(pk1, ·;G(·)) is an injective function and thus h1(Enc1(pk1, ·;G(·)))
can be also viewed as an random oracle. Therefore, we have Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
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Game G4: We “merge” h1 and h′, namely, Dec always computes (K,Kmac) := h1(e) regardless of
whether e = Enc1(pk, r′;G(r′)). Since h1 and h′ are internal QROs and cannot be queried by A, the
only way for A to learn information from h1 is to query H or Dec on honestly-generated e, and the only
way to learn information from h′ is to query Dec on invalid e. e is invalid means that Dec1(sk1, e) = r
but r = ⊥ or Enc1(pk1, r;G(r)) ̸= e. However, since in this game the randomness in Enc1(pk1, ·; ·) is
generated by g′ (always “good” randomnesses that will not lead to invalid ciphertexts), the internal
queries to h and queries to h′ are disjoint, and thus we can merge h1 and h′ as one oracle, and use the
same oracle to respond invalid queries to Dec. In A’s view, the responds of Dec and H in G3 and G4
still have the same distribution, and thus Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].

Game G5: The oracle G is simulated using g instead of g′. Similar to the difference between G1
and G2, we have ∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ 8(µ+ qG + qH + 1)2δ.

Note that in this game, Dec does not query G. Now the game simulator does not need sk1 to simulate
Dec.

Games G5-G8

01 (pk1, (sk1, k))← sKG, pk := pk1
02 (lpk1, lsk1)← LKG1, pk := lpk1 // G6-G8
03 Ma ← ADec,|G×H⟩(pk)
04 for i ∈ [µ]
05 m[i] := mi ←Ma

06 ri
$←M′

07 Ri := G(ri) // G5-G7
08 Ri

$←R′ // G8
09 ei := Enc1(pk, ri;Ri)
10 (Ki,K

mac
i ) = H(ri, ei) // G5-G7

11 di := Ki ⊕mi // G5-G7
12 di

$←M // G8
13 Kmac

i
$← Kmac // G8

14 τi := Tag(Kmac
i , di)

15 c[i] := (ei, di, τi)
16 out← AOpen,Dec,|G×H⟩(c)
17 return Rel(Ma,m, I, out)

Open(i)
18 I := I ∪ {i}
19 return (mi, ri)

Dec(c = (e, d, τ)): for c /∈ c
20 (K,Kmac) := h1(e)
21 if ∃i ∈ [µ] \ I s.t. e = ei // G7-G8
22 return ⊥ // G7-G8
23 if ∃i ∈ I s.t. e = ei // G8
24 (K,Kmac) := (Ki,K

mac
i ) // G8

25 if Vrfy(Kmac, τ) = 1
26 m := K ⊕ d
27 else m := ⊥
28 return m

H(r, e)
29 if ∃i ∈ I s.t. (r, e) = (ri, ei) // G8
30 return (di ⊕mi,K

mac
i ) // G8

31 if e = Enc1(pk, r;G(r)) // G3-G8
32 return h1(e) // G3-G8
33 return h(r, e)

G(r)
34 if ∃i ∈ I s.t. r = ri // G8
35 return Ri // G8
36 return g(r)

Figure 16: Games G5-G8 for the proof of Theorem 5.3.

Game G6: The public key is switched to lossy mode by (lpk1, lsk1)← LKG1 (see Item 02). Note that
this game can be simulated without using sk1. By the key indistinguishability of PKE1, we have∣∣Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]

∣∣ ≤ Advind-key
PKE1

(A)

Game G7: The decryption oracle always returns ⊥ if the adversary queries a ciphertext (e, d, τ) that
e is the PKE1 part of some unopened challenge ciphertexts, i.e., e = ei for an i ∈ [µ] \ I. This game is
necessary for simulating the decryption oracle without secret key when constructing a reduction from
lossiness of PKE1.

Let Bad be the event that A queries Dec on a ciphertext (e, d, τ) that e = ei for an i ∈ [µ] and
Vrfy(Kmac

i , d, τ) = 1. That is, A forges valid MAC codes of some unopened ciphertext. Let Badj(:= Bad :
GAj ) be the event that Bad happens in GAj (j ≥ 7). If Bad7 does not occur, then the winning probabilities
of A in G6 and in G7 are the same. This is because if e = ei for some i but Vrfy(Kmac

i , d, τ) = 0, then
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by Item 26, the Dec oracle will still rejects the ciphertexts. Thus∣∣Pr[GA6 ⇒ 1]− Pr[GA7 ⇒ 1]
∣∣ ≤ Pr[Bad7].

Now we cannot bound Pr[Bad7] by constructing an MAC adversary, since in G7, unopened MAC keys
Kmac

j are related to H. We introduce the next game G8 to bound it.
Game G8: the game simulator generates challenge ciphertexts independent of G and H (see Items 08,

12 and 13). To keep A’s view consistent, when A issues Open queries, we reprogram G and H (cf.
Items 34 to 35 and Items 29 to 30).

We use our framework (Lemma 3.1) to bound
∣∣Pr[GA7 ⇒ 1]− Pr[GA8 ⇒ 1]

∣∣. Firstly, we view A as
(A0,A1) = (A0, (A1,0, ...,A1,nOp

)), where nOp is the number of Open queries. Essentially, A1 is divided
into (nOp + 1) stages wrt Open queries:

• Before any Open query (i.e., at the 0-th stage), A1,0 takes in0 := (st, c) as input and outputs the
first opening index out0 := (i1).

• For j ∈ {1, ..., nOp−1}, A1,j receives inj = (mij
, rij

) and ends the stage by outputting the (j+1)-th
opening index outj := ij+1.

• Finally, A1,nOp
receives innOp

= (minOp
, rinOp

) and terminates by outputting outnOp
:= out (i.e, the

final output of A1 in Item 16).

For simplicity, we do not consider the A0 part, since the output distribution of A0 in G7 is the same
as in G8. We only assume that A1 takes A0’s final state as its initial state.

In Figure 17, we define INIT,Fs, and Repros such that G7 is a NonAda game and G8 is a Ada. In
G8, when A queries Open(i), the game simulator adds the index i into I. By the codes in Items 34 to 35
and Items 29 to 30, modifying I actually reprograms G and H. So, the Open oracle can be viewed as
a combination of Fs and Repros in our framework in Figure 4. Therefore, G7 and G8 can be viewed as
concrete cases of NonAda and Ada, respectively.

For k ∈ {0, ..., nOp}, let Gk,Hk be the QROs that interacts with A1,k in G8, and let G′,H ′ be the
QROs that interacts with A1 in G7 (the QROs in G7 do not change). Let Ik be the list (i1, ..., ik)
which is the opening index list I when the game is interacting with A1,k. By the definition of G7 and
G8 in Figure 16, we always have G(ri) = Ri (resp., H(ei, ri) = (Ki,K

mac
i )) for all i ∈ [µ] in G7. But

in G8, we have G(ri) = Ri (resp., H(ei, ri) = (Ki,K
mac
i )) only if i ∈ Ik. That is, in G8, G(ri) ̸= Ri

and H(ei, ri) ̸= (Ki,K
mac
i ) before A queries Open(i). Moreover, for all r /∈ {ri}i∈[µ] and e /∈ {ei}i∈[µ],

G′(r) has the same distribution with Gk(r) and H ′(e, r) has the same distribution with Hk(ei, ri) for all
k ∈ {0, ..., nOp}. Therefore, answers of Gk ×Hk differs with answers of G′ ×H ′ in the following set

Sk := {r | ∃i ∈ [µ] \ Ik s.t. r = ri} × {(r′, e′) | ∃i ∈ [µ] \ Ik s.t. (r′, e′) = (ri, ei)}
= {(r, (r′, e′)) | ∃i ∈ [µ] \ Ik s.t. r = ri or (r′, e′) = (ri, ei)}. (18)

Similar to the argument in the proof of Theorem 4.1, by using Lemma 3.1, there exist adver-
saries {Bk}k∈{0,...,nOp} such that the probability difference between the event that G6 output 1 (i.e.,
Rel(Ma,m, I, out) = 1 in G6) and similar event in G7 is bounded by∣∣Pr[GA7 ⇒ 1|¬Bad7]− Pr[GA8 ⇒ 1|¬Bad8]

∣∣
≤

nOp∑
k=0

k∑
i=0

2qi

√
Pr

[
(r, (r′, e′))← B|G×H⟩

i s.t. (r, (r′, e′)) ∈ Si : GBi
8

]
+ 2µq√

|R′|
,

where Bk plays G8 (and also simulates G8 for A), randomly measures A1,k’s QRO queries, and outputs
the measurement outcome. A detailed description of Bk will be given in Figure 22. Similarly, since Bad
(defined in G7) is classical event, by Lemma 3.1 again, we also have

|Pr [Bad7]− Pr [Bad8]| =
∣∣Pr

[
Bad : GA7

]
− Pr

[
Bad : GA8

]∣∣
≤

nOp∑
k=0

k∑
i=0

2qi

√
Pr

[
(r, (r′, e′))← B|G×H⟩

i s.t. (r, (r′, e′)) ∈ Si : GBi
8

]
+ 2µq√

|R′|
.
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INIT

01 (lpk1, lsk1)← LKG1
02 pk := lpk1
03 Let G and H be QROs that

run as Items 31 to 33 and Item 36 (using pk, g, h, h1) in G8, respectively.
04 Ma ← A|G×H⟩,Dec

0 (pk) //Dec is simulated as in G7 and G8
05 for i ∈ [µ]:
06 m[i] := mi ←Ma, r[i] := ri

$←M′

07 Ri := G(ri), R[i] := Ri

08 ei = Enc1(pk, mi; Ri)
09 (Ki, Kmac

i ) := H(ri, ei)
10 di := Ki ⊕mi

11 τi := Tag(Kmac
i , di)

12 c[i] := (ei, di, τi), Kmac[i] := Kmac
i

13 s := (Ma, m, r, R, c, Kmac), in0 := c
14 S0 := {ri}i∈[µ] × {(ri, ei)}i∈[µ]

15 Let G0 ×H0 be a QRO such that G0 ×H0(x) :=
{

G×H(x), (x /∈ S0)
g′ × h′(x), (else)

16 return ((s, in0), G×H, G0 ×H0)

Fs(out)
17 parse i := out
18 (Ma, m, r, R, c, Kmac) := s
19 I := I ∪ {i}
20 ri := r[i], Ri := R[i], mi := m[i]
21 (ei, di, τi) := c[i], Kmac

i := Kmac[i]
22 in := (ri, mi)
23 in′ := (ri, mi, ei, di, Kmac

i )
24 return (in, in′)

Repros(in′, G×H)

25 parse (r, m, e, d, Kmac) := in′

26 G := G[r → R]
27 H := H[(r, e)→ (d⊕m, Kmac)]
28 return G×H

Figure 17: Construction of INIT, INIT,Fs, and Repros used in the proof of Theorem 5.3. g, g′, h, h1, h
′

are internal quantum-accessible random oracles. Here the adversary also has classical access to Dec.
Since Dec will not make G ×H reprogrammed, allowing the adversary to query Dec does not change
the bound of Lemma 3.1.

These bounds include a term 2µq√
|R′|

, since A0 also has quantum access to |G×H⟩, and this term is
the probability that the first stage (i.e., A1,0) of A1 learns ri before opening challenge ciphertexts. Such
probability is only information-theoretic.

In G8, Kmac
i are independent of challenge ciphertexts c (before A queries Open(i)), so we can upper

bound Pr [Bad8] by the otSUF-CMA security of otSUF-CMA, as stated in Lemma D.1.

Lemma D.1 With the notations and assumptions from the proof of Theorem 5.3, there exists an adver-
sary F (cf. Figure 21) such that

Pr
[
Bad : GA8

]
≤ µAdvotSUF-CMA

MAC (F)

We also bound the winning probability of Bk in Lemma D.2. This probability captures the “prob-
ability” that A learns ri where c[i] is not opened. Intuitively, since the public key in G8 is lossy, by
the lossiness of PKE1, ciphertexts that encrypted by lossy key statistically hide the information of their
plaintexts. The concrete bound is given in Lemma D.2.

Lemma D.2 With the notations and assumptions from the proof of Theorem 5.3, for any k ∈ {0, ..., nOp},
we have

Pr
[
(r, (r′, e′))← B|G×H⟩

k s.t. (r, (r′, e′)) ∈ Sk : GBk
8

]
≤ ϵm-ind-enc

PKE1
+ µq

|M′|
.

For readability, we postpone the proofs of Lemma D.1 and Lemma D.2 to Supp. Mat. D.2 and
continue the proof of Theorem 5.3. With Lemmata D.1 and D.2, we have∣∣Pr

[
GA7 ⇒ 1

]
− Pr

[
GA8 ⇒ 1

]∣∣
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≤ 4(nOp + 1)2q

√
ϵm-ind-enc

PKE1
+ µq

|M′|
+ µAdvotSUF-CMA

MAC (F) + 4µq√
|R′|

Now we can construct a simulator S that simulates G8 forA and interacts with the IDEAL-SO-CCAsPKE
game. Its simulation process is given in Figure 18. If A outputs out, then S also outputs out except that
Bad8 happens. We have

Pr[IDEAL-SO-CCASsPKE ⇒ 1] ≤ Pr[GA8 ⇒ 1] + µAdvotSUF-CMA
MAC (F)

SOpen′

01 Chooses QROs g, h, h1 at random
02 I = ∅
03 k $←M′, (lpk1, lsk1)← LKG1
04 pk := lpk1
05 Ma ← ADec,|G×H⟩(pk)
06 Outputs Ma and receives m′′

07 for i ∈ [µ]
08 ri

$←M′, Ri
$←R′

09 ei := Enc1(pk, ri; Ri)
10 di

$←M, Kmac
i

$← Kmac

11 τi := Tag(Kmac
i , di)

12 c[i] := (ei, di, τi)
13 out← AOpen,Dec,|G×H⟩(c)
14 return out

G(r)

15 if ∃i ∈ I s.t. r = ri

16 return Ri

17 return g(r)

Dec(c = (e, d, τ)): for c /∈ c
18 (K, Kmac) := h1(e)
19 if ∃i ∈ [µ] \ I s.t. e = ei

20 return ⊥
21 if ∃i ∈ I s.t. e = ei

22 (K, Kmac) := (Ki, Kmac
i )

23 if Vrfy(Kmac, τ) = 1
24 m := K ⊕ d
25 else m := ⊥
26 return m

Open(i)

27 I := I ∪ {i}
28 Queries Open′(i) and gets mi

29 return (mi, ri)

H(r, e)

30 if ∃i ∈ I s.t. (r, e) = (ri, ei)
31 return (di ⊕mi, Kmac

i )
32 if e = Enc1(pk, r; G(r))
33 return h1(e)
34 return h(r, e)

Figure 18: Simulator S in the proof of Theorem 4.2. S interacts with IDEAL-SO-CCAsPKE and has access
to Open′.

By combining all the probability bounds, we have

AdvSO-CCA
sPKE (A,S, µ,Rel)

=
∣∣ Pr[REAL-SO-CCAAsPKE ⇒ 1]− Pr[IDEAL-SO-CCASsPKE ⇒ 1]

∣∣
≤ Advind-key

PKE1
(A) + 3µAdvotSUF-CMA

MAC (F)

+ 6(nOp + 1)2q

√
ϵm-ind-enc

PKE1
+ µq

|M′|
+ 16(µ+ nDec + q + 1)2δ

+ (2 + µ)q√
|M′|

+ 6µq√
|R′|

+ µ2

|M′|
+ µ2

R′
+ µ2

|Kmac|
+ µnDec

|C′ − nDec|
+ µ2

|M|

D.1 Bounding G1 and G2 in Theorem 5.3
In the proof of Theorem 5.3, we defined a set

R′good(pk1, sk1, r) := {r′ ∈ R′ | Dec1(sk1,Enc1(pk1, r; r′)) = r}
R′bad(pk1, sk1, r) := R′ \ R′good(pk1, sk1, r)

which contains all “good” randomness with respect to the key pair (pk1, sk1), namely, if a randomness r′ ∈
R′good(pk1, sk1, r) is sampled in encrypting a message r, then the resulting ciphertext will be decrypted
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correctly. Based on this, we define a set that contains “bad” randomness:

R′bad(pk1, sk1, r) := R′\R′good(pk1, sk1, r).

Based on these two sets, we further define

δ(pk1, sk1) = max
r∈M′

{|R′bad(pk1, sk1, r)|/|R′|} and δ = E
pk1,sk1

[δ(pk1, sk1)],

where the former captures the maximal probability of decryption error with respect to a fixed key pair
(pk1, sk1), and the expectation of the latter is taken over (pk1, sk1) ← KG1. By Definition 2.1, δ is the
error term in the correctness definition of PKE1.

We use the following lemma from [HKSU20, Theorem 2] to bound the probability difference between
G1 and G2 in Theorem 5.3.

Lemma D.3 (GDPB [HKSU20]). Let X be a finite set, and let λ ∈ [0, 1]. Then, for any unbounded and
quantum algorithm A issuing at most q quantum queries,∣∣∣Pr[GDPBAλ,0 ⇒ 1]− Pr[GDPBAλ,1 ⇒ 1]

∣∣∣ ≤ 8(q + 1)2λ,

where games GDPBAλ,b are defined in Figure 19.

Game GDPBA
λ,b

01 (λx)x∈X ← A
02 if ∃x ∈ X s.t. λx > λ: return 0
03 if b = 0
04 Define F := 0
05 else for x ∈ X
06 F(x)← Bλx

07 b′ ← AF

08 return b′

Figure 19: Game GDPBAλ,b used in Lemma D.3.

The following proof is similar to the one in [PWZ23, Theorem 4.4]. We construct an unbounded
adversary B in Figure 20 that plays GDPBδ(pk1,sk1),b where (pk1, sk1)← KG1. Samp is a sampling process
and f is a random function used to generate randomness Samp. B can construct such Samp and f since
it is unbounded.

If B is playing GDPBδ(pk1,sk1),0, then F(r) always outputs 0, and thus G(r) always outputs “good”
randomness. This corresponds to G2; Otherwise, F(r) outputs 1 with probability |R′bad(pk1, sk1, r)|/|R′|
and thus G(r) outputs “bad” randomness with such probability. This means that the G(r) outputs
are uniformly distributed over R′ and thus it behaves as in G1. Considering the expectation over
(pk1, sk1)← KG1, we have∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣
= E

(pk1,sk1)←KG1

[∣∣∣Pr[GDPBBδ(pk1,sk1),1 ⇒ 1]− Pr[GDPBBδ(pk1,sk1),0 ⇒ 1]
∣∣∣]

= 8(q + 1)2 E
(pk1,sk1)←KG1

[δ(pk1, sk1)]

= 8(µ+ nDec + qG + qH + 1)2δ,

since B issues at most µ+ nDec + qG + qH quantum queries to F.

D.2 Proofs of Lemmata D.1 and D.2
Lemma D.1. In Figure 21, we construct a forger F that simulates G8 for A and forges a valid message-
tag of otSUF-CMA. By Definition 2.4, F has access to oracles Tag (at most one query) and Vrfy. F
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B|F⟩

01 Picks a random function f
02 (pk1, (sk1, k))← sKG
03 for ∀r ∈M′

04 λr := |R′
bad(pk1, sk1, r)|/|R′|

// We have λr ≤ δ(pk1, sk1)
05 Output (λr)r∈M′ to the GDPB game.
06 Simulates G1 (in Figure 15) for A...
07 return Rel(Ma, m, I, out)

G(r)

08 if F(r) = 0
09 return Samp(R′

good(pk1, sk1, r); f(r))
10 else
11 return Samp(R′

bad(pk1, sk1, r); f(r))

Figure 20: Adversary B in bounding G1 and G2 in Theorem 5.3. B plays GDPBδ,b, so it has quantum
access to an oracle F (defined in Figure 19). B simulates G using Samp and f . Other oracles are the
same as in G1 of Figure 15.

Forger FTag,Vrfy

01 Chooses QROs g, h, h1 at random
02 I = ∅
03 Bad := false, i∗ $← [µ]
04 m∗ := ⊥, τ∗ := ⊥
05 (lpk1, lsk1)← LKG1, pk := lpk1
06 Ma ← A|G×H⟩,Dec(pk)
07 for i ∈ [µ]
08 m[i] := mi

$←Ma

09 ri
$←M′, Ri

$←R′
10 ei := Enc1(pk, ri;Ri)
11 di

$←M,Kmac
i

$← Kmac

12 if i = i∗: τi∗ = Tag(ei∗ , di∗)
13 else τi := Tag(Kmac

i , ei, di)
14 c[i] := (ei, di, τi)
15 out← AOpen,Dec,|G×H⟩(c)
16 return (m∗, τ∗)

Dec(c = (e, d, τ)): for c /∈ c
17 (K,Kmac) := h1(e)
18 if ∃i ∈ [µ] \ I s.t. e = ei

19 if Vrfy((e, d), τ) = 1
20 Bad := true
21 m∗ := (e, d), τ∗ := τ
22 return ⊥
23 if Vrfy(Kmac, τ) = 1
24 m := K ⊕ d
25 else m := ⊥
26 return m

Open(i)
27 if i = i∗ : abort
28 I := I ∪ {i}
29 return (mi, ri)

Figure 21: The forger F in the proof of Lemma D.1. It has access to the oracles {Tag,Vrfy} provided
by game otSUF-CMAMAC. Oracles G and H are the same as in G8 in the proof of Theorem 5.3.

chooses i∗ $← [µ] and generates τi∗ by querying Tag oracle on di∗ . Note that now Kmac
i∗ is not the actual

key of τi∗ . F aborts the game if A opens ci∗ . If A triggers event Bad, then F records the message-tag
pair (see Items 19 to 21). When A terminates, F outputs the recorded message-tag pair.

The probability that A does not open ci∗ is (µ−nOp)/µ. If the event Bad8 occurs, then the probability
that the ciphertext (e, d, τ) (that raises this event) satisfies e = ei∗ is 1/(µ− nOp). So, we have Pr[Bad8] =
µAdvotSUF-CMA

MAC (F)

Lemma D.2. In G8 of the proof of Theorem 5.3, the adversaryA = (A0,A1) is divided into (A0, (A1,0, ...,A1,nOp
))

with respect to Open queries. We ignore A0, since its queries do not require reprogramming of the QROs.
We assume that A1’s initial state is A0’s final state. By our framework in Lemma 3.1, Bk(k ∈ {0, ..., nOp})
is an adversary that runs A1,0, ...A1,k and randomly measures A1,k’s QRO query. The construction of
Bk in this proof is shown in Figure 22.

By our framework in Lemma 3.1, Bk interacts with an Ada game. As shown in the proof of Theo-
rem 5.3, G8 can be viewed as an Ada game, and the Open oracle is the Fs function, since queries to
Open will make QROs reprogrammed.

Since Bk finally output the measurement outcome of one of A1,k’s QRO query, we slightly modify
G8 to fit into Bk. Figure 23 shows the modified game G′8. Game G′8 is the same as G8 except that G′8
runs Bk and outputs Bk’s output. That is,

Pr
[
(r, (r′, e′))← B|G×H⟩

k s.t. (r, (r′, e′)) ∈ Sk : GBk
8

]
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BOpen,Dec,|G×H⟩
k (c), k ∈ [0, ..., nOp]

01 t∗ $← [qk]
02 in0 := c
03 for j = 0 to k − 1:
04 outj := i← A|G×H⟩,Dec

1,j (inj) //A1,j wants to open cipertext c[i]
05 (mi, ri) := Open(outj) // Queries Open(i) and ...
06 inj+1 := (mi, ri) // ... gets the message and randomness of ci

07 Runs A|G×H⟩,Dec
1,k (ink) until it issues t∗-th quantum query to G×H

08 Let |φ⟩ be the t∗-th quantum query to G×H
09 (r, (r′, e′))← Measure(|φ⟩)
10 return (r, (r′, e′))

Figure 22: The constructions of Bk(0 ≤ k ≤ nOp) in the proof of Lemma D.2. If A1,j queries G×H or
Dec, Bk just forwards these queries to its game simulator and and then forwards the response to A1,j .
Since (A1,0, ...,A1,nOp

) is obtained by dividing A1 into (nOp + 1) stages with respect to A1’s queries to
Open, A1,j terminates with outputting the j-th opening index ij .

= Pr
[
G′Bk

8 ⇒ (r, (r′, e′)) s.t. (r, (r′, e′)) ∈ Sk

]
,

where Sk is defined in Equation (18). Recall that (r, (r′, e′)) ∈ Sk means that r = ri or (r′, e′) = (ri, ei)
where i ∈ [µ]\ Ik (i.e., Bk does not open c[i]). To bound the probability that Bk outputs (r, (r′, e′)) ∈ Sk,
we consider the games G′8 and G′9 in Figure 23.

Games G′8 and G′9 for Bk(k ∈ [0, ..., nOp])
01 (pk1, (sk1, k))← sKG, pk := pk1
02 (lpk1, lsk1)← LKG1, pk := lpk1
03 Ma ← A|G×H⟩,Dec

0 (pk)
04 for i ∈ [µ]
05 m[i] := mi ←Ma

06 ri
$←M′

07 Ri
$←R′ // G′8

08 ei := Enc1(pk, ri;Ri) // G′8
09 r′i

$←M′, R′i $←R′ // G′9
10 ei := Enc1(pk, r′i;R′i) // G′9
11 Ri ← open1(lsk1, lpk1, ei, R

′
i, ri) // G′9

12 di
$←M,Kmac

i
$← Kmac

13 τi := Tag(Kmac
i , ei, di)

14 c[i] := (ei, di, τi)
15 (r, (r′, e′))← BOpen,Dec,|G×H⟩

k (st, c)
16 return (r, (r′, e′))

Open(i)
17 I := I ∪ {i}
18 return (mi, ri)

Dec(c = (e, d, τ)): for c /∈ c
19 (K,Kmac) := h1(e)
20 if ∃i ∈ [µ] \ I s.t. e = ei

21 return ⊥
22 if ∃i ∈ I s.t. e = ei

23 (K,Kmac) := (Ki,K
mac
i )

24 if Vrfy(Kmac, τ) = 1
25 m := K ⊕ d
26 else m := ⊥
27 return m

H(r, e)
28 if ∃i ∈ I s.t. (r, e) = (ri, ei)
29 return (di ⊕mi,K

mac
i )

30 if e = Enc1(pk, r;G(r))
31 return h1(e)
32 return h(r, e)

G(r)
33 if ∃i ∈ I s.t. r = ri

34 return Ri

35 return g(r)

Figure 23: Games G′8-G′9 and constructions of Bk(k ∈ {0, ..., nOp}) for the proof of Lemma D.2.

Game G′9: We change the generation of challenge ciphertexts. To generate ei, we independently
sample a PKE1 message r′i and randomness R′i, encrypt r′i using R′i, and get e′i. Then we use the opening
algorithm open1 to claim the ciphertext ei to the PKE1 message ri with randomness Ri. Similar to G′8,
we still use ri and Ri to reprogram G and H. r′i and R′i are just used to generate ei. By the property
of open1, Ri has the same distribution with R′i. Since the public key in G′8 and G′9 is lossy, by the
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multi-challenge lossiness of PKE1 (Definition 5.2), we have∣∣∣ Pr
[
G′Bk

8 ⇒ (r, (r′, e′)) s.t. (r, (r′, e′)) ∈ Sk

]
− Pr

[
G′Bk

9 ⇒ (r, (r′, e′)) s.t. (r, (r′, e′)) ∈ Sk

]∣∣∣ ≤ ϵm-ind-enc
PKE1

Moreover, in G′9, ri and Ri are uniformly random and independent of Bk’s view before Bk opens c[i].
By using a union bound over all QRO queries, we get

Pr
[
G′Bk

9 ⇒ (r, (r′, e′)) s.t. (r, (r′, e′)) ∈ Sk

]
≤ qµ

|M′|
.

Therefore, we have

Pr
[
(r, (r′, e′))← B|G×H⟩

k s.t. (r, (r′, e′)) ∈ Sk : GBk
8

]
≤ ϵm-ind-enc

PKE1
+ qµ

|M′|
,

as stated in Lemma D.2.

E Lossy Encryption from LWE
We construct a lossy encryption scheme from the (Decisional) Learning With Errors (LWE) assumption.
Essentially, our lossy encryption is the same as the Regev scheme [Reg05] except that our encryption
algorithm uses short Gaussian errors instead of binary. The same has been done in [GPV08]. The
purpose of doing so is to achieve weak openability (cf. Definition 5.1) as required by our tight generic
construction in Section 5.

Before giving the construction, we first recall the Learning With Errors (LWE) assumption and some
relevant lemmas.

Definition E.1 (LWE Assumption). Let n be a positive integer, q := q(n) be a modulus, χ be a discrete
distribution over Zq. We say that the LWEn,m,q,χ assumption holds, if for every PPT algorithm B, the
following advantage is negligible in n:

AdvLWEn,m,q,χ(B) := |Pr[B(A,b) = 1 | A $← Zn×m
q ,b $← Zm

q ]
−Pr[B(A,AT s + e) = 1 | A $← Zn×m

q , s $← Zn
q , e← χm]|.

Lemma E.2 (Theorem 5.1 in [MP12]). There is an efficient randomized algorithm (B,R)← GenTrap(1n, 1m, q)
that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), outputs a parity-check matrix
B ∈ Zn×m

q and a trapdoor R such that the distribution of B is negl(n)-far from uniform.
Moreover, for any y ∈ Zn

q and large enough s = O(
√
n log q), the randomized algorithm SampleD(R,B,y, s)

samples from a distribution within negl(n) statistical distance of DΛ⊥
y (B),s·ω(

√
log n), where Λ⊥y (B) is de-

fined as the set {z ∈ Zm|Bz = y}.

For integer q and real number α ∈ R, we define Ψα be the distribution on R/Z of a normal variable
with mean 0 and standard deviation α/

√
2π. Let χ : Zq → R+ be the discrete distribution over Zq of

the random variable ⌊q ·XΨα⌉ mod q, where random variable XΨα has distribution Ψα and ⌊·⌉ rounds
a real number to its nearest integer.

Let b ∈ {0, 1} and v ∈ Zq. We define Encodeq(b) := ⌊ q
2 · b⌉, where ⌊·⌉ rounds a real number to its

nearest integer, and define Decodeq(v) such that if v is closer to 0 than to (⌊ q
2⌋ mod q), then Decodeq(v)

outputs 0, and otherwise output 1. For a vector v, Encodeq(v) means that applying Encodeq to v
coordinate-wise, and the same for Decodeq.

Let integer m ≥ 2n · log q and DZm,r be the discrete Gaussian distribution over Zm with a parameter
r. Our lossy encryption LWEPKE1 with message space M′ := {0, 1}ℓ is described in Figure 24. It has
randomness space R′ := DZm,r and ciphertext space C′ := Zn

q × Zℓ
q. In its lossy mode, it requires the

G-trapdoor technique [MP12] to achieve weak openability, and we recall the useful lemma as follow.

37



KG1

01 A $← Zn×m
q

02 X← χℓ×m

03 S $← Zn×ℓ
q

04 P := STA + X
05 sk1 := S
06 pk1 := (A,P)
07 return (pk1, sk1)

Enc1(pk1,m ∈ {0, 1}ℓ)
08 parse (A,P) =: pk1
09 e← DZm,r

10 t := Encodeq(m) ∈ Zℓ
q

11 u := Ae ∈ Zn
q

12 v := Pe + t ∈ Zℓ
q

13 return (u,v)

Dec1(sk1 = S, (u,v))
14 t′ := v− STu ∈ Zℓ

q

15 m′ := Decodeq(t′)
16 return m′

LKG1

17 (B,R)← GenTrap(1n, 1m, q)
18 [A⊤ | P⊤]⊤ := B
19 lpk1 := (A,P)
20 lsk1 := R
21 return (lpk1, lsk1)

open1(R, (A,P), (u,v), e,m′)
22 v′ := v− Encodeq(m′)
23 B := [A⊤ | P⊤]⊤ ∈ Z(n+ℓ)×m

q

24 c := [u⊤ | v′⊤]⊤ ∈ Zn+ℓ
q

25 return SampleD(R,B, c, s)

Figure 24: A LWE-based lossy encryption scheme LWEPKE1 = (KG1,Enc1,Dec1).

Theorem E.3 Let λ be a security parameter. If we use the following parameter setting n = poly(λ), ℓ =
O(n), prime q ∈ [ n4

2 , n
4], m = O(n log(q)), r = O(

√
m log(n)), α = 1

O(m log2(n)) , then the PKE scheme
LWEPKE1 in Figure 24 is a lossy encryption. Specifically, LWEPKE1 is (1− negl(n))-correct, ϵm-ind-enc

LWEPKE1
=

negl(n), and for any adversary A, we have

Advind-key
LWEPKE1

(A) ≤ ℓ · AdvLWEn,m,q,χ(B) + negl(n)

Proof. Correctness. This is very similar to [GPV08]. By the parameters in Theorem E.3 and the
following lemma, the scheme PKE1 is (1− negl(n))-correct.

Lemma E.4 ([GPV08, Lemma 8.2]) If q > 5rm and α ≤ 1/(r
√
m · ω(

√
logn)), then Dec1 in Figure 24

decrypts correctly with overwhelming probability.

Key Indistinguishability. We use the LWEn,m,q,χ assumption ℓ times to show that P generated by
KG1 is indistinguishable from a random matrix in Zℓ×m

q . Hence, our real key pk1 is pseudorandom.
Moreover, by Lemma E.2, our lossy key lpk1 generated using GenTrap is negl(n)-far from uniform. Hence,
we have

Advind-key
LWEPKE1

(A) ≤ ℓ · AdvLWEn,m,q,χ(B) + negl(n),

Lossiness. Let (A,P) be generated by LKG1. Again, by Lemma E.2, B =
(

A
P

)
∈ Z(n+ℓ)×m

q is negl(n)-

close to uniform. If B is uniform, by the leftover hash lemma in [AP08, Section 2.2.1], the distribution
of Be is statistically close to the uniform distribution over Zn+ℓ

q ). Hence, ϵm-ind-enc
LWEPKE1

= negl(n).
(Weak) Openability. The openability of our scheme LWEPKE1 is stronger than the weak openability
required as in Definition 5.1, namely, our opening algorithm does not need to use the original encryption
randomness e. By the lossiness, any ciphertext is a valid ciphertext of m′. According to open1 in

Figure 24, e′ $← SampleD(R,B, c, s) will satisfy Be′ +
(

0
Encodeq(m′)

)
=

(
u
v

)
and e′ ∈ DZm,r.

F Proof of Theorem 4.2
The proof of Theorem 4.2 is similar to Theorem 5.3. The main difference is that in Theorem 4.2 we
need to construct a reduction from OW-CPA security. This reduction is also similar to the OW-CPA
reduction in the proof of Theorem 4.1.

Theorem 4.2. Let h : M′ × C′ → M × Kmac and g : M′ → R′ be internal quantum-accessible ROs
which are used to respond the queries to H and G, respectively. Similar to the proof of Theorem 4.1,
to fit into the syntax of our framework, we combine G and H as one random oracle G × H such that
G×H(r′, r, e) := (G(r′),H(r, e)). A can query G×H at most q = qH + qG times.
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During the proof, we implicitly assume that A0 will not query Dec on (e, d, τ) with (e, d) = (ei, di)
before seeing the challenge ciphertexts c. Since ri’s are independent of A’s view before it sees c, the
probability that A queries Dec on such ciphertexts is µnDec

|C′−nDec| + µq√
|M′|

, where the second term is the
bound to search G(ri) and H(ri) given quantum access to G × H. Moreover, we also assume that
there is no collision among outputs of ri’s, Ri’s, Ki’s, and Kmac

i ’s. This introduce collision bounds
µ2

|M′| + µ2

R′ + µ2

|M| + µ2

|Kmac| . For simplicity, we just add these probability into our final bound, and do not
consider it in the game sequences.

Game G0-G7

01 (pk, (sk, k))← sKG
02 Ma ← ADec,|G×H⟩(pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma

05 ri
$←M′

06 Ri := G(ri) // G0-G6
07 Ri

$←R′ // G7
08 ei := Enc0(pk, ri; Ri)
09 (Ki, Kmac

i ) = H(ri, ei) // G0-G6
10 di := Ki ⊕mi // G0-G6
11 di

$←M // G7
12 Kmac

i
$← Kmac // G7

13 τi := Tag(Kmac
i , di)

14 c[i] := (ei, di, τi)
15 out← AOpen,Dec,|G×H⟩(c)
16 return Rel(Ma, m, I, out)

Oracle H(r, e)

17 if ∃i ∈ I s.t. (r, e) = (ri, ei) // G7
18 return (di ⊕mi, Kmac

i ) // G7
19 if e = Enc0(pk, r; G(r)) // G3-G6
20 return h1(e) // G3-G6
21 return h(r, e)

Dec(c = (e, d, τ)): for c /∈ c
22 r′ := Dec0(sk, e) // G0-G3
23 if r′ = ⊥

or e ̸= Enc0(pk, r′; G(r′)) // G0-G3
24 (K, Kmac) := h(k, e) // G0
25 (K, Kmac) := h′(e) // G1-G3
26 else (K, Kmac) := h(r′, e) // G0-G2
27 else (K, Kmac) := h1(e) // G3
28 (K, Kmac) := h1(e) // G4-G7
29 if ∃i ∈ [µ]\I s.t. e = ei // G6-G7
30 return ⊥ // G6-G7
31 if ∃i ∈ I s.t. e = ei // G7
32 (K, Kmac) := (Ki, Kmac

i ) // G7
33 if Vrfy(Kmac, τ) = 1
34 m := K ⊕ d
35 else m := ⊥
36 return m

Open(i)

37 I := I ∪ {i}
38 return (mi, ri)

Oracle G(r)

39 if ∃i ∈ I s.t. r = ri // G7
40 return Ri // G7
41 return g(r) // G0-G1, G5-G7
42 return g′(r) // G2-G4

Figure 25: Games G0-G7 for the proof of Theorem 4.2.

Game G0 is equivalent to REAL-SO-CCAAsPKE, so

Pr[REAL-SO-CCAAsPKE ⇒ 1] = Pr[GA0 ⇒ 1]

Game G1: The Dec oracle computes (K,Kmac) = h′(e) rather than h(k, e) if r′ = ⊥ or e ̸=
Enc0(pk, r′; g(r′)). By Lemma 2.7, we have∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ 2qH/
√
|M′|

Game G2: We restrict the range of G to be the “good” randomness space wrt (pk, sk). Specifically,
let R′good(pk, sk, r) be the set {r′ ∈ R′ | Dec0(sk,Enc0(pk, r; r′)) = r} and g′ : M′ → R′ be a quantum-
accessible random oracle such that g′(r) is sampled uniformly from R′good(pk, sk, r). If PKE is (1 − δ)-
correct (see Definition 2.1), then by a similar argument in Supp. Mat. D.1, we have∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ 8(µ+ nDec + qG + qH + 1)2δ.

Game G3: We set H(r, e) = h1(e) if e = Enc0(pk, r;G(r)), where h1 : C → M×Kmac is an internal
quantum-accessible random oracle. Since the randomness generated by G (i.e., g′) is always a “good”
randomness, Enc0(pk, ·;G(·)) is an injective function and thus h1(Enc0(pk, ·;G(·))) can be also viewed as
an random oracle. Therefore, we have Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
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Game G4: We “merge” h1 and h′, namely, Dec always computes (K,Kmac) := h1(e) regardless of the
validity of e. Similar to the argument in the proof of Theorem 5.3, we have Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].

Game G5: The oracle G is simulated using g instead of g′. Similar to the difference between G1
and G2, we have ∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ 8(µ+ nDec + qG + qH + 1)2δ.

Game G6: The decryption oracle always returns ⊥ if the adversary queries a ciphertext (e, d, τ) that
e is the PKE part of some unopened challenge ciphertexts, i.e., ∃i ∈ [µ]\I, e = ei. This game is necessary
for simulating the decryption oracle without secret key when constructing OW-CPA reduction.

Let Badj be the event that A queries Dec on a ciphertext (e, d, τ) that ∃i s.t. e = ei and
Vrfy(Kmac

i , d, τ) = 1 in Gj(j ≥ 6). That is, A forges valid MAC codes of some unopened ciphertext.
If Bad6 does not occur, then the winning probabilities of A in G5 and in G6 are the same. This is
because if ∃i s.t. e = ei but Vrfy(Kmac

i , d, τ) = 0, then by lines 19 and 31, the Dec oracle will still rejects
the ciphertexts. Thus

∣∣Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]
∣∣ ≤ Pr[Bad6].

Note that now we cannot bound Pr[Bad6] by constructing an MAC adversary, since in G6, unopened
MAC keys Kmac

j are related to H. In the next game G7, the randomness Ri, the MAC keys, and sym-
metric keys will be generated independent of G and H at first, and if A opens a challenge ciphertext, we
reprogram G and H to make the simulation consistent.

Game G7: the game simulator generates challenge ciphertexts independent of G,H, and then adap-
tively reprograms G and H to make the simulation consistent when the adversary issues Open queries.

The Open queries in G7 will make the QRO reprogrammed, while the QRO in G6 always remains
the same. So, we can view G6 and G6 as concrete cases of NonAda and Ada, respectively. We focus on
A1 since A0 will not make the QRO reprogrammed. Similar to the proof of Theorem 5.3 in Section 5, we
view A as (A0,A1) = (A0, (A1,0, ...,A1,nOp

)) and A1 is divided into (nOp + 1) stages wrt Open queries:

• Before any Open query (i.e., at the 0-th stage), A1,0 takes in0 := (st, c) as input and outputs the
first opening index out0 := (i1).

• For j ∈ {1, ..., nOp−1}, A1,j receives inj = (mij
, rij

) and ends the stage by outputting the (j+1)-th
opening index outj := ij+1.

• Finally, A1,nOp
receives innOp

= (minOp
, rinOp

) and terminates by outputting outnOp
:= out.

We do not consider the A0 part and only assume that A1 takes A0’s final state as its initial state.
In Figure 26, we define INIT,Fs, and Repros. If we instantiate NonAda using INIT, Fs, and Repros,

then the instantiated game is equivalent to the part of G6 that interacts with A1. Similarly, it we
instantiate Ada using INIT, Fs, and Repros, then the instantiated game is equivalent to the part of G7
that interacts with A1. Moreover, at A’s k-th stage, our Fs defines a set

Sk := {(r, (r′, e′)) | ∃i ∈ [µ]\Ik s.t. r = ri or (r′, e′) = (ri, ei)} (19)

where Ik := {i1, ..., ik} is the opening index set I in A1’s k-th stage (i.e., A1,k). Answers of G × H in
G6 (i.e., NonAda) and G7 (i.e., Ada) are only different on Sk. For k = 0, S0 is defined at Item 13
and I0 = ∅. Similar to the argument in the proof of Theorem 4.1, by using Lemma 3.1, the probability
difference between the event that G6 output 1 (i.e., Rel(Ma,m, I, out) = 1 in G6) and similar event in
G7 is bounded by∣∣Pr[GA6 ⇒ 1|¬Bad6]− Pr[GA7 ⇒ 1|¬Bad7]

∣∣
≤

nOp∑
k=0

k∑
i=0

2qi

√
Pr

[
(r, (r′, e′))← B|G×H⟩

i s.t. (r, (r′, e′)) ∈ Si : GBi
7

]
+ 2µq√

|R′|
,

where Ev here is the event that A1 outputs a particular opening index set I and final output out, and
INIT, Fs, and Repros are defined in Figure 26. It includes a term 2µq√

|R′|
, since A0 also has quantum

access to |G×H⟩, and this term is the probability that the first stage (i.e., A1,0) of A1 learns ri before
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INIT

01 (pk, sk)← KG0
02 Let G and H be QROs that

run as Items 41 to 42 and Items 19 to 21 (using pk, g, h, h1) in G7, respec-
tively.
03 Ma ← A|G×H⟩,Dec

0 (pk) //Dec is simulated as in G7
04 for i ∈ [µ]:
05 m[i] := mi ←Ma, r[i] := ri

$←M′

06 Ri := G(ri), R[i] := Ri

07 ei = Enc0(pk, mi; Ri)
08 (Ki, Kmac

i ) := H(ri, ei)
09 di := Ki ⊕mi

10 τi := Tag(Kmac
i , di)

11 c[i] := (ei, di, τi), Kmac[i] := Kmac
i

12 s := (Ma, m, r, R, c, Kmac), in0 := c
13 S0 := {ri}i∈[µ] × {(ri, ei)}i∈[µ]

14 Let G0 ×H0(x) :=
{

G×H(x), (x /∈ S0)
g′ × h′(x), (else)

15 return ((s, in0), G×H, G0 ×H0)

Fs(out)
16 parse i := out
17 (Ma, m, r, R, c, Kmac) := s
18 I := I ∪ {i}
19 ri := r[i], Ri := R[i], mi := m[i]
20 (ei, di, τi) := c[i], Kmac

i := Kmac[i]
21 in := (ri, mi)
22 in′ := (ri, mi, ei, di, Kmac

i )
23 return (in, in′)

Repros(in′, G×H)

24 parse (r, m, e, d, Kmac) := in′

25 G := G[r → R]
26 H := H[(r, e)→ (d⊕m, Kmac)]
27 return G×H

Figure 26: Construction of INIT, INIT,Fs, and Repros used in the proof of Theorem 4.2. g, g′, h, h1, h
′

are internal quantum-accessible random oracles. Here the adversary also has classical access to Dec.
Since Dec will not make G × H reprogrammed and will not leak information about Sk, allowing the
adversary to query Dec does not change the bound of Lemma 3.1.

opening challenge ciphertexts. Moreover, similar to the argument in bounding G7 and G8 in the proof
of Theorem 5.3, we have

|Pr [Bad6]− Pr [Bad7]| =
∣∣Pr

[
Bad : GA6

]
− Pr

[
Bad : GA7

]∣∣
≤

nOp∑
k=0

k∑
i=0

2qi

√
Pr

[
(r, (r′, e′))← B|G×H⟩

i s.t. (r, (r′, e′)) ∈ Si : GBi
7

]
+ 2µq√

|R′|
.

Based on Bk(1 ≤ k ≤ nOp), we can construct an OW-CPA adversary Bow
k (in Figure 27) against

PKE that has the same structure with the adversaries in Figure 9, except that Bow
k needs to simulate

the decryption oracle. Since in G7, the decryption oracle can be simulated without secret key, Bow
k can

simulates G7 for Bk perfectly if Bad7 does not occur. Therefore, similar to the argument in Theorem 4.1,
there exists an OW-CPA adversary Bow such that∣∣Pr[GA6 ⇒ 1|¬Bad6]− Pr[GA7 ⇒ 1|¬Bad7]

∣∣
≤ 2(nOp + 1)2q

√
2µAdvOW-CPA

PKE (Bow) + Pr[Bad7] + 2µq√
|R′|

(20)

G7 also enable us to construct an otSUF-CMA reduction to bound Pr[Bad7]. Let F be an otSUF-CMA
adversary that simulates G7 for A. F here has similar structure with the one in Figure 21. It firstly
chooses t∗ $← [µ] uniformly and sets Kmac

t∗ := ⊥. To generates τt∗ , F queries its Tag oracle on dt∗ and
sets the responding tag as τt∗ . F aborts the game if A opens ct∗ . When A1 queries the Dec oracle on
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Bow
k (pk∗, e∗) // (pk∗, e∗) is a OW-CPA challenge of PKE

01 ((s, in0), (G×H), (G0 ×H0))← INIT // INIT is defined in Figure 26,
// where pk := pk∗

02 parse (Ma, m, r, R, c, Kmac) := s, c := in0
03 t∗ $← [µ], (et∗ , dt∗ , τt∗ ) := c[t∗]
04 c[t∗] := ( e∗ , dt∗ , τt∗ ), in0 := c // embed the challenge
05 if k = 0: goto line 15
06 out0 ← B|G0×H0⟩,Dec

k (in0) //Dec is simulated as in G8 in Figure 25
07 if out0 = t∗: abort
08 (in1, in′

1) := Fs(out0, (G0 ×H0)) // Fs is defined in Figure 26
09 (G1 ×H1) := Repros(in′

1, (G0 ×H0)) // Repros is defined in Figure 26
10 for j = 1 to k − 1:
11 outj ← B

|Gj ×Hj ⟩,Dec

k (inj)
12 if outj = t∗: abort
13 (inj+1, in′

j+1) := Fs(outj , (Gj ×Hj))
14 (Gj+1 ×Hj+1) := Repros(in′

j+1, (Gj ×Hj))
15 (r′

0, (r′
1, e′))← B|Gk×Hk⟩,Dec

k (ink) // perform measurement
16 b $← {0, 1}, r∗ := r′

b // randomly choose a solution
17 return r∗

Figure 27: The constructions of OW-CPA adversaries Bow
k in the proof of Theorem 4.2.

input (e, d, τ) that e = et∗ and Vrfy(d, τ) = 1, F outputs (d, τ). If A1 finally outputs out but the event
Bad7 does not occur, then F aborts.

If the event Bad7 occurs, then the probability that the ciphertext (e, d, τ) (that raises this event)
satisfies e = et∗ is 1

µ−n . The probability that A1 does not open ct∗ is µ−n
µ . so we have,

Pr[Bad7] = µAdvotSUF-CMA
MAC (F)

and thus we have∣∣ Pr[GA6 = 1]− Pr[GA7 = 1]
∣∣

≤ 4(nOp + 1)2q

√
2µAdvOW-CPA

PKE (Bow) + µAdvotSUF-CMA
MAC (F) + 4µq√

|R′|
+ µAdvotSUF-CMA

MAC (F)

Now we can construct a simulator S that is simulating G7 forA and interacts with the IDEAL-SO-CCASsPKE
game. Its simulation process is given in Figure 28, which is similar to the one in Figure 10, and the
simulation of Dec is the same as G7 (without using sk), so we have

|Pr[GA7 ⇒ 1]− Pr[IDEAL-SO-CCASsPKE ⇒ 1] ≤ µAdvotSUF-CMA
MAC (F)

In conclusion, for any SO-CCA adversary A, there exists an efficient simulator S such that

AdvSO-CCA
sPKE (A,S, µ,Rel)

=
∣∣ Pr[REAL-SO-CCAAsPKE(A)⇒ 1]− Pr[IDEAL-SO-CCASsPKE(S)⇒ 1]

∣∣
≤ 3µAdvotSUF-CMA

MAC (F) + 6(nOp + 1)2q

√
2µAdvOW-CPA

PKE (Bow) + µAdvotSUF-CMA
MAC (F)

+ 2qH√
2k

+ 16(µ+ nDec + qG + qH + 1)2δ + µ2

|Kmac|
+ 6µq√

|R′|
+ µnDec

|C′| − nDec
+ (2 + µ)q√

|M′|
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SOpen

01 Chooses QROs g, h, h1 at random
02 I = ∅, (pk, (sk, k))← sKG
03 Ma ← ADec,|G×H⟩(pk)
04 Outputs Ma and receives m′′

05 for i ∈ [µ]
06 ri

$←M′, Ri
$←R′

07 ei := Enc0(pk, ri; Ri)
08 di

$←M
09 Kmac

i
$← Kmac

10 τi := Tag(Kmac
i , di)

11 c[i] := (ei, di, τi)
12 out← AOpen,Dec,|G×H⟩(c)
13 return out

Oracle G(r)

14 if ∃i ∈ I s.t. r = ri

15 return Ri

16 return g(r)

Dec(c = (e, d, τ)): for c /∈ c
17 (K, Kmac) := h1(e)
18 if ∃i ∈ [µ]\I s.t. e = ei

19 return ⊥
20 if ∃i ∈ I s.t. e = ei

21 (K, Kmac) := (Ki, Kmac
i )

22 if Vrfy(Kmac, τ) = 1
23 m := K ⊕ d
24 else m := ⊥
25 return m

Open(i)

26 I := I ∪ {i}
27 Queries its Open oracle on i
28 Receives mi and records
29 return (mi, ri)

Oracle H(r, e)

30 if ∃i ∈ I s.t. (r, e) = (ri, ei)
31 return (di ⊕mi, Kmac

i )
32 if e = Enc0(pk, r; G(r))
33 return h1(e)
34 return h(r, e)

Figure 28: Simulator S in the proof of Theorem 4.2.

G Bi-SO Security Proof of FO̸⊥

G.1 Proof of Theorem 6.1
Similar to the proof of Theorem 4.2, we combine G and H as one random oracle G × H such that
G×H(pk′, pk, r′, r, e) := (G(pk′, r′),H(pk, r, e)). A can query G×H at most q = qH + qG times.

Let g, gpk1 , ..., gpkp
h, hpk1 , ..., hpkp

, h′, h′pk1
, ..., h′pkp

, ĥ′pk1
, ..., ĥ′pkp

be internal quantum random oracles.
The subscripts pkj are just notations to distinguish these QROs. These internal QROs are used to
respond G,H,H ′.

In this games transition, we also consider the case that A0 queries Dec on (j, e, d, τ) such that
(e, d) = (ej,i, dj,i) before seeing the challenge ciphertexts c. The probability that A0 queries Dec on
such ciphertexts is pµnDec

|C′|−nDec
+ pµq√

|M′|
. For simplicity, we just add this probability into our final bound.

Moreover, we also assume that there is no collision among outputs of kj,i, rj,i’s, Rj,i’s, Kj,i’s, and Kmac
j,i ’s.

This introduce collision bounds p2µ2+p2

|M′| + p2µ2

R′ + p2µ2

|M| + p2µ2

|Kmac| + pηKG0 . For simplicity, we just add these
probability into our final bound, and do not consider it in the game sequences.

Similar to the proofs of Theorem 4.1 and Theorem 5.3, we use the encrypt-than-hash technique so
that the decryption oracle can be simulated without secret key. However, in the Bi-SO setting, we cannot
use this technique directly since the adversary can learn user’s secret key by querying Corrupt and
then use the implicit rejection key k to determine if the game simulator uses the same internal QRO
to simulate Dec for both valid and invalid ciphertext. To deal with it, we need to use our QROM
reprogramming framework in Lemma 3.1.

The games sequence is given in Figure 29. We have

Pr[GA0 ⇒ 1] = Pr[REAL-Bi-SO-CCAAsPKE ⇒ 1]

Game G1: If A queries Dec(j, (e, d, τ)) where e is invalid or cannot pass the re-encryption check,
then the oracle computes (K,Kmac) as h′pkj

(e) instead of H ′(pkj , kj , e) (see Item 48). Moreover, to
make the simulation consistent, if A queries H ′(pkj , kj , e) where pkj is corrupted and e is an invalid
ciphertext or cannot pass the re-encryption check, then H ′(pk, k, e) returns h′pk(e) instead of h′(pk, k, e)
(see Items 26 to 30). The latter modification can be seen as we reprogram H ′[(pkj , kj , e)→ ĥ′pkj

(e)] for
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G0-G8
01 for j ∈ [p]: (pkj , (skj , kj))← sKGbi

02 Ma ← A|G×H⟩,|H′⟩,Dec(pk1, ..., pkp)
03 for j ∈ [p]:
04 for i ∈ [µ]
05 m[j, i] := mj,i ←Ma

06 r[j, i] := rj,i
$←M′

07 R[j, i] := Rj,i = G(pkj , rj,i) // G0-G6
08 R[j, i] := Rj,i

$←R′ // G7
09 ej,i := Enc0(pkj , rj,i; Rj,i)
10 (Kj,i, Kmac

j,i ) := H(pkj , rj,i, ej,i) // G0-G7
11 d[j, i] := dj,i := Kj,i ⊕mj,i // G0-G7
12 Kmac

j,i
$← Kmac // G7

13 d[j, i] := dj,i
$←M // G7

14 Kmac[j, i] := Kmac
j,i

15 τj,i := Tag(Kmac
j,i , dj,i)

16 c[j, i] := (ej,i, dj,i, τj,i)
17 out← A|G×H⟩,|H′⟩,Corrupt,Open,Dec(c)
18 return Rel(Ma, m, J, I, out)

H(pk, r, e)
19 if ∃(j, i) ∈ J ′ ∪ I s.t. // G7
20 pk = pkj and (r, e) = (rj,i, ej,i) // G7
21 return (dj,i ⊕mj,i, Kmac

j,i ) // G7
22 if ∃j ∈ [p] s.t. pkj = pk // G3-G7
23 if e = Enc0(pk, r; G(pk, r)) // G3-G7
24 return hpk(e) // G3-G7
25 return h(pk, r, e)

H′(pk, k, e)
26 if ∃j ∈ J s.t. pk = pkj ∧ k = kj // G1-G7
27 r′ := Dec0(skj , e) // G1-G7
28 if r′ = ⊥ // G1-G7
29 or e ̸= Enc0(pkj , r′; G(pkj , r′)) // G1-G7
30 return h′

pk(e) // G1-G7
31 return hpk(e) // G4-G7
32 return h′(pk, k, e)

G(pk, r)
33 if ∃j ∈ [p] s.t. pk = pkj // G2-G4
34 return g′

pk(r) // G2-G4
35 if ∃(j, i) ∈ J ′ ∪ I s.t.

pk = pkj and r = rj,i // G7
36 return Ri // G7
37 return g(pk, r)

Open(j, i)
38 I := I ∪ {(j, i)}
39 return (mj , rj)

Corrupt(j)
40 J := J ∪ {j}, mj := ∅
41 for i ∈ [µ]:
42 mj [i] := mj,i

43 J ′ := J ′ ∪ (j, i) // G7
44 return (skj , mj)

Dec(j, (e, d, τ))
45 r′ := Dec0(skj , e) // G0-G3
46 if r′ = ⊥

or e ̸= Enc0(pk, r′; G(pkj , r′)) // G0-G3
47 (K, Kmac) := H′(pkj , kj , e) // G0
48 (K, Kmac) := h′

pkj
(e) // G1-G3

49 else // G0-G3
50 (K, Kmac) := H(pkj , r′, e) // G0-G2
51 (K, Kmac) := hpkj

(e) // G3
52 (K, Kmac) := hpkj

(e) // G4-G7
53 if ∃i s.t. (j, i) ∈ [p]× [µ]\(J ′ ∪ I) // G6-G7
54 s.t. pk = pkj and e = ej,i // G6-G7
55 return ⊥ // G6-G7
56 if ∃(j, i) ∈ J ′ ∪ I s.t. // G7
57 pk = pkj and e = ej,i // G7
58 (K, Kmac) := (dj,i ⊕mj,i, Kmac

j,i ) // G7
59 if Vrfy(Kmac, τ) = 1
60 m := K ⊕ d
61 else m := ⊥
62 return m

Figure 29: Games G0-G8 in the proof of Theorem 6.1

some e if A corrupts the user j.
We can use Lemma 2.7 to bound the difference caused by the first modification. Since there are p

users in the security games, so we need to apply Lemma 2.7 here p times.
The probability difference due to the second modification can be bounded by using our QROM

reprogramming framework. To use Lemma 3.1, we can split A into nCo + 1 stages with respect to its
Corrupt queries. In G0, the QRO H ′ does not change during the game, while in G1, corrupting user
will make H ′ reprogrammed.

We can define algorithms INIT,Fs, and Repros in a natural way such that G0 is a NonAda game
and G1 is a Ada game and construct an adversary Bk to bound the probability that A “queries” kj

where user j is uncorrupted. Since for all j, kj are chosen at independently uniformly random, thus the
probability that Bk find kj for any j /∈ J is pqH′

|M′| , where qH′ is the number of time that A queries H ′.
For simplicity, we ignore the details. By Lemma 2.7 and Lemma 3.1, we have

∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ 2(nCo + 1)2√pqH′ + 2pqH′√

|M′|

Game G2: We restrict the range of G(pkj , ·) to be the “good” randomness space R′good ⊂ R′ respect
to (pkj , skj). Specifically, let R′good(pkj , skj , r) be the set {r′ ∈ R′ | Dec0(skj ,Enc0(pkj , r; r′)) = r} and
R′Bad(pkj , skj , r) be the set R′\R′good(pkj , skj , r). Let g′pkj

: M′ → R′ be a quantum-accessible random
oracle such that g′pkj

(r) is sampled uniformly fromR′good(pkj , skj , r). We can use a similar idea of [PWZ23,
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Theorem 4.4] to extend the proof in Supp. Mat. D.1 to the multi-user setting by hybrid argument. For
simplicity, here we only present the probability bound. If PKE is δ-correct (see Definition 2.1), then∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ 8p(µ+ nDec + qG + qH + qH′ + 1)2δ.

Game G3: We set H(pkj , r, e) = hpkj
(e) if e = Enc0(pkj , r;G(pkj , r)) (see Items 22 to 24). Since the

randomness generated by G (i.e., g′pkj
) is always a “good” randomness, the map Enc0(pkj , ·;G(pkj , ·)) is

injective and thus the map hpkj
(Enc0(pkj , ·;G(pkj , ·))) can be also viewed as an random oracle. Therefore,

we have
Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

Game G4: We “merge” hpkj
and h′pkj

, namely, in this game we use hpkj
to replace h′pkj

. Similar
to the argument in the proof of Theorem 4.2, the indirect queries from A to hpkj

and to h′pkj
in G3

(regardless of whether user j is corrupted) are disjoint, and so we can use the same internal QRO to
respond these queries. We have

Pr
[
GA3 ⇒ 1

]
= Pr

[
GA4 ⇒ 1

]
.

Game G5: In this game, the oracle G(pk, ·) is simulated using gpk instead of g′pk. Similar to the
difference between G1 and G2, we have∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ 8p(µ+ nDec + qG + qH + qH′ + 1)2δ.

Game G6: In this game, the decryption oracle always returns ⊥ if the adversary queries a ciphertext
(e, d, τ) that e is the PKE part of some unopened ciphertexts, i.e., ∃(j, i) ∈ [p] × [µ]\(J ′ ∪ I) such that
e = ej,i.

Let Badk be the event that A queries Dec on a ciphertext (e, d, τ) that ∃(j, i) ∈ [p] × [µ]\(J ′ ∪ I)
s.t. e = ej,i and Vrfy(Kmac

j,i , d, τ) = 1 in Gk(k ≥ 6). That is, A forges valid MAC codes of some un-
opened ciphertext. Similar to the arguments in the proof of Theorem 4.2, if Badk does not occur, then the
winning probabilities of A in G5 and in G6 are the same. Thus

∣∣Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]
∣∣ ≤ Pr[Bad6].

Game G7: The game simulator generates challenge ciphertexts independent of G,H. If A corrupted
the user j (which means that all cj,i for i ∈ [µ] are opened), or opened cj,i, then G and H will be
reprogrammed such that G(pkj , rj,i) = Rj,i and H(pkj , rj,i, ej,i) = dj,i ⊕mj,i, and the responds of Dec
are modified to make the simulation consistent. See Items 19 to 21 and Items 56 to 58.

In G7, there are two types of query (Open and Corrupt) from A will make G and H be repro-
grammed. In Figure 30 we define INIT, Fs, and Repros such that G6 is a NonAda game and G7 is an
Ada game in Figure 4. The queries to H ′ and Dec do not influence the distribution of G×H.

We firstly view A = (A0,A1), where A0 is A in the stage cannot issues Open or Corrupt queries and
A1 is A in the stage that can issues Open and Corrupt queries. Suppose that A corrupts at most nCo

users and opens at most nOp challenge ciphertexts. A1 can be further divided into (nOp +nCo +1) stages
wrt Open queries or Corrupt queries: Before any Open or Corrupt query (i.e., at the 0-th stage),
A1 takes in0 := c as input and outputs out0, where out0 can be an opening index (j1, i1) (corresponding
to issue Open query) or a corrupting index j1 (corresponding to issue Open query); and after that, at
k-th stage (1 ≤ k ≤ nOp + nCo − 1), A1 receives ink and ends the stage by outputting outk, where ink is
the secret key of a user or the message-randomness pair of a opened ciphertext, and outk is an opening
index or a corrupting index. Finally, at the (nCo + nOp)-th stage, A1 receives inn and terminates by
outputting out.

Moreover, at A1’s k-th stage, our Repros defines a set

Sk :=
{

((pkj , rj,i), (pkj′ , rj′,i′ , ej′,i′))|(j, i) ∈ [p]× [µ]\(J ′k ∪ Ik)

or (j′, i′) ∈ [p]× [µ]\(J ′k ∪ Ik)
}
, (21)

where J ′k, Ik are the lists J ′, I respectively just after A1 issues the k-th query to Open or Corrupt.
Let qk be the number of query to G×H issued by A1 at its k-th stage. By Lemma 3.1, there exists

Bk for k ∈ {0, ..., nOp + nCo} such that:∣∣∣ Pr
[
GA6 ⇒ 1|¬Bad6

]
− Pr

[
GA7 ⇒ 1|¬Bad7

]∣∣∣
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INIT

01 I := ∅, J := ∅, J ′ := ∅
02 for j ∈ [p]: (pkj , (skj , kj))← sKGbi, pk[j] := pkj

03 Chooses QROs g, h, h′, hpk1 , ..., hpkp
, gpk1 , ..., gpkp

, g′′, h′′

04 Simulates G, H, and H ′ as G6 and Dec as G7 in Figure 29
05 Ma ← A|G×H⟩,|H′⟩

0 (pk1, ..., pkp)
06 for j ∈ [p]:
07 for i ∈ [µ]
08 m[j, i] := mj,i ←Ma, r[j, i] := rj,i

$←M′, R[j, i] := Rj,i = G(pkj , rj,i)
09 ej,i = Enc0(pkj , mj,i; Rj,i), (Kj,i, Kmac

j,i ) = H(rj,i, ej,i)
10 dj,i = Kj,i ⊕mj,i, Kmac[j, i] := Kmac

j,i

11 c[j, i] := (ej,i, dj,i, τj,i)
12 s := (Ma, pk, m, r, R, c, Kmac), in0 := c
13 SG

0 := {(pkj , rj,i)|(j, i) ∈ [p]× [µ]}
14 SH

0 := {(pkj′ , rj′,i′ , ej′,i′ )|(j′, i′) ∈ [p]× [µ]}
15 S0 := SG

0 × SH
0

16 Let G0 ×H0(x) :=
{

G×H(x), (x /∈ S0)
g′′ × h′′(x), (else)

17 return ((s, in0), G×H, G0 ×H0)

Fs(out)
18 (Ma, pk, m, r, R, c, Kmac) := s
19 if out is an integer (denoted as j): //Corrupt query
20 pkj := pk[j], mj := ∅
21 for i ∈ [µ] : mj [i] := mj,i := m[j, i]
22 in := (skj , mj), in′ := j
23 else //Open query
24 (j, i) := out, rj,i := r[j, i], mj,i := m[j, i]
25 in := (rj,i, mj,i), in′ := (j, i)
26 return (in, in′)

Repros(G×H, in′)

27 (Ma, pk, m, r, R, c, Kmac) := s
28 if in′ is an integer (denoted as j): //Corrupt query
29 J := J ∪ {j}, pkj := pk[j],
30 for i ∈ [µ]
31 J ′ := J ′ ∪ (j, i), rj,i := r[j, i], Rj,i := R[j, i], G := G[(pkj , rj,i)→ Rj,i]
32 (ej,i, dj,i, τj,i) := c[j, i], mj,i := m[j, i], Kmac

j,i := Kmac[j, i]
33 H := H[(pkj , rj,i, ej,i)→ (dj,i ⊕mj,i, Kmac

j,i )]
34 else //Open query
35 (j, i) := in′

36 I := I ∪ {(j, i)}, pkj := pk[j], (ej,i, dj,i, τj,i) := c[j, i]
37 rj,i := r[j, i], Rj,i := R[j, i], mj,i := m[j, i], Kmac

j,i := Kmac[j, i]
38 G := G[(pkj , rj,i)→ Rj,i], H := H[(pkj , rj,i, ej,i)→ (dj,i ⊕mj,i, Kmac

j,i )]
39 return G×H

Figure 30: Constructions of INIT, Fs, and Repros in the proof of Theorem 6.1. We assume that all pkj ’s
, kj ’s, dj,i’s, Kmac

j,i ’s are different. I, J, J ′ are publicly accessible.

46



≤
nCo+nOp∑

k=0

k∑
i=0

2qi

√
Pr

[
x′ ← B|G×H⟩,|H′⟩,Dec

i s.t. x′ ∈ Si : GBi
7

]
+ 2pµq√

|R′|
,

where sets Sk is defined as Equation (21). Based on Bk, we can construct adversaries Bow
k against the

OW-CPA security of PKE. See Figure 31. By the construction of Bow
k , as long as A does not corrupt j∗,

Bow
k can always simulate Dec and G8

Bow
k (pk∗, e∗) // (pk∗, e∗) is a OW-challenge of PKE. Bow

k simulates G8 for Bk

01 j∗ $← [p], i∗ $← [µ]
02 ((s, in0), (G×H), (G0 ×H0))← INIT // using pkj∗ := pk∗ in Figure 30
03 parse (Ma, pk, m, r, R, c, Kmac) := s, c := in0
04 (ej∗,i∗ , dj∗,i∗ , τj∗,i∗ ) := c[j∗, i∗]
05 c[j∗, i∗] := ( e∗ , dj∗,i∗ , τj∗,i∗ ), in0 := c // embed the challenge
06 if k = 0: goto line 15
07 out0 ← B|G0×H0⟩,|H′⟩,Dec

k (in0) // outt has the form j or (j, i)
08 if out0 = j∗ or out0 = (j∗, i∗): abort
09 (in1, in′

1) := Fs(out0), (G1 ×H1) := Repros(G0 ×H0, in′
1)

10 for t = 1 to k − 1:
11 outt ← B|Gt×Ht⟩,|H′⟩,Dec

k (int)
12 if outt = j∗ or outt = (j∗, i∗): abort
13 (int+1, in′

t+1) := Fs(outt)
14 (Gt+1 ×Ht+1) := Repros(Gt ×Ht, in′

t+1)
15 (r′

0, (r′
1, e′))← B|Gk×Hk⟩,|H′⟩,Dec

k (ink)
16 b $← {0, 1}, r∗ := r′

b // randomly choose a solution
17 return r∗

Figure 31: The detailed constructions of OW-CPA adversaries Bow
k , 0 ≤ k ≤ nCo + nOp.

By the construction of Bow
k , if A1 does not corrupt user j∗ and does not open cj∗,i∗ , and r or r′ equals

the solutions of e∗, then Bow
k wins. So the winning probability for Bow

j to breaks the OW-CPA challenge
is:

AdvOW-CPA
PKE (Bow

k ) = 1
2pµ

Pr
[
x← B|G×H⟩,|H′⟩,Dec

k s.t. x ∈ Sk : GBk
7

]
,

and thus we have ∣∣Pr[GA6 ⇒ 1|¬Bad6]− Pr[GA7 ⇒ 1|¬Bad7]
∣∣

≤
nCo+nOp∑

k=0

k∑
i=0

2qi

√
2pµAdvOW-CPA

PKE (Bow
i ) + Pr[Bad7] + 2pµq√

|R′|

Let Bow be the adversary that has highest advantage against PKE among {Bow
k }k∈{0,...,nCo+nOp}.∣∣∣Pr

[
GA6 ⇒ 1|¬Bad6

]
− Pr

[
GA7 ⇒ 1|¬Bad7

]∣∣∣
≤ 2(nCo + nOp + 1)2q

√
2pµAdvOW-CPA

PKE (Bow) + Pr[Bad7] + 2pµq√
|R′|

(22)

Now we can construct an otSUF-CMA reduction to bound Pr[Bad7]. Let F be an otSUF-CMA
adversary that simulates G7 for A. It firstly chooses j∗ $← [p], i∗ $← [µ] uniformly and sets Kmac

j∗,i∗ := ⊥.
To generates τj∗,i∗ , F queries its Tag oracle on dj∗,i∗ and sets the responding tag as τj∗,i∗ . F aborts
the game if A opens cj∗,i∗ or corrupts j∗. When A1 queries the Dec oracle on input (pkj , e, d, τ) that
e = ej∗,i∗ and Vrfy(d, τ) = 1, F outputs (d, τ). If A1 finally outputs out but the event Bad7 does not
occur, then F aborts. Similar to the argument in the proof of Theorem 6.1, we have

Pr[Bad7] = pµAdvotSUF-CMA
MAC (F)

Since the events Bad6 and Bad7 are well defined classical event, it can be detected by the game
simulator when responding the Dec queries. By Lemma 3.1 and the bound of |Pr[GA6 ⇒ 1]−Pr[GA7 ⇒
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SOpen′,Corrupt′

01 for j ∈ [p]: (pkj , (skj , kj))← sKGbi

02 Ma ← ADec,|G×H⟩,|H′⟩(pk1, ..., pkp)
03 Outputs Ma and receives m′′

04 for j ∈ [p]:
05 for i ∈ [µ]
06 r[j, i] := rj,i

$←M′

07 R[j, i] := Rj,i
$←R′

08 ej,i = Enc0(pkj , rj,i; Rj,i)
09 d[j, i] := dj,i

$←M
10 Kmac[j, i] := Kmac

j,i
$← Kmac

11 τj,i := Tag(Kmac
j,i , dj,i)

12 c[j, i] := (ej,i, dj,i, τj,i)
13 out← AOpen,Corrupt,Dec,|G×H⟩,|H′⟩(c)
14 return out

H(pk, r, e)

15 if ∃(j, i) ∈ J ′ ∪ I s.t.
16 pk = pkj and (r, e) = (rj,i, ej,i)
17 return (dj,i ⊕mj,i, Kmac

j,i )
18 if ∃j ∈ [p] s.t. pkj = pk
19 if e = Enc0(pk, r; G(pk, r))
20 return hpk(e)
21 return h(pk, r, e)

H ′(pk, k, e)

22 if ∃j ∈ J s.t. pk = pkj ∧ k = kj

23 r′ := Dec0(skj , e)
24 if r′ = ⊥ or e ̸= Enc0(pkj , r′; G(pkj , r′))
25 return hpk(e)
26 return h′(pk, k, e)

G(pk, r)

27 if ∃(j, i) ∈ J ′ ∪ I s.t.
pk = pkj and r = rj,i

28 return Ri

29 return g(pk, r)

Open(j, i)

30 I := I ∪ {(j, i)}
31 Queries Open′(j, i) and gets mj,i

32 return (mj,i, rj,i)

Corrupt(j)

33 J := J ∪ {j}
34 Queries Corrupt′(j) and gets mj

35 for i ∈ [µ]
36 J ′ := J ′ ∪ (j, i), mj,i := mj [i]
37 return (skj , mj)

Dec(j, (e, d, τ))

38 (K, Kmac) := hpkj
(e)

39 if ∃i s.t. (j, i) ∈ [p]× [µ]\(J ′ ∪ I)
40 s.t. pk = pkj and e = ej,i

41 return ⊥
42 if ∃(j, i) ∈ J ′ ∪ I s.t.
43 pk = pkj and e = ej,i

44 (K, Kmac) := (dj,i ⊕mj,i, Kmac
j,i )

45 if Vrfy(Kmac, τ) = 1
46 m := K ⊕ d
47 else m := ⊥
48 return m

Figure 32: The simulator of the proof of Theorem 6.1

1]|, there exists adversaries Bow and F such that∣∣∣ Pr[Bad6]− Pr[Bad7]
∣∣∣

≤ 2(nCo + nOp + 1)2q

√
2pµAdvOW-CPA

PKE (Bow) + pµAdvotSUF-CMA
MAC (F) + 2pµq√

|R′|
,

and thus we have ∣∣∣Pr
[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]∣∣∣
≤ 4(nCo + nOp + 1)2q

√
2pµAdvOW-CPA

PKE (Bow) + pµAdvotSUF-CMA
MAC (F)

+ pµAdvotSUF-CMA
MAC (F) + 4pµq√

|R′|

Now we can construct a simulator S that interacts with the IDEAL-SO-CCASsPKEbi
game and simulates

G7 for A. S’s construction is shown in Figure 32, and it perfectly simulates G7 for A except that Bad7
happens, and thus

|Pr[GA7 ⇒ 1]− Pr[IDEAL-SO-CCASsPKEbi
⇒ 1]| ≤ pµAdvotSUF-CMA

MAC (F).

Therefore,

AdvBi-SO-CCA
sPKEbi

(A,S, p, µ,Rel)
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≤ |Pr[REAL-SO-CCAAsPKEbi
⇒ 1]− Pr[IDEAL-SO-CCASsPKEbi

⇒ 1]|

≤ 6(nCo + nOp + 1)2q

√
2pµAdvOW-CPA

PKE (Bow) + pµAdvotSUF-CMA
MAC (F) + pηKG0

+ 3pµAdvotSUF-CMA
MAC (F) + pµnDec

|C′| − nDec
+ p2µ2 + p2

|M′|
+ p2µ2

R′
+ p2µ2

|M|
+ p2µ2

|Kmac|

+ 6pµq√
|R′|

+ 16p(µ+ nDec + q + qH′ + 1)2δ +
2(nCo + 1)2√pqH′ + 2pqH′ + pµq√

|M′|

H Bi-SO Security Proof of U̸⊥m
In NTRU KEM [CDH+20], its randomness space is the message space of the underlying deterministic
PKE, and its encapsulation samples randomness according some specific distribution DM′ . Hence, we
consider DM′ -OW-CPA security, namely, OW-CPA security with challenge messages chosen following
DM′ . We require that DM′ itself has high minimum entropy. Otherwise, DM′ -OW-CPA security can be
broken trivially.

Definition H.1 (DM′ -OW-CPA). Let PKE be a deterministic PKE with message spaceM, and let DM′

be some distribution over M. For an adversary A, its advantage against DM′ -OW-CPA security of PKE
is defined as

AdvOW-CPA
PKE,DM′ (A) := Pr

[
m′ = m∗ : (pk, sk)← KG,m∗ ← DM′ ,

c∗ ← Enc(pk,m∗),m′ ← A(pk, c∗)
]
.

PKE is DM′ -OW-CPA secure if for all adversaries A AdvOW-CPA
PKE (A) = negl(λ).

Theorem 6.2. The proof idea is the same as the idea of Theorem 6.1 and the proof has almost the same
structure with the proof of Theorem 6.1, except that now PKE is deterministic and has perfect correctness
and rigidity [BP18].

Similar to the proof of Theorem 6.1, in this proof, we let h, hpk1 , ..., hpkp
, h′, h′pk1

, ..., h′pkp
be internal

QROs. The subscripts pkj are just notations to distinguish these QROs. These internal QROs are used
to respond H and H ′.

In this games transition, we consider the case that A0 queries Dec on (j, e, d, τ) such that (e, d) =
(ej,i, dj,i) before seeing the challenge ciphertexts c. The probability that A0 queries Dec on such cipher-
texts is pµnDec

|C′|−nDec
+ pµq√

|M′|
. For simplicity, we just add this probability into our final bound. Moreover,

we also assume that there is no collision among outputs of ki, ri’s, Ki’s, and Kmac
i ’s. This introduce

collision bounds p2µ2+p2

|M′| + p2µ2

|M| + p2µ2

|Kmac| + pηKG0 . For simplicity, we just add these probability into our
final bound. The games sequence is given in Figure 33. We have

Pr[GA0 ⇒ 1] = Pr[REAL-Bi-SO-CCAAsPKE ⇒ 1]

Game G1: If A queries Dec(j, (e, d, τ)) where e is invalid or cannot pass the re-encryption check,
then the oracle computes (K,Kmac) as h′pkj

(e) instead of H ′(pkj , kj , e) . Moreover, to make the simu-
lation consistent, if A queries H ′(pkj , kj , e) where pkj is corrupted and e is an invalid ciphertext, then
H ′(pk, k, e) returns h′pk(e) instead of h′(pk, k, e). The latter modification can be seen as we reprogram
H ′[(pkj , kj , e) → ĥ′pkj

(e)] for some e if A corrupts the user j. Similar to the argument in the proof of
Theorem 6.1 in Supp. Mat. G.1, by using Lemma 2.7 and Lemma 3.1, we have

∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ 2(nCo + 1)2√pqH′ + 2pqH′√

|M′|

Game G2: We set H(pkj , r) = hpkj
(Enc0(pkj , r)). Since PKE is rigid correct, the map Enc0(pkj , ·)

is injective and thus hpkj
(Enc0(pkj , ·)) can be also viewed as an random oracle. Therefore, we have

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].
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G0-G5
01 for j ∈ [p]: (pkj , (skj , kj))← sKGm

bi

02 (Ma, st)← A|H⟩,|H′⟩,Dec
0 (pk1, ..., pkp)

03 for j ∈ [p]:
04 for i ∈ [µ]
05 m[j, i] := mj,i ←Ma

06 r[j, i] := rj,i ← DM′

07 ej,i := Enc0(pkj , rj,i)
08 (Kj,i, Kmac

j,i ) := H(pkj , rj,i) // G0-G1
09 (Kj,i, Kmac

j,i ) := hpkj
(ej,i) // G2-G4

10 d[j, i] := dj,i := Kj,i ⊕mj,i // G0-G4
11 Kmac

j,i
$← Kmac // G5

12 d[j, i] := dj,i
$←M // G5

13 Kmac[j, i] := Kmac
j,i

14 τj,i := Tag(Kmac
j,i , dj,i)

15 c[j, i] := (ej,i, dj,i, τj,i)
16 out← A|H⟩,|H′⟩,Corrupt,Dec,Open

1 (st, c)
17 return Rel(Ma, m, J, I, out)

H(pk, r)

18 if ∃(j, i) ∈ J ′ ∪ I s.t. // G5
19 pk = pkj and r = rj,i // G5
20 return (dj,i ⊕mj,i, Kmac

j,i ) // G5
21 if ∃j ∈ [p] s.t. pk = pkj // G2-G5
22 return hpk(Enc0(pk, r)) // G2-G5
23 return h(pk, r)

H ′(pk, k, e)

24 if ∃j ∈ J s.t. pk = pkj ∧ k = kj // G1-G5
25 r′ := Dec0(skj , e) // G1-G5
26 if r′ = ⊥ // G1-G5
27 return h′

pk(e) // G1-G2
28 return hpk(e) // G3-G5
29 return h′(pk, k, e)

Open(j, i)

30 I := I ∪ {(j, i)}
31 return (mj , rj)

Corrupt(j)

32 J := J ∪ {j}
33 for i ∈ [µ] // G5
34 J ′ := J ′ ∪ (j, i) // G5
35 return skj

Dec(j, (e, d, τ))

36 r′ := Dec0(skj , e) // G0-G2
37 if r′ = ⊥ // G0-G2
38 (K, Kmac) := H ′(pkj , kj , e) // G0
39 (K, Kmac) := h′

pkj
(e) // G1-G2

40 else // G0-G2
41 (K, Kmac) := H(pkj , r′) // G0-G1
42 (K, Kmac) := hpkj

(e) // G2
43 (K, Kmac) := hpkj

(e) // G3-G5
44 if ∃i s.t. (j, i) ∈ [p]× [µ]\(J ′ ∪ I) // G4-G5
45 s.t. pk = pkj and e = ej,i // G4-G5
46 return ⊥ // G4-G5
47 if ∃i ∈ J ′ ∪ I s.t. // G5
48 pk = pkj and e = ej,i // G5
49 (K, Kmac) := (dj,i ⊕mj,i, Kmac

j,i ) // G5
50 if Vrfy(Kmac, τ) = 1
51 m := K ⊕ d
52 else m := ⊥
53 return m

Figure 33: Games G0-G6 in the proof of Theorem 6.2

Game G3: We “merge” hpkj
and h′pkj

, namely, we use hpkj
to replace h′pkj

. This modification does
not change A’s view since all indirect queries from A to hpkj

and to h′pkj
in G2 (regardless of whether

user j is corrupted) are disjoint. We have

Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

Game G4: In this game, the decryption oracle always returns ⊥ if the adversary queries a ciphertext
(e, d, τ) that e is the PKE part of some unopened ciphertexts, i.e., ∃(j, i) ∈ [p]× [µ]\(J ′ ∪ I), e = ej,i.

Let Badk be the event that A queries Dec on a ciphertext (e, d, τ) that ∃(j, i) ∈ [p] × [µ]\(J ′ ∪ I)
s.t. e = ej,i and Vrfy(Kmac

j,i , d, τ) = 1 in Gk(k ≥ 4). Similar to the arguments in the proof of Theo-
rem 4.2, if Badk does not occur, then the winning probabilities of A in G3 and in G4 are the same. Thus∣∣Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]

∣∣ ≤ Pr[Bad4].

Game G5 : the game simulator generates challenge ciphertexts independent of H. If A corrupted
the user j (which means that all cj,i for i ∈ [µ] are opened), or opened cj,i, then H will be reprogrammed
such that H(pkj , rj,i) = (dj,i⊕mj,i,K

mac
j,i ), and the responds of Dec are modified to make the simulation

consistent.
Similar to the proof of Theorem 6.1, there are two types of query (Open and Corrupt) from A will

make H be reprogrammed. Lemma 3.1 still can be used here. One can define algorithms INIT, Fs, and
Repros such that G4 is a NonAda game and G5 is an Ada game. Since such algorithms have almost
the same structure with those in the proof of Theorem 6.1 (the main difference is that here we do not
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SOpen′,Corrupt′

01 for j ∈ [p]: (pkj , (skj , kj))← sKGm
bi

02 Ma ← ADec,|H⟩,|H′⟩(pk1, ..., pkp)
03 Outputs Ma and receives m′′

04 for j ∈ [p]:
05 for i ∈ [µ]
06 r[j, i] := rj,i ← DM′

07 ej,i := Enc0(pkj , rj,i)
08 d[j, i] := dj,i

$←M
09 Kmac[j, i] := Kmac

j,i
$← Kmac

10 τj,i := Tag(Kmac
j,i , dj,i)

11 c[j, i] := (ej,i, dj,i, τj,i)
12 out← AOpen,Corrupt,Dec,|H⟩,|H′⟩(c)
13 return out

H(pk, r)

14 if ∃(j, i) ∈ J ′ ∪ I s.t.
15 pk = pkj and r = rj,i

16 return (dj,i ⊕mj,i, Kmac
j,i )

17 if ∃j ∈ [p] s.t. pk = pkj

18 return hpk(Enc0(pk, r))
19 return h(pk, r)

H ′(pk, k, e)

20 if ∃j ∈ J s.t. pk = pkj ∧ k = kj

21 r′ := Dec0(skj , e)
22 if r′ = ⊥
23 return hpk(e)
24 return h′(pk, k, e)

Open(j, i)

25 I := I ∪ {(j, i)}
26 Queries Open′(j, i) and gets mj,i

27 return (mj , rj)

Corrupt(j)

28 J := J ∪ {j}
29 Queries Corrupt′(j) and gets mj

30 for i ∈ [µ]
31 J ′ := J ′ ∪ (j, i), mj,i := mj [i]
32 return (skj , mj)

Dec(j, (e, d, τ))

33 (K, Kmac) := hpkj
(e)

34 if ∃i s.t. (j, i) ∈ [p]× [µ]\(J ′ ∪ I)
35 s.t. pk = pkj ∧ e = ej,i

36 return ⊥
37 if ∃i ∈ J ′ ∪ I s.t.
38 pk = pkj ∧ e = ej,i

39 (K, Kmac) := (dj,i ⊕mj,i, Kmac
j,i )

40 if Vrfy(Kmac, τ) = 1
41 m := K ⊕ d
42 else m := ⊥
43 return m

Figure 34: The simulator of the proof of Theorem 6.2

need the QRO G), for sake of simplicity, we ignore the details here, and only give a final bound.∣∣∣ Pr
[
GA4 ⇒ 1|¬Bad4

]
− Pr

[
GA5 ⇒ 1|¬Bad5

]∣∣∣
≤

nCo+nOp∑
k=0

k∑
i=0

2qi

√
Pr

[
x′ ← B|G×H⟩,|H′⟩,Dec

i s.t. x′ ∈ Si : GBi
5

]
+ 2pµq

2ϵDM′
.

Here ϵDM′ is the minimal entropy of the distribution DM′ . As we did in the proof of Theorem 6.1, here
we can also construct Bow and F such that∣∣∣Pr

[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣∣
≤ pµAdvotSUF-CMA

MAC (F) + 4pµq
2ϵDM′

+ 4(nCo + nOp + 1)2q
√

2pµAdvOW-CPA
PKE,DM′ (Bow) + pµAdvotSUF-CMA

MAC (F)

Now we can construct a simulator S that interacts with the IDEAL-SO-CCASsPKEm
bi

game and simulates
G5 for A. S’s construction is shown in Figure 32, and it perfectly simulates G5 for A, and thus
|Pr[GA5 ⇒ 1]− Pr[IDEAL-SO-CCASsPKEm

bi
⇒ 1]| ≤ pµAdvotSUF-CMA

MAC (F). Therefore,

AdvBi-SO-CCA
sPKEm

bi
(A,S, p, µ, λ)

≤ |Pr[REAL-SO-CCAAsPKEm
bi
⇒ 1]− Pr[IDEAL-SO-CCASsPKEm

bi
⇒ 1]|

≤ pµnDec

|C′| − nDec
+ p2µ2 + p2

|M′|
+ p2µ2

|M|
+ p2µ2

|Kmac|
+ pηKG0 + 6pµq

2ϵDM′
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+
2(nCo + 1)2√pqH′ + 2pqH′ + pµq√

|M′|
+ 3pµAdvotSUF-CMA

MAC (F)

+ 6(nCo + nOp + 1)2q
√

2pµAdvOW-CPA
PKE,DM′ (Bow) + pµAdvotSUF-CMA

MAC (F)
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