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Abstract. Deep learning-based profiling side-channel analysis has gained widespread
adoption in academia and industry due to its ability to uncover secrets protected by
countermeasures. However, to exploit this capability, an adversary must have access
to a clone of the targeted device to obtain profiling measurements and know secret
information to label these measurements. Non-profiling attacks avoid these constraints
by not relying on secret information for labeled data. Instead, they attempt all key
guesses and select the most successful one. Deep learning approaches form the
foundation of several non-profiling attacks, but these methods often suffer from high
computational complexity and limited performance in practical applications.
This work explores the performance of multi-output regression (MOR) models in
side-channel analysis. We start with the recently proposed multi-output regression
(MOR) approach for non-profiling side-channel analysis. Then, we significantly
improve its performance by updating the 1) loss function, 2) distinguisher, and
3) employing a novel concept of validation set to reduce overfitting. We denote
our approach as MORE - Multi-Output Regression Enhanced, which emphasizes
significantly better attack performance than MOR. Our results demonstrate that
combining the MORE methodology, ensembles, and data augmentation presents a
potent strategy for enhancing non-profiling side-channel attack performance and
improving the reliability of distinguishing key candidates.
Keywords: Side-channel Analysis · Deep learning · Non-profiling · Regression ·
Data Augmentation

1 Introduction
Side-channel attacks (SCAs) explore unintended leakage of information from secure devices.
To evaluate the threats from such attacks, security certification methods are commonly
applied to secure devices during the design and pre-market phases. This process usually
considers two main types of side-channel attacks: profiling [CRR02] and non-profiling
attacks [KJJ99, BCO04]. From the security evaluator’s perspective, applying profiling
attacks allows a more formal security assessment as it follows a threat model in which
the attacker has full access to the clone version of the target device. On the other
hand, non-profiling attacks directly use the side-channel measurements from the target
device. While profiling attacks are more potent and considered the worst-case attack
assumption [BDMS22], non-profiling attacks are more realistic from a practical point of
view.
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In recent years, the application of deep learning to side-channel analysis (DLSCA)
has received significant attention from the academic community in the profiling SCA
setting [PPM+22]. The research has predominantly concentrated on profiling SCA, whereas
non-profiling techniques received less attention. Non-profiling deep learning-based SCA
was first proposed by B. Timon in 2019 [Tim19], with an approach called Differential
Deep Learning Analysis (DDLA). Although its performance is better than conventional
non-profiling attacks such as CPA, it is mainly criticized for practical limitations. Indeed,
to attack one key byte, DDLA needs to train a deep neural network 256 times (one network
for each key hypothesis for commonly attacked byte-oriented cipher like AES) to brute force
all possible key bytes. Such an attack may easily become impractical, considering a dataset
with millions of measurements. From the adversary’s perspective, this also means that
the cost of a DDLA attack may easily become higher than the benefit of the attack itself.
In [KHK22], the authors proposed several solutions to mitigate observed issues with DDLA.
They presented a parallel network architecture to decrease time consumption. However,
that increased the memory consumption, which the authors resolved using shared layers.
Recently, the authors of [DLH+22] proposed using multi-output learning (MOL) [XST+19],
where the model is trained to predict multiple outputs from a single input simultaneously.
Their work considered multi-output classification (MOC) and multi-output regression
(MOR) [BVBL15] architectures for non-profiling SCA. These models reduce the complexity
of Timon’s attack as they require a single neural network training. Moreover, the authors
achieved lower execution time and better performance. Still, the performance remains far
from desired (or achievable with profiling deep learning-based SCA).

This work identifies improvements over the MOR strategy for non-profiling SCA
proposed in [DLH+22] that allow significantly better attack performance and constitute
the core of our approach called MORE - Multi-Output Regressions Enhanced. Additionally,
we investigate techniques like data augmentation and ensembles to enhance the attack
performance for MORE further. Our main contributions are:

• We evaluate standard regression loss functions for multi-output regression models and
propose new loss functions that significantly increase attack efficiency. Specifically,
we show that Z-Score normalized Mean Square Error (MSE) allows better attack
performance.

• We propose a novel method that computes the Pearson correlation coefficient between
true and predicted labels to distinguish the correct key. The results show that it
can more efficiently rank key candidates from multi-output predictions compared
to [DLH+22].

• We propose to use a validation set approach to mitigate overfitting and enhance the
attack performance. The validation set for MORE does not use labeled data as in
profiling SCA, but the concept is similar since the validation set differs from the
training set. To the best of our knowledge, this approach was not used before in
non-profiling SCA.

• We compare neural network sizes for both MORE and profiling deep learning-based
SCA, showing that profiling attacks commonly require smaller neural networks (as
measured by the number of trainable parameters). Thus, for tuning MORE-based
models, hyperparameter tuning becomes more crucial.

• We show that ensembles and data augmentation can further improve the performance
of the MORE-based SCA.

• Our experiments consider different neural network architectures (multilayer percep-
tron and convolutional neural network), dataset preprocessing methods (trimmed
interval, raw measurements), countermeasures (masking, hiding), and leakage models
(Hamming Weight/Distance, Identity). Our results outperform MOR by obtaining
3.9× higher success rate on average, making it possible to use non-profiling deep
learning SCA significantly more efficiently than previous works.
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We provide the source code of MORE implementation1.

2 Preliminaries
We use calligraphic characters such as X to represent sets, while the related upper-case
letters X denote random variables and random vectors X over X . The associated lower-case
letters x and x indicate realizations of X and X, respectively. For functions, a sans-serif
typeface is used (e.g., f). The symbol k represents a key byte candidate that derives its
value from the key space K. The correct key byte, or the one assumed to be accurate by the
adversary, is denoted by k∗. A dataset T consists of traces ti, where each trace ti is paired
with a label yi. A full set of labels with c classes is represented by Y = y1, y2, · · · , yc. In
the dataset T, each trace ti is connected to a plaintext/ciphertext di ∈ D and a key ki,
or ki,j and di,j when focusing on partial key recovery for byte j. In this study, we target
only a single key byte, so the byte vector notation is omitted in equations. The vector of
parameters to be learned in a profiling model is denoted by θ.

2.1 Side-channel Analysis
Side-channel analysis (SCA) can be divided into two types based on the availability of a
fully controlled cloned device: profiling SCA and non-profiling SCA. Profiling side-channel
attacks map inputs (e.g., side-channel traces) to outputs (e.g., probability vector of key
hypotheses). These attacks occur in two phases: profiling and attack phases. In the
profiling phase, the adversary constructs a profiling model that draws its foundation from
profiling traces, which encapsulate measurements of side-channel information sourced from
a clone of the intended target device. Possessing this clone provides the attacker with
comprehensive insights into the device, facilitating the learning and training of the model.
In the attack phase, the trained model processes each attack trace obtained from the
target device, producing a probabilities vector representing the likelihood of the associated
leakage value or label j. Based on this probability vector, the adversary selects the best
key candidate. If the adversary creates a good model, a minimal set of measurements from
the targeted device might suffice to breach its security. Examples of such attacks include
the template attack [CRR02], stochastic models [SLP05], and machine learning-based
attacks [MPP16].

The focus of this work is on non-profiling side-channel attacks. Non-profiling SCA relies
on the correlation between key-related intermediate values and leakage measurements. To
execute such attacks, an adversary collects traces during cryptographic operations. If the
chosen key-related intermediate value correlates significantly with leakage measurements,
these measurements can be used to verify guesses for a part of the key. For each potential
value of the relevant key part (or the key itself), the adversary separates the traces into
groups based on the intermediate value predicted by the current key guess. The current
key guess is likely accurate if each group is noticeably distinct from the others (with
the definition of ‘difference’ depending on the attack methods). Non-profiling attacks
assume less powerful adversaries without access to a clone of the targeted device, so
they might require millions of measurements to extract secret information. Simple power
analysis (SPA), differential power analysis (DPA) [KJJ99] and correlation power analysis
(CPA) [BCO04] are common examples of such attacks.

The most common metrics for assessing the performance of the SCA are Guessing
Entropy (GE) and Success Rate (SR). For further information about these metrics, we
refer readers to [SMY09]. Guessing Entropy (GE) is the average position of the correct
key k∗ in the guessing vector g = [g1, g2, ..., g|K|]. The guessing vector is the output of the
attack phase, where the key candidates are sorted in decreasing order of probability. The

1https://anonymous.4open.science/r/MORE/README.md

https://anonymous.4open.science/r/MORE/README.md
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most likely key is g1, while the least likely is g|K|. The success rate (SR) of order o is
the average probability that the correct key k∗ is located within the first o elements of the
guessing vector g.

2.2 Machine Learning and SCA
Machine learning algorithms can be classified into several categories based on their learning
approach. Supervised learning algorithms utilize labeled training data. These algorithms
train a model f to predict labels for previously unseen data by analyzing the data and
labels. Most supervised learning methods follow the Empirical Risk Minimization (ERM)
framework, where the model parameters θ are obtained by solving the following optimization
problem:

arg min
θ

1
n

n∑
i

L(fθ(ti), yi), (1)

where L represents the loss function and n is the size of the dataset T . Supervised machine
learning occurs in two phases: training and testing. Classification and regression are two
common problem types in supervised machine learning that differ primarily in the nature
of their output.

• Classification problems involve categorizing input data into discrete classes or
categories. In these problems, the output is a discrete value representing the class or
category that an input data point belongs to. Various algorithms can be used for
classification, such as logistic regression, decision trees, support vector machines, and
neural networks.

• Regression problems involve predicting continuous output values based on input
data. In these problems, the output is a continuous numeric value, often representing
a measurement or quantity. Common regression algorithms include linear regression,
polynomial regression, ridge regression, and support vector regression.

There is a natural relationship between machine learning algorithms based on learning
style and side-channel analysis. Profiling attacks depend on a labeling function that
utilizes secret information from a device under the adversary’s control. Since supervised
machine learning involves a labeling function with secret information, it falls within the
profiling attack setting. Similarly, although the true label is unknown, non-profiling attacks
hypothesize labels without knowing the secret information. Thus, supervised learning can
also be applied to this type of attack using the measurements and the hypothesized labels.

2.2.1 Common Regression Loss Functions

We define common loss functions for regression tasks [WMZT20] that we use in this work.
As mentioned, we hypothesize the labels in non-profiling attacks by calculating them from
the key byte hypothesized values. The following definitions refer to those hypothesized
labels as actual, true, or correct. However, these are not correct labels as used in profiling
SCA as we do not know the correct key, but we use all possible key bytes and obtain what
the labels would be given a specific key value.

Mean Squared Error (MSE). MSE is a commonly used measure of the difference
between actual and predicted values. It measures the average of the square of the differences
between the actual and predicted values according to the following expression:

LMSE = 1
n

n∑
i=1

∥yi − ŷi∥ , (2)

where n is the size of the dataset, while true and predicted labels are represented with yi

and ŷi, respectively. MSE is used in regression problems, where the goal is to predict a
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continuous value based on input variables. Lower MSE values indicate a better fit between
the actual and predicted values.

Mean Absolute Error (MAE). MAE calculates the average of the absolute differ-
ences between the actual and predicted values as follows:

LMAE = 1
n

n∑
i=1

|yi − ŷi|. (3)

Unlike MSE, MAE does not square the differences and is more robust to outliers. As such,
MAE tends to be a less efficient loss function than MSE for our non-profiling attack, but
we evaluate MAE to show empirically that our assumptions are valid.

Huber Error. Huber Error is a loss function used in regression problems that balances
the mean squared error and the mean absolute error. This loss function is defined as:

LHuber =
{

1
2n

∑n
i=1 ∥yi − ŷi∥ if |yi − ŷi| ≤ δ

δ
n

∑n
i=1(|yi − ŷi| − 0.5δ) otherwise,

(4)

where the δ parameter specifies the transition point between the quadratic and linear
regions of the loss function. Larger δ values make the function more robust to outliers,
which we want to avoid. In our experiments, δ is set to 1 based on the preliminary
investigations, and it makes a good balance between MAE and MSE, where it should be
less robust to outliers but also sensitive to small errors.

2.3 Non-profiling Multi-Output Regression-based Side-channel Attacks
Do et al. developed a novel method called Multi-output regression (MOR) DLSCA to
decrease the computational efforts of DDLA [DLH+22]. Rather than training 256 models,
where each aims to classify hypothetical labels with probabilities accurately, MOR utilizes
the concept of multi-output regression, which seeks to regress the prediction outputs to
the actual label values. Specifically, a model is trained to map input leakage traces to
the actual values of all possible yi(k), which denotes the key-related intermediate data
(label) given a specific key byte k. The most likely key k∗ is determined by identifying the
smallest loss measured by MSE.

k∗ = arg min
k

1
n

n∑
i

∥∥yi(k) − fk
θ (ti)

∥∥ , k ∈ K, (5)

fk
θ (ti) represents the model’s prediction value to approximate yi(k). In SCA, the regression

output is a key-related intermediate data, e.g., the output of Sbox(di ⊕ k), and can be
further parameterized by the leakage models such as the Identity (ID) or Hamming Weight
(HW) (for details about leakage models, see Section 2.5).

2.4 Datasets
This section introduces the datasets that are used in the experiments. We note that the
dataset sizes (number of traces available for attack) are reported with each corresponding
experiment.

ASCADf. This dataset contains electromagnetic (EM) traces collected from an
8-bit AVR-based microcontroller that implements a first-order Boolean masked AES-
128 [BPS+20]. In our experiments, we consider two versions of this dataset. The first
version consists of the trimmed interval of 700 features that includes the second-order
leakages of the third S-box in the first encryption round, which we refer to as ASCADf.
We also run experiments with the raw measurements from the NOPOI scenario presented
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in [PWP22], which contains 10 000 features, and we refer to it as ASCADf_nopoi_10000
dataset.2

ASCADr. This dataset was collected from the same measurement setup as ASCADf.
However, the difference is that the encryption keys are randomized for the profiling
phase [BPS+20]. For this work, we use the part of this dataset commonly used as the
attack set in DLSCA, where all plaintexts are encrypted with the same key. We consider
two versions of this dataset. The first version consists of the trimmed interval of 1 400
features that includes the second-order leakages of the third S-box in the first encryption
round, which we refer to as ASCADr. We also run experiments with the raw measurements
from the NOPOI scenario from [PWP22], which contains 25 000 features, and we refer to
it as ASCADr_nopoi_25000 dataset.3

AES_RD. This dataset contains traces collected from a smart card with an 8-bit
Atmel AVR microcontroller. As a countermeasure, random delays using the Floating Mean
method were added to the traces to protect against simple side-channel attacks [CK09].
The plaintexts are encrypted using the same fixed key, and the collected traces have 3 500
features each.

AES_HD. This dataset targets an unprotected hardware implementation of AES-128
written in VHDL in a round-based architecture. Using a Xilinx Virtex-5 FPGA of a
SASEBO GII evaluation board, side-channel traces were collected using a high sensitivity
near-field EM probe positioned above a decoupling capacitor on the power line [KPH+19].
The same key is used for all collected traces, which consist of 1 250 features.

2.5 Leakage Models
This work considers two commonly used leakage models - Identity (ID) and Hamming
Weight (HW). Since the datasets consider AES encryption, we consider the S-box function
outputs. S-box is fixed and publicly known for AES but depends on di and k. The ID
leakage model is the intermediate value from the S-box function Sbox(di ⊕ k), while for
the HW model, the Hamming weight value of the intermediate is used: HW (Sbox(di ⊕ k)).
For the AES_HD dataset, we use the Hamming Distance leakage model instead of the
Hamming weight. As commonly done for AES, we compute the XOR between the final
output and the S-box input of the last round [KPH+19].

3 Related Work
The development of non-profiling deep learning side-channel analysis began with B. Timon’s
introduction of the deep learning-based distinguisher: DDLA [Tim19] in 2019. The DDLA
method involves training a neural network for each key guess and selecting the one with the
best result as the correct key guess. While effective, DDLA is computationally expensive
and requires a non-bijective leakage function. Kuroda et al. conducted a follow-up study on
DDLA, examining neural network structures and attack points, and concluded that simpler
architectures and a broader range of points of interest were preferable [KFYF21]. Alipour
et al. investigated DDLA’s performance against a hiding-based AES countermeasure
using correlated noise generation and found DDLA was less effective than CPA in this
context [APB+20]. Kwon et al. proposed improvements to DDLA to increase its speed and
enhance neural network architectures’ performance [KHK22]. Do et al. further analyzed
DDLA to understand its behavior in more complex scenarios and explored different data
preparation techniques and neural network architectures to improve performance [DHDP22].

2Raw measurements contain 100 000 sample points. We resampled it into 10 000 to reduce the input
dimension that significantly impacts the profiling model size.

3Raw measurements contain 250 000 sample points. For the same reason as ASCADf, they are resampled
into 25 000.
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Hoang et al. introduced a non-profiling SCA technique using multi-output classification,
achieving up to 30× faster and 20% better results than DDLA [HDD22]. Do et al.
investigated multi-output classification (MOC) and multi-output regression (MOR) models
for non-profiling SCA [DLH+22]. They concluded that MOC reduced execution time
compared to DDLA and showed that MOR, although slower than MOC, worked for the
Identity leakage model. Both MOC and MOR outperformed DDLA by at least 25%.
Finally, Do et al. further improved the MOR concept by using identity labeling [DHD23].
The authors reported results up to 40× faster than DDLA and at least 30% better
success rate. Wu et al. recently proposed a non-profiling deep learning-based attack
called PLDL based on the bijective relationship between plaintext/ciphertext and secret
information [WPP23]. The authors reported the attack as powerful and easily rivaling
the performance of profiling deep learning-based SCA. Note that multiple works use
unsupervised deep learning techniques like autoencoders, see, e.g. [RAD20, WP20]. Still,
since such methods are used as preprocessing for profiling SCA, we do not consider them
further. Since MOR is already shown to perform much better than DDLA, we do not
compare our MORE approach with DDLA but only with MOR. Finally, since PLDL is a
two-stage classification-based attack (more similar to a profiling attack as there is still a
notion of the labeling function), we do not consider it in this work.

4 MOR Enhanced (MORE)
4.1 Loss Functions and Distinguishers
The learning process implemented by a multi-output regression model should minimize
the empirical error for all outputs. For the application to non-profiling SCA, the MOR
model should minimize the empirical error for only one of the outputs because only one
output is related to the correct key candidate. Thus, it is important to find the most
efficient loss function that is also more sensitive (i.e., less robust) to outliers. Outliers
are usually variables whose characteristics are distant from the mean of the data group.
This characteristic is desirable from an adversary’s perspective because the outlier is the
attacker’s best guess for the correct key candidate. In this case, if we consider a loss
function, the wrong keys would have a similar loss value, where the correct key should be
an outlier having a lower loss value than the rest.

The loss functions outlined in Section 2.2.1 are typically employed in regression models.
As mentioned, we aim to develop a learning process where the loss function is highly
sensitive to outliers. A functional model should produce prediction errors for all incorrect
key candidates significantly larger than those for the correct key. To this end, we propose
to use the Z-Score normalization [PS15] to build the loss function. Specifically, Z-Score
normalization aids outlier detection by making it easier to identify data points that deviate
significantly from the mean. In the context of our learning process, normalizing the
predictions before computing the loss function accentuates the differences between data
points. The increased sensitivity can help the learning process focus more on the correct key
candidate, considered an outlier, than the incorrect key candidates, potentially leading to
improved performance in MOR-based non-profiling attacks. As such, we propose combining
the aforementioned loss functions with the Z-Score normalization. For instance, we can
rewrite MSE defined in Eq. (2) to Eq. (6):

LZ−scoreMSE = 1
n

n∑
i=1

(
yi − µ(y)

σ(y) − ŷi − µ(ŷ)
σ(ŷ)

)2
, (6)

where the original yi and ŷi are normalized and MSE is calculated with normalized values.
µ and σ denote the mean and standard deviation functions, respectively, and n is the size
of the dataset.
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Additionally to the three common regression loss functions and their normalized versions,
we propose another loss function, Pearson Correlation loss, for which we also test its
normalized version. Wu et al. [WWK+23] show that assessing the correlation between
key distribution4 and guessing vector can considerably enhance the learning rate of the
profiling model. In our case, we do not use label distance, as we can directly utilize the
hypothesized labels. Thus, we introduce a novel loss function that aims to maximize the
linear correlation between the hypothesized (actual) and predicted labels for all possible
keys, defined as follows:

LP earson = 1 − |ρ(y(k), ŷ(k))|, k ∈ K, (7)

where ρ represents the Pearson correlation. y(k) and ŷ(k) represent vectors of the actual
and predicted labels for all n traces given a key byte k. Compared with other loss functions,
LP earson considers the correlation, leveraging inter-key dependence that could lead to more
efficient learning. Thus, this paper benchmarks eight loss functions where, in figures, we
differentiate between the non-normalized and normalized ones by adding a prefix ‘z_score’
or ‘z’ before the loss function names ‘mse’, ‘mae’, ‘huber’, and ‘corr’.

Since we defined different loss functions that we evaluate in our experiments, we also
introduce considered key distinguishers. In a non-profiling attack, the most likely key
is commonly obtained by sorting the key candidates according to a distinguisher. First,
we propose a novel key distinguisher, Pearson correlation distinguisher, based on
the Pearson correlation coefficient between the true labels vector for each key candidate
y(k) and its predicted labels ŷ(k). The most likely key k∗ has the maximum correlation
coefficient among all key candidates, defined with Eq. (8).

k∗ = arg max
k

ρ(y(k), ŷ(k)), k ∈ K. (8)

The Pearson correlation distinguisher and Pearson loss function use the same function
to calculate the correlation. However, when used as the loss function, the correlation
function is inverted for training. Besides, we consider a loss function distinguisher.
Indeed, MOR models leverage the loss value for each key candidate k. The most likely
key k∗ is the one with minimum loss function value among all key candidates, defined in
Eq. (9).

k∗ = arg min
k

L(k), k ∈ K. (9)

Note that in the case where we use the loss function for the distinguisher, and the loss
function for training the model was the Pearson correlation loss function, the distinguisher
minimizes the inverted correlation function, which converges to maximizing correlation as
is done using the Pearson correlation distinguisher.

4.2 Objective Function for Hyperparameter Tuning
Our MOR models are deep neural networks, so hyperparameter tuning is necessary,
especially when attacking datasets with low signal-to-noise ratio (SNR). Hyperparameter
tuning is already a complex problem in profiling SCA where an objective function can be
defined (i.e., with metrics extracted from a labeled validation set) [WPP22]. In profiling
SCA, the main goal is to find a deep neural network that provides better generalization,
which implies a more efficient attack. That requires computing SCA metrics, such as
guessing entropy or success rate and selecting the model, which requires fewer validation
traces to recover the correct key candidate. Unfortunately, the secret key is unknown in a
non-profiling setting. Therefore, finding a model that provides the best SCA metrics is
not possible.

4Key distribution measures differences between key candidates based on label distance.
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Section 4.1 considers two distinguishers, based on Pearson correlation and loss function,
to rank the key candidates. In our experiments, we verified that the first approach
based on correlation provides faster convergence, which means that a MOR model may
require fewer training epochs to recover the correct key candidate. Therefore, we consider
all key candidates’ maximum Pearson correlation value as the objective function for
hyperparameter tuning for our approach - MORE.

4.3 Validation Set to Mitigate Overfitting
It is essential to realize that MOR models also show overfitting, meaning they do not
generalize well on the previously unseen data. As a result, the training loss for every key
candidate may decrease, increasing the difficulty of distinguishing the correct key as the
outlier. The same occurs when we compute the Pearson correlation between predicted and
true labels from training traces. To avoid selecting the wrong key byte as the correct one
(minimum loss value or maximum Pearson correlation from all key byte candidates), one
can compute the objective function from a separate set of traces not considered during
training. The idea is similar to using validation traces in a profiling SCA setting. Still, the
concept differs, as a validation set, in this case, does not have known labels. Typically, in
non-profiling SCA, as is done in MOR, the model is trained on all collected traces, and
the same dataset is used to obtain the most likely correct key byte using a distinguisher
objective function (such as the loss function). We propose a different approach, dividing
the collected traces into two datasets - one for training and one for validation. Just like
in supervised learning, these two datasets are distinct. Once the model is trained on the
training dataset, we select the most likely key byte from the validation set. To the best
of our knowledge, this concept was not used in other deep learning non-profiling SCA
methods.

Figure 1 illustrates the aforementioned overfitting case. The example is from a MOR-
based MLP when the dataset is ASCADf_nopoi_10000 with the Identity leakage model,
trained with the Z-Score MSE loss function. The top two graphs show the Pearson
correlation (left) and loss (right) values for training traces; the bottom two are for the
validation traces. The line in red color represents loss values for the correct key, while
the gray color is for the wrong key candidates. Using training traces, the correct key
candidate is not the one with the highest correlation or minimum Z-Score MSE loss value.
The attack would fail using training traces to distinguish the most likely key, which is
how the key is selected in the original MOR attack [DLH+22]. On the other hand, by
predicting on a separate set of validation traces for the same trained MOR model, the
correct key candidate is easily identified as the outlier with both loss and correlation
metrics. This shows that extracting the most likely key from validation traces could offer
a better approach in MOR-based non-profiling attacks. Thus, we test this concept in the
following section in the search for the best loss function.

4.4 Experimental Results
4.4.1 Loss Function Benchmark

The experiments in this section aim to identify the best loss function for a MOR model
using the ASCAD datasets. We consider trimmed and resampled versions of ASCADf
and ASCADr datasets to improve the results’ generality. First, we consider the trimmed
ASCAD datasets. We investigate the success rate of the MOR approach by considering
all loss functions: MSE, MAE, Huber, correlation (Corr), and their Z-score normalized
variants. We randomly drew 1 000 models from the hyperparameter search space defined
in Table 1 using only MLP models as the datasets are not desynchronized. We computed
the success rate (SR) based on whether these models could find the correct key byte.
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Figure 1: Training and validation performance of MOR for the ASCADf dataset using
Pearson correlation and Z-score MSE metrics. The training set consists of 48 000 traces,
while the validation set has 12 000 traces. Gray areas represent the wrong keys.

Table 1: Hyperparameter search space for finding the best MLP and CNN models.

Hyperparameter MLP CNN

Min Max Step

Learning Rate 0.00005 0.005 0.00025

Mini-batch 50 200 50

Dense Layers 1 4 1 1 2 1

Neurons 200 1 000 100

Convolutional Layers / 1 4 1

Filters / 4, 8, 12, 16 or 32

Kernel Size / 5, 10, 20, 30 or 40

Pool Type / Average or Max

Activation ReLU, ELU, or SELU

Optimizer Adam or RMSprop

Weight Initializer random_uniform, he_uniform, glorot_uniform, ran-
dom_normal, he_normal, or glorot_normal

Table 2 shows the success rate of the MOR approach for the ASCADf dataset using
both distinguishers (loss and Pearson correlation). Moreover, we also report the results
using both leakage models. We show the results using the training and validation set for
distinguishing between the correct and the other key candidates. Z-score MSE, denoted by
z-MSE, achieves excellent performance and is the best-performing loss function regardless
of the key distinguisher, dataset used, or leakage model. z-MSE results are followed by the
Z-score correlation (z-Corr) loss functions. z-MSE has at least ≈ 19% higher success rate
than all other loss functions. On the other hand, compared to the standard loss functions
and their Z-score variants, z-MSE has at least ≈ 65% higher success rate. The success
rate with the ID leakage model is lower than when the HW model is utilized. Thus, we
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further increased the number of training traces to 40 000, with 10 000 validation traces,
and obtained 85% SR for z-MSE on training and 86% for validation data.

We conducted the same experiments for the ASCADr dataset, and we provide the
results in Table 3. As before, z-MSE achieves the best success rate in all tested scenarios.
Considering the ASCADr datasets, z-MSE achieves at least ≈ 74% higher success rate
than other standard loss functions and their Z-score variants. Compared to correlation
losses, it achieves a minimum 36% higher SR. The validation set concept improved SR for
the z-MSE loss function in almost all cases. Other loss functions did not attain the same
improvement using the validation set. However, using the Pearson correlation as the key
distinguisher for the ASCADr dataset, using the validation set improved the SR for six
out of eight tested functions. We mentioned that we achieve faster convergence using this
key distinguisher, so we could be observing overfitting to the training data in these cases.
Therefore, using a validation set mitigates this effect and selects the correct key byte,
leading to better SR. We obtain the same success rate (SR) when using the correlation
loss function with both distinguishers because, in this scenario, distinguishers essentially
use the same function. The loss distinguisher minimizes inverted correlation, while the
correlation distinguisher maximizes correlation function, ending in the same results. The
functions of the loss and correlation distinguisher for when the z-Corr loss is used differ
only in the Z-score normalization. Here, the SR results also stay the same, as the relations
remain the same with and without the normalization.

Table 2: Success rate of MOR for the ASCADf dataset using both leakage models and
different loss functions. The training set is 16 000, while the validation set is 4 000 when
the HW leakage model (LM) is used, and 32 000 and 8 000, respectively, for the ID leakage
model. We considered the loss and Pearson Correlation (Pearson) of validation (Vl) and
training (Tr) set for the distinguishers.

Dstgh LM Set MSE z-MSE MAE z-MAE Huber z-Huber Corr z-Corr

loss
HW Vl 15.68% 94.95% 8.14% 3.75% 16.29% 18.46% 72.8% 77.1%

Tr 27.31% 92.5% 9.21% 6.25% 18.35% 8.54% 75.3% 77.5%

ID Vl 0% 74.1% 0.6% 0.3% 0% 0.8% 41.2% 44.0%
Tr 25.7% 77.6% 35.8% 14% 36.1% 10.4% 45.4% 50.0%

Pearson
HW Vl 45.9% 94.9% 37.7% 6.7% 48.5% 29% 72.8% 77.1%

Tr 51% 92.5% 43.3% 10.1% 55.9% 35.7% 75.3% 77.5%

ID Vl 25.7% 73.9% 29.2% 22.8% 29.0% 13.7% 41.2% 44.0%
Tr 37.5% 77.6% 43.4% 26.1% 44.5% 16.1% 45.4% 50.0%

Table 3: Success rate of MOR for the ASCADr dataset using both leakage models and
different loss functions. The training set is 32 000, while the validation set is 8 000 with
both leakage models (LM). We considered the loss and Pearson Correlation (Pearson) of
validation (Vl) and training (Tr) set for the distinguishers.

Dstgh LM Set MSE z-MSE MAE z-MAE Huber z-Huber Corr z-Corr

loss
HW Vl 3.9% 91.2% 1.5% 1.0% 2.2% 8.2% 44.7% 50.0%

Tr 30.9% 77.2% 15.9% 9.0% 20.8% 12.2% 42.9% 44.6%

ID Vl 1.2% 22.2% 1.3% 0% 0% 0.4% 14.7% 13.8%
Tr 4.5% 9.4% 2.6% 3.6% 0% 2.2% 6.9% 3.4%

Pearson
HW Vl 36.6% 90.2% 28.4% 8.7% 39.0% 18.4% 44.7% 50.0%

Tr 31.5% 77.2% 27.5% 8.7% 33.4% 21.6% 42.9% 44.6%

ID Vl 10.8% 20.5% 8.8% 3.9% 10% 3.5% 14.7% 13.8%
Tr 4.3% 9.4% 3.5% 4.8% 2% 5.4% 6.9% 3.4%

The Z-score normalized MSE performs the best since it creates the most significant
numerical gap between the correct and wrong key candidate bytes. Figure 2 shows loss
values for each key candidate for four different Z-score normalized loss functions. The
key candidate 224 corresponds to the third (correct) key byte for the ASCADf dataset.
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The difference between the loss value corresponding to the correct key and the loss values
for all the other key candidates is the largest for Z-score MSE. Moreover, the Z-score
Correlation loss yields similar results to those of Z-score MSE, while both Z-score Huber
and Z-score MAE result in a much smaller gap between loss values of correct and wrong
key candidates, the smallest gap being obtained in the case of Z-score MAE. This is aligned
with our experiments, as Z-score Huber performs better than Z-score MAE in terms of the
success rate of the attacks (see Table 2 and Table 3). Z-score Correlation performs worse
than Z-score MSE but significantly better than the other loss functions.

Figure 2: The normalized Z-score loss functions and their values for each key candidate.
The loss values are scaled (divided by their mean).

Considering the significant improvement in the observed success rate of the MOR-based
SCA using z-MSE, we further test the adaptability of the functions using the following
strategy:

1. We run random hyperparameter search processes for both ASCADf_nopoi_10000
and ASCADr_nopoi_25000 datasets. The hyperparameter search space is shown in
Table 1. A separate random search is launched for each leakage model (ID or HW),
model type (MLP or CNN), and loss function (defined in Section 4.1) combination.
In total, we deploy 64 random search processes. In each of these searches, we try 100
different hyperparameter combinations, which sums up to 6 400 models. We conduct
this search to assess the performance of diverse options properly.5

2. For each random search process, we select the best MOR model by sorting the
models according to the objective function defined in Section 4.2. Experiments were
executed using both distinguishers (loss function and Pearson correlation). This
sorting procedure is done for each dataset, leakage model, model type, and loss
function combination.

3. We re-train each of the best models with all other loss functions. The main idea is to
see which loss function performs better across different hyperparameter configurations.
The reported key rank is computed from a validation set described in Section 4.3,
which are measurements not used during training. We opted to use the validation
set as it improved the results for the best-performing loss function and the ASCADr
dataset with the correlation distinguisher.

Figure 3 illustrates the key rank outcomes, derived using loss distinguisher defined with
Eq. (9), of the top-performing model obtained with various loss functions represented on
the y-axis. The optimal model is retrained with other loss functions depicted on the x-axis,
and the key rank is presented in each cell. The darker colors in the graphs indicate better

5The attack commonly skips this procedure by selecting the loss function based on experience or shared
knowledge and focuses on tuning other hyperparameters.
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performance with lower key ranks. In these experiments, we use 40 000 traces for training
and 10 000 for validation in the case of ASCADf, and 80 000 traces for training and 20 000
for validation in the case of ASCADr. The columns show that Z-Score MSE demonstrates
superior adaptability across different hyperparameter configurations for various MOR
models trained with other loss functions. Overall, the Z-score versions of the loss functions
show greater adaptability than the standard loss functions.

(a) ASCADf_nopoi_10000, HW (b) ASCADf_nopoi_10000, ID

(c) ASCADr_nopoi_25000, HW (d) ASCADr_nopoi_25000, ID

Figure 3: Loss function adaptation to different models. Each grid cell is the key rank
result obtained with loss function distinguisher (Eq. (9)). The y-axis indicates the loss
function set for finding the best model in a random search, while the x-axis indicates loss
functions used during retraining.

Figure 4 presents the key rank outcomes determined using a correlation distinguisher
defined with Eq. (8), in which key candidates are ranked based on the highest correlation
coefficient. We used the same number of training and validation traces as for the previous
experiment. These findings emphasize that Z-Score MSE exhibits better adaptability to
varying hyperparameter configurations when the HW leakage model is employed for both
datasets. Conversely, when utilizing the ID leakage model with the ASCADf_nopoi_10000
dataset, the performance of correlation and Z-Score MSE loss is comparable. The median
and mean for correlation loss are 2 and 36.63, respectively, while for Z-Score MSE, the
median is 8, and the mean is 38.13. For the ASCADr_nopoi_25000 dataset with the ID
leakage model, MSE, MAE, and Huber demonstrate slightly better results when averaged
than Z-Score MSE. However, MORE adopts the Z-score MSE as its preferred loss function
due to its significantly higher success rate when compared to other loss functions and its
remarkable adaptability to various models.

4.4.2 MORE vs. MOR

The main aspects of MORE that improve performance over the MOR models are
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(a) ASCADf_nopoi_10000, HW (b) ASCADf_nopoi_10000, ID

(c) ASCADr_nopoi_25000, HW (d) ASCADr_nopoi_25000, ID

Figure 4: Loss function adaptation to different models. Each grid cell is the key rank
results obtained with Pearson Correlation distinguisher (Eq. (8)). The y-axis indicates the
loss function set for finding the best model in a random search, while the x-axis indicates
loss functions used during retraining.

• Pearson correlation for the key distinguisher.
• Z-score normalized MSE as loss function.
• Validation set for finding the correct secret information.

Table 4: Average success rate comparison between MOR and MORE. For ASCADf and
ASCADr, we used 16 000 training and 4 000 validation traces with the HW (HD) leakage
model, and 32 000 training and 8 000 validation with ID. For AES_HD and AES_RD, we
used 16 000 training and 4 000 validation traces for both leakage models since no further
improvement was observed when increasing the number of traces.

HW/HD ID
Dataset MOR MORE MOR MORE
ASCADf 27.3% 92.5% 25.7% 74.1%
ASCADr 33.9% 77.2% 4.5% 22.2%
AES_HD 10.2% 77.3% 11.3% 58.0%
AES_RD 22.01% 75.8% 0.7% 1.1%

We compare MOR and MORE methods using success rate calculated based on randomly
chosen MLP models from the hyperparameter space presented in Table 1, where the
optimizer is set to Adam optimizer, and the weight initialization method is fixed to
he_uniform. Thus, the search space for MLP is reduced from 51 840 possible combinations
compared to 4 320 by fixing the optimizer and weight initialization method. This is still
a significantly larger search space than the one introduced in [DHD23] (192 possible
combinations). Table 4 shows the success rate for both models on ASCADf, ASCADr,
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AES_HD, and AES_RD datasets with the ID and HW (HD) leakage models. Considering
the HW (HD) leakage model, MORE presents at least 2.3× higher SR obtained for the
ASCADr dataset, and, with the ID leakage model, it is at least 1.6× better, which is the
result obtained on the AES_RD dataset, where both models obtain low SR. The best
improvement with both leakage models is on the AES_HD dataset, with 7.6× and 5.1×
higher SR using HW and ID leakage models, respectively. Overall, on average, MORE
provides a 3.9× higher success rate.

4.4.3 On the Size of the MORE Networks

In profiling SCA, smaller networks commonly work well enough on the public datasets
most often used in DLSCA literature. A MORE-based neural network must address a
multi-output regression problem. The trained model is designed to simultaneously predict
256 distinct outputs (each represented by a set of labels corresponding to each key byte
candidate). Ultimately, this task is more complicated than profiling, where the attacker can
access a labeled dataset. Therefore, we anticipate that the MORE-based network should
have a more complex structure than neural networks typically considered for profiling
settings. Moreover, that implies hyperparameter search spaces should be defined to provide
networks with enough capacity to learn a more challenging task of non-profiling SCA.

In this section, we experimentally compare the performance of various neural networks
for MORE (non-profiling) and profiling attacks. For each leakage model and model type
(MLP or CNN), we randomly generate up to 3 000 neural network architectures, with
trainable parameters ranging from 10 000 to 1 000 000, since the complexity (size) of neural
network models can be measured in the number of trainable parameters when the same
type of networks are compared, such as MLPs or CNNs. The hyperparameter search space
is defined in Table 1, with fixed Adam optimizer and he_uniform initializer. However, the
randomly generated MLP and CNN models can have up to eight hidden layers to enable
the required number of trainable parameters. For CNN networks, we allow a maximum
of four convolution layers and four fully connected layers. Each randomly generated
architecture is trained as both MORE and a profiling model. The comparison criterion is
the final guessing entropy (key rank) relative to the number of trainable parameters. For
this analysis, we consider the ASCADf and ASCADr datasets. In the case of the ASCADf
dataset in the profiling setup, 50 000 traces are considered for training, while 100 000 are
utilized for the ASCADr dataset. For the attack, we used 5 000 attack traces. In the
non-profiling case, for ASCADf, we use 40 000 for training and 10 000 traces for validation,
while for ASCADr, we have 80 000 for training and 20 000 traces for validation.

Figure 5 displays the MLP performance of MORE and profiling models for both
datasets and the two leakage models. The y-axis represents either the average key rank
(for MORE) or the average guessing entropy (for profiling attack) for a specific range of
trainable parameters. The results in this figure suggest that MORE-based models generally
exhibit better performance when they include more trainable parameters. In contrast, the
profiling task demonstrates an optimal range with enhanced key recovery performance. As
models become excessively large (approaching 1 million trainable parameters) for a profiling
task, overfitting signs emerge for the two examined datasets, which is not observed for
MORE-based models, particularly visible with the HW leakage model. This implies that
employing larger models for MORE tasks could be an appropriate choice. Consequently,
models with fewer trainable parameters prove more efficient in a profiling attack, indicating
that the structure of the profiling model could be easier to define, and more time can be
spent on fine-tuning other hyperparameters if necessary.

Figure 6 presents the performance of MORE and profiling models using randomly
generated CNNs. Once more, the results show that larger MORE-based CNN models
outperform large CNN-based profiling models. This pattern is even more pronounced
when considering the HW leakage model. Similar to the results with MLPs, the figure
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(a) ASCADf, ID. (b) ASCADr, ID.

(c) ASCADf, HW. (d) ASCADr, HW.

Figure 5: The performance of MORE and profiling models concerning the different number
of trainable parameters in MLPs.

suggests that MORE-based CNN models for non-profiling tasks should have more trainable
parameters than profiling models. To enable the creation of complex networks, the
hyperparameter search space should be large enough to allow for such networks. Commonly,
the search space for profiling SCA is small, as few layers provide enough network learning
capacity to break the public datasets. Thus, following these experiments, we suggest using
more extensive hyperparameter search spaces when tuning the networks for non-profiling
SCA tasks, such as MORE-based SCA (original MOR and MORE).

5 Getting More from MORE

While our experiments already show that MORE can significantly improve the attack
performance over MOR, there is still a question of whether the performance can be
further enhanced. Next, we will investigate two well-known concepts used in profiling deep
learning-based SCA: ensembles and data augmentation. Both concepts were shown to
improve the performance of profiling models significantly, e.g., [PCP20, CDP17, PCBP20].
Thus, using these methods, we expect to improve MORE-based non-profiling SCA further.6

6Data augmentation is used as a vital part of a method proposed by Wu et al. [WPP23] by adding a
layer to generate random perturbation right after the input, while ensembles were not yet explored for
non-profiling SCA, to the best of our knowledge.
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(a) ASCADf, ID. (b) ASCADr, ID.

(c) ASCADf, HW. (d) ASCADr, HW.

Figure 6: The performance of MORE and profiling models concerning the different numbers
of trainable parameters in CNNs.

5.1 MORE Ensembles for SCA
This section provides experimental results for the bootstrap aggregating ensemble method-
ology [Bre96] with MORE approach. Bootstrap aggregating (also known as bagging) is
an ensemble technique in machine learning that combines multiple models to improve
performance and reduce overfitting. The idea is to create multiple sub-samples (bootstraps)
of the original dataset chosen randomly, train a separate model on each sub-sample, and
then combine the predictions of the individual models. We consider the ID and the
HW/HD leakage models for ASCADf, ASCADr, AES_RD, and AES_HD datasets. Based
on the preliminary tuning phase, we set the number of epochs to 40 and varied the number
of available traces for the MORE model. From the available traces, 80% are training
traces, while the remaining 20% are validation traces. The key rank is calculated based
on the different number of input traces and shown in the graphs. We test a single best
MORE model and ensembles comprising 50 models. Each model is randomly selected
from the same hyperparameter space detailed in Table 1, except for the optimizer being
set to Adam and the weight initialization set to he_uniform. The number of models in
an ensemble is decided based on the preliminary experiments with different numbers of
models for the ensemble. We do not show results for CNN ensembles as we could not
observe any significant improvements when using more than one model. We compare the
ensemble’s key rank to the key rank of the best model selected according to the highest
value of the Pearson correlation objective function, as introduced in Section 4.

In Figure 7a, we plot the key rank for ASCADf with the HW leakage model while
varying the number of traces. The best model chosen according to the Pearson correlation
distinguisher displays higher key ranks with fewer traces than the ensemble. However,
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both methods perform similarly when the number of traces exceeds 5 000. Figure 7b
demonstrates the key rank for the ID leakage model. In this case, the ensemble recovers
the secret key more quickly, using fewer traces, than the single best model. Similarly to the
results on ASCADf, ensembles on ASCADr for the HW leakage model show slightly better
performance when less than 10 000 traces are used, while with more traces, the single best
model and ensemble consistently retrieve the correct key. We observed no improvement
for the ID leakage model using ensembles due to the low success rate we obtained. We
omit these results due to lack of space and similar results.

(a) ASCADf, Key rank, HW leakage (b) ASCADf, Key rank, ID leakage

Figure 7: Key rank for ASCADf for the HW and ID leakage models.

Figure 8 shows the key rank of the ensemble and the best model for AES_RD. As
seen in Figure 8a, the ensemble performs slightly better than the best model using fewer
traces. Figure 8b shows that overfitting for ID is not entirely avoided, not even when using
ensembles. In this case, there was no significant benefit when employing the ensembles.
The performance based on the key rank is similar between the two setups.

(a) AES_RD, Key rank, HW leakage (b) AES_RD, Key rank, ID leakage

Figure 8: Key rank for AES_RD for the HW and ID leakage models.

Figure 9 considers MORE experimental setup for AES_HD and plots the key ranks
for the HD and ID leakage models varying the number of traces. The MORE ensemble
shows improvement for both leakage models compared to the best model. It reaches the
minimum key rank faster in the case of the HD leakage model and decreases the key
rank with the ID leakage model when less than 15 000 traces are used. The effect visible
with the ID leakage model comes from retraining the models for the different number of
available traces we tested and a rather noisy data.
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(a) AES_HD, Key rank, HD leakage (b) AES_HD, Key rank, ID leakage

Figure 9: Key rank for AES_HD for the HD and ID leakage models.

5.2 Data Augmentation with MORE-based SCA
Insufficient data in a non-profiling side-channel analysis setting can lead to an unsuccessful
attack. A possible reason is the overfitting that can easily occur, resulting in an unreliable
distinguishing phase between key candidates. This section presents results for the MORE
methodology with data augmentation (DA). We employ data augmentation on the best
model chosen based on the highest objective function and the Z-score MSE for a validation
set (MORE approach). We utilized random shifting as the first data augmentation
technique, which involves applying a random time shift to each trace. The shift amount
can be positive or negative and can be drawn from a uniform or normal distribution. In
this work, we opted for a shift of five samples and a uniform distribution. The second data
augmentation approach we employed is Gaussian noise, which applies a small perturbation
to each sample of the trace. The perturbation value is drawn from a standard normal
distribution (mean 0 and standard deviation 1). For both approaches, we augment the
original traces by adding 10 000 more traces or double the number of traces if the original
set is smaller than 10 000. This setting is selected based on the preliminary experiments.

Figure 10a displays SR for ASCADf, AES_HD, and AES_RD with and without data
augmentation for 500 randomly chosen neural networks from the hyperparameter space
defined in Table 1 (optimizer set to Adam, and initialization method to he_uniform) with
MORE methodology. We observe that Gaussian noise DA slightly helps the success rate,
especially when the number of traces before augmentation is less than 10 000. However,
when shifting DA is employed, the success rate for all initial numbers of traces is rather
low. On the other hand, in the case of AES_HD, we see that both approaches show a
significant SR increase, especially for Gaussian noise, as can be seen in Figure 10b. For
AES_RD, results in Figure 10c show that both techniques can help when the number of
input traces is smaller than 10 000. We notice that SR can significantly decrease when
using MORE with data augmentation. We believe this is because data augmentation
reduces overfitting, which can quickly happen in the MORE context. Although we try to
minimize this effect for MORE by using a validation set rather than the training set, as in
the case of MOR, MORE is still susceptible to overfitting.

Although there is no substantial improvement in the success rate of MORE with the
application of data augmentation, it is worth noting that the average guessing entropy can
significantly decrease when DA is employed for the best MORE model. We trained the best
MORE model 100 times with 5 000 traces before augmentation and compared the average
GE with the average GE of the same model when using data augmentation. Figure 11a
illustrates that Gaussian noise data augmentation yields better results compared to shifting,
leading to a slight reduction in the overall guessing entropy across 40 training epochs. It is
worth noting that this DA technique also yields the best results for AES_HD where after
just five training epochs, the guessing entropy drops below ten, as indicated in Figure 11b.
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(a) ASCADf, SR varying the
number of traces before aug-
mentation

(b) AES_HD, SR varying the
number of traces before aug-
mentation

(c) AES_RD, SR varying the
number of traces before aug-
mentation

Figure 10: Success rate for MORE on ASCADf, AES_HD, and AES_RD for the HW/HD
leakage model.

In the case of AES_RD, shifting DA appears to be even more effective in reducing GE, as
seen in Figure 11c, but again, both DA techniques provide improvement. We note that
DA methods on ASCADr obtained lower SR than without using DA for both HW and ID
leakage models. As explained here, the experiments comparing GE of the best model with
and without DA show that GE within the first 40 epochs is the lowest without using DA
methods. We omit the figures with results due to space.

(a) ASCADf (b) AES_HD (c) AES_RD

Figure 11: Guessing entropy for MORE on ASCADf, AES_HD, and AES_RD, varying
the number of epochs for the HW/HD leakage model with data augmentation.

6 Conclusions and Future Work
This work provides a novel outlook on the multi-output regression (MOR) SCA. We
proposed MORE, an approach based on MOR that significantly improves the attack
performance by having a 1) more powerful loss function, 2) stronger distinguisher, and
3) a better, more stable overfitting mitigation procedure. Moreover, we further improved
MORE with ensembles and data augmentation, where both approaches show significant
improvements over “vanilla” MORE when a smaller amount of data is available. Overall,
the combination of the MORE methodology, ensemble methods, and data augmentation
presents a promising approach for enhancing non-profiling DLSCA performance and
improving the reliability of distinguishing between key candidates.

Future research could explore other data augmentation techniques and ensemble
strategies to optimize the performance of MORE-based models further. Additionally,
incorporating advanced regularization techniques may help address overfitting and improve
the generalization capabilities of the models. Finally, this work considered synchronized
datasets while investigating the desynchronization countermeasure could be an interesting
research direction. We believe fine-tuning the MORE models could be an efficient option
for such settings.
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