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Abstract

In STOC 2019 Canetti et al. showed how to soundly instantiate the Fiat-Shamir trans-
form assuming that prover and verifier have access to the key of a correlation intractable hash
function for efficiently searchable relations. The transform requires the starting protocol to
be a special 3-round public-coin scheme that Canetti et al. call trapdoor sigma-protocol. One
downside of the Canetti et al. approach is that the key of the hash function can be used only
once (or a pre-determined bounded number of times). That is, each new zero-knowledge
proof requires a freshly generated hash key (i.e., a freshly generated setup). This is in con-
trast to what happens with the standard Fiat-Shamir transform, where the prover, having
access to the same hash function (modeled as a random-oracle), can generate an unbounded
number of proofs that are guaranteed to be zero-knowledge and sound.

As our main contribution, we extend the results of Canetti et al., by proposing a multi-
theorem protocol that follows the Fiat-Shamir paradigm and relies on correlation intractable
hash functions. Moreover, our protocol remains zero-knowledge and sound even against
adversaries that choose the statement to be proven (and the witness for the case of zero-
knowledge) adaptively on the key of the hash function. Our construction is presented in
the form of a compiler, that follows the Fiat-Shamir paradigm, which takes as input any
trapdoor sigma-protocol for the NP-language L and turns it into a non-interactive zero-
knowledge protocol that satisfies the properties we mentioned. To be best of our knowledge,
ours is the first compiler that follows the Fiat-Shamir paradigm to obtain a multi-theorem
adaptive NIZK relying on correlation intractable hash functions.
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1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88, DMP88] allow a prover to convince a
verifier about the validity of an NP-statement with just one round of interaction (one message
that goes from the prover to the verifier). One of the most famous techniques used to realize
non-interactive proofs is the Fiat-Shamir (FS) transform [FS87]. This transform takes as input
a sigma-protocol and turns it into a NIZK proof. A sigma-protocol is a special three-round
public-coin interactive proof executed between a prover P and a verifier V, where P’s goal is to
convince V that a common statement x belongs to a given NP language L. The prover knows
a witness w (corresponding to x) and starts the interaction by sending a first message a; the
verifier then sends a uniformly random bit-string c, called the challenge, to which the prover
replies with the last message z. Finally, the verifier decides whether x ∈ L or not based on x
and the transcript (a, c, z).

The FS transform makes a sigma-protocol non-interactive by letting the prover do the sam-
pling of the challenge. In particular, the prover computes c← H(a), where H is a hash function.
One way to argue about the security of this construction is by modeling H as a Random Or-
acle [BR93, FKMV12]. Recently, [BKM20, CCH+19, CCR16, CCRR18, HL18, KRR17, PS19]
showed that if the hash function is correlation-intractable (CI) for certain relations, then the
resulting NIZK is sound. Informally, the CI property ensures that given a random hash key k,
it is computationally difficult to find any input α, s.t. (α,Hk(α)) ∈ R for a particular relation
R.
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In more detail, Canetti et al. [CCH+19] shows that the FS transform remains secure assuming
that the hash function is correlation intractable for efficiently searchable relations1. The result
of [CCH+19] can be applied only to a restricted class of sigma-protocols called trapdoor sigma-
protocol. Trapdoor sigma-protocols are three-round public-coin protocols defined in the Common
Reference String (CRS) model that enjoy three main properties: honest verifier zero-knowledge
(HVZK), optimal soundness, and admit a bad-challenge extractor. The property of HVZK is
quite standard and guarantees the existence of a simulator that, upon receiving the challenge (the
second round), it produces a transcript that is indistinguishable from the transcript generated
via the interaction of an honest prover and verifier. Optimal soundness guarantees that for
any statement x /∈ L and the first-round message a there exists at most one challenge c, such
that a verifier would accept the transcript (a, c, z), for the statement x, for some third-round z.
We refer to the unique challenge c as the bad-challenge. Finally, the bad-challenge extractor is
an algorithm that takes as input a false statement x, a valid first-round a, and some trapdoor
information τ , and efficiently computes the bad-challenge c.

Adaptive multi-theorem NIZK. The most basic notion of soundness for a non-interactive
proof system guarantees soundness in the presence of an adversary that decides the statement
to be proven before the sampling of the CRS. Similarly, the notion of zero-knowledge is guaran-
teed to hold for any choice of theorem-witness sampled by the adversary non-adaptively on the
CRS. We refer to this class of adversaries as non-adaptive adversaries. It is possible to consider
stronger (and more realistic) notions of security that guarantee that both the soundness and
the zero-knowledge hold even if the adversary can make the choice of the theorem to be proven
(and of the witness for the zero-knowledge experiment) adaptively on the CRS. In [CCH+19]
the authors argue that if the trapdoor sigma-protocol admits a special bad-challenge extrac-
tor, and moreover it is adaptive special-honest verifier zero-knowledge2, then the NIZK they
obtain using CI hash functions is also adaptive secure. Unfortunately, the only trapdoor sigma-
protocol known to satisfy all the required properties is the Lapidot-Shamir [LS91] protocol for
Hamiltonian graphs. In [CPV20] the authors show that all sigma-protocols can be turned into
trapdoor sigma-protocols with an adaptive HVZK simulator. One drawback of all the previous
approaches is that the zero-knowledge property is not preserved if the same hash key is used to
generate more than one proof. However, we would like a prover to be able to use the same hash
key to generate multiple proofs (for potentially different theorems). We refer to this notion of
zero-knowledge as multi-theorem NIZK 3, and we investigate the following question:

Is it possible to obtain an adaptive multi-theorem NIZK by applying the Fiat-Shamir paradigm
using a hash function that is correlation intractable for efficiently searchable relations?

Another way to phrase the above is that we ask whether it is possible to construct an adaptive
multi-theorem NIZK using the same setup (and complexity) assumption as in [CCH+19, CPV20].

1.1 Our results

In this work we show how to obtain an adaptive multi-theorem NIZK for any language L that
admits a trapdoor sigma-protocol ΣL (we do not require ΣL to be adaptive HVZK). The nice
feature of our NIZK is that the prover, after a pre-processing (non-interactive) phase, upon

1A relation is efficiently searchable if given x it is efficient to find y such that (x, y) ∈ R
2The notion of adaptive HVZK guarantees the existence of a simulator that can generate the first-round of

the protocol without the knowledge of the theorem.
3The notion we consider in this paper is with respect to a single prover. This single entity can use the same

CRS to generate multiple proofs for potentially different statements.
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receiving the statement to be proven and the corresponding witness, generates proofs by just
following the FS paradigm.

Due to its FS-like structure, the soundness of our scheme relies only on the security of the
underlying trapdoor sigma-protocols and on the correlation-intractability of the hash function
(exactly as in all previous works that although achieved a weaker form of zero-knowledge).
The zero-knowledge property instead relies on the HVZK of the trapdoor sigma-protocols, the
security of the CI hash function, and the hardness of the Decisional Diffie-Hellman (DDH)
assumption. This is exactly in the same spirit as [CCH+19, CPV20] where the authors instead
rely on the hardness of public-key encryption schemes to argue about zero-knowledge. An
informal theorem that summarizes our result is the following

Theorem (informal): If ΣL is a trapdoor sigma-protocol for the language L, then it is possible
to realize an adaptive multi-theorem NIZK protocol that follows the FS paradigm. In

particular, the soundness of the NIZK protocol depends only on the soundness of underlying
trapdoor sigma-protocols and on the security of the hash function.

We note that an easy way to construct a multi-theorem NIZK would be to use the OR
approach proposed in [FLS90]. In this, a statement T /∈ L⋆ for a membership-hard language4

L⋆ is put in the CRS, and the prover provides an OR proof proving that either x ∈ L or
T ∈ L⋆. This approach has two main drawbacks: 1) the NIZK is inherently computational
zero-knowledge and 2) the soundness holds only under the condition that the tuple T is sampled
such that T /∈ L⋆. In our work, we show how to modify the FLS approach to remove the second
limitation. Hence, we obtain a NIZK that has exactly the same setup assumptions as previous
works, but in addition, we obtain a protocol that is multi-theorem.

1.2 Technical overview

1.2.1 Adaptive multi-theorem NIZK from CI hash functions.

We first recall the approach proposed in [FLS90] used to realize an adaptive multi-theorem NIZK
protocol for an NP language L. In this, the prover generates an OR proof showing that either
x ∈ L or that T ∈ L⋆, where T is an instance that is part of the CRS. The soundness holds due
to the soundness of the OR proof and the fact that by the construction of the CRS T /∈ L⋆. The
adaptive zero-knowledge comes from the fact that a simulator, to generate simulated proofs needs
to program the CRS with T ⋆ ∈ L⋆ (and for this no knowledge about the statement to be proven
is needed). Upon receiving a statement x, the simulator uses the witness for T ⋆ to generate
the OR proof. If the OR proof is witness-indistinguishable (WI), and L⋆ is a membership-hard
language, then the protocol is adaptive zero-knowledge. The multi-theorem feature comes from
the fact that the WI property is closed under sequential composition.

By relying on the result of [CDS94], it is possible to compile two sigma-protocols, respectively
for the language L1 and L2, into a new sigma-protocol for the OR language L1 ∨ L2. In this
paper, we argue that the compiler of [CDS94] works similarly for trapdoor sigma-protocols.
This means that if we have a trapdoor sigma-protocol for L and one for L⋆, we can obtain
an adaptive multi-theorem NIZK protocol by doing the following. First, we obtain a trapdoor
sigma-protocol for the language L ∨ L⋆, and then we apply the FS transform to the resulting
protocol thus obtaining a NIZK protocol for the language L ∨ L⋆.

The scheme we have just described departs from the FS paradigm mostly due to the presence
of the T value embedded in the CRS (that the simulator needs to program as we have discussed

4Intuitively, a membership-hard language is one for which it is possible to sample instances of the problem in
a way that it is hard to detect if a given instance is in the language or not
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earlier). In the FS paradigms, such a component is not required, since the simulator only needs
to program the hash function to perform the final simulation. But more importantly, the value
T needs to be correctly generated, (i.e., it must not belong to L⋆ otherwise the soundness does
not hold). This is clearly something undesirable since now the soundness does not only rely
on the security of the hash function (which is the case for the FS transform) but also requires
additional parameters to be generated honestly.

We work around this problem as follows. We define L⋆ as being the language of all the DH
tuples, and instead of requiring the CRS to contain T /∈ L⋆, we let the prover pick the tuple
T . We then require the prover to provide a non-interactive zero-knowledge proof via a protocol
ΠNDH thus proving that the tuple does not belong to L⋆ (i.e., T is non-DH). Note that we require
ΠNDH to be a NIZK protocol that guarantees security only if one proof is generated (i.e., it is
not multi-theorem zero-knowledge). In particular, ΠNDH can be instantiated via the Fiat-Shamir
transform using a correlation intractable hash function on a specific trapdoor sigma-protocol (we
will elaborate more on this in the technical part of the paper). The rest of the protocol follows
as before. That is, the prover, upon receiving a statement x and its witness, perform an OR
proof, proving either that x ∈ L or that T is a DH tuple.

The main observation here is that ΠNDH needs to be run only once, and the obtained proof
can be reused any time the prover is required to generate a proof for a new instance x. So,
we can see our protocol as divided into two phases. In the offline phase the prover samples a
non-DH tuple T , and runs ΠNDH to generate a NIZK proof that we denote with πNDH (without
sending it). Upon receiving a statement and a witness, the prover generates the OR proof πOR,
and sends over (πOR, T, πNDH).

We prove that the protocol we have just described is adaptive multi-theorem zero-knowledge.
Intuitively, this holds since the simulator can fake the proof for the non-DH tuple by running
the simulator of ΠNDH. Then the proof πNDH can be simulated with respect to a DH tuple,
hence any OR proof can be generated using the fact that T ∈ L⋆. Given that the OR proof
we will use is witness indistinguishable (WI), and that the WI property is maintained under
parallel composition, then our final protocol is multi-theorem zero-knowledge. The adaptive
zero-knowledge property comes from the fact that the simulator can run internally the simulator
of ΠNDH to generate the setup (i.e., to program the hash function) without knowing x.

There is a caveat about this protocol. Note that the tuple T can be chosen by the adversarial
prover adaptively on the description of the hash function. So, even if we do not need ΠNDH to
be multi-theorem, it seems that we need it to be at least adaptive-sound. To obtain an adaptive-
sound NIZK protocol following the FS paradigm, we could rely on the results of [CPV20]. In
this, the authors show how to convert any sigma-protocol into an adaptive-sound NIZK protocol
using correlation intractable hash functions. However, the Ciampi et al. compiler incurs an
efficiency loss, since it requires, for each bit of the challenge of the starting sigma-protocol,
to generate two ciphertexts. To avoid this, we first argue that it is sufficient to fix the first
two components of the tuple T (g, gα) in the CRS, and let the adversarial prover choose only
X,Y adaptively on the hash function to form the tuple T = (g, gα, X, Y ). We then show how
to obtain a protocol ΠNDH that remains sound in this semi-adaptive adversarial setting, while
maintaining reasonable performance (i.e., for a security parameter of 1024 bits the prover and
verifier of ΠNDH need to perform 40 exponentiations each).

We need to argue that the OR proof also remains sound when part of the tuple T is chosen
by the adversary. In the technical part of the paper, we will show how to realize such an OR
proof and provide our new formal definition of soundness that we call semi-adaptive soundness,
which allows the adversary to decide part of the component of an NP statement. This notion
lies in between the standard notion of soundness and the notion of adaptive soundness, which
allows the adversary to decide all the parameters of the NP instance to be proven.
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1.2.2 On adaptive soundness.

So far we have mostly focused on obtaining an adaptive zero-knowledge scheme that allows the
re-use of the hash-key. We have not mentioned whether it is possible to also prove that our
NIZK is adaptive sound. We argue that if the trapdoor sigma-protocol ΠL admits a special type
of extractor (in [CPV20] the authors show that any sigma-protocol can be modified to enjoy
this special property), then our NIZK is also adaptive-sound. We refer to the technical part of
our paper for more detail.

1.3 Related work

One of the works most related to ours is [CSW20]. In this, the authors construct an adaptive
sound, adaptive zero-knowledge, multi-theorem NIZK from correlation intractable hash functions
(plus other assumptions like LWEs, or DDH and LPN). However, the results of [CSW20] follow
a different spirit compared to ours (and compared also to [CCH+19]). As discussed in the
previous section, a multi-theorem adaptive NIZK can be trivially obtained using a folklore
technique. Namely, it is easy to construct an adaptive multi-theorem NIZK protocol from the
same assumptions we use in our paper by following the FLS approach. However, this approach
produces a CRS that has two components: a hash key, and a tuple T /∈ L⋆. Hence, the soundness
of the protocol depends on T not being in L⋆. This is in contrast with what happens in the
standard FS transform where the soundness depends only on the soundness of the underlying
sigma protocol and on the CI of the hash function. All the multi-theorem protocols proposed
in [CSW20] have a similar drawback. That is, the soundness is based on a public key (that
is part of the CRS) being sampled correctly. If such a public key is not sampled correctly
then the soundness trivially does not hold. In our work, we instead get the same advantage
of the FS approach (and of the results proposed in [CCH+19]) by providing a protocol whose
soundness is based on the correlation intractability of the hash function and on the soundness
of the underlying trapdoor sigma-protocol only. To give a concrete example of the benefit of
our compiler compared to existing solutions we note the following. If we instantiate our NIZK
with the trapdoor sigma-protocol for the language of Diffie-Hellman tuples, we obtain a multi-
theorem adaptive NIZK where the CRS consists of the hash key, and two group elements (g, h).
The soundness of this NIZK then holds as long as the hash-key is honestly generated, while
(g, h) can be maliciously generated.

Our work follows the spirit of [CCH+19], where the authors show how to compile any trapdoor
sigma protocol into a NIZK using the FS approach. We extend the approach of Canetti et al.
proposing a compiler that turns any trapdoor sigma-protocol into a multi-theorem adaptive
NIZK. Hence, any improvement in the efficiency of trapdoor sigma protocols has an immediate
impact on the performance of our NIZK. [CSW20] follows a different path by proposing ad-hoc
schemes that depart from the Fiat-Shamir approach. The advantage of [CSW20] over our work
is that the results of [CSW20] are UC secure and tolerate adaptive corruption.

2 Preliminaries

2.1 Notations.

We denote the security parameter by λ and use “||” as the concatenation operator. For a finite
set Q, x

$← Q denotes a sampling of x from Q with uniform distribution. We use “ = ” to
check the equality of two different elements, “ ← ” as the assigning operator (e.g. to assign to
a the value of b we write a ← b). We use the abbreviation PPT which stands for probabilistic
polynomial time. We use poly(·) to indicate a generic polynomial function. We denote with Zp
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the set of integers, where p is the order of the set, with N the set of natural numbers . We
use G.Gen(1λ) to represent the algorithm to find the generator in the group G. ν represents
the negligible function, and δ represents the non-negligible function. For an NP language L we
denote the corresponding NP-relation with RL.

We assume familiarity with the notions of negligible and non-negligible functions, and also
the notion of interactive proof systems.

2.2 Diffie-Hellman related definitions

Let G be the group of an order p, with a generator g. Let T = (g, h = gx, X, Y ) be a tuple,
where x ∈ Zp. Let LDH = {T ∈ G4 | ∃w ∈ Zp : X = gw ∧ Y = hw} be the language of DH
tuples. Let LNDH = {T ∈ G4 | ∃w,w′ ∈ Zp : X = gw ∧ Y = hw

′ ∧ w ̸= w′} be the language of
non-DH tuples.

We assume the Decisional Diffie-Hellman (DDH) hardness assumption holds in the group G.
The DDH hardness assumption is as follows:

Definition 1 (DDH hardness Assumption). For every PPT algorithm A:∣∣∣Pr[A(T ) = 1 |T ∈ LDH ]− Pr[A(T ) = 1 |T ∈ LNDH ]
∣∣∣ ≤ ν(λ).

2.3 Non-Interactive Argument Systems related definitions

We recall the notion of non-interactive argument systems here.

Definition 2 (Non-Interactive Zero-Knowledge Argument Systems). A non-interactive zero-
knowledge argument system (NIZK) for an NP-language L with the corresponding relation RL

is a non-interactive protocol Π = (Setup,P,V), where:

• Setup(1n, 1λ) takes as the input a statement length n and a security parameter λ. It outputs
a common reference string CRS.

• P(CRS, x, w) takes as the input CRS, the statement x and the witness w, s.t. (x,w) ∈ RL.
It outputs the proof π.

• V(CRS, x, π) takes as the input CRS, x and π. It outputs 1 to accept and 0 to reject.

Π has the following properties:

• Completeness. For all λ ∈ N, and all (x,w) ∈ RL, it holds that:

Pr
[
V(CRS, x,P(CRS, x, w)) = 1

∣∣∣ CRS $← Setup(1|x|, 1λ)
]
= 1− ν(λ)

• Soundness. For all PPT provers P⋆, s.t. for all λ ∈ N, and all x /∈ L, it holds that:

Pr
[
V(CRS, x, π) = 1

∣∣∣ CRS $← Setup(1|x|, 1λ);π
$← P⋆(CRS)

]
≤ ν(λ).

• Zero knowledge. There exists a PPT simulator Sim such that for every (x,w) ∈ RL,
the distribution ensembles {(CRS, π) : CRS

$← Setup(1|x|, 1λ); π
$← P(CRS, x, w)}λ∈N and

{Sim(1λ, x)}λ∈N are computationally indistinguishable.
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2.4 Sigma-protocol related definitions

Most of the following definitions are taken from [CCH+19, CPSV16].

Definition 3 (Sigma-protocol). Assuming there is a three-round public-coin interactive protocol
Σ = (Gen,P,V) for a NP language L (and corresponding relation RL) in the common reference
string model, where:

• Gen takes as input the unary representation of the security parameter λ, and it outputs the
common reference string CRS.

• In the first round of the protocol, P takes as input the common reference string CRS, the
instance x, the witness w, the randomness R, and it will output the first round message a.

• In the second round, V takes as input the CRS, x, a, and it will output the challenge c.

• In the third round, P takes as input the CRS, x, w, a, c, R, and it will output the third
round message z.

• When V receives (CRS, x, a, c, z) as inputs, it outputs 1 to accept and 0 to reject.

Σ is a sigma-protocol if satisfies the following properties:

• Completeness: If (x,w) ∈ RL, then all honest generated transcripts are accepting.

• Optimal soundness: For every common reference string CRS, every instance x /∈ L,
and every first message a, there is at most one challenge c = f(CRS, x, a) such that
(CRS, x, a, c, z) is an accepting transcript for any choice of third message z. We infor-
mally call f the “bad-challenge function” associated with Σ and note that f may not be
efficiently computable.

• Special HVZK: There exists a PPT simulator algorithm Sim that takes as x ∈ L and
c ∈ {0, 1}ℓ, and outputs an accepting transcript for x where c is the challenge (we denote
this action with (a, z) ← Sim(x, c)). Moreover, for all ℓ-bit strings c, the distribution of
the output of the simulator on input (x, c) is computationally indistinguishable from the
distribution of the honest generated transcript obtained when V sends c as the challenge
and P runs on common input x and any private input w such that (x,w) ∈ RL.

Remark 1. The Definition 3 is a bit different from the standard notion of sigma-protocol [Dam10]
since we only require the protocol to be the optimal sound (instead of special-sound).

Then we recall the definition of the instance-dependant trapdoor sigma-protocol from [CCH+19].

Definition 4 (Instance-dependant trapdoor sigma-protocol [CCH+19]). We say that a sigma-
protocol Σ = (Gen,P,V) with bad-challenge function f is an instance-dependant trapdoor sigma-
protocol if there are PPT algorithms TrapGen, BadChallenge with the following syntax.

• TrapGen(1λ, x, aux) takes as input the unary representation of the security parameter λ,
an instance x, and an auxiliary input aux. It outputs a common reference string CRS along
with a trapdoor τ .

• BadChallenge(τ, CRS, x, a) takes as input a trapdoor τ , common reference string CRS, in-
stance x, and first message a. It outputs a challenge c.

We additionally require the following properties:
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• CRS Indistinguishability: For any (x, aux), an honestly generated common reference
string CRS is computationally indistinguishable from a common reference string output by
TrapGen(1λ, x, aux).

• Correctness: For every instance x /∈ L, there exists an auxiliary input aux such that for
all (CRS, τ) $← TrapGen(1λ, x, aux), we have that BadChallenge(τ, CRS, x, a) = f(CRS, x, a).

2.4.1 OR composition of ID trapdoor sigma-protocols.

In our paper, we also argue that the OR composition [CDS94] of any 2 instance-dependant
trapdoor sigma-protocols (for the relation RL0 and RL1) is an instance-dependant trapdoor
sigma-protocol for the relation RL0∨L1 . Moreover, the resulting protocol is witness indistin-
guishable (WI).

We recall the OR composition techniques here in Figure 1. Assuming we have 2 three-round
public-coin HVZK proof systems ΣL0 = (GenL0 ,PL0 ,VL0) for NP language L0 (The correspond-
ing relation is RL0), ΣL1 = (GenL1 ,PL1 ,VL1) for NP language L1 (The corresponding relation is
RL1). Then the three-round public-coin HVZK proof system ΣL0∨L1 = (GenL0∨L1 ,PL0∨L1 ,VL0∨L1)
is for the NP language LL0∨L1 defined below (The corresponding relation is RL0∨L1):

LL0∨L1 = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1}

The GenL0∨L1 algorithm works as follows:

• CRSL0

$← GenL0(1
λ), CRSL1

$← GenL1(1
λ)

• Output (CRSL0 , CRSL1)

Then, we let the challenge space be {0, 1}λ, let b ∈ {0, 1}, let SimL1−b
be the simulator for

ΣL1−b
, and we let w be the witness for instance xb. In other words, (xb, w) ∈ RLb

. The protocol

ΣL0∨L1 is in Figure 1, in the CRS model, where CRSL0∨L1

$← GenL0∨L1(1
λ):

Then we first prove the following Lemma 1.

Lemma 1. ΣL0∨L1 has an efficient bad-challenge extractor BadChallengeL0∨L1
, and the correct-

ness property holds.

Proof. For ΣL0∨L1 , x /∈ LL0∨L1 means, for the statement x = (x0, x1), s.t. x0 /∈ L0 ∧ x1 /∈ L1.
Based on construction of ΣL0∨L1 (shown in Figure 1), we have the first round message a =
(a0, a1), where a0 is for ΣL0 and a1 is for ΣL1 .

Given auxL0∨L1 = (auxL0 , auxL1), the TrapGenL0∨L1
algorithm is:

TrapGenL0∨L1
(1λ, x, auxL0∨L1) :

(CRSL0 , τL0)
$← TrapGenL0

(1λ, x0, auxL0)

(CRSL1 , τL1)
$← TrapGenL1

(1λ, x1, auxL1)

CRSL0∨L1 ← (CRSL0 , CRSL1)

τL0∨L1 ← (τL0 , τL1)

return (CRSL0∨L1 , τL0∨L1)
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Prover(CRSL0∨L1
, x0, x1, w) Verifier(CRSL0∨L1

, x0, x1)

R
$← {0, 1}λ

ab ← PLb
(CRSLb

, xb, w;R)

(a1−b, c1−b, z1−b)← SimL1−b
(x1−b)

a0, a1

c
$← {0, 1}λ

c

cb ← c⊕ c1−b

zb ← PLb
(CRSLb

, xb, w, ab, cb;R)

(c0, c1), (z0, z1)

Verifier accepts if all the following
conditions hold:
c = c0 ⊕ c1

VL0
(CRSL0

, x0, a0, c0, z0) = 1

VL1
(CRSL1

, x1, a1, c1, z1) = 1

Figure 1: The protocol for OR composition

With the output of TrapGenL0∨L1
, the bad-challenge extractor BadChallengeL0∨L1

works as
follows:

BadChallengeL0∨L1
(τL0∨L1 , CRSL0∨L1 , x, a) :

c0 ← BadChallengeL0
(τL0 , CRSL0 , x0, a0)

c1 ← BadChallengeL1
(τL1 , CRSL1 , x1, a1)

c = c0 ⊕ c1

return c

The Correctness of ΣL0∨L1 is proven by the following reduction:

• Assuming the Correctness property of ΣL0∨L1 does not hold. It means there exists a =
(a0, a1) for all x = (x0, x1), auxL0∨L1 = (auxL0 , auxL1), s.t.:

BadChallengeL0∨L1
(τL0∨L1 , CRSL0∨L1 , x, a) ̸= f(CRSL0∨L1 , x, a) |

(CRSL0∨L1 , τL0∨L1)
$← TrapGenL0∨L1

(1λ, x, auxL0∨L1)

Based on the construction of BadChallengeL0∨L1
, we know that Correctness of ΣL0∨L1 does

not hold is because

BadChallengeL0
(τL0 , CRSL0 , x0, a0) ̸= f(CRSL0 , x0, a0)

∨ BadChallengeL1
(τL1 , CRSL1 , x1, a1) ̸= f(CRSL1 , x1, a1)

Then we can discuss the following situations:
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– Assuming BadChallengeL0
(τL0 , CRSL0 , x0, a0) = f(CRSL0 , x0, a0), then we can con-

struct an adversary A′ for breaking the Correctness of ΣL1 :

A′(τL1 , CRSL1) :

(CRSL0∨L1 , τL0∨L1)
$← TrapGenL0∨L1

(1λ, x, auxL0∨L1)

parsing CRSL0∨L1 as (CRS0, CRS1), parsing τL0∨L1 as (τ0, τ1)

CRSL0∨L1 ← (CRS0, CRSL1), τL0∨L1 ← (τ0, τL1)

a
$← A(τL0∨L1 , CRSL0∨L1)

parsing a as (a0, a1)

return a1

the output of A′ finds a1 makes

BadChallengeL1
(τL1 , CRSL1 , x1, a1) ̸= f(CRSL1 , x1, a1) |

(CRSL1 , τL1)
$← TrapGenL1

(1λ, x1, auxL1)

for all x1 /∈ L1 and auxL1 . It contradicts to the Correctness of ΣL1 .

– We can do a similar reduction to the Correctness of ΣL0 if the Correctness of ΣL1

holds.

– If BadChallengeL0
(τL0 , CRSL0 , x0, a0) ̸= f(CRSL0 , x0, a0) ∧ BadChallengeL1

(τL1 , CRSL1 ,
x1, a1) ̸= f(CRSL1 , x1, a1), then we can still use A′ to break Correctness of ΣL1 .

It is also important to note that, BadChallengeL0∨L1
is efficient, because BadChallengeL0

,
BadChallengeL1

, and the ⊕ operation are efficient.

Then we have the following Lemma 2:

Lemma 2. ΣL0∨L1 is an instance-dependant trapdoor sigma-protocol and it is witness indistin-
guishable for the language L = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1}

Proof. By Lemma 1, we know that ΣL0∨L1 has TrapGen and BadChallenge algorithms as required
in the definition. Then we need to prove CRS Indistinguishability and Correctness:

• CRS Indistinguishability: It is important to note that the honested generated CRS for
ΣL0∨L1 is CRSRealL0∨L1

= (CRSRealL0
, CRSRealL1

), where CRSRealL0

$← GenL0(1
λ), and CRSReal

L1

$←
GenL1(1

λ).

We prove the CRS Indistinguishability of ΣL0∨L1 through the following hybrids game, and
we denote the output of the adversary in Hi with outHi , to show for all PPT algorithm D:∣∣∣∣Pr[D(outH0) = 1

]
− Pr

[
D(outH1) = 1

]∣∣∣∣ ≤ ν(λ)∣∣∣∣Pr[D(outH1) = 1
]
− Pr

[
D(outH2) = 1

]∣∣∣∣ ≤ ν(λ)

We note that the outH0 corresponds to the output of A where CRSRealL0∨L1
is used, and the

outH2 corresponds to the output of A where CRSL0∨L1 generated from TrapGenL0∨L1
is

used.
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H0:

CRSL0

$← GenL0(1
λ)

CRSL1

$← GenL1(1
λ)

CRS0 ← (CRSL0 , CRSL1)

return the output of A(CRS0)

H1:

CRSL0

$← TrapGenL0
(1λ, x0, auxL0)

CRSL1

$← GenL1(1
λ)

CRS1 ← (CRSL0 , CRSL1)

return the output of A(CRS1)

H2:

CRSL0

$← TrapGenL0
(1λ, x0, auxL0)

CRSL1

$← TrapGenL1
(1λ, x1, auxL1)

CRS2 ← (CRSL0 , CRSL1)

return the output of A(CRS2)

– H0 ≈ H1: If there exists a PPT adversary A that can distinguish between H0 and
H1, we can construct an adversary A′ that can break CRS Indistinguishability of ΣL0

through the following reduction:

∗ A′ queries the challenger of the CRS Indistinguishability of ΣL0 that sends back
CRSL0

∗ A′ samples CRSL1 by using GenL1

∗ A′ sends (CRSL0 , CRSL1) to A
∗ A′ outputs the output of A

We now observe that if the challenger uses GenL0 to sample CRSL0 , we are in H0,
otherwise, we are in H1. This implies H0 ≈ H1.

– We can use similar reduction to show that H1 ≈ H2.
Now we can conclude that H0 ≈ H1 ≈ H2, so the CRS generated by GenL0∨L1 is
indistinguishable from the CRS generated by TrapGenL0∨L1

.

• Correctness: Finished in Lemma 1.

The WI property instead comes immediately from the results of [CDS94] (since the WI proof
only relies on the protocol being HVZK).

2.5 Multi-theorem, adaptive non-interactive proofs

We recall that our notion of multi-theorem zero-knowledge is with respect to a single stateful
prover. We now state the formal definition we consider.
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Definition 5 (Adaptive Multi-Theorem Zero Knowledge). Assuming we have a non-interactive
protocol Π = (Setup,P,V) for an NP language L with corresponding relation RL. Π is adaptive
multi-theorem zero knowledge if for any PPT algorithm A, there exists a PPT simulator Sim =
(Sim0, Sim1), running in (expected) polynomial time, such that for polynomial bounded q:

∣∣∣∣Pr[ExptΠ,Sim,A(1
|x|, 1λ) = 1

]
− 1

2

∣∣∣∣ ≤ ν(λ)

The experiment ExptΠ,Sim,A(1
|x|, 1λ) is defined as follows:

ExptΠ,Sim,A(1
|x|, 1λ) :

b
$← {0, 1}, q ← 0, stA ← ∅, CRS0

$← Setup(1|x|, 1λ), (CRS1, τSim1
)

$← Sim0(1
|x|, 1λ)

stP ← P(1λ, CRS0)

repeat

q ← q + 1, (stA, x, w)
$← A(1λ, CRSb, stA)

if (x,w) ∈ RL then π0
$← P(CRS0, stP, x, w), π1

$← Sim1(CRS1, τSim1 , x)

else π0 ← π1 ← ∅

(stA, cont, d)
$← A(1λ, stA, πb)

until cont = false

return b = d

Definition 6 (Witness Indistinguishability). Assuming we have an interactive protocol ΣL =
(GenL,PL,VL) for NP language L. ΣL is Witness Indistinguishable for relation RL if, every
malicious verifier V⋆

L, s.t. for all x,w,w′ with (x,w) ∈ RL and (x,w′) ∈ RL, it holds that:∣∣∣∣Pr [V⋆
L(x, π0) = 1 | π0

$← PL(x,w)

]
− Pr

[
V⋆
L(x, π1) = 1 | π1

$← PL(x,w
′)

]∣∣∣∣ ≤ ν(λ)

2.6 Semi-adaptive soundness

We now introduce a new notion of soundness that we call semi-adaptive soundness. Informally,
we see every theorem x as divided into two parts (α, β), and we require the adversary to specify
α before the sampling of the CRS, whereas β can be adaptively chosen from the adversary. More
formally:

Definition 7 (Semi-Adaptive Soundness). Given 2 sets S1 ⊆ {0, 1}∗, S2 ⊆ {0, 1}∗, and the NP
language L = {(α, β) | α ∈ S1 ∧ β ∈ S2 ∧ ϕ(α, β) = 1} defined over some predicate ϕ. Assuming
we have a non-interactive protocol Π = (Setup,P,V) for an NP language L with corresponding
relation RL. Π is semi-adaptive sound if for any α ∈ S1 and for any PPT prover P⋆, it holds
that:

Prα

[
(α, β) /∈ L ∧ V(CRS, (α, β), π) = 1 | α ∈ S1 ∧ β ∈ S2;

CRS
$← Setup(1|x|, 1λ); (π, β)

$← P⋆(CRS, α)

]
≤ ν(λ).
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2.7 Semi-instance-dependant (SID) trapdoor sigma-protocol

We introduce an extension of the notion of trapdoor sigma-protocols we denote as semi-instance-
dependant trapdoor sigma-protocol. Informally, similar to semi-adaptive soundness defined above,
we divided every theorem x into 2 parts (α, β), and the TrapGen and BadChallenge algorithms of
the semi-instance-dependant trapdoor sigma-protocol will take α other than the whole theorem
x.

Definition 8 (Semi-instance-depandant trapdoor sigma-protocol). Given S1 ⊆ {0, 1}∗, S2 ⊆
{0, 1}∗, and the NP language L = {(α, β) | α ∈ S1 ∧ β ∈ S2 ∧ ϕ(α, β) = 1} defined over
some predicate ϕ. We say that a sigma-protocol Σ = (Gen,P,V) with bad-challenge function
f is a semi-instance-dependant trapdoor sigma-protocol if there are PPT algorithms TrapGen,
BadChallenge with the following syntax.

• TrapGen(1λ, α, aux) takes as input the unary representation of the security parameter λ,
the first part of the instance α, and an auxiliary input aux. It outputs a common reference
string CRS along with a trapdoor τ .

• BadChallenge(τ, CRS, α, a) takes as input a trapdoor τ , common reference string CRS, the
first part of the instance α, and first message a. It outputs a challenge c.

We additionally require the following properties:

• CRS Indistinguishability: For any (α, aux), an honestly generated common reference
string CRS is computationally indistinguishable from a common reference string output by
TrapGen(1λ, α, aux).

• Correctness: For every instance x /∈ L, there exists an auxiliary input aux such that for
all (CRS, τ) $← TrapGen(1λ, α, aux), we have that BadChallenge(τ, CRS, α, a) = f(CRS, x, a).

We argue that the OR composition of [CDS94] applied on a SID trapdoor sigma-protocol and
an ID trapdoor sigma-protocol yields a new SID for the OR relation. More formally, assuming
the existence of an ID trapdoor sigma-protocol ΣL0 = (GenL0 ,PL0 ,VL0) for NP language L0

and a SID trapdoor sigma-protocol ΣL1 = (GenL1 ,PL1 ,VL1) for NP language L1 = {(α, β) | α ∈
S1∧β ∈ S2∧ϕ(α, β) = 1}, then the application of the compiler of [CDS94] on ΣL0 and ΣL1 will
yield a SID trapdoor sigma-protocol ΣL0∨L1 , such that the following lemma holds.

Lemma 3. ΣL0∨L1 is a semi-instance-dependant trapdoor sigma-protocol, and it is witness in-
distinguishable, for NP language L = {((α, x), β) | (α, x) ∈ S′

1∧β ∈ S′
2∧(ϕ(α, β) = 1∨x ∈ L0)},

where S′
1 = S1 × {0, 1}∗ and S′

2 = S2.

Proof. The proof is nearly identical to the proof for Lemma 2.

2.8 Correlation-intractable hash functions and FS transform

Here we recall the related definitions of Correlation-Intractable Hash Family (CIHF) from [CCH+19].

Definition 9 (Hash family). For a pair of efficiently computable functions (n(·),m(·)), a hash
family with input length n and output length m is a collection H = {hk : {0, 1}n(λ) → {0, 1}m(λ)

}λ∈N,k∈{0,1}s(λ) of keyed hash functions, along with a pair of PPT algorithms specified as follows:
(i) H.Gen(1λ) outputs a hash key k ∈ {0, 1}s(λ); (ii) H.H(k, x) computes the function hk(x).
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Definition 10 (Correlation intractability). For a given relation ensembleR = {Rλ ⊆ {0, 1}n(λ)×
{0, 1}m(λ)}, a hash family H = {hk : {0, 1}n(λ) → {0, 1}m(λ)}λ∈N,k∈{0,1}s(λ) is said to be R-
correlation intractable with security (σ, δ) if for every σ-size attacker A = {Aλ}:

Pr
[
(x, hk(x)) ∈ Rλ : k

$← H.Gen(1λ);x $← A(k)
]
= O(δ(λ)).

We say that H is R-correlation intractable if it is R-correlation intractable with security
(λc, λ−c) for all constants c > 1.

Definition 11 (Sparsity). For any relation ensemble R = {Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ)}λ, we
say that R is ρ(·)-sparse if for all λ ∈ N and for any x ∈ {0, 1}n(λ) it holds that (x, y) ∈ Rλ with
probability at most ρ(λ) over the choice of y $← {0, 1}m(λ). When ρ is a negligible function, we
say that R is sparse.

Efficiently Searchable Relations. In this work, we will need hash families to achieve corre-
lation intractability for relations R with a unique output y = f(x) associated to each input x,
and such that y = f(x) is an efficiently computable function of x.

Definition 12 (Unique output relation). We say that a relation R is a unique output relation
if for every input x, there exists at most one output y such that (x, y) ∈ R.

Definition 13 (Efficiently searchable relation). We say that a (necessarily unique-output) re-
lation ensemble R is searchable in (non-uniform) time t if there exists a function f = fR :
{0, 1}∗ → {0, 1}∗ computable in (non-uniform) time t such that for any input x, if (x, y) ∈ R
then y = f(x); that is, f(x) is the unique y such that (x, y) ∈ R, provided that such a y exists.
We say that R is efficiently searchable if it is searchable in time poly(n).

Programmability. The following property turns out to be very useful to prove the zero-
knowledge property of non-interactive proofs derived using correlation intractable hash families.

Definition 14 (1-universality). We say that a hash family H is 1-universal if for any λ ∈ N,
input x ∈ {0, 1}n(λ), and output y ∈ {0, 1}m(λ), we have Pr

[
hk(x) = y : k

$← H.Gen(1λ)
]
=

2−m(λ).
We say that a hash family H is programmable if it is 1-universal, and if there exists an efficient

sampling algorithm Samp(1λ, x, y) that samples from the conditional distribution k
$← H.Gen(1λ)|

hk(x) = y.

We recall the theorem from [CCH+19] that we use in our work:

Theorem 4 ([CCH+19]). Suppose that H is a hash family that is correlation-intractable for
all sub-exponentially sparse relations that are searchable in time T . Moreover, suppose that
Σ = (Gen,P,V,TrapGen,BadChallenge) is an instance-dependent trapdoor sigma-protocol with
2−λϵ soundness for some ϵ > 0, such that BadChallenge(τ, CRS, x, a) is computable in time T .
Then, H soundly instantiates the Fiat-Shamir heuristic for Σ.

2.8.1 A note on NIZK from ID trapdoor sigma-protocol.

Assuming the existence of an ID trapdoor sigma-protocol ΣL for NP language L, then the
application of Theorem 4 on ΣL will yield a sound NIZK protocol ΠL.

In our work, we also make use of the following lemmas. The application of Theorem 4 on
ΣL0∨L1 (from Lemma 2) will yield a NIZK protocol ΠL0∨L1 , such that the following lemma holds.
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Lemma 5. ΠL0∨L1 is sound and WI.

Proof. By Lemma 2, we know ΣL0∨L1 is an ID trapdoor sigma-protocol, and by applying The-
orem 4, we know ΠL0∨L1 is sound.

Also, by Lemma 2, we know ΣL0∨L1 is WI. By Claim 1 in [YZ06], we know that a non-
interactive ΣOR protocol from the OR-composition protocol is WI if the Random Oracle model
is replaced by any real hash functions.

Because H is a hash family, which is also a real hash function, ΠL0∨L1 is witness indistin-
guishable (WI). The proof is nearly identical to the proof in Theorem 5 of [CPSV16].

For Lemma 6, it states that FS transform with CIHF applied on any SID trapdoor sigma-
protocols will yield a semi-adaptive sound NIZK.

Lemma 6. Let ΣL be a semi-instance-dependant trapdoor sigma-protocol, for language L =
{(α, β) | α ∈ S1 ∧ β ∈ S2 ∧ ϕ(α, β) = 1}. Then, NIZK ΠL obtained by applying FS transform
with a CIHF H on ΣL, is semi-adaptive sound, for language L.

Proof. This proof is similar to Canetti et al. ’s proofs for Theorem 4. Assuming ΠL is not
semi-adaptive sound. It means there exists a PPT algorithm A, s.t.:

Prα

[
(α, β) /∈ L ∧ VL(CRS, (α, β), π) = 1 | α ∈ S1 ∧ β ∈ S2;

CRS
$← Setup(1|(α,β)|, 1λ); (π, β)

$← P⋆(CRS, α)

]
≥ δ(λ).

Then we can construct an adversary ACI to break CI of H for relation Rτ,CRS,α, where α ∈ S1,
The relation Rτ,CRS,α is as follows:

Rτ,CRS,α = {(a, c) : c = BadChallengeL(τ, CRS, α, a)}

Where (CRS, τ)
$← TrapGenL(1

λ, α, aux).
The adversary ACI is as follows:

ACI(k, CRS, α) :

(π, β)← A((CRS, k), α)
parsing π as (a, z)

return a

Now we have the following observation:

• A works correctly. We observe that the input CRS to ACI is from TrapGen, but A requires
the input CRS from Gen. If A’s behavior is different, we can use it to break the CRS
Indistinguishability of ΣL, and we will demonstrate it through the following hybrid game.
We denote the output of A in Hi with outHi , and we want to prove for any PPT algorithm
D: ∣∣∣∣Pr[D(outH0) = 1

]
− Pr

[
D(outH1) = 1

]∣∣∣∣ ≤ ν(λ)

We note that the outH0 corresponds to the output of A where CRS generated by Gen is
used, and the outH1 corresponds to the output of A where CRS generated by TrapGen is
used. Then the hybrids are:
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– H0:

CRS
$← Gen(1λ)

k
$← H.Gen(1λ)

return the output of A((CRS, k), α)

– H1:

(CRS, τ)
$← TrapGen(1λ, α, aux)

k
$← H.Gen(1λ)

return the output of A((CRS, k), α)

If A’s behaviors are different, then we can construct an adversary ACRS to break the CRS
Indistinguishability of ΣL through the following reduction:

– ACRS queries the challenger of the CRS Indistinguishability of ΣL, that sends back
CRSL

– ACRS samples the hash key k, and α

– ACRS sends ((CRS, k), α) to A, and outputs the output of A

We now observe that if the challenger uses Gen, we are in H0, otherwise, we are in H1. It
implies H0 ≈ H1. Therefore, A works correctly.

• Output of A make VL accept with non-negligible probability, and it means that we find
a valid a when (α, β) /∈ L. Because ΣL has 2−λϵ soundness, Rτ,CRS,α is sub-exponential
sparse. Besides, BadChallengeL is an efficient algorithm, by Definition 4. Therefore, it
contradicts the assumption of H

2.8.2 The existence of the SID trapdoor sigma-protocols.

In [CPV20] the authors observe that it is possible to extract the unique bad-challenge for well-
known Chaum-Pedersen sigma-protocols [CP93] for DH tuples that we denote with ΣDH (we
recall it in Figure 2, where CRS = ∅).

In particular, the authors show how to extract the bad-challenge of the 1-bit challenge version
of the sigma-protocol ΣDH for DH tuples. We show that the parallel repetition version Σt

DH is a
SID trapdoor sigma-protocol for LDH = {(g, h,X, Y ) | (g, h) ∈ S1∧(X,Y ) ∈ S2∧ϕ(g, h,X, Y ) =
1}, where S1 = {(g, gx) ∈ G×G | x ∈ Zp}, S2 = {(h, hy) ∈ G×G | y ∈ Zp}, and ϕ(g, h,X, Y ) = 1
if and only if ∃w ∈ Zp : X = gw ∧ Y = hw. Formally:

Theorem 7. Let Σt
DH be the parallel repetition version of ΣDH, with the number of repetition t.

Then, Σt
DH is a semi-instance-dependant trapdoor sigma-protocol, for LDH.

Proof. Because we know ΣDH is a sigma-protocol for LDH = {(g, h,X, Y ) | (g, h) ∈ S1∧(X,Y ) ∈
S2∧ϕ(g, h,X, Y ) = 1}, where S1 = {(g, gx) ∈ G×G | x ∈ Zp}, S2 = {(h, hy) ∈ G×G | y ∈ Zp},
and ϕ(g, h,X, Y ) = 1 if and only if ∃w ∈ Zp : X = gw ∧ Y = hw, by applying Lemma 1 in
[Dam10], we have the following claim:

Claim 1. Σt
DH is a sigma-protocol.
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Prover(CRS, T, w) Verifier(CRS, T )

r
$← Zp, a1 ← gr, a2 ← hr

a1, a2

c
$← {0, 1}

c

z = r + cw

z

Verifier accepts if all the
following conditions hold:
gz = a1 ·Xc

hz = a2 · Y c

Figure 2: Sigma-protocol ΣDH for LDH

By the claim above, we know Σt
DH is a sigma-protocol, so we can only prove the properties

for the SID trapdoor sigma-protocol.
The TrapGenDH algorithm takes the following inputs:

• 1λ: The unary representation of the security parameter.

• α: (g, h) from the tuple T = (g, h,X, Y )

• aux: x from gx = h

and TrapGenDH outputs CRS = ∅ and τ = aux.
Before we describe the construction of BadChallengeDH, here we describe how to extract the

unique 1-bit bad-challenge from ΣDH, by using PPT Euni(τ, a1, a2) algorithm, where τ is the
trapdoor and a1, a2 are the first round message of ΣDH. It works as follows:

Euni(τ, a1, a2) :

If aτ1 = a2 return 0

If aτ1 ̸= a2 return 1

Then we denote the transcript for i-th repetition with (ai1, a
i
2, ci, zi). By having the output

of TrapGenDH, and the Euni algorithm, we have the following BadChallengeDH algorithm:

BadChallengeDH(τ, CRS, α, a) :

c1 = Euni(τ, a
1
1, a

1
2)

...

ct = Euni(τ, a
t
1, a

t
2)

c = (c1||c2||...||ct)
return c
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where a = ((a11, a
1
2), ..., (a

t
1, a

t
2)) is the first round message of Σt

DH.
By the construction of Euni and BadChallengeDH, we know BadChallengeDH is a PPT algo-

rithm. Then we prove the CRS Indistinguishability and Correctness:

• CRS Indistinguishability:

Because CRS for Σt
DH is an empty string, the honestly generated CRS is computationally

indistinguishable from CRS computed by TrapGenDH

• Correctness: Completeness of Euni is already proven in paper [CPV20]. We show details
with mathematical calculations here.

Assuming we have a non-DH tuple T = (g, h,X = gw1 , Y = hw2), where gx = h and
w1 ̸= w2. Then we need to prove for any choice of first round message a of Σt

DH, there is
at most 1 challenge c, to make transcript (a, c, z) be accepted.

Considering ci (the i-th bit of challenge), and we have τ = x:

– If (ai1)τ = ai2, proving that no valid third round message z for ci = 1:{
gz = ai1X

hz = ai2Y

→

{
g(z−w1) = ai1
h(z−w2) = ai2

→

{
g(z−w1) = ai1
gx(z−w2) = (ai1)

x

→

{
g(z−w1) = ai1
gx(z−w2) = gx(z−w1)

→

{
g(z−w1) = ai1
x(w1 − w2) = 0

∗ We know x ̸= 0 and w1 ̸= w2

∗ It is impossible to have a valid z when ci = 1. Therefore, no accepting transcripts.

– When (ai1)
τ = ai2, and ci = 0: {

gz = ai1
hz = ai2

→

{
gz = ai1
gxz = (ai1)

x

→gz = ai1

∗ Because a is fixed, so ai1 is fixed, and there is at most 1 z to make the equation
hold.
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– Then when (ai1)
τ ̸= ai2, if challenge c = 1, we have:{

gz = ai1X

hz = ai2Y

→

{
gz = ai1X

gxz = ai2Y

→

{
gz = ai1X

gxz = ai2Y

→

{
gz = ai1X

(ai1X)x = ai2Y

→

{
gz = ai1X

(ai1)
x = ai2h

w2−w1

∗ For given (ai1, a
i
2), this equation is possible to hold, which means an accepting

transcript may exist.

– Then when (ai1)
τ ̸= ai2, if challenge c = 0, we have:{

gz = ai1
hz = ai2

→

{
gz = ai1
(ai1)

x = ai2

∗ Because we know (ai1)
x ̸= ai2

∗ There is no accepting transcript.

By above illustrations, we know the algorithm Euni(τ, a
i
1, a

i
2) can output ci, which is the

unique bad-challenge for (ai1, a
i
2). The Euni algorithm is complete.

Then, assuming the Correctness does not hold, which means the BadChallengeDH does not
output the unique bad-challenge. By the construction of Σt

DH, we know that, if the output
is not the unique bad-challenge, then at least the transcript for one of the repetitions is not
accepted. Formally, we denote the transcripts that are not accepted as πi = ((ai1, a

i
2), ci, zi).

However, if πi is not accepted, it means Euni does not find the unique bad-challenge for
(ai1, a

i
2), which contradicts the completeness of Euni.

One of the main tools we rely on is a SID trapdoor sigma-protocol for the language of the
non-DH tuple. In particular, we need to construct a protocol ΣNDH for the language LNDH =
{(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧ ϕ(g, h,X, Y ) = 1}, where S1 = {(g, gx) ∈ G×G | x ∈
Zp}, S2 = {(h, hy) ∈ G × G | y ∈ Zp}, and ϕ(g, h,X, Y ) = 1 if and only if ∃w,w′ ∈ Zp : X =
gw ∧ Y = hw

′ ∧ w ̸= w′. At a high level, our protocol works as follows. The prover computes a
commitment of a random value b ∈ {0, 1}τ . The commitment is equivocal when T ∈ LNDH and
it is binding (and extractable) otherwise. The prover sends the commitment of b to the verifier,
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who replies with a uniformly random c ∈ {0, 1}. In the third round, the prover will equivocate
the commitment to an opening of c, and send the opening information to the verifier. We recall
that the honest prover can always equivocate the commitment since T ∈ LNDH.

This protocol is sound since when T /∈ LNDH, the probability of the prover providing a valid
opening for c is 2−τ . To extract the bad-challenge, we will rely on the fact that the commitment
is extractable when T /∈ LNDH. In particular, we prove that it is possible to extract the bad-
challenge for a proof computed with respect to a tuple T = (g, h,X, Y ), having access only to
the discrete logarithm of h. This is the reason why our protocol is only semi-adaptive and not
fully adaptive (i.e., if the entire tuple was chosen by the adversary then the extractor would
have no access to the discrete logarithm of h).

One nice feature of the protocol we have described is that for a challenge of size τ = log λ,
where λ is the security parameter, prover and verifier need to perform only 4 exponentiations
each, and we give the efficiency analysis later. We see ΣNDH as a result of independent interest.
Previous to our work, it was already known how to construct a trapdoor sigma protocol with
similar performance, but ours is the first protocol to have such performance while being a
SID trapdoor sigma-protocol. In particular, we note that in [LNPY22], the authors give a
construction of trapdoor sigma-protocol for the language of DH (hence, also for the language of
non-DH) tuples with similar performance as ours. Unfortunately, it is not clear how to prove
that the protocol proposed in [LNPY22] is also a SID trapdoor sigma-protocols.

We propose the formal description of our protocol ΣNDH = (GenNDH,PNDH,VNDH) in Figure
3, where the CRS = ∅.

Prover(CRS, T, w,w′) Verifier(CRS, T )

r1, r2, b
$← Zp

a1 ← Y r1hr2−b, a2 ← Xr1gr2

a1, a2

c
$← Zp

c

r̃1 ← r1 −
c− b

w − w′ ,

r̃2 ← r2 +
w(c− b)

w − w′

r̃1, r̃2

Verifier accepts if all the
following conditions hold:

a1 = Y r̃1hr̃2−c

a2 = X r̃1gr̃2

Figure 3: The protocol for LNDH

Lemma 8. ΣNDH is a sigma-protocol for language LNDH.

Proof. Completeness:
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• For new r̃1, r̃2: {
Y r̃1hr̃2−c = Y r1hr2−b

X r̃1gr̃2 = Xr1gr2

→

{
hw

′r̃1+r̃2−c = hw
′r1+r2−b

gwr̃1+r̃2 = gwr1+r2

→

{
w′r̃1 + r̃2 − c = w′r1 + r2 − b

wr̃1 + r̃2 = wr1 + r2

→

{
r̃1 = r1 +

r2−r̃2
w

w′(r1 +
r2−r̃2

w ) + r̃2 = w′r1 + r2 + c− b

Then we have:

w′(r1 +
r2 − r̃2

w
) + r̃2 = w′r1 + r2 + c− b

w′r1 +
w′

w
r2 −

w′

w
r̃2 + r̃2 = w′r1 + r2 + c− b

(1− w′

w
)r̃2 = (1− w′

w
)r2 + c− b

r̃2 = r2 +
w(c− b)

w − w′

Therefore:

{
r̃1 = r1 +

r2−r̃2
w

r̃2 = r2 +
w(c−b)
w−w′

→

r̃1 = r1 +
r2−(r2+

w(c−b)

w−w′ )

w

r̃2 = r2 +
w(c−b)
w−w′

→

{
r̃1 = r1 − c−b

w−w′

r̃2 = r2 +
w(c−b)
w−w′

Optimal soundness: Assume by contradiction that we have 2 accepting transcripts τα =
((a1, a2), cα, (r̃

α
1 , r̃

α
2 )), and τβ = ((a1, a2), cβ, (r̃

β
1 , r̃

β
2 )), where cα ̸= cβ , and the tuple T /∈ LNDH.

We do not know the relationship between (r̃α1 , r̃
α
2 ) and (r̃β1 , r̃

β
2 ) Then we have the following
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equations: {
Y r̃α1 hr̃

α
2 −cα = a1 = Y r̃β1 hr̃

β
2−cβ

X r̃α1 gr̃
α
2 = a2 = X r̃β1 gr̃

β
2

→

 (X r̃α1 gr̃
α
2 )x

hcα = a1 =
(X r̃

β
1 gr̃

β
2 )x

h
cβ

X r̃α1 gr̃
α
2 = a2 = X r̃β1 gr̃

β
2

→

{
ax2
hcα = a1 =

ax2
h
cβ

X r̃α1 gr̃
α
2 = a2 = X r̃β1 gr̃

β
2

By the above equations, we know ax2 = ax2 , so cα = cβ = f(CRS, T, (a1, a2))
Special HVZK:

• The simulator works as follows:

Sim(T, c) :

r̃1, r̃2
$← Zp

a1 ← Y r̃1hr̃2−c, a2 ← X r̃1gr̃2

aSim ← (a1, a2), zSim ← (r̃1, r̃2)

return (aSim, zSim)

• Let τReal = (aReal, cReal, zReal) be the real execution transcript. We note that (aReal, zReal)
is indistinguishable from (aSim, zSim), because:

– In aReal, (b, r1, r2) are uniform randomly sampled, and in aSim, (c, r̃1, r̃2) are uniform
randomly sampled, so Y r1 is indistinguishable from Y r̃1 , and hr2−b is indistinguishable
from hr̃2−c. Then a1 in aReal is indistinguishable from a1 in aSim.

– Similar proofs can be done for a2, so aReal is indistinguishable from aSim

– for r̃1 in zReal, because r1, c, b are uniform randomly sampled, c − b is uniformly
random. (w − w′) is constant for every execution, so c−b

w−w′ is uniformly random.
Therefore r̃1 is uniformly random, and it is indistinguishable from r̃1 from aSim.

– Similar proofs can be done for r̃2, so zReal is indistinguishable from zSim

Lemma 9. ΣNDH has a PPT extractor Extuni(α, τ, a), where α is (g, h) from the tuple T =
(g, h,X, Y ), τ is the trapdoor, a is the first round message, s.t. ∀T /∈ LNDH, if the unique
bad-challenge is c, Extuni can extract hc (which is also unique).

Proof. Extuni, on input α = (g, h), τ = x, such that gx = h, a = (a1, a2) (the first round of the
sigma-protocol ΣNDH), returns hc ← aτ2

a1
, where c is the bad-challenge.

Extuni outputs the correct results due to the following observation. If we have the first round
message a = (a1, a2), and T /∈ LNDH, due to the optimal soundness property, we know that
there is at most one challenge c that makes the transcript (a, c, z) accepting. Then because
the transcript is accepting it must be that a1 = Y r̃1hr̃2−c and a2 = X r̃1gr̃2 . When T /∈ LNDH,
aτ2
a1

= Xxr̃1gxr̃2

Y r̃1hr̃2
hc = hc. Because g is the generator in the cyclic group G, gc and c are 1 to 1

mapping, hc = gxc and x is fixed for every execution. It means hc is also unique.
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Claim 2. If the number of all the possible challenges c is bounded to poly(λ), then by using brute
force, computing c from hc is efficient (polynomial time in λ).

Lemma 10. If the challenge c of the protocol ΣNDH satisfies that c ∈ {0, 1}K log2(λ
ϵ) for ϵ > 0

and for integer K ≥ 1, then for t = Ω( λϵ

K log2(λ
ϵ)), the parallel repetition version Σt

NDH is a semi-
instance-dependant trapdoor sigma-protocol, for LNDH = {(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈
S2∧ϕ(g, h,X, Y ) = 1}, where S1 = {(g, gx) ∈ G×G | x ∈ Zp}, S2 = {(h, hy) ∈ G×G | y ∈ Zp},
and ϕ(g, h,X, Y ) = 1 if and only if ∃w,w′ ∈ Zp : X = gw ∧ Y = hw

′ ∧ w ̸= w′.

Proof. By applying Lemma 1 in [Dam10], we know Σt
NDH is a sigma-protocol, and we only focus

on proving the property for the SID trapdoor sigma-protocol.
The corresponding TrapGenNDH algorithm has the following inputs:

• 1λ: The unary representation of the security parameter

• α: (g, h) from the tuple (g, h,X, Y )

• aux: x from gx = h

Then the outputs of TrapGenNDH is CRS = ∅ and τ = aux.
We denote the transcript of i-th repetition as (ai1, a

i
2, ci, zi). The construction of the bad-

challenge extractor BadChallengeNDH(τ, CRS, α, a) is:

BadChallengeNDH(τ, CRS, α, a) :

hc1 ← Extuni(α, τ, (a
1
1, a

1
2))

Brute force search on hc1 to get c1

...

hct ← Extuni(α, τ, (a
t
1, a

t
2))

Brute force search on hct to get ct

c← (c1||c2||...||ct)
return c

where a = ((a11, a
1
2), ..., (a

t
1, a

t
2)) is the first round message of Σt

NDH. By Lemma 9 and the claim
that brute force is efficient for small search space, we know BadChallengeNDH is a PPT algorithm.

Then we prove the CRS Indistinguishability and Correctness:

• CRS Indistinguishability:

Because the Σt
NDH’s CRS is an empty set, the honestly generated CRS is computationally

indistinguishable from CRS computed by TrapGenNDH

• Correctness: Assuming the Correctness does not hold, it means the transcript of one of
the repetitions is not accepted. It contradicts Lemma 9.

2.8.3 Efficiency analysis of ΣNDH

Here we compare the efficiency of our ΠNDH with the NIZK protocol obtained by applying the
FS transform using a CIHF to the well-known protocol ΣDH = (GenDH,PDH,VDH) used to prove
that a tuple is non-DH tuple. We recall how such a protocol works in Figure 4.

Because no expensive operations are introduced in this conversion, the efficiency is the same
as ΣDH. Also, the FS transform does not introduce any expensive operations.

Hense, we compare the efficiency of Σt
NDH with Σt

DH from Theorem 7:
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Prover(CRS, T, w,w′) Verifier(CRS, T )

Y ′ ← hw

R
$← Zp

a← PDH(CRS, (g, h,

X, Y ′);R)

a

c
$← Zp

c

z ← PDH(CRS, (g, h,

X, Y ′), w, a, c;R)

z, Y ′

Accepts if:
V(CRS, (g, h,X, Y ′), a, c, z) = 1

Y ̸= Y ′

Figure 4: The protocol for non-DH from DH

• Considering the security parameter λ = 2048, and ϵ = 10
11 . Then p is 1024 bits.

• ΠDH: It requires 1024 repetitions, and in each repetition, the prover needs to compute 2
exponentiations, and the verifier needs to compute 4 exponentiations. In total, it requires
2048 exponentiations for the prover and 4096 exponentiations for the verifier.

• ΠNDH: It requires 1024
K log2(1024)

= 103
K repetitions.

– If we make K = 10, then the required repetition is 11. In each repetition, the prover
needs to compute 4 exponentiations and the verifier needs to compute 4 exponentia-
tions. In total, the prover needs to compute 44 exponentiations and the verifier needs
to compute 44 exponentiations.

– We also want to emphasize that, reducing the number of repetition only influence the
reduction of soundness. In the honest execution, neither prover nor verifier does the
brute force search computation to get c from hc.

Also, we can use following formula to get lower bound of λ, s.t. ΠNDH more efficient than
ΠDH, and we consider the total number of exponentiations:

6λϵ ≥ 8
λϵ

Kϵ log2(λ)

log2(λ) ≥
4

3Kϵ
λ ≥ 2

4
3Kϵ
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3 NIZK with adaptive multi-theorem ZK

In this section, we show how to obtain our adaptive multi-theorem ZK and sound NIZK pro-
tocol for an NP language L, assuming that we have an ID trapdoor sigma-protocol ΣL =
(GenL,PL,VL) for L. For our construction we make use of the following tools:

• A hash family H that is correlation-intractable for all sub-exponentially sparse relations
that are searchable in time T , which is also programmable.

• The SID trapdoor sigma-protocol ΣOR = (GenOR,POR,VOR) of Section 2.7 for NP language
LOR = L∨LDH = {((g, h, x), (X,Y )) | (g, h, x) ∈ S1∧(X,Y ) ∈ S2∧(ϕ(g, h,X, Y ) = 1∨x ∈
L)}, where S1 = {(g, gα, x) ∈ G×G×{0, 1}⋆ | α ∈ Zp}, S2 = {(h, hβ) ∈ G×G | β ∈ Zp},
and ϕ(g, h,X, Y ) = 1 if and only if ∃w ∈ Zp : X = gw ∧ Y = hw. The protocol ΣOR has
2−λϵ soundness for ϵ > 0. We note that this protocol can be obtained starting from ΣL

and any SID trapdoor sigma protocol ΣDH for LDH. We provide an example (Σt
DH from

Theorem 7) to be used as ΣDH.

• A SID trapdoor sigma-protocol ΣNDH = (GenNDH,PNDH,VNDH) for LNDH. ΣNDH need to
have 2−λϵ soundness for ϵ > 0.

We denote the obtained NIZK protocol with Π = (Setup,P,V). The Setup algorithm works
as follows:

• CRSL
$← GenL(1

λ), CRSDH ← CRSNDH ← ∅, g
$← G.Gen(1λ), x

$← Zp, h ← gx, k
$←

H.Gen(1λ).

• output (CRSL, CRSDH, CRSNDH, (g, h), k)

We formally describe the interaction between the prover and the verifier of Π in Figure 5.
Before proving the security of Π, we need to prove that the FS transform applied on ΣOR

yields a WI semi-adaptive sound non-interactive protocol. This comes immediately from Lemma
3, Lemma 5, and Lemma 6. Hence, if we denote with ΠOR the non-interactive protocol resulting
from the application of the FS transform on ΣOR we can claim the following.

Theorem 11. ΠOR is WI semi-adaptive sound for LOR.

We are now ready to prove our main lemmas.

Lemma 12. Let Π be the protocol of Figure 5, then Π is sound.

Proof. Assuming Π is not sound, then there exists a PPT algorithm A, s.t.:

Prx

[
x /∈ L ∧ V(CRS, x, π) = 1 | CRS $← Setup(1|x|, 1λ);π

$← A(CRS, x)
]
≥ δ(λ).

To make V accept when x /∈ L, there are 2 possibilities:

• When T is a DH tuple, VNDH(CRSNDH, T, aNDH, cNDH, zNDH) = 1, and VOR((CRSL, CRSDH),
(x, T ), a, c, z) = 1. If VNDH accepts when T /∈ LNDH then it means that A can find
(aNDH, cNDH, zNDH) to make (CRSNDH, T, aNDH, cNDH, zNDH) accepting with non-negligible
probability, and it directly contradicts to the semi-adaptive soundness of ΠNDH. Formally,
we can construct the following adversary A′:
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Prover(CRS, x, w) Verifier(CRS, x)

Local Pre-processing:

α, β
$← Zp

T ← (g, h, gα, hβ)

RNDH
$← Zp

aNDH ← PNDH(CRSNDH, T ;RNDH)

cNDH ← H.H(k, aNDH)

zNDH ← PNDH(CRSNDH, T, (α, β),

aNDH, cNDH;RNDH)

Online: Upon receiving(x,w), s.t.
(x,w) ∈ RL, then do the following:

ROR
$← {0, 1}λ

a← POR((CRSL, CRSDH), (x, T ),

w;ROR)

c← H.H(k, a)
z ← POR((CRSL, CRSDH), (x, T ),

w, a, c;ROR)

aNDH, zNDH, T, a, z

cNDH ← H.H(k, aNDH)

c← H.H(k, a)
Verifier accepts if all the
following conditions hold:
VNDH(CRSNDH, T, aNDH,

cNDH, zNDH) = 1

VOR((CRSL, CRSDH),

(x, T ), a, c, z) = 1

Figure 5: Our NIZK protocol Π

A′(CRSNDH, k, α) :

CRSL
$← GenL(1

λ), CRSDH ← ∅, parsing α as (g, h), w
$← Zp, β ← (gw, hw),

x← (g, h, β), CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

waiting for receiving all π from A(CRS, x)
return all (π, β)

Now we have the following observation: 1) A works correctly. We know CRSL
$← GenL(1

λ),
CRSDH ← ∅. Also, the hash key k, CRSNDH and (g, h) are provided by the challenger, so
we can conclude that CRS is the same as CRS $← Setup(1|x|, 1λ). 2) The output of A makes
V accept with non-negligible probability, and it means that we find an accepting proof π
when (α, β) /∈ LNDH. This contradicts Lemma 6.
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• When T is a non-DH tuple, VNDH(CRS, T, aNDH, cNDH, zNDH) = 1, and VOR(CRS, (x, T ),
a, c, z) = 1. Then VNDH accepts because T ∈ LNDH. However, if VOR accepts when x /∈ L∧
T /∈ LDH it means that the adversary A is able to find (a, c, z) to make (CRS, (x, T ), a, c, z)
accepting with non-negligible probability, and it directly contradicts the semi-adaptive
soundness of ΠOR. The reduction is identical to the reduction for ΠNDH above, and it
contradicts Theorem 11.

We note that in this proof, the security only relies on the soundness of ΠNDH and ΠOR, where
their soundness relies on the CI property of CIHF. We do not use the DDH assumption here.

Lemma 13. Let Π be the protocol of Figure 5, then Π is adaptive multi-theorem zero-knowledge.

Proof. We have the following simulator Sim = (Sim0,Sim1), by having SHVZK simulator SimNDH

from ΣNDH:

Sim(1|x|, 1λ) :

CRSL
$← Gen(1λ), CRSDH ← CRSNDH ← ∅, g

$← G.Gen(1λ), x, wDH
$← Zp, cNDH

$← {0, 1}λ

h← gx, TDH ← (g, h, gwDH , hwDH), (aNDH, zNDH)← SimNDH(TDH, cNDH)

k
$← Samp(1λ, aNDH, cNDH), CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

τSim ← (TDH, wDH, aNDH, zNDH)

return CRS, τSim

Sim(CRS, τSim, x) :

ROR
$← {0, 1}λ, a← POR((CRSL, CRSDH), (x, TDH), wDH;ROR), c← H.H(k, a)

z ← POR((CRSL, CRSDH), (x, TDH), wDH, a, c;ROR)

return (aNDH, zNDH, TDH, a, z)

We prove this lemma through hybrid experiments. We denote the output of adversary in the
hybrid Hi with outHi , where the index i ∈ {0, 1, 2, 3}. We want to show for k = {0, 1, 2}, for
any PPT algorithm D: |Pr

[
D(outHk) = 1

]
− Pr

[
D(outHk+1) = 1

]
| ≤ ν(λ). We note that outH0

corresponds to the output of the adversary in the real game, and outH4 corresponds to the output
of the adversary in the simulated experiments. We highlight the part that has differences for
better understanding:
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H0 :

stA ← ∅, CRSL
$← GenL(1

λ), CRSNDH ← CRSDH ← ∅, g
$← G.Gen(1λ)

x, α, β,RNDH
$← Zp, h← gx, k

$← H.Gen(1λ)
CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

T ← (g, h, gα, hβ)

aNDH ← PNDH(CRSNDH, T ;RNDH), cNDH ← H.H(k, aNDH)

zNDH ← PNDH(CRSNDH, T, (α, β), aNDH, cNDH;RNDH);

repeat

(stA, x, w)
$← A(1λ, CRS, stA)

if (x,w) ∈ RL then ROR
$← {0, 1}λ, a← POR((CRSL, CRSDH), (x, T ), w;ROR)

c← H.H(k, a), z ← POR((CRSL, CRSDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅

(stA, cont, d)
$← A(1λ, stA, π)

until cont = false

return d = 0
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H1 : stA ← ∅, CRSL
$← GenL(1

λ), CRSNDH ← CRSDH ← ∅, g
$← G.Gen(1λ)

x, α, β,RNDH
$← Zp, cNDH

$← {0, 1}λ, h← gx, T ← (g, h, gα, hβ)

aNDH ← PNDH(CRSNDH, T ;RNDH), k ← Samp(1λ, aNDH, cNDH)

CRS← (CRSL, CRSDH, CRSNDH, (g, h), k), zNDH ← PNDH(CRSNDH, T, (α, β), aNDH, cNDH;RNDH)

repeat

(stA, x, w)
$← A(1λ, CRS, stA)

if (x,w) ∈ RL then ROR
$← {0, 1}λ, a← POR((CRSL, CRSDH), (x, T ), w;ROR), c← H.H(k, a)

z ← POR((CRSL, CRSDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅

(stA, cont, d)
$← A(1λ, stA, π)

until cont = false

return d = 0

H2 : stA ← ∅, CRSL
$← GenL(1

λ), CRSNDH ← CRSDH ← ∅, g
$← G.Gen(1λ)

x, α, β,RNDH
$← Zp, cNDH

$← {0, 1}λ, h← gx, T ← (g, h, gα, hβ)

(aNDH, zNDH)← SimNDH(T, cNDH) , k ← Samp(1λ, aNDH, cNDH)

CRS← (CRSL, CRSDH, CRSNDH, (g, h), k);

repeat

(stA, x, w)
$← A(1λ, CRS, stA)

if (x,w) ∈ RL then ROR
$← {0, 1}λ, a← POR((CRSL, CRSDH), (x, T ), w;ROR), c← H.H(k, a)

z ← POR((CRSL, CRSDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅

(stA, cont, d)
$← A(1λ, stA, π)

until cont = false

return d = 0

H3 : stA ← ∅, CRSL
$← GenL(1

λ), CRSNDH ← CRSDH ← ∅, g
$← G.Gen(1λ)

x,wDH, RNDH
$← Zp, cNDH

$← {0, 1}λ, h← gx, TDH ← (g, h, gwDH , hwDH)

(aNDH, zNDH)← SimNDH(TDH, cNDH), k ← Samp(1λ, aNDH, cNDH)

CRS← (CRSL, CRSDH, CRSNDH, (g, h), k);

repeat

(stA, x, w)
$← A(1λ, CRS, stA)

if (x,w) ∈ RL then ROR
$← {0, 1}λ, a← POR((CRSL, CRSDH), (x, TDH), w;ROR)

c← H.H(k, a), z ← POR((CRSL, CRSDH), (x, TDH), w, a, c;ROR)

π ← (aNDH, zNDH, TDH, a, z)

else π ← ∅

(stA, cont, d)
$← A(1λ, stA, π)

until cont = false

return d = 0
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H4 : stA ← ∅, CRSL
$← GenL(1

λ), CRSNDH ← CRSDH ← ∅, g
$← G.Gen(1λ)

x,wDH, RNDH
$← Zp, cNDH

$← {0, 1}λ, h← gx, TDH ← (g, h, gwDH , hwDH)

(aNDH, zNDH)← SimNDH(TDH, cNDH), k ← Samp(1λ, aNDH, cNDH)

CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

repeat

(stA, x, w)
$← A(1λ, CRS, stA)

if (x,w) ∈ RL then ROR
$← {0, 1}λ, a← POR((CRSL, CRSDH), (x, TDH), wDH;ROR)

c← H.H(k, a), z ← POR((CRSL, CRSDH), (x, TDH), wDH, a, c;ROR)

π ← (aNDH, zNDH, TDH, a, z)

else π ← ∅

(stA, cont, d)
$← A(1λ, stA, π)

until cont = false

return d = 0

Then we have the following reductions:

• Reduction 1: Assuming there exists a PPT algorithm A that
∣∣∣∣Pr[A(outH0) = 1

]
−

Pr
[
A(outH1) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can break the

programmability of CIHF H (Definition 14) through the following reduction:

– A′ queries the challenger of the programmability of H that sends back the hash key
k

– A′ samples CRSL by using GenL, samples CRSDH, CRSNDH, (g, h) correspondingly, and
computes CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

– A′ sends CRS to A to get (x,w)

– A′ preparing π by using (x,w) and sends it to A
– A′ outputs the output of A

We now observe that if the challenger uses H.Gen to sample k, we are in H0, otherwise,
we are in H1. This implies H0 ≈ H1.

• Reduction 2: Assuming there exists a PPT algorithm A that
∣∣∣∣Pr[A(outH1) = 1

]
−

Pr
[
A(outH2) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can break the

SHVZK of ΣNDH through the following reduction:

– A′ queries the challenger of the SHVZK of ΣNDH that sends back the proof aNDH, zNDH

– A′ samples CRSL by using GenL, samples k by using Samp, samples CRSDH, CRSNDH,
(g, h) correspondingly, and computes CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

– A′ sends CRS to A to get (x,w)

– A′ preparing πOR by using (x,w) and does π ← (πOR, T, aNDH, zNDH)

– A′ sends π to A, and outputs the output of A
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We now observe that if the challenger provides a real transcript, we are in H1, otherwise,
we are in H2. This implies H1 ≈ H2.

• Reduction 3: Assuming there exists a PPT algorithm A that
∣∣∣∣Pr[A(outH2) = 1

]
−

Pr
[
A(outH3) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can break the

DDH hardness assumption (Definition 1) through the following reduction:

– A′ queries the challenger of the DDH hardness assumption that sends back the tuple
T = (g, h,X, Y )

– A′ gets (g, h) from T , and uses T to generate (aNDH, zNDH) from using SimNDH

– A′ samples CRSL by using GenL, samples k by using Samp, samples CRSDH, CRSNDH

correspondingly, and computes CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

– A′ sends CRS to A to get (x,w)

– A′ preparing πOR by using (x,w) and does π ← (πOR, T, aNDH, zNDH)

– A′ sends π to A, and outputs the output of A

We now observe that if the challenger provides a non-DH tuple, we are in H2, otherwise,
we are in H3. This implies H2 ≈ H3.

• Reduction 4: Assuming there exists a PPT algorithm A that
∣∣∣∣Pr[A(outH3) = 1

]
−

Pr
[
A(outH4) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can break the

WI of ΠOR through the following reduction:

– A′ queries the challenger of the WI of ΠOR that sends back x, πOR = (aOR, zOR)

– A′ samples CRSL by using GenL, samples k by using Samp, samples CRSDH, CRSNDH,
(g, h) correspondingly, and computes CRS← (CRSL, CRSDH, CRSNDH, (g, h), k)

– A′ sends CRS to A to get (x,w)

– A′ use πOR from the challenger, and does π ← (πOR, TDH, aNDH, zNDH)

– A′ sends π to A, and outputs the output of A

We now observe that if the challenger provide ΠOR by using w, where (x,w) ∈ RL, we are
in H3, otherwise we are in H4. This implies H3 ≈ H4.

We can concludes H0 ≈ H1 ≈ H2 ≈ H3 ≈ H4. Therefore, the simulated transcript from
Sim is computationally indistinguishable from a transcript in the real game.

3.1 On the adaptive soundness of our protocol.

In the previous section, we showed that Π is (non-adaptive) sound and adaptive multi-theorem
ZK. In this section, we argue that it is possible to slightly modify Π and get a protocol that
enjoys the same properties as Π, but in addition, it is also adaptive-sound.

In [CPV20] the authors show that if the input of the hash function used in the FS transform
contains also the theorem (and not just the first round of the underlying protocol), and moreover
the trapdoor sigma-protocol is instance-independent then the resulting NIZK is adaptive sound.
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As an additional contribution, the authors of [CPV20] show that any sigma-protocol can be
turned into an instance-independent trapdoor sigma-protocol (this construction has an overhead,
that requires computing two ciphertexts for each bit of the challenge of the starting trapdoor
sigma-protocol).

Hence, using the results of [CPV20], we can construct an instance-independent trapdoor
sigma-protocol for the language L ∨ LDH. If we apply the FS transform using as the input of
the hash-function also x then the final NIZK protocol we obtain is both adaptive sound and
adaptive multi-theorem ZK.
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