
Plug Your Volt: Protecting Intel Processors
against Dynamic Voltage Frequency Scaling

based Fault Attacks

Nimish Mishra1, Rahul Arvind Mool1, Anirban Chakraborty1, and Debdeep
Mukhopadhyay1

Indian Institute of Technology Kharagpur, India.
{nimish.mishra, rahulmool}@kgpian.iitkgp.ac.in,

anirban.chakraborty@iitkgp.ac.in, debdeep@cse.iitkgp.ac.in

Abstract. The need for energy optimizations in modern systems forces
CPU vendors to provide Dynamic Voltage Frequency Scaling (DVFS) in-
terfaces that allow software to control the voltage and frequency of CPU
cores. In recent years, the accessibility of such DVFS interfaces to adver-
saries has amounted to a plethora of fault attack vectors. In response, the
current countermeasures involve either restricting access to DVFS inter-
faces or including additional compiler-based checks that let the DVFS
fault occur but prevent an adversary from weaponizing it. However, such
countermeasures are overly restrictive because (1) they prevent benign,
non-SGX processes from utilizing DVFS, and (2) rely upon a less practi-
cal threat model than what is acceptable for Intel SGX. In this work, we
hence put forth a new countermeasure perspective. We reason that all
DVFS fault attacks are helped by system design decisions that allow an
adversary to search through the entire space of frequency/voltage pairs
which lead to DVFS faults on the victim system. Using this observation,
we classify such frequency/voltage pairs causing DVFS faults as unsafe
system states. We then develop a kernel module level countermeasure
(in non-SGX execution context) that polls core frequency/voltage pairs
to detect when the system is in an unsafe state, and force it back into
a safe state. Our countermeasure completely prevents DVFS faults on
three Intel generation CPUs: Sky Lake, Kaby Lake R, and Comet Lake,
while allowing accessibility of DVFS features to benign non-SGX execu-
tions (something which prior works fail to achieve). Additionally, we also
put forth the notion of maximal safe state, allowing our countermea-
sure to be implemented both as microcode (on the micro-architecture
level) and as model-specific register (on the hardware level), as opposed
to prior countermeasures which can not be implemented at the hardware
level. Finally, we evaluate the overhead of our kernel module’s execution
on SPEC2017, observing an minuscule overhead of 0.28%.

Keywords: Dynamic Voltage Frequency Scaling countermeasure · Software-
based fault attack · Software Guard Extensions (SGX) · Plundervolt ·
VoltJockey · V0ltpwn · Model-specific register

2 N. Mishra et al.

1 Introduction

Modern system design aims to maximize performance while optimizing resource
usage. And one of the most important of such resources that need to be opti-
mized is energy. Energy optimizations in modern systems are crucial since below-
par energy management decisions increase power consumption, and transitively,
increase processor wear over a period of time. Moreover, in case of laptops, in-
sufficiently optimized energy management mechanisms have a direct impact on
battery life as well. Consequently, most modern processors employ a number
of sophisticated optimization techniques to maintain a balance between perfor-
mance and energy consumption. While implementation aspects vary, all modern
processor vendors tackle this problem by introducing a spectrum of processor
energy consumption states, and introducing mechanisms to traverse this spec-
trum. At any point in time, the state of a processor is classified into either an
idle state (otherwise generically named a C-state) or a non-idle state (otherwise
generically named a P-state) [2, 11, 7, 1]. A processor core is said to be in a P-
state when it is executing, implying that the core requires frequency throttling
and dissipates energy (thereby increasing power consumption). On the other
hand, a core is said to be in a C-state when it is idle, wherein several compo-
nents of the core (like execution units) are switched to reduced power supply to
save energy. While exact naming conventions vary across processor vendors (for
instance, AMD calls a generic C-state as Cool-n-Quiet state), in the rest of
the article, we consistently refer P-state and C-state to denote the idleness of
processor cores.

Dynamic Voltage Frequency Scaling (DVFS) refers to an interface allowing
traversing the spectrum of P-states of a core. Ideally, a DVFS interface allows
privileged software to throttle a CPU core’s frequency. This could be achieved
either through exposing a scaling driver (as in [7] or in [8]) or through exposure
of specific model-specific registers or MSR (as 0x150 on Intel systems [11]). Such
interfaces are exposed to privileged software like kernel, thereby allowing it to
control the entire spectrum of P-states of the core. A straightaway downside of
exposing DVFS interfaces to software is that it opens up arenas for newer attack
surfaces to adversaries. But a critical question arises: what kind of attack vectors
can be leveraged through P-state changes enforced by DVFS? Prior works like
[19, 14, 6] use DVFS to introduce timing violations in a core’s internal circuitry.
Ideally, the clocking of any processor core should ensure the following timing
constraints (which in turn ensures sufficient time for the circuitry to stabilize
output) [21]:

Tsrc + Tprop ≤ Tclk − Tsetup − Tϵ (1)

where Tsrc denotes the time taken to produce unambiguous output for the first
sequential element in the circuit. Tprop denotes the time taken for other com-
binational elements of the circuit to stabilize output. Tsetup refers to the setup
time of the sequential circuitry, while Tϵ refers to small timing fluctuations in
the system clock. Finally, Tclk refers to the time period of the synchronous

Plug Your Volt 3

clock pulse driving the circuitry. From an adversarial perspective, under-volting
causes an increase in Tsrc and Tprop due to decreased voltage swings and slower
transistor switching [3], while Tclk, Tsetup and Tϵ (being independent from any
effects of voltage, and dependent solely on core frequency) remain unaffected.
This causes a timing violation of the form Tsrc + Tprop > Tclk − Tsetup − Tϵ,
causing a digital circuit to produce incorrect output. All prior attacks [19, 14, 6]
use such timing violations and subsequent incorrect outputs to influence critical
operations, thereby successfully mounting purely software-based fault attacks.

It is worthwhile to note that these attacks utilize a fundamental property
of digital circuits and thus make it difficult to develop effective countermea-
sures. So far, to the best of our knowledge, there have been two countermeasure
philosophies in literature. The first one relies on modifying 1○ access control
paths to disallow DVFS interface from being exposed to adversary. Intel’s mi-
crocode patches in response to [19, 14, 6] is a prime example [12]. Succinctly,
under fixes to CVE-2019-11157, Intel added the disabled status of overclocking
mailbox (OCM) interface and the MSR 0x150 to Intel SGX remote attestation
reports (which are controlled by Intel Attestation Service), ensuring that the
OCM is not accessible to a non-SGX context at a time when SGX context is
in execution. The second philosophy is not to stop DVFS-enabled faults but
rather to prevent an adversary from weaponizing them through 2○ deflection.
The work in [15] relies on an automated analysis of fault characteristics of x86
instructions to develop a compiler extension that deflects potentially faultable
x86 instructions into traps. Such compiler-induced traps prevent the adversary
from taking any perceivable advantage, even in case of successful injection of
faults through DVFS.

While both the countermeasure philosophies are able to protect sensitive ap-
plications from fault attacks, they come with their own share of drawbacks. For
instance, the access control based defenses greatly restrict benign non-SGX ap-
plications from using a CPU’s power management features to their fullest (when
an SGX context is operational on a shared hyperthread). This greatly impacts
system throughput and performance [15]. Moreover, implementing such access
control checks dynamically at run-time uses complex microcode assists [15], fur-
ther adding performance overhead. On the other hand, the deflection approach
relies on SGX execution context and thus is not self-sufficient against practical
attack vectors that utilize instruction isolation using single-stepping using [27].
This raises a core question: Is it possible to design a countermeasure against
DVFS-based fault attacks that does not restrict a benign, non-SGX context to
take full advantage of the entire P-state spectrum available, while at the same
time easy to implement and with minimal performance overhead?

In this work, we answer this question in the affirmative! We present a distinct
countermeasure design philosophy. we revisit the timing constraints mentioned
in Eq. 1 to detect unsafe system states which can violate established timing con-
straints, and propose mechanisms to bring back the system into a safe state.
First, we unearth the root-cause of DVFS fault attacks and put forth a fresh
perspective that independent manipulations of core frequency and core voltage

4 N. Mishra et al.

are responsible for putting the system in unsafe states where fault attacks oc-
cur. We then develop a countermeasure around this observation and enforce a
functional mapping between core frequency and core voltage, which forces the
system into always being in a safe state. Since our countermeasure allows the
processor core voltage to tread freely into safe states, it provides the required
flexibility to demanding applications to undervolt and overclock the cores while
protecting them from DVFS-styled fault attacks.

1.1 Contributions

To summarize, we make the following contributions in this work.

– We put forth a new countermeasure philosophy for DVFS by characterizing
a victim system into safe and unsafe states. Concretely, our countermea-
sure design attempts to use the fundamental causal property of DVFS fault
attacks to develop the countermeasure, rather than using auxiliary methods
like 1○ access control checks, and 2○ deflection, unlike prior works. We first
root-cause DVFS attacks to note that modern system design allows causal
independence in controlling a core’s frequency and voltage, and use this to
define safe-unsafe system states with respect to system stability against
DVFS attacks.

– We develop a software-only countermeasure that resides as a kernel module
and uses our system characterization to prevent DVFS based fault attacks
from being mounted. By relying on our definition of safe-unsafe states,
we are able to base the countermeasure outside any SGX context, thereby
allowing our countermeasure to work within a more robust and practical
threat model than prior works [12, 15] (like not relying on third-party
mechanisms to assume absence of single/zero-stepping of SGX enclaves).
Our experiments show that our countermeasure is able to completely prevent
DVFS induced faults, while showing an acceptable overhead of 0.28%.

– Our characterization of safe-unsafe system states allows identification of
maximal safe state for a given system, allowing our countermeasure to be
potentially deployable as a 1○ microcode assist, or 2○ model-specific register
(MSR), by respective CPU vendors. As opposed to literature like [15] and
[12], our countermeasure also has the ability to be implemented at a more
fundamental level in the micro-architecture.

2 Background

In this section, we provide the necessary background on Intel SGX, DVFS, and
attack methodology by undervolting.

2.1 Intel SGX

Intel Software Guard Extensions (SGX) is a hardware-based security technol-
ogy developed by Intel. It provides a secure execution environment, commonly

Plug Your Volt 5

referred to as an enclave, where sensitive code and data can be protected from po-
tentially malicious software and even privileged system software. Therefore, even
if the kernel is compromised, the security of the programs and corresponding data
processed inside the enclaves are supposedly guaranteed by the hardware-based
isolation. This technology is particularly crucial in scenarios where confidential-
ity and integrity of computations are paramount.

Intel SGX logically partitions an application into a trusted and untrusted
part where the trusted part containing source codes for sensitive computations
runs inside the enclave and the untrusted part mostly consists of benign opera-
tions that do not involve secret information. The operating system initiates the
execution of the process by launching the unstrusted part, which in turn initi-
ates the trusted part inside enclave as per the program logic. SGX ensures that
the enclave’s execution state and memory are inaccessible to all other processes
in the system as well as the operating system. The threat model of SGX only
assumes the CPU to be trusted. Therefore, even in the presence of a compro-
mised kernel and superuser adversary, the hardware provides isolation guarantee
of enclaves.

In spite of such hardware-based isolation, a number of side channel attacks
have raised serious question on the security guarantees of Intel SGX. While the
enclave memory and execution states are protected, other important features
that interact with programs such as page table management, scheduling, inter-
rupt handling, etc. are managed by the OS. A number of attacks [20] have been
proposed in literature that undermine the security guarantees of SGX. Due to the
permissible threat model of SGX, adversary can manipulate critical OS features
like APIC timer interrupts to precisely control the execution flow of the processes
running inside the enclave. In addition, transient attacks like Foreshadow [26],
Zombieload [22], etc. leak information from enclaves.

2.2 Power Management (DVFS) in Intel

Modern computing systems have different power and energy requirements which
vary across form factors and their usage. Specifically, mobile devices such as lap-
tops, tablets and smartphones require constant balancing between power con-
sumption and performance. The amount of energy consumed by the processor
in the integral of the instantaneous power over a certain period of time. The
instantaneous power consists of two components - dynamic and static power.
While the static power is independent of the operations being performed in the
system, the dynamic power is dependent on the switching activities of the dig-
ital circuits in the processor. More specifically, the dynamic power is directly
proportional to the clock frequency and voltage. In consequence, low frequency
and voltage help in reducing energy dissipation.

In most modern processors, Dynamic Frequency and Voltage Scaling (DVFS)
is employed to maintain a delicate balance between energy consumption and per-
formance. Linux-based operating systems provide a DVFS driver to dynamically
manage core frequencies and voltage using different interfaces that vary across

6 N. Mishra et al.

Table 1: Description of different bits of MSR 0x150. 0 indicates the least signif-
icant bit (LSB).

Bits Function Explanation

0 - 20 - Reserved

21 - 31 offset Voltage offset (in milli-volts) relative to base core voltage

32 write-enable Enable bit to allow read/write functionality

33 - 39 - Reserved

Domain whose voltage needs to be scaled
40 - 42 Plane select 0 = CPU core; 1 = GPU; 2 = cache

3 = uncore; 4 = analog I/O;

43 - 63 - Reversed

different processor vendors. The driver generally provides different scaling gover-
nors for different performance demands. The operational (allowable) frequency
of a processor is limited to a range of independent values, called frequency ta-
ble [9]. The range of permissible frequency values are set by the processor vendor
for optimal usage with flexibility for dynamic scaling without damaging it. The
OS provides interface for applications to configure frequencies through userspace
using suitable scaling governors. However, the operating voltage of the processors
is not allowed to be changed through these governors.

2.3 Frequency and Voltage Manipulation through MSRs

Overclocking and undervolting features help system owners to extract optimal
performance from the system, such as for gaming applications (overclocking) and
power-saving state (undervolting). To provide computer enthusiasts and inter-
ested end-users flexibility to customise their machines for optimal performance,
Intel processors expose traditional BIOS features to perform real-time overclock-
ing of the processor cores. DVFS allows changing the voltage and frequency from
privileged software using Model Specific Registers (MSR). Recent works [25, 19]
have reverse-engineered the use of Over-Clocking Mailbox (OCM) to reveal that
writes to MSR 0x150 allows to change the alignment between voltage and fre-
quency, i.e, deviate from the specified voltage-frequency table mappings.

As reported in previous works that reverse-engineered and exploited the
OCM, the MSR 0x150 has the structure as depicted in Tab. 1. The bit 63
is fixed and must be set to ‘1’ for writes to happen successfully in the MSR.
Bits [42:40] represent the plane index that denote which CPU component to be
affected for the undervolting. The scaling voltage is denoted by the 11-bit value
of the register bits [31:21]. This value is expressed in units of 1

1024 V (about 1
mV). Once the MSR 0x150 has been written to, the system takes some time for
the scaled voltage to apply. The current operating voltage can be queried from
the MSR 0x198.

Plug Your Volt 7

3 Characterization of “safe” system states

In this section, we develop the concept of safe states of a system. We first
detail the different aspects of Eq. 2, and then use these aspects of violations of
this inequality to define safe-unsafe states of the system. This classification of
safe-unsafe states of the system is then used subsequently in the next section
to develop and implement the countermeasure. Informally, we define what it
means for a sequential element to be in a safe state.

Safe state of a sequential element. Informally, a sequential element i
is defined to be in a safe state iff its output is stabilized by the time the
subsequent sequential element (i + 1) are driven by 1○ the clock and 2○ the
output of i.

Over the course of subsequent subsections, we formalize this definition of
safe state in terms of timing parameters used in Eq. 2.

3.1 Establishing interplay of independent timing parameters

We first explain the different parameters involved in sequential digital circuitry
and their relative interplay that controls the output signal of such circuitry.
Re-iterating Eq. 1, we note the following constraint:

Tsrc + Tprop ≤ Tclk − Tsetup − Tϵ (2)

where Tsrc denotes the time taken to produce unambiguous output for the first
sequential element in the circuit. Tprop denotes the time taken for other sequen-
tial/combinational elements of the circuit to stabilize output. Tsetup refers to the
setup time of the sequential circuitry, while Tϵ refers to small timing fluctuations.
Finally, Tclk refers to the time period of the synchronous clock pulse driving the
circuitry.

We show the interplay of these parameters in Fig. 1. In line with discussions
on timing violations done in previous works on DVFS fault attacks like [24,
21], we also restrict our definitions of safe/unsafe states on the most basic
sequential unit: flip-flops. Our observations naturally extend to more complex
sequential units as well since flip-flops are the foundation blocks for all sequential
unit designs. Referring to Fig. 1, the objective of tuning parameters of Eq. 2
is to enforce flip-flop F1 in a safe state. In other words, the flip-flop F1 can be
claimed to be in a safe state iff its output is stable before flip-flop F2 is driven
by the clock and by input D2.

We now begin to establish the interplay of different parameters from Eq. 2,
which play an important role in achieving the aforementioned objective. As ex-
emplified, we consider a circuit with a sequence of combinational logic, between
two sequential flip-flops F1 and F2 driven by the same clock of time period Tclk

with maximum uncertainty Tϵ. In this example, we use this over-arching pa-
rameter Tϵ to denote the maximum of the immeasurable, transient variations

8 N. Mishra et al.

Fig. 1: An example sequential circuit and associated timing diagram to visualize
the relationships between different parameters of Eq. 1.

in the arrival of the clock signal to the flip-flops. From a circuit design per-
spective, the clock for F2 can arrive at any point in the closed time interval
[Tclk − Tϵ, Tclk + Tϵ]. On a real circuit, these variations can arise from a variety
of sources like variations in the clock distribution network, spatial voltage and
cycle-to-cycle variations in the loop distribution network, and temporal/spatial
jitter. Since these variations are immeasurable and unavoidable, a circuit should
not be configured to deliver a stabilized output beyond a time upper-bounded by
(Tclk−Tϵ). This is the worst case scenario when unavoidable variations cause the
clock to arrive earlier than expected. This leads us to make the first checkpoint
observation:

O1: Handling unavoidable clock skewness. To ensure a safe flip-flop F1

state is to control the core frequency f such that the output of F1 is stable in
time upper-bounded by (1f − Tϵ). Evidently, Tclk = 1

f .

Plug Your Volt 9

We now bring in another aspect important to defining whether F1 is indeed
in a safe state. Note that the circuit exemplified in Fig. 1 is such that the overall
output of F1 manipulated by the combinational logic is driven as input D2 of F2,
which is itself a sequential execution unit driven by synchronous system clock.
This raises another important concern with respect to the setup time needed
for F2. Recall that setup time for any sequential element is the amount of time
the input line (D2 in this case) needs to be stable before the arrival of the clock
edge. In Fig. 1, this is denoted by Tsetup. In the worst case, the clock will arrive
at F2 no later than Tclk − Tϵ, leading us to make the following observation atop
observation O1.

O2: Handling setup delays atop clock skewness. To ensure a safe flip-
flop F1 state when its output drives a sequential element F2, the core frequency
f must be such that the output of F1 is stable in time upper-bounded by
(1f − Tϵ − Tsetup). Evidently, Tclk = 1

f and Tsetup is the setup time for F2.

Finally, from Fig. 1, we note that the input D2 is driven by application of
combinational logic on output of Q1 (output of F1). According to Eq. 2 semantics,
we refer to the time elapsed since driving of D1 to driving of D2 as summation
of time taken for F1 to produce output Q2 (i.e. Tsrc) and the time taken for the
combinational logic to operate on Q2 (i.e. Tprop).

3.2 Fundamental cause of DVFS fault attack vectors

We now use the observations made in Sec. 3.1 about safe state of F1 to establish
the fundamental cause of DVFS based fault attack vectors. Concretely, a DVFS
fault attack is successful when it forces the sequential flip-flop F1 (c.f. Fig. 1)
into an unsafe state. We can define an unsafe state of F1 as:

Tsrc + Tprop > Tclk − Tsetup − Tϵ (3)

Informally stating, in context of Fig. 1, this equation implies that flip-flop F1

is unsafe iff the input D2 is stable after the deadline for setup time of F2 has
crossed, assuming the unavoidable clock skewness Tϵ causes the clock to arrive
earlier than expected (which is the worst case scenario, as discussed in Sec. 3.1).
Our next observation summarizes the reasons which allow an adversary to force
F1 into such unsafe states.

O3: Root-causing DVFS fault attacks. The main cause of DVFS based
fault attacks is the tendency of modern systems to provide adversarial control
over two independent system parameters: core frequency and core voltage.
This implies that in Eq. 2, the LHS can be controlled independently of the
RHS, allowing enumeration of frequency and voltage values leading to Eq. 3,
i.e. unsafe states in sequential.

Concretely, variations in core voltage result in decreased voltage swings and
slower transistor switching [3], which in turn causes an increase in Tsrc and
Tprop (i.e. the left-hand side of Eq. 2). In contrast, independent to changes in

10 N. Mishra et al.

core voltage, variations in core frequency impact Tclk, and thereby influence the
right-hand side of Eq. 2. Consequently, an adversary is able to independently
tweak core frequency as well as core voltage, causing inequality Eq. 3 to occur,
thereby sending the system into unsafe state and eventually mounting a suc-
cessful DVFS-based fault attack. It is worth mentioning that previous attacks
like [19, 14, 6] focus on one aspect from the voltage-frequency pair while keeping
the other constant.

3.3 Novel DVFS countermeasure philosophy: forcing safe states

In Sec. 3.2, we put forth a fresh perspective, missing from prior DVFS styled
attacks (as in [19, 14, 6]), that by allowing independent adversarial control over
frequency and voltage, modern systems have made themselves vulnerable. More
precisely, the independence of control over core frequency and core voltage al-
lows an adversary to find specific voltage-frequency pairs that force the system
into unsafe states. Interestingly, from a defender’s perspective, one can use this
inquisitive observation to develop a countermeasure philosophy, as stated below.

Limiting causal independence of voltage-frequency. Based on root-
causing DVFS (ref. Observation O3), our countermeasure philosophy relies
on limiting the independence with which core frequency and voltage can be
altered. This can be done by enforcing a relationship between allowed values of
core frequency and core voltage, thereby preventing the system from entering
into an unsafe state.

Concretely, by performing characterization of a system for safe-unsafe states,
our countermeasure philosophy proposes to identify core voltage and core fre-
quency relationships where the system enters unsafe state, and deploy counter-
measure mechanisms to prevent such unsafe states from occurring. In the next
section, we elaborate on the design of the countermeasure.

4 Countermeasure implementation through unsafe state
management

In this section, we describe how we use the observations from Sec. 3.3 to de-
velop and deploy a purely software-based countermeasure against DVFS-styled
attacks. The countermeasure design proceeds in two steps:

– S1. Empirically creating core frequency and core voltage pairs that cause a
system to enter into unsafe state.

– S2. Deploy a polling based mechanism on model-specific registers (MSRs)
to limit causal independence of core frequency and core voltage to prevent
the system from entering into unsafe states.

Before moving forward, we first establish the attacker threat model based on
the publicly available works that propose DVFS-based fault attacks.

Plug Your Volt 11

4.1 Threat model

For developing the countermeasure, we rely on the threat models used in prior
works like [19, 14, 21, 24]. Our countermeasure works on the threat model of
trusted computing, wherein the attacker is assumed to be privileged (i.e. the
attacker has controller over the operating system and the BIOS). Since our
countermeasure aims to prevent the system from entering into unsafe states, our
threat model does not require the overclocking mailbox (OCM) to be disabled.
Concretely, this implies that Intel’s countermeasure [12] of adding the disabled
status of OCM to SGX attestation reports is no longer applicable. From the
adversarial side, we assume the adversary mounts attacks directly on neither
the SGX enclave management nor the code running within the enclave. The
attacker, however, is assumed to have the capability of mounting DVFS attacks
while the enclave is operational. The adversarial objective in this case is to use
DVFS to fault instructions, whose results drive subsequent instruction execution.

Note on single-stepping and zero-stepping. We note that prior defences
against DVFS fault attacks like [15] do not directly assume single-stepping in
their threat model. That is, the countermeasure in [15] does not assume an
adversary which has the capability of DVFS faulting as well as interrupting
SGX enclaves post a single instruction execution (which can be achieved using
tools like [27]). This is a consequence of the countermeasure design choices.
Since the trap instructions are placed inside SGX enclave after the instruction
to be faulted, an adversary can simply use single-stepping to isolation the target
instruction and inject the fault. Moreover, concepts like zero-stepping [17] allow
an adversary unbounded time between injection of DVFS fault and occurrence
of trap deflections. As such, [15] relies on non-DVFS related mechanisms like [23,
5, 10] to prevent any single-stepping or zero-stepping.

It is worthwhile to note here that our countermeasure does not depend on
SGX enclave execution at all, rather depends on managing safe states through
limiting causal independence of core voltage and core frequency. Alternatively
stating, the countermeasure kicks in as soon as the DVFS fault occurs. As such,
in contrast to the threat model [15], we assume the adversary has capability for
single/zero-stepping. Hence, we no not rely on any third-party mechanisms like
[23, 5, 10] to provide completeness to our countermeasure’s operation.

Note on adversarial control over unloading kernel modules . We note
that the threat model we have assumed in this work allows an adversary to
load/unload kernel modules. This raises an important question: why can an ad-
versary not simply unload the kernel module belonging to our polling countermea-
sure? This is where Intel SGX’s attestation comes into picture. We propose that
the load/unload state of our countermeasure’s kernel module be a part of SGX
attestation report provided to the client. We state that this has not downgraded
the generality of our countermeasure. We have simply removed the overclocking
mailbox (OCM) from Intel SGX attestation report, and added our countermea-
sure kernel module to the report. This change allows OCM access to all benign

12 N. Mishra et al.

Algorithm 1 Voltage offset computation

1: procedure offset voltage(offset, plane)
2: set val ← (offset*1024/1000)
3: set val ← 0xFFE00000 and ((val and 0xFFF) left-shift 21)
4: set val ← val or 0x8000001100000000
5: set val ← val or (plane left-shift 40)
6: return val

Algorithm 2 DVFS thread

1: procedure dvfs thread()
2: set unsafe ← {}
3: set F ← possible core frequencies (resolution of 0.1 GHz)
4: set V ← {−1,−2,−3, ...,−300}
5: set freq volt tuples ← F × V (× represents cartesian product)
6: set original freq ← Measure normal core frequency through MSR 0x198

7: set original voltage offset ← Measure normal core voltage offset through MSR
0x150

8: for (test frequency, test voltage offset) in freq volt tuples do
9: CPU POWER(test frequency) // set core frequency through the CPU Power

linux utility
10: offset voltage value ← offset voltage(test voltage offset, 0)
11: MSR WRITE 0x150(offset voltage value) // write the offsetted voltage to

0x150

12: // Allow EXECUTE thread to continue in a non-blocking way
13: CPU POWER(original freq) // restore core frequency to normal
14: MSR WRITE 0x150(original voltage offset) // restore core voltage to normal
15: if faults observed in victim thread execution then
16: append (test frequency, test voltage offset) to unsafe state set

non-SGX processes even when SGX context is in execution, while still main-
taining SGX security. We note that adding such software/micro-architectural
optimization features into SGX attestation is a very normal security offering
(similar to adding hyper-threading status into SGX attestation reports [29]).

With the threat model re-instated, we now proceed to elaborate on our pro-
posed two-step countermeasure against DVFS-based fault attacks.

4.2 S1. Empirical characterization of unsafe system states

The first step of our countermeasure is to characterize a system-under-test into
safe and unsafe states. For our experiments, we evaluated three generations of
Intel processors: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz (codename: Sky
Lake, microcode version: 0xf0), Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
(codename: Kaby Lake R, microcode version: 0xf4), and Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz (codename: Comet Lake, microcode version: 0xf4).

Each system was configured to use a characterization framework consisting
of two threads: 1○ DVFS thread and 2○ EXECUTE thread. In the 1○ DVFS

Plug Your Volt 13

thread, we enumerate the entire search space of the independently controlled pa-
rameters: core frequency and core voltage. In order to control core voltage, the
DVFS thread uses the same mechanism as in [19, 14, 21]. Concretely, the DVFS
thread chooses a negative voltage offset x milli-volts, offsets the baseline voltage
by x milli-volts, and writes the corresponding value into MSR 0x150. In order
to compute the actual value to be written in line with semantics of MSR 0x150

(c.f. Sec. 2.3), Algo. 1 is used. Overall, the DVFS thread is executed as depicted
in Algo. 2. We first initialize an empty set referring to all unsafe states of the
system. Likewise, set F is initialized to contain all possible frequency values a
system core can support (with a resolution of 0.1 GHz), while the set V is ini-
tialized to contain negative voltage offsets. The latter choice is by design, since
all prior works [19, 14, 21] observed DVFS faults through undervolting only (i.e.
through consideration of negative voltage offsets while modifying core voltage).
The DVFS thread then iterates over all possible voltage-frequency pairs in order
to determine if the victim thread observed any faults. As evident from Algo. 2, we
use the cpupower Linux utility [18] to modify the core frequency. Likewise, we
use Algo. 1 to first compute the overall 64-bit value of MSR 0x150 that encapsu-
lates appropriately chosen negative voltage offset test voltage offset and then
uses Intel’s MSR memory mapped I/O interface [13] (abstracted in Algo. 2 as
MSR WRITE 0x150) to write into MSR 0x150. Then, the DVFS thread allows the
victim thread to execute carefully selected arithmetic operations (which we dis-
cuss next) and observes occurrence of incorrect computation, implying successful
fault injection. If a fault does indeed occur, then the DVFS thread considers the
corresponding tuple (test frequency, test voltage offset) as an unsafe state
of the system.

We now detail the operations of the EXECUTE thread. From [15, 14, 19],
the imul instruction has the maximum probability of being faulted by DVFS
styled attacks. Hence, in our characterization also, we use the imul instruction.
Concretely, the EXECUTE thread runs a tight loop of one million iterations of
imul instructions with varying 64-bit operands. A fault is said to occur if the
output of some imul instruction (while DVFS thread is operational) is differ-
ent from the actual output of the imul instruction (under normal operational
frequency/voltage settings). As evident from Algo. 2, the EXECUTE thread con-
tinues in parallel to the DVFS thread without blocking the latter’s execution,
thereby posing no problems of ensuring synchronization.

We now detail the characterizations of safe/unsafe states across three gen-
erations on Intel processors, depicted in Fig. 2, Fig. 3, and Fig. 3. As evident,
across the entire frequency spectrum of each system, we observe a range of
under-volted offsets where no DVFS related faults are observed. Additionally,
for any given frequency on all three systems, after a certain undervolt offset,
we start to observe a region of interest where faults begin to manifest. This is
exactly the point in execution where the system is no longer in a safe state, but
rather has entered into an unsafe state. For each frequency, we keep character-
izing the width of the unsafe region (i.e. the range of undervolting offsets where
the system continues to be in unsafe states) until we observe a system crash.

14 N. Mishra et al.

1.0 1.5 2.0 2.5 3.0 3.5
Frequency (in GHz)

0

100

200

300

Vo
lta

ge
 o

ffs
et

s (
in

 m
illi

-v
ol

ts
)

UNSAFE system state SAFE system state Maximal SAFE system state

Fig. 2: Characterization of unsafe/safe system states for Sky Lake, microcode
version: 0xf0.

0.5 1.0 1.5 2.0 2.5 3.0
Frequency (in GHz)

0

50

100

150

Vo
lta

ge
 o

ffs
et

s (
in

 m
illi

-v
ol

ts
)

UNSAFE system state SAFE system state Maximal SAFE system state

Fig. 3: Characterization of unsafe/safe system states for Kaby Lake R, mi-
crocode version: 0xf4.

Plug Your Volt 15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Frequency (in GHz)

0

50

100

150

Vo
lta

ge
 o

ffs
et

s (
in

 m
illi

-v
ol

ts
)

UNSAFE system state SAFE system state Maximal SAFE system state

Fig. 4: Characterization of unsafe/safe system states for Comet Lake, mi-
crocode version: 0xf4.

Once we have characterized the entire frequency spectrum, we have the tuples
of voltage-frequency values for which the target system is in an unsafe state.

4.3 S2. Countermeasure deployment: Polling kernel module

With the characterization of safe/unsafe system states done in Sec. 4.2, we are
ready to describe details of the deployment of our countermeasure as a kernel
module. This is depicted in Algo. 3. Basically, the deployed kernel module will
poll MSR 0x198 for core frequency and MSR 0x150 for core voltage. Based
on the characterization already done in Sec. 4.2, should the system be in an
unsafe state, the countermeasure updates 0x150 to force the system back into
a safe state. In our experiments, this countermeasure was able to completely
eliminate DVFS faults on EXECUTE thread (c.f. Sec. 4.2) when operational.

Algorithm 3 Polling countermeasure implemented as a kernel module

1: procedure polling countermeasure()
2: while True do
3: for each CPU core do
4: set core frequency ← MSR READ(0x198)
5: set core voltage offset ← MSR READ(0x150)
6: if (core frequency, core voltage offset) ∈ unsafe system state then
7: // write to 0x150 to force the system into safe state

16 N. Mishra et al.

Table 2: Experimental evaluation of the overhead incurred by polling counter-
measure on Comet Lake, microcode version: 0xf4.

Benchmark Base rate Base rate Slowdown (%) Peak rate Peak rate Slowdown (%)
(w/o polling) (with polling) (w/o polling) (with polling)

503.bwaves 628.59 628.9 -0.04% 604.21 606.84 -0.43%
507.cactuBSSN 222.95 223.03 -0.03% 202.87 203.15 -0.13%
508.namd r 175.96 177.03 -0.6% 179.55 182.51 -1.64%
510.parest r 387.96 388.41 -0.1% 324.46 326.05 -0.49%
511.povray r 328.67 330.89 -0.67% 267.29 268.05 -0.28%
519.lbm r 224.08 227.17 -1.37% 176.56 176.72 -0.09%
521.wrf r 404.21 404.62 -0.1% 428.21 431.12 -0.67%

526.blender r 256.54 257.71 -0.4% 239.52 239.62 -0.04%
527.cam4 r 315.77 317.94 -0.68% 324.12 328.14 -1.24%

538.imagick r 401.88 403.56 -0.41% 318.06 321.89 -1.2%
544.nab r 315.25 316.44 -0.37% 282.02 282.47 -0.15%

549.fotonik3d r 418.76 420.44 -0.40% 415.46 419.79 -1.04%
554.roms r 322.51 324.92 -0.74% 279.39 279.53 -0.05%

500.perlbench r 295.87511 297.122 -0.42 % 253.71 264.47 -4.24 %
502.gcc r 221.4159 221.64 -0.10 % 218.91 220.74 -0.83%
505.mcf r 339.97 344.05 -1.20 % 297.68 298.72 -0.34 %

520.omnetpp r 509.805 513.139 -0.65 % 479.08 484.51 -1.13 %
523.xalancbmk r 287.7046 288.331 -0.21 % 283.57 285.26 -0.59 %

525.x264 r 318.11903 322.651603 -1.42 % 290.76 294.05 -1.13 %
531.deepsjeng r 306.148284 306.2156 -0.02 % 284.09 284.13 -0.01 %

541.leela r 417.2528 417.6199 -0.08 % 383.03 386.19 -0.82 %
548.exchange2 r 345.38 345.85 -0.13 % 248.6 248.93 -0.13 %

557.xz r 387.71 387.9 -0.04 % 373.41 374.82 -0.37 %

We now substantiate the overhead of our polling countermeasure with respect
to system performance when the system is under stress. For this, we analyse perf
scores from SPEC2017 benchmark suite with and without the deployment of the
kernel module housing our polling countermeasure. The results are depicted in
Tab. 2. As evident, our countermeasure incurs an overhead of 0.28%.

5 Maximal safe state: reducing countermeasure
turnaround time

The countermeasure discussed in the previous section resides as a kernel module
that polls MSRs 0x198/0x150 and takes appropriate decision that forces the
system into safe state. However, being a kernel module, there are two sources
of delays in the turnaround time of the countermeasure (i.e. the time elapsed
when between the moment the kernel module issues a write to MSR 0x150 and
the moment when the system actually comes into an unsafe state). There are
two major contributors to this non-negligible turnaround time:

1. The ioctl calls invoked in the kernel module that drives the MSR read/write
functionality [13].

2. The delay between a successful write to MSR 0x150 and the actual change
in voltage by the voltage regulator [19].

Plug Your Volt 17

We note that this turnaround time posed no empirically observable fail-
ures in preventing DVFS styled faults. Notwithstanding, the characterization
of safe/unsafe system states is made in a way that it allows the countermea-
sure to be implemented at a deeper level than a kernel module. To do so, we first
define a maximal safe state of the system. Intuitively, as depicted in Fig. 2,
Fig. 3, and Fig. 4, the maximal safe state is the maximum negative voltage off-
set for which DVFS cannot be mounted for any frequency in the entire frequency
spectrum available on a system. We now describe different levels of deploying
our countermeasure, and note that only CPU vendors can deploy the counter-
measure at these deeper levels in practice. Hence, we leave the actual deployment
of our countermeasure at these levels as out-of-scope for this work.

5.1 Deployment at Micro-architectural level: microcode sequencer

Microcode [4, 16, 28] allows a layer atop a CPU to allow a mechanism to patch
CPU execution in-place without requiring any special hardware. Microcodes are
the prime carriers of patches that CPU vendors push in response to vulnerabili-
ties arising as a result of hardware optimizations (c.f. Sec. 2.1). Such microcode
updates are loaded through BIOS/UEFI and need to be loaded once the proces-
sor resets. At the time when an event takes place for which microcode interven-
tion is needed, a microcode sequencer kicks in and operates the entire decoding
process for subsequent micro-operations. The microcode sequencer is capable of
handling conditional microcode branches as well, making it an ideal choice for
implementing our countermeasure. Concretely, the microcode read-only memory
(ROM) stores the value of the maximal safe state and the microcode sequencer
kicks in a microcode conditional branch whenever a wrmsr (x86 instruction to
write to MSR) is executed on MSR 0x150. If the wrmsr instruction puts the
system into an unsafe state (by violating the maximal safe state boundary),
the conditional microcode branch simply ignores the write to 0x150. This write-
ignore behaviour is implemented upon several other MSRs as well [11].

5.2 Deployment at hardware level: model-specific register

The insight about using maximal safe state also allows for implementing the
countermeasure at the hardware level- as a Model Specific register. We propose to
follow the same MSR semantics as followed by MSRs 0x618 (MSR DRAM POWER LIMIT)
and 0x61C (MSR DRAM POWER INFO) [11]. The MSR MSR DRAM POWER LIMIT allows
software to set power limits for DRAM domain (this is analogous to writes to
MSR 0x150 in the context of our countermeasure). However, MSR MSR DRAM POWER INFO

allows to set a value DRAM MIN PWR which is theminimal power setting allowed for
DRAM power throttling. As such, any value lower than DRAM MIN PWR is clamped
to DRAM MIN PWR, which preventing any prospect of undervoltage induced faults
in the DRAM. As evident, this kind of MSR is exactly where our countermea-
sure can reside, incurring minimal hardware overhead of an additional MSR.
The CPU vendors can use an additional MSR (hypothetically referred here as

18 N. Mishra et al.

MSR VOLTAGE OFFSET LIMIT) which puts a clamp on 0x150 based on the max-
imal safe state characterization performed for a given CPU generation. This
allows MSR VOLTAGE OFFSET LIMIT to behave as a hardware gatekeeper against
any attempts to put the system into unsafe states, thereby providing a hardware
level countermeasure to DVFS fault attacks.

6 Conclusion

In this work, we take an orthogonal route from existing approaches to pro-
tect DVFS based fault attacks. Instead of preventing access to DVFS interface
or relying on compiler extensions, we focus on the root-cause of such DVFS-
style attacks and build a countermeasure around it. Along these lines, we first
put forth the perspective that modern system design allows independent con-
trol over a CPU core’s frequency and voltage. Since core frequency and core
voltage control different aspects of a CPU’s digital circuitry, there exist certain
voltage-frequency configurations that make a particular system more susceptible
to DVFS fault attacks. We enumerate such configurations for three Intel gener-
ations, and introduce the concept of safe-unsafe system states with respect to
DVFS fault attacks around such configurations.

Our countermeasure is then constructed around safe-unsafe characteriza-
tion of the system and implemented as a kernel module incurring an acceptable
overhead of 0.28%. Moreover, we also characterize maximal safe state of a
system, and discuss how our countermeasure (unlike previous works) has the
potential to be deployed at both the microcode level as well as the hardware
level (as a model-specific register).

From a countermeasure design perspective, by not allowing complete inde-
pendence in controlling core frequency and voltage, our countermeasure com-
pletely prevents DVFS faults. More importantly, unlike prior countermeasures,
it also allows access to DVFS features to benign non-SGX executions even when
SGX enclaves are executing. Therefore, we conclude that this countermeasure
design (utilizing the characterization of safe-unsafe system states) allows for
complete protection against DVFS attacks while allowing availability and flexi-
bility of DVFS features to non-SGX contexts within the purview of safe system
state, thereby not compromising majorly on the performance of a CPU core.

References

1. AMD: Amd64 architecture programmer’s manual volume 2: System programming
(2018)

2. Balaji, B., McCullough, J., Gupta, R.K., Agarwal, Y.: Accurate characterization
of the variability in power consumption in modern mobile processors. In: 2012
Workshop on Power-Aware Computing and Systems (HotPower 12) (2012)

3. Balch, M.: Complete digital design: a comprehensive guide to digital electronics
and computer system architecture. McGraw-Hill Education (2003)

4. Borrello, P., Easdon, C., Schwarzl, M., Czerny, R., Schwarz, M.: Customprocessin-
gunit: Reverse engineering and customization of intel microcode. WOOT (2023)

Plug Your Volt 19

5. Chen, G., Li, M., Zhang, F., Zhang, Y.: Defeating speculative-execution attacks
on sgx with hyperrace. In: 2019 IEEE Conference on Dependable and Secure Com-
puting (DSC). pp. 1–8. IEEE (2019)

6. Chen, Z., Vasilakis, G., Murdock, K., Dean, E., Oswald, D., Garcia, F.D.:
{VoltPillager}: Hardware-based fault injection attacks against intel {SGX} en-
claves using the {SVID} voltage scaling interface. In: 30th USENIX Security Sym-
posium (USENIX Security 21). pp. 699–716 (2021)

7. Documentation, K.: amd-pstate cpu performance scaling driver. https://docs.
kernel.org/admin-guide/pm/amd-pstate.html (2021)

8. kernel documentation, L.: Cpu performance scaling. https://www.kernel.org/

doc/html/v4.14/admin-guide/pm/cpufreq.html (2017)
9. documentation, L.K.: Cpufreq utilities. https://docs.kernel.org/cpu-freq/

core.html
10. Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., Costa, M.: Strong

and efficient cache {Side-Channel} protection using hardware transactional mem-
ory. In: 26th USENIX Security Symposium (USENIX Security 17). pp. 217–233
(2017)

11. Intel: Intel 64 and ia-32 architectures software developer manuals.
https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-sdm.html (2013)
12. Intel: Intel processors voltage settings modification advisory. https://www.intel.

com/content/www/us/en/security-center/advisory/intel-sa-00289.html

(2019)
13. Intel: Intel msr tools. https://github.com/intel/msr-tools (2022)
14. Kenjar, Z., Frassetto, T., Gens, D., Franz, M., Sadeghi, A.R.: {V0LTpwn}: Attack-

ing x86 processor integrity from software. In: 29th USENIX Security Symposium
(USENIX Security 20). pp. 1445–1461 (2020)

15. Kogler, A., Gruss, D., Schwarz, M.: Minefield: A software-only protection for
{SGX} enclaves against {DVFS} attacks. In: 31st USENIX Security Symposium
(USENIX Security 22). pp. 4147–4164 (2022)

16. Koppe, P., Kollenda, B., Fyrbiak, M., Kison, C., Gawlik, R., Paar, C., Holz, T.: Re-
verse engineering x86 processor microcode. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1163–1180 (2017)

17. Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella, C., Gruss,
D.: Platypus: Software-based power side-channel attacks on x86. In: 2021 IEEE
Symposium on Security and Privacy (SP). pp. 355–371. IEEE (2021)

18. manual, U.: Cpu power linux utility. https://manpages.ubuntu.com/manpages/
trusty/man1/cpupower.1.html (2011)

19. Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: Software-based fault injection attacks against intel sgx. In: 2020 IEEE
Symposium on Security and Privacy (SP). pp. 1466–1482. IEEE (2020)

20. Nilsson, A., Bideh, P.N., Brorsson, J.: A survey of published attacks on intel sgx.
arXiv preprint arXiv:2006.13598 (2020)

21. Qiu, P., Wang, D., Lyu, Y., Qu, G.: Voltjockey: Breaching trustzone by software-
controlled voltage manipulation over multi-core frequencies. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. pp.
195–209 (2019)

22. Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J., Prescher, T.,
Gruss, D.: Zombieload: Cross-privilege-boundary data sampling. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
pp. 753–768 (2019)

20 N. Mishra et al.

23. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-sgx: Eradicating controlled-channel
attacks against enclave programs. In: NDSS (2017)

24. Tang, A., Sethumadhavan, S., Stolfo, S.: {CLKSCREW}: Exposing the perils of
{Security-Oblivious} energy management. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1057–1074 (2017)

25. Tang, B.C.A.: Security Engineering of Hardware-Software Interfaces. Columbia
University (2018)

26. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the
keys to the intel {SGX} kingdom with transient {Out-of-Order} execution. In:
27th USENIX Security Symposium (USENIX Security 18). pp. 991–1008 (2018)

27. Van Bulck, J., Piessens, F., Strackx, R.: Sgx-step: A practical attack framework for
precise enclave execution control. In: Proceedings of the 2nd Workshop on System
Software for Trusted Execution. pp. 1–6 (2017)

28. Yang, Z., Li, Q., Zhang, P., Chen, Z.: Reverse engineering of intel microcode update
structure. IEEE Access 8, 169676–169687 (2020)

29. Zhou, J., Xiao, Y., Teodorescu, R., Zhang, Y.: Enclyzer: Automated analysis of
transient data leaks on intel sgx. In: 2022 IEEE International Symposium on Secure
and Private Execution Environment Design (SEED). pp. 145–156. IEEE (2022)

