
FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM
Gilad Asharov

Gilad.Asharov@biu.ac.il
Bar-Ilan University
Ramat-Gan, Israel

Ilan Komargodski
ilank@cs.huji.ac.il

Hebrew University and NTT Research
Jerusalem, Israel

Yehuda Michelson
Yehuda.Michelson@gmail.com

Bar-Ilan University
Ramat-Gan, Israel

ABSTRACT
Oblivious RAM (ORAM) is a general-purpose technique for hid-
ing memory access patterns. This is a fundamental task underly-
ing many secure computation applications. While known ORAM
schemes provide optimal asymptotic complexity, despite exten-
sive efforts, their concrete costs remain prohibitively expensive for
many interesting applications. The current state-of-the-art practical
ORAM schemes are suitable only for somewhat small memories
(Square-Root ORAM or Path ORAM).

This work presents a novel concretely efficient ORAM construc-
tion based on recent breakthroughs in asymptotic complexity of
ORAM schemes (PanORAMa and OptORAMa). We bring these con-
structions to the realm of practically useful schemes by relaxing
the restriction on constant local memory size. Our design provides
a factor of at least 6 to 8 improvement over an implementation of
the original Path ORAM for a set of reasonable memory sizes (e.g.,
1GB, 1TB) and with the same local memory size. To our knowledge,
this is the first practical implementation of an ORAM based on the
full hierarchical ORAM framework. Prior to our work, the belief
was that hierarchical ORAM-based constructions were inherently
too expensive in practice. We implement our design and provide
extensive evaluation and experimental results.

1 INTRODUCTION
Cloud services are becoming more and more popular. One of the
earliest and most basic applications of cloud computing is for cloud
storage, where a client can offload a database to a remote server
and later access the database and query it. Such services have been
in wide use already since the early 1980s [29]. A cloud-based para-
digm has various advantages, ranging from improved energy con-
sumption, flexible resource utilization, and various other optimized
workflows and environmental considerations. However, all these
advantages entail a significant cost in data security and privacy.

It is by now well-known and widely accepted that merely en-
crypting the entries of the database before uploading them to the
cloud does not guarantee privacy (e.g., [8, 20, 21, 50]). Indeed, the ac-
cess patterns themselves may reveal non-trivial information about
the underlying data or program being executed on the data. To
mitigate these kinds of attacks, we would like to be able not only
to encrypt the underlying data but also to “scramble” the observed
access patterns so that they look unrelated to the data. The algorith-
mic tool that achieves this goal is called Oblivious RAM (ORAM).

ORAM, introduced in the seminal work of Goldreich and Ostro-
vsky [16, 17, 34], is a (probabilistic) RAM machine whose memory
accesses do not reveal anything about the program or data on
which it is executed. An ORAM construction accomplishes this
by permuting data blocks stored on the server and periodically
reshuffling them around. While the original use-case of Goldre-
ich and Ostrovsky was for software protection, ORAMs found

their way to become a central tool in designing various crypto-
graphic systems, including cloud computing design, secure proces-
sor design, multi-party computation protocols, and more [6, 13–
15, 28, 30, 31, 35, 39, 42, 43, 46, 47, 49].

To be useful, ORAMs have to be “efficient”. Whether an ORAM is
efficient or not is typically measured by its overhead in bandwidth:
that is, how many data items must be accessed in the oblivious
simulation as compared to the original non-oblivious implementa-
tion. The original work of [17] showed that logarithmic overhead
is necessary for a restricted class of ORAM constructions (ones
in the balls and bins model and information-theoretically secure).
These restrictions were lifted in a breakthrough result of Larsen and
Nielsen [24], showing that logarithmic overhead is unavoidable, for
any construction.

Existing approaches. Considerable effort has been invested in de-
veloping efficient ORAM schemes [3–5, 9, 17, 18, 23, 36, 40, 44, 45],
resulting in two main approaches for designing ORAMs. First is the
method originating from the original work of Goldreich and Ostro-
vsky [16, 17], called hierarchical ORAM. Along with many break-
through non-trivial ideas and optimizations of PanORAMa [36] and
OptORAMa [3], this technique can be used to get asymptotically
optimal ORAM constructions. Concretely, for a memory of size 𝑁 ,
OptORAMa uses a local memory consisting of𝑂 (1) memory words,
each of size 𝑂 (log𝑁), and their ORAM has 𝑂 (log𝑁) overhead.
However, the current folklore understanding is that hierarchical
ORAM-based construction are practically inefficient. Indeed, the hid-
den constant in the construction of [3] is≫ 2228 (according to [11])
and even with various optimizations, like [11], it remains in the
order of tens of thousands which makes it prohibitively inefficient
for any reasonable memory size. Degenerate version of hierarchical
ORAM, like the square root ORAM [12], were implemented but
because of the large bandwidth overhead, their construction can
only support rather small memory sizes in practice (e.g., 𝑁 = 214).

The other method, originated in the groundbreaking work of Ste-
fanov et al. [44], is called Path ORAM. This approach is considered
practical because the hidden constants are very small [37]. How-
ever, it uses a poly-logarithmic local memory size and the overhead
is 𝑂 (log2 𝑁). Due to its concrete efficiency for moderate memory
sizes, Path ORAM-style systems have been widely implemented
and deployed. The Ascend secure processor [13, 38], the Phantom
secure processor [32], the GhostRider system [27], and the practical
obfuscation project [33], all adopt versions of Path ORAM. More
recently, the secure messaging company Signal announced using
Path ORAM for a faster layer for enclaves [41].

This work. The current folklore belief is that (a) Path ORAM-
based schemes are practically efficient, albeit being sub-optimal
asymptotically, but (b) Hierarchical ORAM-based schemes can be
made asymptotically optimal but behave practically poorly. In this

1

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

work, we change this folklore belief by showing that Hierarchical
ORAM-based schemes can be made practical. Our main contri-
bution is a practically-efficient implementation of a Hierarchical
ORAM, using ideas from the asymptotically optimal ORAM scheme
of [3]. According to our experiments, our ORAM implementation
outperforms an implementation of the original Path ORAM [44].1
of To the best of our knowledge, this is the first time that (full)
Hierarchical ORAM-based ORAMs have proven to be practically
useful, let alone being better than a basic implementation of Path
ORAM.

The challenge.Achieving a practical version of [3]’s ORAM scheme
is highly non-trivial because the latter strongly relies on heavy ma-
chinery that we currently do not know how to bring to the realms
of real-life systems. The most obvious such barrier is the tight
compaction algorithm they develop and use. This algorithm relies
on the existence of an expander graph with particular properties.
They show the existence of such an expander but its concrete size
is (roughly) proportional to the number of atoms in the universe.
Another seemingly inherent barrier is their reliance (in multiple
places) on oblivious Cuckoo hashing [9, 18]. While non-oblivious
cuckoo hashing is practical, the building of oblivious cuckoo hash-
ing is much more challenging and is very far from being practically
relevant. We know how to design such a hashing paradigm with
reasonable asymptotic cost; however, they employ numerous invo-
cations of oblivious sorts used to perform non-trivial graph algo-
rithms in an oblivious manner. Implementations of such procedures
will be too costly in practice.

Recall that Path ORAM-based schemes have an extra logarithmic
factor in efficiency but rather small hidden constants; In order to
compete with Path ORAM, we must design a scheme where the
hidden constants are smaller than a logarithmic factor in memory
size, for reasonable memory sizes (e.g., to obliviously simulate a
memory of size 1GB, we would need a constant < 30). Looking
forward, we will achieve this goal and obtain a significant speedup
over a basic implementation of Path ORAM.

Our approach. We first make the very useful observation that
much of the effort in OptORAMa was due to the restriction that
the client has only 𝑂 (1) blocks of (secure) local memory. In many
motivating scenarios, such a strong requirement is not needed. For
instance, when a user delegates 1TB (=240 bytes) of data to the cloud,
it is reasonable to require, say 1MB (=220 bytes) of local storage.
We introduce a parameter 𝑍 , which captures the size of the local
memory and think of it as a small polynomial in log𝑁 , where 𝑁
is the size of the memory. We also argue that assuming 𝑍 to be
roughly the square root of the memory size is reasonable. 1MB (220
bytes) suffices for storing a terabyte (240 bytes), 32MB (225 bytes)
suffice for a petabyte (250 bytes), and 1GB (230 bytes) suffices for an
exabyte (260 bytes). We find such ratios reasonable and appropriate
for many settings.

A curious reader can already jump to the evaluation section
(Section 7) to see concrete efficiency measures of our implementa-
tion and how they compare to the a basic implementation of Path

1We emphasize that we compared our construction against a rather basic implemen-
tation of Path ORAM, as described in [44] in pseudocode. This version is not a fully
optimized, as there are known “tricks” to shave off constants in performance (see,
e.g., [37] for details).

ORAM. To get a flavor, we give a numerical example. Assuming
our memory is 1TB (𝑁 = 240) and the local memory is only 8MB
(𝑍 = 223), we get an ORAM where each access takes ≈ 5KB of
bandwidth (amortized). Basic Path ORAM, in a similar setting of
parameters, consumes about ×6 more bandwidth. Thinking of 𝑁
and𝑍 as parameters, the overhead of our scheme is ≤ 15 ·log(𝑁 /𝑍);
see the formal statement in Theorem 6.1.

We emphasize that we theoretically analyze our scheme by pro-
viding concrete constants, leaving no unspecified hidden terms.
Such a thorough analysis of a Hierarchical ORAM has never been
done before (mostly because they have never been considered prac-
tically interesting), andwe view this as an independent contribution.
The experimental results match the theoretical bounds that appear
in this paper. Our implementation of both schemes exemplifies that
our scheme outperforms a basic implementation of Path ORAM in
all settings of parameters that we consider.

Techniques. The major advancement in ORAM constructions
is due to PanORAMa [36], who observed that prior works were
lossy in the way they introduced randomness into the system.
PanORAMa was sub-optimal asymptotically, achieving 𝑂 (log𝑁 ·
log log𝑁) overhead. At the expense of significantly enlarging hid-
den constants, OptORAMa [3] shaved off the extra log log𝑁 factor.
We relax the optimality of OptORAMa in one dimension, i.e., the
size of local storage, allowing us to make hidden constants tiny. We
now describe some of our key ideas.

We have already mentioned that one central building block in
OptORAMa is an oblivious tight compaction algorithm. In this
problem, first studied in the oblivious setting by [25], the input is
an array where some elements are distinguished, and the goal is
to output an array with the same set of elements, but where all
distinguished elements appear at the beginning. This can be seen as
a relaxation of an oblivious sort where elements are associated with
1-bit keys. It has been shown [26] that if the elements are indivisible,
then stable oblivious tight compaction requires Ω(𝑛 log𝑛) work for
an input of size 𝑛. The work of [26] shows a non-stable oblivious
tight compaction that works in 𝑂 (𝑛 log log𝑛) work and negligible
probability of error. OptORAMa [3] shows a deterministic oblivious
algorithm that is asymptotically optimal and requires only 𝑂 (𝑛)
work; however, the hidden constant is huge (at least 2228, according
to [11]). The algorithm of OptORAMa is rather involved and uses
expander graphs and packing tricks. The constant was improved
in [11] but is still in the tens of thousands, making it far from being
practically useful.

As our first novel result, we show an oblivious tight compaction
algorithm with linear overhead and assuming the client can store
poly log𝑛 words (as opposed to𝑂 (1) as in [3, 26]). Not only that we
get asymptotically optimal linear overhead, but our hidden constant
is relatively small, around 18. We do not stop there and make the
following central contribution: Our ORAM is designed in such away
that we never use oblivious tight compaction in its full generality.
Specifically, our whole ORAM only uses compaction for arrays
where (1) exactly half of the elements are distinguished (and this fact
is known to the adversary, and the algorithm can safely “leak" it);
and (2) the input array is randomly shuffled using a permutation that
is hidden from the adversary. Compaction with both relaxations has
never been studied before because it was not known to suffice for an

2

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

ORAM. Inspired by the general tight compaction algorithm of [26],
we obtain a new, extremely efficient tight compaction algorithm
that is secure under the above relaxations. Concretely, it requires
4.2𝑛 bandwidth for an input array of size 𝑛. See Section 3 for details.

Oblivious hash table. Recall that a Hierarchical ORAM consists of
a hierarchy of hash tables, a.k.a “levels”, of geometrically increasing
sizes. The largest layer can hold around 𝑁 elements, the size of the
memory. Access to the ORAM translates into a lookup into each
of the levels, and the found item is moved up to the smallest level.
Whenever a level gets full, its content is essentially moved down the
hierarchy. Without going into too much detail, an important fact is
that levels are merged and rebuilt via a fixed schedule that depends
on the number of accesses. We mostly follow the procedure of
OptORAMa, but make several key modifications to how the above
process works, some of which we highlight next.

A level in OptORAMa is built as follows. Let 𝑛 denote the num-
ber of elements in the input array. The 𝑛 elements are routed (in
the clear) to random bins, and then a (secret) sublinear portion of
elements from each bin is routed to a secondary structure called
the overflow pile. The remaining bins are called the major bins. Each
major bin is poly-logarithmic in size and the overflow pile is of sub-
linear size in 𝑛. OptORAMa made a significant effort to implement
access to the major bins obliviously, and their solution involved
very practically expensive tools (including oblivious Cuckoo hash-
ing, compaction, and various SIMD packing tricks). We completely
avoid this complication by leveraging the fact that our local storage
is large enough to store a whole major bin. We also use oblivious
cuckoo hashing, but the build procedure is handled in the local
memory and therefore is concretely efficient.

The overflow pile is largely handled similarly to OptORAMa.
Since it is sublinear in size, we can actually afford to use known
hashing techniques with logarithmic overhead. The main and most
notable difference from OptORAMa is in the extract operation of
each hash table. Recall that once in a while we need to merge some
levels; for this, we first need to collect the elements that remain in
each table. The extract operation does exactly that. It becomes non-
trivial to implement this operation when we recall that we want to
make sure that the extracted elements are randomly permuted–this
is an invariant that should be maintained throughout the construc-
tion. The extract operation of a hash table, consisting of the major
bins and overflow pile is easy if we do not care about concrete
efficiency. Indeed, in OptORAMa the authors simply invoke general
compaction and a shuffling algorithm (called intersperse). However,
these primitives are concretely inefficient and so we want to avoid
them. To this end, we use a concretely efficient extraction procedure
which, at a very high level, reverses the build operation. This idea
appeared in a similar form PanORAMa [36] but we optimize it even
further, taking advantage of the fact that our local memory is large.

Experiments. We implement our scheme and compare it to an
implementation of the original Path ORAM [44]. Firstly, our ex-
periments show that our implementation behaves as the expected
theoretical analysis. Secondly, in comparison to Path ORAM, our
construction requires bandwidth that is about 6 to 8 times smaller.
For instance, for a memory of size 1TB, accessing a block (of 32
bytes) requires an overhead of 68KB by Path ORAM, whereas our

construction requires accessing only 9.2KB (amortized). We empha-
size that we implemented both schemes with similar parameters,
i.e., the size of the local storage is the same (specifically, roughly
8MB local storage), and we optimized basic implementation of Path
ORAM to utilize this fact (specifically, by stopping the recursion at
a higher level). More details appear in Section 7.

As for running times, for 1GB memory, the overhead of having
an oblivious memory over a non-oblivious memory is roughly 𝑥75
(515 vs. 6.8 microseconds). Path ORAM requires an overhead of
𝑥200.

We remark that Path ORAM achieves statistical security while
our scheme only gives computational security (since we rely on
pseudo-random functions, implemented using AES). We analyze
our scheme and bound the error probability assuming that the PRF
is modeled as an ideal cipher. Moreover, Path ORAM is easier to
implement (specifically, our scheme requires ≈ ×6 lines of code).

Summary of our contributions. We finish this section with a
conclusion of our main contributions.
• To the best of our knowledge, our work is the first to ever imple-

ment a practically useful ORAM based on the (full) hierarchical
framework, capable of supporting very large memory sizes and
with small local memory.
• Our implementation results in an ORAM that is extremely effi-

cient, to the extent that it beats the basic implementation of Path
ORAM in analog settings of parameters. This is the first time that
a hierarchical construction is better in practice for (moderately)
large memory sizes.

• En route to our ORAM, we implement several underlying build-
ing blocks, some of which, we believe, are of independent interest
(e.g., oblivious tight compaction, oblivious intersperse, oblivious
hash tables).

• The theoretical analysis of our construction is aligned with the
implementation. Our bandwidth overhead is 𝑐 · log𝑁 /𝑍 where
𝑁 is the size of the overhead, 𝑍 is the size of the internal mem-
ory, and 𝑐 , the constant is ≈ 11.5 − 15 (depending on several
parameters), which is concretely very small.

• Our implementation is open source: https://github.com/cryptobiu/
FutORAMa.

1.1 Related Work
Due to the wide range of their applications, there has been signifi-
cant effort in developing and deploying efficient ORAM systems.
Because existing schemes (including Path ORAM-based) were some-
what inefficient for various concrete tasks, the systems side of this
endeavor focused on considering ORAM constructions with worse
asymptotics but smaller hidden constants. They showed that for
small memory sizes, this trade-off could lead to better practical
efficiency [12, 49]. ORAMs have also been used as central build-
ing blocks in efficient secure multiparty computation protocols
(in theory and practice). For example, Gordon et al. [19] showed
that ORAMs could be used to perform two-party computation in
sub-linear (amortized) time. Also, various improvements on the
asymptotics of ORAM for multiparty computation were presented
in [7, 10, 45, 46]. To ease deployment, new languages and compil-
ers were developed to help design and transform algorithms into
oblivious in a seamless manner [48].

3

https://github.com/cryptobiu/FutORAMa
https://github.com/cryptobiu/FutORAMa

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

The work which is closest in nature to ours is due to Zahur et
al. [49], where a degenerate version of [17]’s hierarchical ORAM
was optimized and implemented. Concretely, they implement a
single level of a hierarchical ORAM, which allows to obliviously
access a size 𝑁 memory using 𝑂 (

√
𝑁) local memory and the same

bandwidth overhead. Zahur et al. show that for relatively small
values of 𝑁 their scheme beats the state-of-the-art variant of Path
ORAM [45] by making their hidden constants much smaller than
in the latter. However, because their system has𝑂 (

√
𝑁) bandwidth

overhead, it does not fit applications where a large memory size
is needed. (Indeed, in their experiments, the maximal considered
memory size is 𝑁 ≤ 214.) In comparison, our ORAM has only
logarithmic bandwidth overhead, so it performs very well even
when the memory size is very large (e.g., 1TB or even 1PB; see
Section 7).

Paper organization. The paper is organized as follows. In Sec-
tion 2, we provide definitions and preliminary results needed for
the rest of the paper. In Section 3, we describe and analyze our
tight compaction algorithm, and in Section 4, we use it to get the
intersperse algorithm. In Section 5, we present out oblivious hash
table. Section 6 presents the complete ORAM construction and
theoretical efficiency analysis. In Section 7, we discuss various im-
plementation choices, evaluate our scheme and compare it to the
basic implementation of Path ORAM. Section 8 provides a summary
and a conclusion.

2 PRELIMINARIES AND BUILDING BLOCKS
We use _ to denote the security parameter. A function ` (·) is neg-
ligible if for every constant 𝑐 > 0 there exists an integer 𝑁𝑐 such
that ` (_) < _−𝑐 for all _ > 𝑁𝑐 .

Oblivious machines and simulation. A RAM is an interactive
Turing machine that consists of a memory and a CPU. The memory
is denoted as mem[𝑁,𝑤], and is indexed by the logical address
space [𝑁] = {1, . . . , 𝑁 }. We refer to each memory word also as
a block and we use 𝑤 to denote the bit-length of each block. We
assume the block size is 𝑂 (log𝑁), and in our implementation, we
use 64 bits. The memory supports standard read/write instructions.

We consider machines that interact with the memory via read
and write operations. We consider RAM program that is reactive;
namely, it supports several commands and interacts with the mem-
ory to implement that commands. Each command has some input
and output, and the program stores some state between the different
commands in the memory. We say that a (reactive) RAM program
G is oblivious if its access pattern can be simulated by a simulator
that receives only the type of the commands but not the inputs of
the commands. See details in Definition A.4.

Additional preliminaries. We overview the concept of oblivious
computation and the necessary definitions of oblivious machines,
simulation, hybrid model, input assumptions, and the definition
of oblivious RAM in Appendix A. Additionally, there we provide
various probability bounds that are needed for our analysis.

Here, we briefly explain the efficiency measures we use through-
out this work.We use the terminology bandwidth to denote the total
number of read/write operations of memory cells in the RAM. We
use bandwidth in the amortized sense. We also count round-trips;

we allow sending several read/write operations in parallel to the
memory. The round-trips are the number of distinct non-parallel
accesses to the memory. We give a concrete example: reading 𝑇
blocks to the internal memory, processing them, and writing them
back is considered as a single round-trip and 2𝑇 bandwidth.

Lastly, we provide in Appendix E a high-level overview of the
structure of OptORAMa since the construction given in this paper
is highly related.

2.1 Basic Building Blocks
In our construction, we utilize several standard building blocks.
Here, we explain, at a high level, what these objects achieve and
defer definitional and implementation details to Appendix B.

Oblivious 2-key dictionary. An oblivious dictionary is a dynamic
data structure that allows the inserting of elements (𝑘, ℓ, 𝑣) where
𝑘 is the key (i.e., in [𝑁]), ℓ is a label (in {0, 1}𝑤), and 𝑣 is the value
(in {0, 1}𝑤). It is assumed that the same key 𝑘 appears at most once
in the dictionary. One can pop an element with the key 𝑘 by using
PopKey(𝑘)– the operation removes the element with the key 𝑘 . It
also supports PopLabel(ℓ), which returns (and removes) an element
with the label ℓ , if exists in the dictionary.

Oblivious bin placement. Oblivious bin placement receives as
input an array𝑋 containing𝑛 real elements, each element is marked
with some destination bin. The goal of the functionality is to move
all elements into their destination bin (obliviously). We assume
some parameter𝑍 (which is half of the target bin size). It is assumed
that the number of elements assigned to some destination bin is
bounded by 2𝑍 . Our implementation of this functionality is based
on [2].

Sampling secret loads. The goal of the algorithm is to sample
loads of throwing 𝑛′ balls into 𝑏 bins in such a way that the access
pattern does not reveal the loads. That is, our goal is to sample
from the multinomial distribution with parameters 𝑛′, 𝑏. Explicitly,
the output is (ℓ1, . . . , ℓ𝑏) such that

∑𝑏
𝑖=1 ℓ𝑖 = 𝑛′ with probability(𝑛′

ℓ1,...,ℓ𝑏

)
· 𝑏−𝑛′ . We provide a slightly faster implementation than

that of [3], see Appendix B.

3 OBLIVIOUS TIGHT COMPACTION
Oblivious tight compaction is a method for sorting an array accord-
ing to a given mark. That is, it implements the following abstraction:
• Input: An array of size 𝑛 where some of the inputs are distin-

guished;
• Output: An array of size 𝑛 where all distinguished elements are

moved to the front.
This abstraction turns out to be central for the design of asymp-

totically optimal ORAM [3]. Specifically, it allows us to avoid expen-
sive oblivious sort [1]. However, known constructions of oblivious
tight compaction are either asymptotically sub-optimal (e.g., [26])
or highly inefficient due to huge hidden constants [3]. In this sec-
tion, we present yet another compaction algorithm that is both very
practically efficient and theoretically optimal, assuming a poly log _-
size client local memory. Our algorithm, which is inspired in part
by the compaction algorithm of [26], is made highly efficient due
to the following novel observations:

4

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

(1) Number of distinguished elements is public:We design our
system in such a way that all invocations of tight compaction
are applied on arrays where the number of distinguished el-
ements is exactly half of the size of the array. For instance,
compaction is used on an input array of size 𝑛 in which 𝑛/2 ele-
ments are real, and 𝑛/2 are dummies; We invoke compaction to
move all dummy elements to the end and get rid of them. This
design allows us to avoid hiding the number of distinguished
elements, which relaxes the security requirement and results
in an efficiency improvement.

(2) Input assumption: We also make sure that in all invocations
to tight compaction, the input array is randomly shuffled using
a permutation that is not known to the adversary. This allows
us to simplify the algorithm and skip a few of the first steps of
the construction of [26].

(3) Client’s local memory: We utilize the fact that the client’s
memory consists of poly log _words (as opposed to𝑂 (1)words [3,
26]). Concretely, our client’s local memory is only 1.4MB; see
more at the end of this section. This allows us to turn parts of
the algorithm to be “non-oblivious" by performing them locally
on the client’s side.

(4) Error probability: The compaction of [3] has deterministic
access pattern and perfect correctness. Our construction’s cor-
rectness holds with overwhelming probability (i.e., statistical
security).

Utilizing all those facts allows us to design a very fast algorithm,
which consumes only 4.2𝑛 bandwidth. (c.f., the bandwidth of [3]’s
compaction algorithm is at least 2228.)

As mentioned, we will only utilize tight compaction where the
number of distinguished elements is exactly half. To complement,
we show in Appendix C a variant where the number of distin-
guished elements is secret and should be kept secret from the ad-
versary. Naturally, the latter variant is much less efficient (2x to
3x slower). Finally, we note that without the input assumption,
we have to slightly randomize the input, which results in another
slowdown (another factor of roughly 3x). See a comparison at the
end of this section.
The algorithm. The algorithm interprets the input array as 𝑛/𝑍
bins of size 𝑍 , where 𝑍 = poly log _. The client sorts each one of
the bins locally. Since the number of distinguished elements in
the entire array is exactly half of the entire size of the array, and
since we assume that the input is randomly shuffled, we expect
to see the same ratio of distinguished elements in each bin. Using
concentration bounds, we can show that in each bin, after sorting
it locally, we are guaranteed (with overwhelming probability) to
have at least 𝑍/4 elements marked 0s and 𝑍/4 elements marked 1s.
Thus, there are𝑍/2 elements that are left to compact. The algorithm
then combines all the bins and runs compaction recursively on the
remaining elements to compaction - an array of size 𝑛/2 with 𝑛/4
distinguished elements. See Algorithm 3.1.

To argue that the number of elements in each bin has a simi-
lar ratio as the entire input, we need some randomization process
and concertation bound. We utilize the fact that the input is ran-
domly shuffled to derive this conclusion in the first few iterations.
However, in later recursive calls, the input assumption does not
necessarily hold and we have to introduce some random process.
This is RandCyclicShift that is described in the algorithm, which

turns out to be the bottleneck since it is not performed in place.
It, in essence, places elements in random bins (but does not com-
pletely shuffle the array). Yet, RandCyclicShift will be applied on
an array 1/64 factor smaller than the input array, and so the added
complexity will be small, in practice (roughly 0.2𝑛 in bandwidth).

Algorithm 3.1 (CompactArrayByHalf(𝐴)):

Input:An array𝐴 of size𝑛 in which exactly half of the elements are
marked as distinguished (i.e., marked 0, and the rest are marked 1).
Public input: The number of distinguished elements, 𝑛/2, and the
total number of elements 𝑛.
Input assumption: The elements are randomly shuffled. (The
input assumption holds only for the first level of the recursion.)
The algorithm:
(1) Let 𝑍 = poly log _, and let 𝑏 = ⌈𝑛/𝑍 ⌉.
(2) If 𝑏 = 1, then read the array to the local memory, compact it

locally, and return the result as output.
(3) Let Bin𝑖 = [𝐴𝑖 , 𝐴𝑏+𝑖 , 𝐴2𝑏+𝑖 , . . . , 𝐴(𝑍−1)𝑏+𝑖] for every 𝑖 ∈ [1, 𝑏].

Note that |Bin𝑖 | = 𝑍 .
(4) Let depth be the depth of the recursion (initially, 0). If depth > 6,

then run RandCyclicShift:
(a) Initialize an array𝑊 [1, . . . , 𝑏].
(b) For 𝑖 = 1, . . . , 𝑍 , choose a random r← [𝑏], assign
(𝑊 [1], . . . ,𝑊 [𝑛]) ← (Bin1 [𝑖], . . . ,Bin𝑏 [𝑖]), andwrite back
(Bin1 [𝑖], . . . ,Bin𝑏 [𝑖]) ← (𝑊 [𝑟+1 mod 𝑏], . . . ,𝑊 [𝑟+𝑏 mod
𝑏]).

(5) For every 𝑖 ∈ [1, 𝑏] read bin Bin𝑖 to the local memory, and
compact it locally. IfBini [1, . . . , 𝑍/4] is not all 0s, orBin𝑖 [3𝑍/4+
1, . . . , 𝑍] is not all 1s, then abort and output fail. Otherwise,
write Bin𝑖 back.

(6) Run the algorithm recursively on 𝐴[𝑛/4, . . . , 3𝑛/4] with 𝑛/4 as
the number of distinguished elements.

A very useful property of the above algorithm is that, apart from
Step 4, the algorithm works completely in place; that is, there is no
need to copy the elements to a different working array and then
write them back (as we do when we have to hide the number of
distinguished elements, see Section C).RandCyclicShift is not in
place, but is invoked on an array which is of size 1/64-factor of the
original input array. The execution of one of the first 6 recursive
calls in the algorithm is depicted below.

5

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A = [1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1]

Bin1 = [1 1 0 1]
Bin2 = [0 0 0 1]
Bin3 = [1 0 0 0]
Bin4 = [1 0 1 1]

compact each bin locally
Bin1 = [0 1 1 1]
Bin2 = [0 0 0 1]
Bin3 = [0 0 0 1]
Bin4 = [0 1 1 1]
𝐴 = [0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1]

recursive call on input
𝐴 = [1 0 0 1 1 0 0 1]
Bin1 = [1 0 1 0]
Bin2 = [0 1 0 1]

compact each bin locally...

The following theorem is proven in Appendix D.1.

Theorem 3.2. Algorithm 3.1 is an oblivious tight compaction for
arrays where exactly half of the elements are distinguished. Its band-
width is bounded by 4.2𝑛 where 𝑛 is the number of elements in the
input array. The number of roundtrips is 2.1𝑛/𝑍 . The error probability
is bounded by 2𝑛/𝑍 · exp(−𝑍/256).

To get some intuition regarding efficiency, withoutRandCyclicShift,
the algorithm just reads each bin, locally compacts it, and writes
it back (total – 2𝑛 bandwidth). The recursive form is therefore
𝐵(𝑛) = 2𝑛 + 𝐵(𝑛/2), i.e., a total of 4𝑛. In a variant where we have
to run RandCyclicShift in each iteration, we have in addition to
copy all elements to a working buffer (2𝑛); then we read from
the working buffer and write them back to their place, shifted
(another 2𝑛). In total, we obtain an additional 4𝑛 in each itera-
tion, i.e., 𝐵(𝑛) = 6𝑛 + 𝐵(𝑛/2) which results in 12𝑛. Since we have
RandCyclicShift only on an input of size 𝑛/64, our total bandwidth
is bounded by 4𝑛 + 1

6412𝑛 ≤ 4.2𝑛.

Other variants. As mentioned, we give in Appendix C a variant
where the number of distinguished elements is secret and should
be kept secret from the adversary. In fact, we can have four dif-
ferent variants - depending on whether we have to compact ex-
actly by half or have general compaction, and whether the input
is randomly shuffled or not (where if not shuffled we have to run
RandCyclicShift in all iterations). We get the following bandwidth
for those four variants. We emphasize again that we designed our
ORAM such that only the most efficient variant is used.

Algorithm Randomly Shuffled Bandwidth
Input?

CompactArrayByHalf YES 4.2𝑛
CompactArrayByHalf NO 12𝑛
General compaction YES 10.3𝑛
General compaction NO 18𝑛

Concrete instantiation of the parameters. As we saw, the
error probability can be bounded by 2𝑛𝑒−𝑍/256. Since we have
many instances of compaction in the overall ORAM structure, we
use the error probability of 2−100. This is guaranteed when 𝑍 >

256 · (log 2𝑛 + 100). Since we can surely bound 𝑛 by 270 (allow more
than zettabyte...), we must take𝑍 ≥ 43,740 elements. Taking a block
size of 32 bytes, the local memory needed is just 1.4MB.

4 INTERSPERSE
Another central building block in [3]’s asymptotically optimal
ORAM construction is the ability to intersperse two randomly
shuffled arrays into one randomly shuffled array. More formally,
we would like to realize the following abstraction:
(1) Input: An array 𝐴 = 𝐴0∥𝐴1 of size 𝑛0, 𝑛1, respectively. We

assume that each element in the input array fits in𝑂 (1)memory
words.

(2) Output: An array 𝐵 of size 𝑛0 + 𝑛1 containing a random per-
mutation of the elements in 𝐴0∥𝐴1.

Naïvely, obliviously shuffling an array of size 𝑛 takes 𝑂 (𝑛 log𝑛)
work. However, since the two arrays are already randomly shuffled,
we do not have to reshuffle them. Instead, we randomly combine
them (“intersperse") and get a randomly shuffled array; this is done
in 𝑂 (𝑛) work. To implement this primitive efficiently, OptORAMa
uses the following recipe, originated in PanORAMa [36]:
(1) Sample an auxiliary array Aux uniformly at random among all

arrays of size 𝑛0 + 𝑛1 with 𝑛0 zeros and 𝑛1 ones:
(a) Initialize𝑚0 = 𝑛0 and𝑚1 = 𝑛1; For every position 1, 2 . . . , 𝑛0+

𝑛1 flip a random coin that results in head with probability
𝑚1/(𝑚0 +𝑚1). If head, write down 1 and decrement𝑚1;
Else, write down 0 and decrement𝑚0.2

(2) Run Compaction on Aux while recording all move balls opera-
tions.

(3) Reverse route all operations on the input array 𝐴0∥𝐴1.
We sometimes omit the parameters 𝑛0, 𝑛1 when calling intersperse,
and just write intersperse(𝐴0∥𝐴1).

The idea behind the above procedure is that there is no need
to generate all (𝑛0 + 𝑛1)! possible outputs; instead, the algorithm
generates only

(𝑛0+𝑛1
𝑛0

)
outputs as the number of possible Aux ar-

rays. It then moves the balls obliviously according to the Aux
array; If Aux[𝑖] = 0, then the 𝑖th position in the output array
would have an element from 𝐴0 (without replacement). Likewise,
if Aux[𝑖] = 1, then in the 𝑖th position we would have an element
from 𝐴1. The number of possible Aux arrays is

(𝑛0+𝑛1
𝑛0

)
; Given the

input assumption, wherein the two input arrays are randomly
shuffled, we get that the actual number of possible outputs is(𝑛0+𝑛1

𝑛0

)
· 𝑛0! · 𝑛1! = (𝑛0 + 𝑛1)!, as required.

Interspersing two arrays of the same size. In our application, in
all invocations of Intersperse, the adversary is aware of 𝑛0, 𝑛1 and
it is always the case that 𝑛0 = 𝑛1. Thus, we get a highly efficient
version by utilizing CompactArrayByHalf (Algorithm 3.1) instead
of a general compaction algorithm. We denote our algorithm as
interspserseTwoHalves(𝐴0∥𝐴1), and it obliviously implements
the functionality Fshuffle, which is defined as follows. The function-
ality receives as input an array 𝐴 of size 𝑛. It chooses a random
permutation 𝜋 : [𝑛] → [𝑛] uniformly at random, and outputs an
array 𝐵 where 𝐵 [𝑖] = 𝐴[𝜋 (𝑖)].

Claim 4.1. [3, Claim 6.3] Let 𝐴0 and 𝐴1 be two arrays of size
𝑛0 and 𝑛1, respectively. Under the input assumption in which 𝐴0 is
randomly shuffled, and 𝐴1 is randomly shuffled, then the algorithm
intersperse(𝐴0∥𝐴1, 𝑛0, 𝑛1) obliviously implements Fshuffle.

2We implement that in bulk fashion, writing and sampling 𝑍 positions at a time.

6

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

General intersperse. Plugging in a generic compaction algorithm
would result in a generic intersperse procedure, where 𝑛0 might
be different from 𝑛1 and they could be secret. This is obtained by
using the general case of compaction (see Appendix C)in the above
template. We call the resulting algorithm “General intersperse”.
This variant will not be used in our final system but we mention it
for completeness, as this is the main variant used in OptORAMa.

Interspersing multiple arrays. We will need to intersperse mul-
tiple arrays: 𝐴1, . . . , 𝐴𝑘 of different lengths, rather than just two of
the same size. In the final ORAM construction, the different arrays
are always the different levels (plus a level that is stored at the client
size). That is, we always invoke this intersperse at inputs of size
𝑋,𝑋, 2𝑋, 4𝑋, 8𝑋, . . . ,. It is assumed that each array is randomly shuf-
fled. We denote this algorithm as intersperseMulti(𝐴1, . . . , 𝐴𝑘).
The algorithm first shuffles 𝐴1∥𝐴2, then it shuffles the result with
the array 𝐴3, and so on. Note that |𝐴1 | = |𝐴2 |, and that |𝐴3 | =
|𝐴1∥𝐴2 |, thus we can use interspserseTwoHalves as the underly-
ing procedure, instead of general intersperse, which would have
increased the associated costs significantly.

Efficiency. We conclude this section by comparing the three algo-
rithms and providing an efficiency analysis. The main observation
is that the Aux array works on bits and not blocks. This implies
that the size of Aux is 𝑛/𝑤 blocks (each block is of size 𝑤). Thus,
compaction of the auxiliary array is performed on an input of size
𝑛/𝑤 , not 𝑛. Therefore, step 1 costs 𝑛/𝑤 read/write operations, and
step 2 is the invocation of Compaction of an input of size 𝑛/𝑤
(4.2𝑛/𝑤 bandwidth instead of 4.2𝑛). The only costly operation is
Step 3, which reverse routes all real elements as in the compaction,
i.e., 4.2𝑛. In our implementation, we use 𝑤 = 32 bytes. Thus, for
interspserseTwoHalves, the addition of Steps 1 and 2 is no more
than 4.2𝑛/32 = 0.13𝑛 (note that here we do not even pack 8 ele-
ments in bytes but allocate a full byte per bit). The error probability
is just the error probability of the underlying compaction. To that,
we have to add 4.2𝑛 of Step 3. The overall cost of the three variants
of intersperse is given in Table 1. Note that intersperseMulti
is just log(𝑛/𝑍) invocations of interspserseTwoHalves, i.e., its
costs is 4.5 ·∑log(𝑛/𝑍)

𝑖=1 2𝑖𝑍 ≤ 9𝑛. As for roundtrips, using a similar
analysis, we can see that in all three algorithms we can read, pro-
cess, and write 𝑍 elements in one roundtrip which gives us a result
of a fraction of 1

2𝑍 from the bandwidth. However in the general
intersperse the number of roundtrips is slightly better than that
due to the improvement in the inner compaction (see Appendix C).

Roundtrips Bandwidth

interspserseTwoHalves 2.25 𝑛
𝑍

4.5𝑛
General intersperse 4.45 𝑛

𝑍
11.3𝑛

intersperseMulti 4.5 𝑛
𝑍

9𝑛
Table 1: Comparison of the different intersperse algorithms for an input

array of size 𝑛. intersperseMulti works on arrays of size
𝑍,𝑍, 2𝑍, . . . , 𝑛/2.

5 NON-RECURRENT HASH TABLES
Here, we overview our implementation of each level in the hierar-
chical ORAM. The main inspiration is the hash table construction
from OptORAMa called CombHT, which in turn combines two
other hash tables called BigHT and SmallHT. Intuitively, a hash
table construction should implement the functionality FHT, which
supports the following commands (see [3, Functionality 4.7] for a
precise description of the functionality):
• FHT .Build(𝐴): Receives an input array of length 𝑛, containing

real and dummy elements. A real element is a pair (𝑘, 𝑣), of a
key 𝑘 ∈ [𝑁] and 𝑣 ∈ {0, 1}𝑤 . It stores the elements in a private
state.

• FHT .Lookup(𝑘): where 𝑘 ∈ [𝑁] ∪ {⊥}. The algorithm looks in
the private state for the key 𝑘 . If found (i.e., 𝑘 ∈ 𝐴), it returns the
associated 𝑣 and marks it as accessed. Otherwise, return ⊥. It is
guaranteed that the same 𝑘 will not be queried more than once.

• FHT .Extract(): Returns a shuffled array of size 𝑛, containing all
elements in 𝐴 that were not queried by Lookup (those that were
queried are replaced with dummies).
Our algorithm for implementing FHT uses several of the ideas

underlying the construction of OptORAMa, but we make many
modifications and optimizations and thereby obtain a practically ef-
ficient oblivious hash table construction. Most of our optimizations
leverage the fact that we have at our disposal a larger local mem-
ory; this fact has a dramatic effect, mostly in the implementation
of ShortHT.

Overview of the construction.We briefly overview the construc-
tion of [3]. Essentially, to build a hash table, we have to place the
elements “obliviously" in some structure. Classically, this was done
using oblivious sort, incurring 𝑂 (𝑛 log𝑛) overhead. However, as
pointed out in PanORAMa [36] (and later optimized in [3]), we can
do better if we assume that the elements are randomly shuffled and
build the structure with linear work. The hash table would have
the following components:
(1) Major bins: Bins are small hash tables of size 𝑍 , i.e., poly log _.

We show how bins are implemented in Section 5.1. As opposed
to OptORAMa, here we utilize the fact that the client has large
local storage, and we have a much simpler construction.

(2) Overflow pile: The construction also uses a secondary hash,
called an overflow pile, which we describe in Section 5.2. In
this secondary hash, we do not assume that the elements are
randomly shuffled, and the cost to build it is𝑂 (𝑛′ · log𝑛′) where
𝑛′ is the number of elements in the overflow pile. But, 𝑛′ will
be 𝑛/log _, so the cost will be linear in 𝑛.

(3) Level: We show how to implement the level (i.e., the entire
hash table), which contains major bins and overflow piles, in
Section 5.3. Here, Build starts with the input assumption that
all elements are randomly shuffled, and the goal is to build and
destruct the hash table with constant overhead.

We present the level in a bottom-up fashion. A reader who is inter-
ested in a top-down design can first read section 5.3, then section 5.2,
and conclude with section 5.1.

5.1 Implementing Bins
Bin is a small hash table, i.e., it works on poly log _ size. The main
challenge is to design a hash table with linear time for Build and

7

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

Extract, and constant overhead for Lookup. While we can fit an
entire bin into the local memory, we still do not want to spend too
much time on every lookup operation. In particular, reading the
entire bin per lookup would incur a blowup proportional to the
size of a bin, i.e., poly log _ blowup. However, we are okay with
fetching the whole bin upon Build and Extract. This allows us
to execute non-oblivious operations during Build and Extract.
We implement the bin using a Cuckoo hash with a stash [22].
Given an array 𝐵 of total size at most 𝑍 (in which we expect to
see 𝑍/2 real elements), each real element (𝑘, 𝑣) is placed in either
𝐵0 [PRFsk (𝑘, id, 0)], 𝐵1 [PRFsk (𝑘, id, 1)], or in a stash, where id is
the identity of the bin (see below). Dummy elements are ignored.
We denote the stash size by stashBound. We denote this procedure
as (𝐵0, 𝐵1, stash) ← BuildCuckooHash(𝐵, sk). The procedure is
non-oblivious but is executed on the local memory on a small input
(i.e., a bin). The stash is implemented using a dictionary. For ease of
presentation, for now we assume access to an ideal implementation
of a dictionary, and so describe the implementation of a bin in the
Fdict-hybrid model (see appendix B.1).

Conventions. Looking ahead, each level in the hash table consists
of an array of bins, where the number of bins is known in advance.
We, therefore, associate each bin with a unique id, consisting of
the level of the hash table, whether it is part of the overflow pile or
the major bins, and the index of the bin. We assume that each Bin
has id hardwired into it. We also use a secret key sk for a PRF for
all bins on the same level (in each Build the entire level is being
rebuilt, i.e., including all its bins). We, therefore, also assume that
Bin internally holds a secret key sk, which is the secret key of the
level where the bin resides.

Construction 5.1 (Oblivious Bin Using Fdict):

We assume that the bin has a known id (consisting of the index of
the level and the index of the bin within the level) and a PRF key
sk (same as the entire level). We also assume a global parameter
stashBound.

Bin.Build(𝐵): 𝐵 is of size at most 𝑍 (the expected number of reals
is at most 𝑍/2).
(1) Run (𝐵0, 𝐵1, stash) ← BuildCuckooHash(𝐵, sk).
(2) Write 𝐵0, 𝐵1 to the memory, each is of size 𝑍/2.
(3) For 𝑖 = 1, . . . , stashBound: read the next element in stash as
(𝑘, 𝑣) (if it does not exist, use (⊥,⊥)). InvokeFdict .Insert(𝑘, id, 𝑣).

Bin.Lookup(𝑘):
(1) If 𝑘 ≠ ⊥, then let 𝛽0 = PRFsk (𝑘, id, 0), 𝛽1 = PRFsk (𝑘, id, 1).

Otherwise, choose 𝛽0, 𝛽1 uniformly at random from [𝑍/2] ×
[𝑍/2].

(2) Access 𝐵0 [𝛽0], 𝐵1 [𝛽1], and if 𝑘 is found there, then replace it
with dummy;Moreover, access the stash usingFdict .PopKey(𝑘, id).
Return the found value, or ⊥ if not found anywhere.

Bin.Extract():
(1) Read 𝐵0, 𝐵1 into the local memory into an array 𝑋 .
(2) For 𝑖 = 1, . . . , stashBound, perform Fdict .PopLabel(id) and ap-

pend the result to 𝑋 .

(3) Locally compact 𝑋 to size 𝑍 (while removing some dummy ele-
ments that might be introduced due to the stash), and randomly
permute it. Return 𝑋 .

Looking ahead, our construction guarantees that the expected
number of reals in the input array is half of the elements. This
enables us to allocate the two tables 𝐵0, 𝐵1 of size𝑍 each. Otherwise,
we would have needed to allocate larger tables.

Claim 5.2. Construction 5.1 obliviously implements the FHT func-
tionality in the Fdict-hybrid model. The costs are as follows:

Algorithm Bandwidth Round-trips Error Probability

Build 2𝑍 1 𝑍−stashBound

Lookup 4 1 0
Extract 2𝑍 1 0

In addition, each algorithm invokes Fdict stashBound times.

Proof: For a cuckoo-hash of size 𝑛, the probability of having more
than 𝑠 elements in the stash is bounded by𝑂 (𝑛−𝑠), see [22]. Letting
log _ be the size of the stash, we get that the probability that there
are more than log _ elements in the stash is bounded by𝑂 (𝑛− log_)
which is negligible for 𝑛 = 𝑍 = poly log _. Yet, we leave the pa-
rameter of the size of the stash unspecified and write 𝑍−stashBound.
Since BuildCuckooHash is run locally, we get that Bin.Build is
clearly oblivious. As for lookup, assuming non-recurrent lookups,
the simulator can simply access two random elements in 𝐵0, 𝐵1 and
simulate a call to Fdict .PopKey. Moreover, for Extract the simu-
lator can just run stashBound calls to Fdict .PopLabel. The rest is
local computation. □

5.2 Implementing the Overflow Pile
Our overflow pile also implements FHT. We utilize the fact that
the overflow pile needs to support only 𝑛 · 𝜖 = 𝑛/log _ elements.
We simply assign each element to a random bin, obliviously place
the elements into their respective bins, and then implement each
bin similarly to the major bins, i.e., as in Section 5.1. The oblivious
bin placement takes 𝑂 (𝑛 · log𝑛) bandwidth for an input of size 𝑛;
here, we use the fact that our input is rather small (𝑛/log _), which
results in a construction with total bandwidth 𝑛 · (log𝑛/log _).
Main differences from OptORAMa. We highlight a few key op-
timizations we employ. The main difference from OptORAMa is in
the Extract procedure. The Extract in OptORAMa involves ex-
tracting each bin (2𝑛 bandwidth), (general) tight compaction on the
entire resulted array (10.3 · 2𝑛 bandwidth), moving all real elements
to the front, truncating the array to be of size 𝑛, and then running
intersperse on the result to shuffle the reals and dummies in the re-
sulted array (8.9𝑛 bandwidth). The original cost is, therefore, at least
30𝑛. We reduce it to 3𝑛, i.e., a ×10 improvement. Specifically, the
above is used to spread the dummy elements (that were introduced
during lookup) among the real elements; We provide a different
implementation. First, we record with each lookup whether the
element was found, and then was marked as removed. In Extract,
we utilize the fact that the elements already reside in bins, and we
throw dummy elements randomly into the bins, where the number
of elements we throw is the number of real elements that were

8

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

found during lookup. We then compact each bin locally and shuffle
it. This guarantees a random permutation.

Another difference from OptORAMa is that in the Build pro-
cedure. We use the lighter primitive FBinPlacement instead of a full
oblivious sort, as in OptORAMa. This gives us at least a ×2 improve-
ment, where we use the implementation that is due to [2].
Conventions. Just like in Bin, we assume that we use the same
secret PRF key sk as in the entire level. Moreover, we assume an
implicit id, consisting of the level index in which the overflow pile
resides. We present the construction in the FHT-hybrid model to
implement the underlying bins. As such, we do not count for their
efficiency and error probability; we will do that when analyzing
the entire level.

Construction 5.3 (Overflow Pile Implementation):

overflowPile.Build(𝑋, sk):
Input: Array 𝑋 of 𝑛 real elements.
(1) Set 𝑍 = poly log _, 𝑏 = 2⌈𝑛/𝑍 ⌉.
(2) For every element (𝑘𝑖 , 𝑣𝑖) in 𝑋 , choose a random bin 𝑑𝑖 =

PRFsk (𝑘𝑖 , overflow) and save it as (𝑘𝑖 , 𝑣𝑖 , 𝑑𝑖).
(3) Call FBinPlacement (Functionality B.2) on 𝑋 where each element
(𝑘𝑖 , 𝑣𝑖 , 𝑑𝑖) is (obliviously) placed in the destination bin 𝑑𝑖 . Let
𝑌 be the result, i.e., 𝑌1, . . . , 𝑌𝑏 bins of size 𝑍 each.

(4) Call ObvB𝛽 ← Bin.Build(𝑌𝛽 , sk) for 𝛽 ∈ [𝑏], where the inter-
nal id is (id, “overflowPile”).

(5) Initialize numFound = 0.
(6) Store ObvB1, . . . ,ObvB𝑏 and the counter numFound.
overflowPile.Lookup(𝑘):
(1) Let 𝛽 = PRFsk (𝑘).
(2) Return ObvB𝛽 .Lookup(𝛽). If found a real element, then incre-

ment numFound.
overflowPile.Extract():
(1) Sample secret loads by calling Algorithm B.5 (ℓ1, . . . , ℓ𝑏) ←

SampleSecretLoads(numFound, 𝑏).
(2) Let 𝑌 = ObvBin1 .Extract()∥ . . . ∥ObvBin𝑏 .Extract(). Recall

that 𝑌 is of size 2𝑛.
(3) Initialize an output array 𝑋 (which will eventually be of size 𝑛).
(4) For 𝑖 ∈ [𝑏], read ObvBin𝑖 to the local memory. Let 𝐿𝑖 be the

number of real elements remaining in ObvBin𝑖 . If 𝐿𝑖 + ℓ𝑖 >

𝑍 then halt and output fail. Compact ObvBin𝑖 to be of size
𝐿𝑖 + ℓ𝑖 , containing the real elements in addition to ℓ𝑖 dummies.
Randomly shuffleObvBin𝑖 and append the result to the array𝑋 .

(5) Return 𝑋 .

We prove the following theorem in Appendix D.2.

Claim 5.4. Construction 5.3 implements FHT assuming the exis-
tence of pseudorandom functions and that Bin implements FHT. The
bandwidth is as follows:

Algorithm Bandwidth Roundtrips Error

Build 4𝑛 log𝑛/𝑍 𝑛/𝑍 log𝑛/𝑍 2𝑛
𝑍
𝑒−𝑍/6

Lookup 4 1 0
Extract 3𝑛 2𝑛/𝑍 2𝑛

𝑍
𝑒−𝑍/6

5.3 Level
We are now ready to present our final hash table, i.e., a level in
the ORAM hierarchy. Note that in this hash table, we assume that
the input is randomly shuffled, and the goal is to provide a Build
procedure that requires just 𝑂 (𝑛) bandwidth.

Overview. According to our input assumption, the input array
is randomly shuffled; thus, it seems safe to place the elements in
the bins “in the clear", i.e., we place them non-obliviously. More
specifically, we sample a secret PRF key sk, and place the element
𝑘𝑖 in the bin PRFsk (𝑘𝑖) mod 𝑏, where 𝑏 is the number of bins. If the
element is a dummy, we sample a random bin to place it. Whenever
we lookup for a real element 𝑘 ′, we access the bin PRFsk (𝑘 ′). We
might either find the element there (if it was indeed in the input
array) or not. If we wish to perform a dummy lookup, we choose a
random bin and pretend searching in that bin. Observe that loads
of the bins are public and known to the adversary.

While this results in a Build procedure that can be simulated
(since the input array is randomly shuffled), the joint distribution of
Build and Lookup cannot be simulated. Specifically, 𝑛 lookups of
the real elements will result in accessing each bin with exactly the
same amount of times as its public load after Build. On the other
hand, the result of 𝑛 dummy lookups (or 𝑛 elements that are not
part of the hash table) will result in a fresh sample from a 𝑛 balls
into 𝑏 bins distribution.

To solve this, the idea is to sample fresh secret loads ℓ1, . . . , ℓ𝑏 ,
of throwing 𝑛 · (1 − 𝜖) balls into 𝑏 bins for some parameter 𝜖 . We
should think about 𝜖 as 1/poly log _, but we leave it as an explicit
parameter for the construction for now. The secret loads ℓ1, . . . , ℓ𝑏
are not revealed to the adversary. With high probability, the secret
load of each bin is smaller than its public load, and we move all ele-
ments that exceed the secret load to an overflow pile overflowPile.
Overall among all bins combined, exactly 𝑛 · 𝜖 elements are moved
to the overflow pile. When looking up for an element 𝑘 , we first
search for it in the overflow pile, and then, if not found, we look
for it in the major bins according to PRFsk (𝑘), as before. If found,
we instead visit a random bin. The crux of the security proof in [3]
is showing that the access pattern of Lookup looks like a fresh sam-
pling of throwing 𝑛 balls into 𝑏 bins and is independent of the loads
that were revealed to the adversary during Build.

In our implementation, we use essentially the same construction
as of OptORAMa for Build and Lookup, while we mainly change
the way overflowPile is implemented, as well as the bins (and
some other implementation details). The proof of OptORAMa is
modular and works with any implementation of the underlying
building blocks, as long as they implement FHT. Since we have
already shown that Bin and the overflow pile implement FHT, we
can directly use the security claim from [3]. Note that all underlying
hash tables that required a dictionary and were implemented in
the Fdict-hybrid model share the same dictionary. Next, we high-
light the key differences between our construction and that of
OptORAMa:
• Building the overflow pile: In OptORAMa, the construction takes

all bins into a designated working buffer and performs general
oblivious tight compaction to take the elements that reside at
the top of each bin (elements in [ℓ𝑖 , 𝐿𝑖], see the description of
the construction). This requires running tight compaction on the

9

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

entire structure – i.e., 18𝑛 according to our improved implemen-
tation of compaction, which becomes the dominant factor in the
construction. We, instead, copy the top 2𝜖𝑍 blocks in each bin to
the working array, resulting in an array of total size 2𝜖𝑛. More-
over, we apply the optimized CompactArrayByHalf procedure.
This costs just 4.2 · 2𝜖𝑛.
• Extract: In OptORAMa the implementation of the extract pro-

cedure was concretely expensive. In particular, after extracting
each major bin and the overflow pile, they invoked tight com-
paction to get rid of extra dummy elements and then ran an
intersperse procedure to shuffle the reals and the remaining
dummies. We, on the other hand, use an idea of PanORAMa [36]:
we first reverse the Build procedure by obliviously placing each
element into its original bin and locally removing extra dummies.
This approach is significantly more efficient in practice. (Roughly
2𝑛 + 2𝜖𝑛 log 𝜖𝑛

𝑍
instead of ≥ 18𝑛 (running general compaction).

In the analysis of level we instantiate the overflow pile with the
construction of overflow pile as in the construction of Section 5.2,
and the underlying bins as in Section 5.1. The cost, therefore, con-
tains also the build, lookup and extract of these underlying primi-
tives. We still leave Fdict (which is used in the implementation of
Bin) as an ideal implementation. The analysis also counts the total
number of invocations of Fdict. We show the full construction and
the proof of the following theorem in Appendix D.3.
Theorem 5.5. Assuming that PRF is a pseudorandom function,
Construction D.3 obliviously implements FHT. Moreover,

Algorithm Bandwidth Roundtrips

Build 6𝑛 + 14.4𝜖𝑛 + 4𝜖𝑛 log 𝜖𝑛
𝑍

(
3𝑛 + 6.2𝜖𝑛 + 𝜖𝑛 log 𝜖𝑛

𝑍

)
/𝑍

Lookup 8 2
Extract 3𝑛 + 7𝜖𝑛 + 4𝜖𝑛 log 𝜖𝑛

𝑍

(
2𝑛 + 4𝜖𝑛 + 𝜖𝑛 log 𝜖𝑛

𝑍

)
/𝑍

In addition, Build and Extract perform 2(1+𝜖)𝑛
𝑍

· stashBound calls
to Fdict, and Lookup perform stashBound calls to Fdict. The error is
bounded by 4𝑛/𝑍 · exp(−min{ln(𝑍) · stashBound, 𝜖2𝑍/16}).

5.4 Dictionary Implementation
We finally explain how we implement the dictionary in an oblivious
manner (recall the definition of the primitive in appendix B.1). For
our purpose, we utilize the fact that we have a rather large local
memory and so as long as we do not need to store too many items
in the dictionary, we can store it completely in the local memory.
When the number of elements needed to be stored grows beyond
a certain threshold, we will start delegating the dictionary to the
server. A delicate point is that we do not want the event of moving
to the external memory to leak information, and so we do this at
a fixed time. Specifically, we will move to store the dictionary in
the external memory after we have seen more than 𝑍/2 different
labels. When we move to store the dictionary on the server, we
use OptORAMa to get obliviousness [3]. The base, non-oblivious
implementation is straightforward: we instantiate two balanced
binary search trees (e.g., red-black tree), where the first tree orders
elements according to the key 𝑘 , and the second tree orders ele-
ments by the given time 𝑡 . To distinguish whether sufficiently many
different labels have arrived, we maintain a simple counter. This
construction incurs a logarithmic cost for each operation. Applying

OptORAMa on top of this structure (to get an oblivious analog)
incurs another logarithmic factor in overhead.

From an asymptotic point of view, our construction is as good as
using the server and invoking OptORAMa from the very beginning.
However, our approach of “delaying the usage of OptORAMa” has
a significant advantage in practice, as we elaborate next.

We use the dictionary tomaintain stashed elements, i.e., elements
that we are unable to hash to a main hash table and therefore need
to place elsewhere. Concretely, we are using Cuckoo hashing which
allows to hash 𝑍 elements into two main tables each of size (say)
2𝑍 such that with probability 𝑛Ω (−𝜎) more than 𝜎 elements need to
be stashed (and otherwise they all fit in the main tables). We argue
that a stash of size 𝑍 , which is poly-logarithmic in the memory size
and can be maintained in the local memory, suffices to store the
stash of many small Cuckoo hashing tables. It turns out that in our
parameter setting this actually suffices.

Concretely, consider 𝐵 = 𝑍/log _ Cuckoo hashing tables and let
𝑋𝑖 be an indicator random variable that is set if at least one element
needs to be stashed when hashing the 𝑖-th table. Let 𝑋 =

∑𝐵
𝑖=1 𝑋𝑖 .

It holds that E[𝑋𝑖] ≤ 𝑂 (1/𝑍) and so E[𝑋] ≤ 𝑂 (𝐵/𝑍) = 𝑂 (log _).
By Hoeffding’s bound, Pr[|𝑋 −E[𝑋] | ≥ 𝑍/2] ≤ 2 exp(−𝑍 2/(2𝐵2)),
where the latter is negligible in _. In other words, we will never need
to invoke OptORAMa as long as we hash less than 𝐵 ≈ 𝑍 tables.
Since we are hashing 𝑁 /𝑍 and the latter is ≤ 𝐵 in our parameter
choices, indeed, it is very likely that we will handle the dictionary
completely in memory.

6 ORAM
We are now ready to describe our oblivious RAM construction. At
a high level, the construction follows the hierarchical framework
of ORAM constructions. Our structure consists of:
• 𝑂 (log𝑁) levels. Fix 𝐿 = log𝑁 and ℓ = log𝑍 . Each level 𝑖 ∈
{ℓ, . . . , 𝐿} is a hash table with a capacity of 2𝑖 elements.

• A small structure (of capacity of 𝑍 blocks) which we denote as
localMem that is stored in the local memory.
Each level is associated with an additional bit, marking whether

the level is empty (if the table is not allocated) or full. It is assumed
that initially, all levels are marked empty. In addition, there is a
global counter, denoted counter, initialized to 0.

The following is proven in Appendix D.4.

Theorem 6.1. Assuming a secure PRF, Algorithm 6.2 obliviously
implements the ORAM functionality (Functionality A.5). Each access
consumes (amortized):
• Bandwidth: log 𝑁

𝑍
· (11(1 + 𝜖) + 8𝜖 log(𝜖𝑁 /𝑍)) + 9,

• Roundtrips:
(
log 𝑁

𝑍
· (6(1 + 𝜖) + 𝜖 log(𝜖𝑁 /𝑍)) + 4.5

)
/𝑍 + log 𝑁

𝑍
.

The error probability for𝑚 accesses is bounded by
4𝑚
𝑍

log 𝑁
𝑍
exp(−min{ln(𝑍) · stashBound, 𝜖2𝑍/16, 𝑍/256}).

Algorithm 6.2 (ORAM – Access(op, addr, data)):

Input: op ∈ {Read, Write}, addr ∈ [𝑁] and data ∈ {0, 1}𝑤 .
The algorithm:
(1) Initialize found = False and result = ⊥.
(2) Search for addr in the localMem. If found, set found = True.
(3) For 𝑖 ∈ {ℓ, . . . , 𝐿}:

10

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

(a) If found = True and 𝑇𝑖 is not marked as empty, then
perform 𝑇𝑖 .Lookup(⊥).

(b) If found = False and 𝑇𝑖 is not marked as empty, then
result← 𝑇𝑖 .Lookup(addr). If result ≠ ⊥ then set found =

True.
(4) If op = Write then result = data.
(5) Insert result into localMem and increment counter.
(6) If counter mod 𝑍 then:

(a) Shuffle localMem. Let 𝑖∗ be the first table that is marked
as empty; if all levels are full, then set 𝑖∗ = 𝐿.

(b) Let 𝑋 ← localMem∥𝑇ℓ .Extract()∥ . . . ∥𝑇𝑖∗ .Extract(). If
𝑖∗ = 𝐿 then 𝑋 = CompactArrayByHalf(𝑋) (i.e., Algo-
rithm 3.1).

(c) Run 𝑌 ← intersperseMulti(𝑋), see section 4.
(d) Run𝑇𝑖 .Build(𝑌); mark𝑇𝑖 as full and𝑇ℓ , . . . ,𝑇𝑖∗−1 as empty.

(7) Return result.

7 EVALUATION AND IMPLEMENTATION
In this section, we evaluate our construction. We first apply the
different parameters of our construction and see how they affect
the performance by analyzing the terms obtained in the statement
of Theorem 6.1. We then discuss our implementation and see how
it relates to the theoretical bounds. Lastly, we compare our scheme
to that of Path ORAM.

7.1 Our Construction
We let the block size in our construction be 32 bytes. We have
several parameters in our construction, which we recall briefly:
(1) The total size of the logical memory, which represents the total

capacity of the ORAM. Since a block is of 32 bytes, a total logical
memory of size 𝑋 means that the number of balls, 𝑁 , is, in fact,
the total size divided by 𝑋 .

(2) 𝑍 : The size of bin.We use the same size throughout our building
blocks (e.g., bins in bin compaction, intersperse, bin placements,
etc.). We remark that 𝑍 represents the number of elements. The
actual memory consumption is 𝑍 · 32 bytes.

(3) 𝜖: represents the fraction of elements that are moved to the
overflow pile in a hash table (see Section 5.3).

(4) stashBound: This is the size of the stash we use for elements
that did not fit into their main Cuckoo hash tables, within
Bin (see Section 5.1). As we explain in Section 5.3, due to our
choice of bin size, 𝑍 , relative to 𝑁 , we can provably guaran-
tee that at most very few elements will go to the stash with
very high probability. Concretely, in our experiments, we use
stashBound = 9.

On the size of 𝜖. Recall that on the overflow pile we run an algo-
rithm with running time proportional to 𝑛 · 𝜖 log(𝑛𝜖/𝑍). Therefore,
in theory, we have to use 𝜖 of roughly 1/log _ ≈ 1/log𝑛 to actually
get rid of the log(𝑛𝜖/𝑍) factor. However, in Table 2, we see that
while we make 𝜖 smaller, we indeed see a smaller overhead, but the
error probability increases.We show for various sizes of total logical
memory size the overhead when 𝜖 = 1/10, 1/15 and 𝜖 = 1/20. As for
roundtrips, the rounds that are due to the lookups (i.e., log𝑁 /𝑍) are
the dominant factor, and we see almost negligible effect on the build
procedure (the term

(
log 𝑁

𝑍
· (6(1 + 𝜖) + 𝜖 log(𝜖𝑁 /𝑍)) + 4.5

)
/𝑍).

The table is obtained using the terms in Theorem 6.1.

The error probability. The error probability that is reported in
Table 2 is per access. The effective error should also consider the
size of the memory and the total number of accesses. For instance,
an error of 2−148 in a memory of 1GB (230) enables accessing the
memory 288 times in total (say 258 accesses to each memory cell),
while guaranteeing overall error 2−60. An error of 2−131 enables
running a program that has ≈ 270 accesses to 1𝐺𝐵 memory while
still having error in the regime of 2−60, but 2−65 enables running a
program that has only 25 accesses before reaching the 2−60 zone.

On the size of 𝑍 . According to Eq. (1), the best we can hope for
is an overhead of 11.5 · log 𝑁

𝑍
. We, therefore, also show for what

parameters of 𝑍, 𝜖 for which this overhead can be reached. The
tradeoff is, of course, increasing the local memory. Table 3 shows
various parameters for logical memory of 1TB (240), while aiming
to reach overhead of ≈ 11.5. We see that the local memory increases
but is still ≤ 0.05% than the size of the logical memory. The table

11

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

is again obtained using the terms in Theorem 6.1. Note that an
overhead of 1.79𝐾𝐵 is for obtaining a block of size 32 bytes. This
means that our overhead is roughly 56 blocks per block the client
accesses.

7.2 Implementation
We implement our solution, and we first compare our results to the
theoretical bounds.

Experimental setup. Our experiments were conducted on a com-
puter equipped with an AMD Ryzen 7 5800H processor running
at a speed of 3.20 GHz and 32 GB of RAM. Python 3.10 was used
in conjunction with the pycryptodomex open-source library for
AES implementation, leveraging its ability to interact with the Intel
AES-NI hardware extensions. We have two modes for the imple-
mentation:
(1) Full: In this mode, we run the ORAM implementation, includ-

ing all memory allocations and accesses. I.e., we allocate all
requested memory in the physical memory, and run the full
implementation of our construction.

(2) Counting mode: This mode is used to benchmark the construc-
tion in terms of the number of accesses and rounttrips. Specif-
ically, in this mode, we do not allocate the external memory
and we only count accesses for each read/write to the external
memory. Counting mode enables us to run faster simulations
and scale them to larger memory sizes.

In all experiments that only report bandwidth and round-trips,
we use the counting mode. For experiments that measure “time”,
e.g., the last experiment, we run in the full mode. (Of course, the
two modes give the same results in terms of rounds and bandwidth.)

Conducting the tests. The test that we report were conducted as
follows (1) We initialize the ORAM to allocate 𝑁 blocks; (2) Access
𝑁 random blocks from the ORAM for read/write operations. This
ensures that the bottom level is accessed at least 𝑁 times, and is
rebuilt at least once.

In Table 4 we show an experiment where we used 𝑍 = 131, 220
and 𝜖 = 1/10. The table shows the number of blocks being accessed
(in average) on the server when accessing an element on the logical
memory. We then compare the result of the implementation vs. the
expected theoretical analysis.

In the actual implementation of ORAM, we observed slight vari-
ations from the theoretical formula, where the difference is at most
13%. The difference is mainly due to rounding the number of levels,
the number of bins in each level, and other implementation details.
E.g., when throwing the balls into bins in the clear in Build of a
level (see Construction D.3)we have to read how many elements
are in the bin in order to write the element in the correct place in
the bin. When the size of the memory is large, the implementation
is even slightly better than the mathematical analysis since we used
many upper bounds in the mathematical analysis.

Comparison to Path ORAM. We evaluate the performance of
our ORAM construction by comparing it to an implementation
of the celebrated Path-ORAM construction [44]. To ensure a fair

3Recall that (by Eq. 1) the total bandwidth is 𝑐 · log𝑁 /𝑍 + 9 (blocks) , where 𝑐 =

11(1 + 𝜖) + 4𝜖 log(𝜖𝑁 /𝑍) . The table explicitly this term.

comparison, we implement Path ORAM with the same local mem-
ory size (admittedly, further clever optimization for Path ORAM
are possible; see [37]). Note that in path ORAM we use the local
memory to cut-off the recursion of the position map at an earlier
stage.

Table 5 presents the results of the comparison for varying mem-
ory sizes. In the experiments where we used 𝑍 = 131, 220 and
𝜖 = 1/10 for our construction. And for Path ORAM we used a
bucket size of 4 as recommended in [44]. Our construction outper-
forms Path ORAM in terms of bandwidth by a significant factor.

Running time. We have ignored running times so far, and our
main metric is bandwidth as it is the main bottleneck. In Table 6
we compare the average time to retrieve an element in our ORAM,
compared to Path ORAM. For reference, we also report the average
running time of just accessing an element in the memory non-
obliviously. When profiling the code, we saw that computing the
PRF consumes the most time. Still, as expected, the most dominating
factor is reading/writing from the disk.

Various block sizes and round-trips. OptORAMa’s optimality
is when the block size is small, in particular, 𝑂 (log𝑁) bits. Path
ORAM improves and gets closer to the asymptotics of OptORAMa
when blocks become large (Ω(log2 𝑁)). Table 7 compares the two
schemes with various memory sizes and with different block sizes.
In short, as block sizes grow, the advantage in bandwidth of our
construction compared to Path ORAM becomes less dramatic, but
our construction is still superior (i.e., our leading constants are
smaller). Nevertheless, we note that in terms of round-trips, Path
ORAM becomes better and better as block sizes grow while a hier-
archical ORAM (ours included) still requires logarithmic number
of levels/hash tables and therefore logarithmic round-trips.

Varying local memory size. In some applications, the user might
wish to use a larger local memory size, and reduce the round-trips
and bandwidth. Table 8 describes different local memory sizes and
how they affect the bandwidth and roundtrips.

8 CONCLUSION
Our results confirm that the hierarchical ORAM framework, with
appropriately adapted algorithms and optimizations, is practically
useful to execute algorithms with data-dependent memory accesses
at scale. Concretely, our ORAM design provides a general-purpose
oblivious memory that can be used to execute any algorithm in
a privacy-preserving manner. Our approach is novel, based on a
paradigm that has been largely considered practically irrelevant.
Thereby, we demonstrate that full hierarchical ORAMs can be im-
plemented efficiently. For many settings of natural parameters, our
construction beats all previously known constructions and provides
the only feasible solution. We believe that this advancement rep-
resents a significant step towards wider adoption of ORAM as a
tool, and for large scale MPC applications. Technically, we design,
optimize, and implement several oblivious building blocks that are
of independent interest. We provide a thorough theoretical analysis
for our construction that aligns with the implementation.

12

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

𝜖 Error Probability Bandwidth Roundtips
constant3 Total (blocks) Total (KB) Lookup Build Total

Total memory: 1GB (230 bytes), 𝒁 = 131, 220, local memory: 8MB
1/5 2−148 18.74 177 5.72 9 0.001 9.001
1/10 2−131 14.47 139 4.48 9 0.001 9.001
1/15 2−65 13.31 129 4.15 9 0.001 9.001

Total memory: 1TB (240 bytes), 𝒁 = 262, 440, local memory: 16MB

1/5 2−156 25.48 476 15.3 18 0.001 18.001
1/10 2−156 18.07 334 10.75 18 0.001 18.001
1/15 2−118 15.7 291 9.38 18 0.001 18.001

Total memory: 1PB (250 bytes), 𝒁 = 393, 660, local memory: 24MB

1/5 ≤ 2−161 33.94 959 30.19 28 0.001 28.001
1/10 2−161 22.07 626 19.73 28 0.001 28.001
1/15 2−161 18.11 516 16.25 28 0.001 28.001

Table 2: Error probability (per access), bandwidth and roundtrips of our construction.
In all rows, the blocksize is 32 bytes and stashBound is 9.

Z Local Memory 𝜖 Error Probability Bandwidth Roundtrips
(MB) constant3 Total (blocks) Total (KB)

262,440 16.52 1/15 2−118 15.71 292 9.38 18
1,049,760 66.07 1/30 2−120 12.95 216 6.95 16
7,217,100 454.26 1/80 2−119 11.48 169 5.16 14

Table 3: Various values of 𝒁 and 𝝐 for logical memory of 1TB (240). The blocksize is 32 bytes and stashBound is 9.

Memory Size Implementation Mathematical Analysis

1 GB 157 139
10 GB 236 212
100 GB 296 285
1 TB 351 359
10 TB 455 461

Table 4: The number of blocks being accessed (in average) on the server
when accessing an element on the logical memory. Comparison of our
implementation vs. the expected bandwidth according to the analysis.

Logical Memory Size Path-ORAM Our-construction

1 GB 28KB 4.9 KB
10 GB 46 KB 7.3 KB
100 GB 68 KB 9.2 KB
1 TB 84 KB 10.9 KB
10 TB 116 KB 14.2 KB

Table 5: Comparison to Path-ORAM. Reporting the average number of
bytes accessed when accessing a single element in the logical memory. In

both constructions, the local memory is 8MB.

ACKNOWLEDGEMENTS
We thank Ling Ren, Elaine Shi, and Xiao Wang for useful feedback
about Path ORAM.

Memory Size Non-Oblivious Path-ORAM Our construction
`𝑠 `𝑠 `𝑠

100MB 6.5 996 378
1 GB 6.8 1374 515

Table 6: Comparison of average running time per access for Path-ORAM,
our construction, and non-oblivious access using microseconds as the unit
of measurement. The local memory is 8MB. The results are average of 5

runs.

Ours Path ORAM
Block-size Roundtrips Bandwidth Roundtrips Bandwidth

32B 21.7 10.9KB 20 84KB
256B 17.7 67KB 10 135KB
1KB 15.7 229.6KB 6 393KB
4KB 13.7 772KB 4 1.2MB
256KB 7.7 24.4 MB 2 48MB
1MB 6.2 111MB 2 172MB

Table 7: Bandwidth as a function of different blocksize, for an ORAM size
of 1TB, with 𝑍 = 131, 220 and 𝜖 = 1/10.

Asharov andMichelson are sponsored by the Israel Science Foun-
dation (grant No. 2439/20). Asharov is sponsored in addition by JPM

13

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

𝜖 Error Probability Bandwidth Round-trips
constant4 Total (blocks) Total (KB) Lookup Build Total

Total memory: 1TB (240 bytes), 𝒁 = 262, 440, local memory: 16MB

1/5 2−156 25.48 476 15.3 18 0.001 18.001
1/10 2−156 18.07 334 10.75 18 0.001 18.001
1/15 2−118 15.7 291 9.38 18 0.001 18.001

Total memory: 1TB (240 bytes), 𝒁 = 524, 880, local memory: 33MB

1/5 2−164 25.14 436 14.03 17 0.0006 17.0006
1/10 2−164 17.67 309 9.95 17 0.0005 17.0005
1/15 2−164 15.44 271 8.7 17 0.0005 17.0005

Total memory: 1TB (240 bytes), 𝒁 = 2, 099, 520, local memory: 132MB

1/5 2−183 23.54 362 11.64 15 0.0001 15.0001
1/10 2−183 16.87 262 8.42 15 0.0001 15.0001
1/15 2−183 14.9 232 748 15 0.0001 15.0001

Total memory: 1TB (240 bytes), 𝒁 = 8, 398, 080, local memory: 528MB

1/5 2−201 21.94 294 9.4 13 0.00002 13.002
1/10 2−201 1607 217 7 13 0.00002 13.002
1/15 2−201 14.38 195 6.29 13 0.00002 13.002

Total memory: 1TB (240 bytes), 𝒁 = 16, 796, 160, local memory: 1GB

1/5 2−210 21.14 262 8.44 12 0.00001 12.00001
1/10 2−210 15.67 197 6.33 12 0.00001 12.00001
1/15 2−210 14.11 178 5.73 12 0.00001 12.00001

Table 8: Bandwidth and round-trips as a function of different local memory sizes.

Faculty Research Award, and by the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 891234. Komargodski is the incumbent
of the Harry & Abe Sherman Senior Lectureship at the School of
Computer Science and Engineering at the Hebrew University, sup-
ported in part by an Alon Young Faculty Fellowship, by a grant
from the Israel Science Foundation (ISF Grant No. 1774/20), and by
a grant from the US-Israel Binational Science Foundation and the
US National Science Foundation (BSF-NSF Grant No. 2020643).

REFERENCES
[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. 1983. An𝑂 (𝑛 log𝑛) Sorting

Network. In STOC. 1–9.
[2] Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. 2020. Bucket Oblivious Sort: An Extremely Simple Oblivious Sort. In
3rd Symposium on Simplicity in Algorithms, SOSA 2020. SIAM, 8–14.

[3] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,
and Elaine Shi. 2023. OptORAMa: Optimal Oblivious RAM. J. ACM 70, 1 (2023),
4:1–4:70. https://doi.org/10.1145/3566049

[4] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi.
2022. Optimal Oblivious Parallel RAM. In SODA. 2459–2521.

[5] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, and Elaine Shi. 2021. Oblivi-
ous RAM with Worst-Case Logarithmic Overhead. In Advances in Cryptology -
CRYPTO. 610–640.

[6] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and
Yan Huang. 2015. Practicing oblivious access on cloud storage: the gap, the
fallacy, and the new way forward. In CCS. 837–849.

[7] Elette Boyle, Kai-Min Chung, and Rafael Pass. 2016. Oblivious Parallel RAM and
Applications. In Theory of Cryptography - 13th International Conference, TCC.
175–204.

[8] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In CCS. 668–679.

[9] T.-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. 2017. Oblivious
Hashing Revisited, and Applications to Asymptotically Efficient ORAM and
OPRAM. In ASIACRYPT. 660–690.

[10] T.-H. Hubert Chan and Elaine Shi. 2017. Circuit OPRAM: Unifying Statistically
and Computationally Secure ORAMs and OPRAMs. In TCC. 72–107.

[11] Samuel Dittmer and Rafail Ostrovsky. 2020. Oblivious Tight Compaction In
𝑂 (𝑛) Time with Smaller Constant. In SCN. 253–274.

[12] Jack Doerner and Abhi Shelat. 2017. Scaling ORAM for Secure Computation.
In ACM SIGSAC Conference on Computer and Communications Security, CCS.
523–535.

[13] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A secure
processor architecture for encrypted computation on untrusted programs. In
STC. 3–8.

[14] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srini-
vas Devadas. 2015. Freecursive ORAM: [Nearly] Free Recursion and Integrity
Verification for Position-based Oblivious RAM. In ASPLOS. 103–116.

[15] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. 2015. Private
database access with he-over-oram architecture. In CANS. 172–191.

[16] Oded Goldreich. 1987. Towards a Theory of Software Protection and Simulation
by Oblivious RAMs. In STOC. 182–194.

[17] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. J. ACM 43, 3 (May 1996), 431–473.

[18] Michael T. Goodrich andMichael Mitzenmacher. 2011. Privacy-Preserving Access
of Outsourced Data via Oblivious RAM Simulation. In ICALP. 576–587.

[19] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. 2012. Secure two-party computation in
sublinear (amortized) time. In ACM Conference on Computer and Communications
Security, CCS. 513–524.

[20] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and
Vitaly Shmatikov. 2016. Breaking Web Applications Built On Top of Encrypted
Data. In CCS. 1353–1364.

[21] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

14

https://doi.org/10.1145/3566049

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

In NDSS.
[22] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2009. More Robust

Hashing: Cuckoo Hashing with a Stash. SIAM J. Comput. 39, 4 (2009), 1543–
1561.

[23] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in)security of
hash-based oblivious RAM and a new balancing scheme. In SODA. 143–156.

[24] Kasper Green Larsen and Jesper Buus Nielsen. 2018. Yes, There is an Oblivious
RAM Lower Bound!. In CRYPTO. 523–542.

[25] Tom Leighton, Yuan Ma, and Torsten Suel. 1995. On Probabilistic Networks for
Selection, Merging, and Sorting. In SPAA (Santa Barbara, California, USA) (SPAA
’95). ACM, New York, NY, USA, 106–118. https://doi.org/10.1145/215399.215429

[26] Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. 2019. Can We Overcome the 𝑛 log𝑛
Barrier for Oblivious Sorting?. In SODA.

[27] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and
Elaine Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation. In ASPLOS. 87–101.

[28] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A Programming Framework for Secure Computation. In S&P. 359–376.

[29] Bill Louden. 1983. Increase Your 100’s Storage with 128K from Compuserve.
Portable 100, 1 (1983), 1.

[30] Steve Lu and Rafail Ostrovsky. 2013. Distributed oblivious RAM for secure
two-party computation. In TCC. 377–396.

[31] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. PHANTOM: practical oblivious com-
putation in a secure processor. In CCS. 311–324.

[32] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. PHANTOM: practical oblivious com-
putation in a secure processor. In CCS. 311–324.

[33] Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth Chandran, Satya V.
Lokam, Elaine Shi, and Vipul Goyal. 2017. HOP: Hardware makes Obfuscation
Practical. In NDSS.

[34] Rafail Ostrovsky. 1990. Efficient Computation on Oblivious RAMs. In STOC.
ACM, 514–523.

[35] Rafail Ostrovsky and Victor Shoup. 1997. Private Information Storage. In STOC.
294–303.

[36] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.
PanORAMa: Oblivious RAM with Logarithmic Overhead. In FOCS. 871–882.

[37] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi,
Marten van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Im-
provements to Oblivious RAM. In USENIX Security Symposium. 415–430.

[38] Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, and Srinivas
Devadas. 2019. Design and Implementation of the Ascend Secure Processor. IEEE
Trans. Dependable Secur. Comput. 16, 2 (2019), 204–216.

[39] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas
Devadas. 2013. Design space exploration and optimization of path oblivious
RAM in secure processors. In ISCA. 571–582.

[40] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with𝑂 ((log𝑁)3) Worst-Case Cost. In ASIACRYPT. 197–214.

[41] Signal. 2022. Technology Deep Dive: Building a Faster ORAM Layer for Enclaves.
https://signal.org/blog/building-faster-oram. Accessed: 2023-03-30 14.

[42] Emil Stefanov and Elaine Shi. 2013. Oblivistore: High performance oblivious
cloud storage. In S&P. 253–267.

[43] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. 2012. Towards Practical
Oblivious RAM. In NDSS.

[44] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In CCS. 299–310.

[45] XiaoWang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM:On Tightness
of the Goldreich-Ostrovsky Lower Bound. In CCS. 850–861.

[46] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi.
2014. SCORAM: Oblivious RAM for Secure Computation. In CCS. 191–202.

[47] Peter Williams, Radu Sion, and Alin Tomescu. 2012. PrivateFS: A Parallel Oblivi-
ous File System. In CCS. 977–988.

[48] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. IACR Cryptol. ePrint Arch. (2015), 1153.

[49] Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adria Gascón, Jack Doerner,
David Evans, and Jonathan Katz. 2016. Revisiting Square-Root ORAM: Efficient
Random Access in Multi-party Computation. In S&P. 218–234.

[50] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable
Encryption. In USENIX. 707–720.

A PRELIMINARIES (CONT.)
A.1 Concentration Bounds
We define a hypergeometric distribution.

Definition A.1 (Hypergeometric Distribution). The hypergeomet-
ric distribution 𝐻 (𝑛, 𝑅,𝑚) describes the number of red balls drawn in
an experiment where𝑚 balls are sampled without replacement from
a universe containing 𝑛 balls, 𝑅 of which are red.

We state a concentration of measure theorem for hypergeometric
distributions (see [?], Chapter 7).

Proposition A.2. Let 𝐻 = 𝐻 (𝑛, 𝑅,𝑚) be a hypergeometric distri-
bution as in Definition A.1. Let 𝑋 be a random variable distributed
according to 𝐻 . Letting 𝜖 > 0 and assuming that 𝑛 > 2, it holds that

Pr
[����𝑋 − 𝑅𝑛𝑚���� > 𝜖 𝑅𝑛𝑚]

≤ exp
(
−𝜖2 𝑅2𝑚

𝑛(𝑛 −𝑚)

)
.

We state also Chernoff’s bound:

Proposition A.3 (Chernoff’s bound). Suppose 𝑋1, . . . , 𝑋𝑛 are in-
dependent random variables taking values from {0, 1}. Let 𝑋 denote
their sum and let ` = 𝐸 [𝑋] denote the sum’s expected value. Then,
for every 0 ≤ 𝛿 ≤ 1:

Pr [|𝑋 − ` | > 𝛿 · `] < 2𝑒−𝛿
2`/3

A.2 Oblivious Computation

Oblivious machines. We adopt standard definitions of Oblivious
RAM machines and refer the readers to [3] for further reading. We
define oblivious simulation of (possibly randomized) functionalities.
A RAM is an interactive Turing machine that consists of a memory
and a CPU. The memory is denoted as mem[𝑁,𝑤], and is indexed
by the logical address space [𝑁] = {1, . . . , 𝑁 }. We refer to each
memory word also as a block and we use𝑤 to denote the bit-length
of each block. In this work, we follow the standard setting where
the block size is of𝑂 (log𝑁), and specifically, we use the same word-
size as standard computer, namely, 64-bit. The memory supports
read/write instructions (op, addr, data) where op ∈ {Read, Write},
addr ∈ [𝑁] and data ∈ {0, 1}𝑤 ∪{⊥}. If op = Read, then data = ⊥
and the returned value is mem[addr]. If op = Write then we write
mem[addr] = data.

Oblivious simulation.We consider machines that interact with
thememory via Read/Write operations.We consider RAMprogram
that is reactive; namely, it supports several commands and interacts
with the memory to implement that commands. Each command
has some input and output, and the program stores some state
between the different commands in the memory. Let G be such a
(reactive) RAM program; We say that G is oblivious if its access
pattern can be simulated by a simulator who receives only the type
to the commands but not the inputs of the commands. Moreover, we
say that a reactive machine𝑀F obliviously simulates the reactive
machine F if it has the exact same input/output behavior as the
program F , but in addition it is also oblivious; namely, its access
pattern can be simulated. Formally:

Definition A.4 (Oblivious simulation of a reactive RAM program).
We say that a reactive machine𝑀F is an oblivious implementation
of the reactive functionality F if there exists a probabilistic poly-
nomial time (PPT) simulator Sim, such that for any non-uniform
PPT adversary A, the view of the adversary A in the following
two experiments 𝑅𝑒𝑎𝑙A,𝑀 (_) and 𝐼𝑑𝑒𝑎𝑙FA,Sim (_) is computationally-
indistinguishable:

15

https://doi.org/10.1145/215399.215429
https://signal.org/blog/building-faster-oram

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

𝑅𝑒𝑎𝑙A,𝑀 (_):
Let (command𝑖 , inp𝑖) ← A(1_).
Loop while command𝑖 ≠ ⊥:

out𝑖 , addr𝑖 ← 𝑀 (1_, command𝑖 , inp𝑖).
(command𝑖 , inp𝑖) ← A(1_, out𝑖 , addr𝑖).

𝐼𝑑𝑒𝑎𝑙FA,Sim (_):

Let (command𝑖 , inp𝑖) ← A(1_).
Loop while command𝑖 ≠ ⊥:

out𝑖 ← F (command𝑖 , inp𝑖)
addr𝑖 ← Sim(1_, command𝑖).
(command𝑖 , inp𝑖) ← A(1_, out𝑖 , addr𝑖).

Public inputs, hybridmodel, and input assumptions.We some-
times use the notion of “public inputs" (e.g., the size of the array).
This is a public parameter to the command, which the simulator also
receives as input when simulating the command. We also describe
executions in a hybrid model, i.e., a program 𝑀 in the F -hybrid
model, denoted as𝑀F . In that model, the program𝑀 can invoke
the function F and the access pattern is not given to the adversary
(i.e., the adversary is only notified that F is invoked). See a formal
definition in [3]. We sometimes also have some input assumptions
(for instance, hash tables assume that the input is randomly shuf-
fled using a permutation that is not known to the adversary). In
that case, we assume that the input assumption 𝑋 is implemented
using some functionality F𝑋 and analyze the construction in the
F𝑋 -hybrid model, without charging the cost of implementing F𝑋 .

Oblivious RAM. An ordinary ORAM is essentially a functional-
ity that implements logical memory. The functionality (given in
Functionality A.5) is reactive in which the adversary can choose
the next command (i.e., either Read or Write) as well as the address
and data according to the access pattern it has observed so far.

Functionality A.5 (Oblivious RAM):

The functionality is reactive and holds as an internal state – 𝑁
memory of blocks, each of size 𝑤 , 𝑋 [1, . . . , 𝑁]. Initially, each
𝑋 [addr] = 0 for every addr ∈ [𝑁].

Access(op, addr, data): where op ∈ {Read, Write}, addr ∈
[𝑁] and data ∈ {0, 1}𝑤 :
(1) If op = Read then set data∗ = 𝑋 [addr].
(2) If op = Write then set 𝑋 [addr] = data and data∗ =

data.
(3) Output data∗.

Efficiencymeasures.We use the terminology bandwidth to denote
the total number of read/write operations of size𝑤 themachine uses.
We use bandwidth in the amortized sense. We also count round-
trips; we allow sending several read/write operations in parallel
to the memory (and count each as part of the bandwidth). The
round-trips are the number of rounds of accesses to the memory.

B DETAILS ON BUILDING BLOCKS
This section provides full details for the building blocks mentioned
in Section 2.

B.1 Oblivious 2-Key Dictionary
An oblivious dictionary is a dynamic data structure that allows
inserting of elements (𝑘, ℓ, 𝑣) where 𝑘 is the key (i.e., in [𝑁]), ℓ is a
label (in {0, 1}𝑤), and 𝑣 is the value (in {0, 1}𝑤). It is assumed that
the same key 𝑘 appears at most once in the dictionary. One can
pop an element with the key 𝑘 by using PopKey(𝑘)– the operation
removes the element with the key 𝑘 . It also supports PopLabel(ℓ),
which returns (and removes) an element with the label ℓ , if exists
in the dictionary. We formalize the primitive in Functionality B.1.
We remark that the following is not our implementation of the
primitive but just a description of the input-output relation. Details
of our implementation of this primitive are given in Section 5.3.

Functionality B.1 (Fdict – 2-Key Dictionary Functionality):

Initialization:𝑀 is an set.
Fdict .Insert(𝑘, ℓ, 𝑣): on input a key 𝑘 , label ℓ and value 𝑣 :

If 𝑘 ≠ ⊥, and there is no (𝑘, ·, ·) in 𝑀 , then add (𝑘, ℓ, 𝑣) to
𝑀 .

Fdict .PopKey(𝑘, ℓ): on input a key 𝑘 and a label ℓ :
Find an element (𝑘, ℓ ′, 𝑣 ′) ∈ 𝑀 . If ℓ = ℓ ′ then return 𝑣 ′, and
delete (𝑘, ℓ ′, 𝑣 ′) from𝑀 . Otherwise, return ⊥.

Fdict .PopLabel(ℓ): on input label ℓ :
Return the lexicographicaly first 𝑘 such that (𝑘, ℓ, 𝑣) ∈ 𝑀
for some 𝑣 . If exists, then delete the triple (𝑘, ℓ, 𝑣) and return
𝑣 .

B.2 Oblivious Bin Placement
Oblivious bin placement recieves as input an array 𝑋 contianing
𝑛 real elements, each element is marked with some destination
bin. The goal of the functionality is to move all elements into their
destination bin (obliviously). We assume some parameter 𝑍 (which
is half of the target bin size). It is assumed that the number of
elements assigned to some destination bin is bounded by 2𝑍 . We
show how to implement this functionality based on [2].

Functionality B.2 (FBinPlacement: Oblivious Bin Placement):

Input: An array 𝑋 containing 𝑛 real elements. Each element
(𝑘, 𝑣, 𝑑) is marked with destination bin 𝑑 ∈ [𝑏]. It is assumed
that for every 𝑑 ∈ [𝑏], the number of elements assigned to it is
bounded by 2𝑍 .
(1) Initialize an array 𝑌 of size 2𝑛 containing 𝑏 bins, each is of

size 2𝑍 , denoted as 𝑌1, . . . , 𝑌𝑏 .
(2) For every 𝑑 ∈ [𝑏] assign to 𝑌𝑑 all real elements that are

marked with destination 𝑑 . Append to 𝑌𝑑 dummies such
that its size is 2𝑍 , and shuffle them.

(3) Return 𝑌 .

For completeness, we describe the implementation of this func-
tionality.

Algorithm B.3 (Oblivious Bin Placement):

Input: An array 𝑋 of size 𝑛, and a secret PRF key sk.
16

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

(1) Set 𝑍 = poly log _. Let 𝑏 = 2𝑛/𝑍 . Interpret 𝑋 as 𝑏 bins of size
𝑍/2 each, 𝑋1, . . . , 𝑋𝑏 .

(2) Define (log𝑏+1) arrays, each containing𝑏 bins of size𝑍 . Denote
the 𝑗th bin of the 𝑖th array 𝐴(𝑖)

𝑗
.5

(3) For every real element (𝑘, 𝑣) in𝑋 , define its key asPRFsk (𝑘) mod
𝑏.

(4) Initialize an array 𝑌 of total size 2𝑛. For 𝑖 = 1, . . . , 𝑏, read 𝑋𝑖
and append to 𝑌 the bin 𝑋𝑖 followed by 𝑍/2 dummy elements.

(5) Define 𝐴(0) = 𝑌
(6) For 𝑖 = 0, . . . , log𝑏 − 1:

(a) For 𝑗 = 0, . . . , 𝑏/2 − 1:
(i) Read bins 𝐴(𝑖)

𝑗 ′+𝑗 , 𝐴
(𝑖)
𝑗 ′+𝑗+2𝑖 where 𝑗

′ = ⌊ 𝑗/2𝑖 ⌋ · 2𝑖 into
the local memory.

(ii) Set 𝐵0 as all real elements in 𝐴(𝑖)
𝑗 ′+𝑗 ∪𝐴

(𝑖)
𝑗 ′+𝑗+2𝑖 where

the (𝑖 + 1)-st MSB of the key is 0.
(iii) Set 𝐵1 as all real elements in 𝐴(𝑖)

𝑗 ′+𝑗 ∪𝐴
(𝑖)
𝑗 ′+𝑗+2𝑖 where

the (𝑖 + 1)-st MSB of the key is 1.
(iv) Pad each 𝐵0, 𝐵1 to be of size 𝑍 with dummies.
(v) Write back 𝐵0 into 𝐴

(𝑖+1)
2𝑗 and 𝐵1 into 𝐴

(𝑖+1)
2𝑗+1 .

Claim B.4. Algorithm B.3 [[2]] obliviously implements Functional-
ity B.2, with bandwidth 4𝑛 log 𝑛

𝑍
and 𝑛

𝑍
log 𝑛

𝑍
roundtrips; the error

probability is bounded by 𝑒−𝑍/6.

Proof: We just go over the efficiency analysis here; security and
error probability [2]. The cost of one iteration in terms of band-
width is 4𝑛 (2𝑛 for reading each bin and 2𝑛 for writing). since there
are log 𝑛

𝑍
iterations the total bandwidth cost is 4𝑛 log 𝑛

𝑍
. As for

roundtrips, since we read and write two bins in one roundtrip, the
cost of one iteration is 𝑏/2 = 𝑛/𝑍 roundtrips. And so the total
roundtrip cost is 𝑛

𝑍
log 𝑛

𝑍
. □

B.3 Sample Secret Loads
The algorithm samples loads that remain secret from the adversary,
of throwing 𝑛′ balls into 𝑏 bins. That is, our goal is to sample
from the multinomial distribution with parameters 𝑛′, 𝑏. Explicitly,
the output is (ℓ1, . . . , ℓ𝑏) such that

∑𝑏
𝑖=1 ℓ𝑖 = 𝑛′ with probability(𝑛′

ℓ1,...,ℓ𝑏

)
· 𝑏−𝑛′ .

Denote by Binomial(𝑛′, 𝑝) the process of tossing 𝑛 coins, each
with probability 𝑝 to be head, and counting howmany coins resulted
in head. The output is 𝑘 ≤ 𝑛 with probability

(𝑛′
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛′−𝑘 .

Algorithm B.5 (SampleSecretLoads(𝑛′, 𝑏)):

Input: 𝑛′ is the total number of balls, and 𝑏 is the number of bins.
The algorithm:
(1) If 𝑏 = 1 then return 𝑛′.
(2) Let ℓ = Binomial(𝑛′, 1/𝑏).
(3) Return (ℓ, SampleSecretLoads(𝑛′ − ℓ1, 𝑏 − 1)).

5It is enough to allocate only two arrays - one is the current array, and the other is a
working array. At the end of each iteration, we swap between the current array and
the working array.

Claim B.6. The output of Algorithm B.5 is identically distributed to
the multinomial distribution with parameters (𝑛′, 𝑏).

Proof: First, if 𝑏 = 1 then the multinomial distribution assigns prob-
ability 1 to the output 𝑛′, and probability 0 to all other possibilities.
The algorithm always outputs 𝑛′.

For 𝑏 > 1, fix some output loads (ℓ1, . . . , ℓ𝑏) such that
∑𝑏
𝑖=1 ℓ𝑖 =

𝑛′. The probability to obtain output (ℓ1, . . . , ℓ𝑏) by the algorithm is:
(1) First we sample Binomial(𝑛′, 1/𝑏), which is ℓ1 with probability(𝑛′

ℓ1

)
· (1/𝑏)ℓ1 · (1 − 1/𝑏)𝑛′−ℓ1 .

(2) Then, the algorithm calls recursively to SampleSecretLoads(𝑛′−
ℓ1, 𝑏 − 1). This results with output (ℓ2, . . . , ℓ𝑏) with probability:(

𝑛′ − ℓ1
ℓ2, . . . , ℓ𝑏

)
· (𝑏 − 1)𝑛

′−ℓ1 .

Overall, we obtain output (ℓ1, . . . , ℓ𝑏) with probability:(
𝑛′

ℓ1

)
·
(
1
𝑏

)ℓ1
·
(
𝑏 − 1
𝑏

)𝑛′−ℓ1
·
(
𝑛′ − ℓ1
ℓ2, . . . , ℓ𝑏

)
· (𝑏 − 1)𝑛

′−ℓ1

=

(
𝑛′

ℓ1, . . . , ℓ𝑏

)
·
(
1
𝑏

)𝑛′
,

as required. □
We describe the implementation as a recursion for the purpose of

the proof. In our actual implementation, we run it iteratively and not
recursively; This enables us to save roundtrips. By storing locally
the index of the current bin, and the number of balls already thrown
to previous bins, we can implement the sampling non-interactively
and at no cost.

C COMPACTION - THE GENERAL CASE
In the general case, we have to hide the number of distinguished
elements. Note that this also implies that we cannot necessarily
apply the recursion on𝐴[1/4𝑛, . . . , 3/4𝑛] since it is not guaranteed,
for instance, that the number of 0s in the input array exceeds 1/4𝑛.
Let 𝑥 be the number of zeros in the entire input, and assume for
simplicity that 3𝑛/4 > 𝑥 > 𝑛/2. We expect that within each bin
the first 𝑥/𝑏 rows are all zeros, and the rest are ones. However, the
number of zeros and ones in each bin might be slightly different
than 𝑥/𝑏. Yet, with high probability the first 𝑥/𝑏 − 𝑍/4 rows are
all 0s. Moreover, all the rows in 𝑥/𝑏 + 𝑍/4, . . . , 𝑍 inside each bin
are all 1s. Thus, we have to operate recursively only at the range of
(𝑥/𝑏 − 𝑍/4, 𝑥/𝑏 + 𝑍/4). To hide 𝑥 , we obliviously copy only those
elements to some working array and operate there recursively.

Algorithm C.1 (Oblivious Compaction - General Case):

Input: An array 𝐴 of size 𝑛 in which 𝑥 elements are marked as
0 and the rest are marked 1. The number 𝑥 is given also as input.
Public input: The total number of elements 𝑛.
Input assumption: The elements are randomly shuffled. (The
input assumption holds only for the first level of the recursion.)
The algorithm:
(1) Run Steps 1-4 of Algorithm 3.1.
(2) Initialize a working array 𝐵 of size 𝑛/2 as 𝑏 bins of size 𝑍/2

each, 𝐵 = (𝐵1, . . . , 𝐵𝑏).
17

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

(3) Set (𝛼, 𝛽) =

(0, 𝑍/2) if 𝑥/𝑏 ∈ [0, 𝑍/4) ,
(𝑥/𝑏 − 𝑍/4, 𝑥/𝑏 + 𝑍/4) if 𝑥/𝑏 ∈ [𝑍/4, 3𝑍/4) ,
(𝑍/2, 𝑍) if 𝑥/𝑏 ∈ [3𝑍/4, 𝑍] .

(4) For every 𝑖 ∈ [1, 𝑏] read bin Bin𝑖 to the local memory, compact
it locally, and write Bin𝑖 [𝛼, 𝛽] into 𝐵𝑖 .

(5) Run the algorithm recursively on 𝐵 with 𝑥 − 𝑏𝛼 as the number
of distinguished elements.

(6) Read Bin𝑖 ; Write locally 𝐵𝑖 into Bin𝑖 [𝛼, 𝛽] and write back Bin𝑖 .

Theorem C.2. Algorithm C.1 is an oblivious tight compaction. Its
bandwidth is bounded by 10.3𝑛 where 𝑛 is the number of elements in
the input array. The number of roundtrips is bounded by 4.2𝑛/𝑍 . The
error probability is bounded by 2𝑛/𝑍 · exp(−𝑍/256).

Proof: We start with the efficiency analysis. Similarly to the proof
of Theorem 3.2, we have that within each recursive call, we read a
bin locally, write it back, write half of it also to some working array
(this can be done in one roundtrip while taking 2.5𝑍 bandwidth).
Later, after the recursive call, we read the half from the working
array, read the bin again, and write it back. Overall, we read and
write each bin twice and read and write its half once, resulting in
5𝑛 without considering the recursive call. Overall, we get 10𝑛, ig-
noring the RandCyclicShift. For RandCyclicShiftwe pay additional
0.3𝑛, resulting in 10.3𝑛 bandwidth. Similar analysis shows that the
roundtrip is bounded by 4.2𝑛/𝑍 .

Obliviousness is clear. As for correctness, a similar analysis to
that of Theorem 3.2 shows that the in each bin, the elements in the
range [0, 𝛼] are all 0s and the elements in [𝛽, 𝑍] are all 1s with the
same error probability bound as in Theorem 3.2. □

D OMITTED PROOFS
D.1 Proof of Theorem 3.2
Theorem D.1 (Theorem 3.2, restated). Algorithm 3.1 is an oblivious
tight compaction for arrays where exactly half of the elements are
distinguished. Its bandwidth is bounded by 4.2𝑛 where𝑛 is the number
of elements in the input array. The number of roundtrips is 2.1𝑛/𝑍 .
The error probability is bounded by 2𝑛/𝑍 · exp(−𝑍/256).

Proof: We start with the efficiency analysis. When 𝑏 = 1, then
the bandwidth is simply reading the bucket and then writing it
back. For the general case, we read the bucket exactly once, write
it back once, and run recursively on half of the array. Denoting
𝐵(𝑛) the bandwidth of the algorithm on an input of length 𝑛, we
have that 𝐵(𝑛) = 𝐵(𝑛/2) + 2𝑛 for the first six iterations (with-
out RandCyclicShift). This results in a total of 4𝑛. When applying
RandCyclicShift, the cost is 𝐵(𝑛) = 𝐵(𝑛/2) + 6𝑛, i.e., a total of 12𝑛.
We run the first 6 iterations without RandCyclicShift (paying at
most 4𝑛), and then continue with running RandCyclicShift on the
input of size 𝑛/64, paying at most 0.2𝑛. The total is bounded by
4.2𝑛. As for roundtrips, we read/write 𝑍 elements at a time, and so
using a similar analysis we have 2.1𝑛/𝑍 roundtrips.

Simulation of RandCyclicShift is trivial - just moving elements
according to some random shift. All the access pattern is deter-
ministic: The access pattern is simply reading a bin and writing
it back, and which elements reside in each bin is public. The only

input-dependent operations happen within the sorting within each
bin, which happens in the local memory.

We now turn to correctness. After shuffling the elements (as part
of the input assumption), within the first six recursive calls, there
is no further randomness involved in the process. As such, whether
the algorithm will abort or not is already determined by the input
assumption. For the following recursive calls, we do introduce new
randomness and so we will need to take it into account to argue
that the algorithm succeeds.

First six iterations. Focusing on the first six iterations, we have
that:
(1) In the first level of the recursion, there are 𝑛 elements, 𝑏 =

⌈𝑛/𝑍 ⌉ bins, each of size 𝑍 . Denote the bins by Bin1, . . . ,Bin𝑏 .
It is necessary that for every 𝑗 ∈ [𝑏] the bin Bin𝑗 contains at
least 𝑍/4 elements marked as 0s and 𝑍/4 elements marked as
1s, as otherwise processing Bin𝑗 would fail.

(2) In the second level of the recursion, there are 𝑛/2 elements and
𝑏2 = (𝑛/2)/𝑍 bins, each is of size 𝑍 . Denote the 𝑗 th bin as Bin2

𝑗

for 𝑗 ∈ [𝑏 ′]. Note that Bin2
𝑗
receives elements from exactly two

bins from the previous recursion level, specifically, from Bin𝑗
and Bin𝑗+𝑏2 . If we reach the second level of the recursion, and
in addition Bin𝑗 ∪ Bin𝑗+𝑏2 , which is of a total size 2𝑍 contains
𝑍 −𝑍/4 elements marked as zero, and at least 𝑍 −𝑍/4 elements
marked as ones, then the processing of Bin(2)

𝑗
is guaranteed to

succeed.
(3) More generally, in the 𝑘th level of the recursion for 𝑘 in 1 to 6,

there are𝑛/2𝑘−1 elements, and𝑏𝑘 = (𝑛/2𝑘−1)/𝑍 bins, each is of
size 𝑍 . The bin Bin𝑘

𝑗
receives its elements from exactly two bins

from the previous recursion level, and thus from exactly 2𝑘−1
bins from the first recursion level - i.e., ∪𝑗 ∈𝑆Bin𝑗 , for some set
𝑆 of cardinality 2𝑘−1 (explicitly, 𝑆 = { 𝑗, 𝑗 + 𝑏𝑘 , 𝑗 + 2𝑏𝑘 , . . . , 𝑗 +
2𝑘−2𝑏𝑘 }). If we reach the 𝑘th level of the recursion, and if
∪𝑗 ∈𝑆Bin𝑗 (which contain in total 2𝑘−1𝑍 elements) contains at
least 2𝑘−2𝑍 + 𝑍/4 elements marked as zero and 2𝑘−2𝑍 + 𝑍/4
elements marked as one, then processing the 𝑗 th bin in the 𝑘th
level of recursion will succeed.

Thus, it is enough to show that for every 𝑆 of cardinality 𝑋 it holds
that

Pr
[
zeros in ∪𝑗 ∈𝑆 Bin𝑗 =

|𝑆 |𝑍
2
± 𝑍

4

]
We’ll use proposition A.2:

Pr
[����𝑋 − 1

2
|𝑆 |𝑍

���� > 𝜖 |𝑆 |𝑍2]
≤ exp

(
−𝜖2 (𝑛/2)

2 |𝑆 |𝑍
𝑛(𝑛 − |𝑆 |𝑍)

)
.

Set 𝜖 = 1/(2|𝑆 |):

Pr
[����𝑋 − 1

2
|𝑆 |𝑍

���� > 𝑍

4

]
≤ exp

(
− (𝑛/2)2 |𝑆 |𝑍
4|𝑆 |2𝑛(𝑛 − |𝑆 |𝑍)

)
.

Observe that the above probability grows with |𝑆 |, but since we
only apply it with |𝑆 | = 25 (in the worst case), we can bound the
above by 𝑒 (−𝑍/256) . Thus, for sufficiently large 𝑍 a high success
probability is guaranteed.

The other iterations: Here, we leverage the fact that we perform
RandCyclicShift before fixing the content of the bins. Let us fix
a bin and let 𝑋 :=

∑𝑍
𝑖=1 𝑋𝑖 be the total number of distinguished

18

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

elements in that bin, where𝑋𝑖 is the bit associated with the 𝑖-th ball
in that bin, indicating whether its distinguished or not. Observe
that 𝑋𝑖 is distributed according to a Bernoulli distribution 𝐵(1, 𝑝𝑖),
where 𝑝𝑖 is the fraction of distinguished elements in the 𝑖-th row
(Bin1 [𝑖], . . . ,Bin𝑏 [𝑖]) and the 𝑋𝑖 ’s are independent. Furthermore,
E[𝑋] = ∑𝑍

𝑖=1 𝑝𝑖 . Thus, by Chernoff’s inequality,

Pr
[
|𝑋 − E[𝑋] | > 𝑍

4

]
≤ 2𝑒−𝑍/24 .

Thus, except with negligible probability of error, the total number
of distinguished elements in each bin must be within the range
(E[𝑋] − 𝑍/4,E[𝑋] + 𝑍/4).

By a union bound over all 𝑛/𝑍 bins in all iterations, the above
holds for all bins simultaneously with probability 1−(2𝑛/𝑍)𝑒−𝑍/256.

□

D.2 Proof of Claim 5.4
Claim D.2 (Claim 5.4, restated). Construction 5.3 implements FHT
assuming the existence of pseudorandom functions and that Bin im-
plements FHT. The bandwidth is as follows:

Algorithm Bandwidth Roundtrips Error

Build 4𝑛 log𝑛/𝑍 𝑛/𝑍 log𝑛/𝑍 2𝑛
𝑍
𝑒−𝑍/6

Lookup 4 1 0
Extract 3𝑛 2𝑛/𝑍 2𝑛

𝑍
𝑒−𝑍/6

Proof: We start with the efficiency analysis. The input of Build is
an array of size 𝑛. The output of FBinPlacement is an array of size
2𝑛, and the cost is 4𝑛 log(𝑛/𝑍) in bandwidth. Lookup requires just
a Lookup in the respective bin, and Extract calls to extract of each
bin locally and then writes back roughly half of the bin (with a total
of precisely half of what we read). This is therefore 3𝑛.

Correctness of Build. Build simply assigns a random bin for
each real element. Thus, the expected load of each bin is 𝑍 . The
load of a bin is distributed according to the binomial distribution
Bin(𝑛, 1/𝑏) (i.e., the probability to have load 𝑡 is

(𝑛
𝑡

)
(1/𝑏)𝑡 (1 −

1/𝑏)𝑛−𝑡). According to Chernoff bound, the probability that a bin
is assigned with more than 𝑍 elements is bounded by 𝑒−𝑍/6, which
is negligible. As such, the input assumption of Functionality B.2 is
preserved, and thus Build succeeds with overwhelming probability.
Given that Build succeeds, it is straightforward that the lookups
in a real execution return the same results as the functionality.

Correctness of Extract().Weargue that the output of the Extract()
in the real execution results in a random shuffle of all elements
that were not queried in the hash table, combining with numFound
dummies. To see that, we can assume that we replace all real ele-
ments that are found with dummies, while for simplicity both in the
real and ideal experiments, we tag each dummy with some unique
identifier (this simplifies counting the different possible outputs).
In the real experiment, we “throw" all remaining real elements
into the bins (according to the multi-nomial distribution), throw
the numFound dummy elements into the 𝑏 bins, shuffle each bin,
and concatenate the bins. Fix a particular load (𝑛1, . . . , 𝑛𝑏) with∑𝑏
𝑖=1 𝑛𝑖 = 𝑛. Out of the 𝑛 balls, there are exactly

(𝑛
𝑛1,...,𝑛𝑏

)
ways to

distribute the 𝑛 elements into the 𝑏 bins; then, we shuffle each bin,

and in the 𝑖th bin we have (𝑛𝑖 !) different possible orderings. Overall,
the total number of possible outputs with the loads (𝑛1, . . . , 𝑛𝑏) is(

𝑛

𝑛1, . . . , 𝑛𝑏

)
· (𝑛1)! · . . . (𝑛𝑏)! = 𝑛! .

That is, conditioned on loads (𝑛1, . . . , 𝑛𝑏), all permutations are
equally likely. In the functionality, again assuming that all dummy
elements replaced real balls that were queried receive some unique
identifiers, we also have 𝑛! possible outputs and each is equally
likely. This shows that the real algorithm provides the same output
as the functionality.

Obliviousness. We describe the simulator Sim: In Build, it sim-
ulates an invocation of FBinPlacement. For each Lookup, it simu-
lates an access to a random bin and performs FHT .Lookup at that
bin. In Extract, it simulates FHT .Extract() for each one of the 𝑏
bins; Then, it samples fresh loads of 𝑛 balls into 𝑏 bins – i.e., loads
(𝑛1, . . . , 𝑛𝑏) ← Multinomial(𝑛,𝑏), where Multinomial denotes a
sampler of the multinomial distribution (see more in Section B.3).
Then, for every 𝑖 ∈ [𝑏], it simulates reading the next bin (of size
2𝑍) and appends to the output array 𝑛𝑖 elements.

The fact that the simulator simulates the access pattern of Build
and Lookup is obvious by construction and we argue that the sim-
ulation of the access pattern of Extract is identical to the access
pattern of the real algorithm. Indeed, in the simulation, we leak bin
loads (𝑛1, . . . , 𝑛𝑏), where

∑
𝑛𝑖 = 𝑛. The real-world algorithm leaks

𝐿𝑖 + ℓ𝑖 for each bin 𝑖 . Why are these distributed identically? (1) the
distribution of accessed real elements is sampled via a balls-to-bins
(multinomial) distribution (because this is how they were thrown,
to begin with); and (2) because throwing 𝑛 balls into 𝑏 can be done
either directly or by first throwing 𝑛 − numFound balls to 𝑏 bins
and then numFound balls, for every possible 0 ≤ numFound ≤ 𝑛.

Error probability of Extract(). The Extract operation fails if
by throwing the elements according to the secret load we have a
bin which overflows. As explained in the previous paragraph, each
bin is distributed as a balls-to-bins (multinomial) distribution, and
so the probability for the above to occur for a particular bin is at
most 𝑒−𝑍/6. By a union bound over the number of bins, we get an
error probability of (2𝑛/𝑍) · 𝑒−𝑍/6.

□

D.3 Construction and Proof of Theorem 5.5

Construction D.3 (Level – implementing FHT):

HT.Build(𝐴, id):
Input: Array𝐴 of 𝑛 elements, containing real elements (of the form
(𝑘, 𝑣)) and dummy elements, and the identity of the hash table (i.e.,
the level).
Public input: The total number of elements, 𝑛, and a global pa-
rameter 𝜖 .
Input assumption: The elements in 𝐴 are randomly shuffled.
The algorithm:
(1) Set 𝑍 = poly log _, 𝑏 = 2𝑛/𝑍 .
(2) Initialize an array 𝐵 of size 2𝑛, interpreted as 𝑏 bins 𝐵1, . . . , 𝐵𝑏 ,

each of size 𝑍 . Initialize overflowPile of total size 2𝜖𝑛.
19

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

(3) Sample a random PRF key sk← {0, 1}_ .
(4) Non-oblivious balls into bins:

(a) Read the next 2𝑍 elements from 𝐴.
(b) Locally assign each element (𝑘𝑖 , 𝑣𝑖) to bin 𝛽𝑖 = PRFsk (𝑘𝑖).

If the element is a dummy, assign a random bin 𝛽𝑖 ← [𝑏].
Append the 𝑖th element to bin 𝐵𝛽𝑖 .

(5) Sample secret loads and move elements to overflow pile:
(a) (ℓ1, . . . , ℓ𝑏) ← SampleSecretLoads(𝑛−𝑛·𝜖, 𝑏) (AlgorithmB.5).
(b) For every 𝑖 ∈ [𝑏]: From each 𝐵𝑖 , let 𝐿𝑖 be its public load, i.e.,
|𝐿𝑖 | = |𝐵𝑖 |. Read to the local memory the top 2𝜖𝑍 blocks of
the bin, i.e., elements in [𝐿𝑖 − 2𝜖𝑍, 𝐿𝑖] from 𝐵𝑖 . (Actually,
since the local memory is of size 2𝑍 , we can do the above
on 1/𝜖 bins in parallel.)

(c) If ℓ𝑖 ≤ 𝐿𝑖 − 2𝜖𝑍 , or ℓ𝑖 ≥ 𝐿𝑖 then abort and output fail.
(d) Move 2𝜖𝑍 elements to overflowPile where all elements

in [𝐿𝑖 − 2𝜖𝑍, ℓ𝑖] are replaced with dummies.
(e) Write back 2𝜖𝑍 blocks to the top of 𝐵𝑖 , where all elements

in [ℓ𝑖 , 𝐿𝑖] are replaced with dummies.
(6) Initialize Fdict.
(7) Build main bins:

(a) Read each bin 𝐵𝑖 to the local memory.
(b) Run ObvBin𝑖 ← Bin.Build(𝐵𝑖) (see Section 5.1) with ac-

cess to Fdict.
(8) Build overflow pile:

(a) Run CompactArrayByHalf (Algorithm 3.1) on overflowPile
moving dummy elements to the end and truncate them.

(b) Run Construction 5.3, with access to Fdict:
ObvOverflowPile← overflowPile.Build(overflowPile).

(9) (ObvBin1, . . . , ObvBin𝑏 , ObvOverflowPile) are stored in the
memory. The secret key sk is stored locally.

HT.Lookup(𝑘)
Input: 𝑘𝑖 ∈ [𝑁].
The algorithm:Using (ObvBin1, . . . , ObvBin𝑏 , ObvOverflowPile)
that are stored in the memory and sk that is stored locally:
(1) Run result← ObvOverflowPile.Lookup(𝑘).
(2) If result is dummy, then set 𝛽 ← PRFsk (𝑘) and run

ObvBin𝛽 .Lookup(𝑘). If found, increment the counter numFound
and return the element that was found.

(3) Otherwise, i.e., result is not dummy and is not marked as found
in ObvOverflowPile, set 𝛽 ← [𝑏], run ObvBin𝛽 .Lookup(⊥)
and return result.

HT.Extract()
(1) Let 𝑋 = ObvBin1 .Extract()∥ . . . ∥ObvBin𝑏 .Extract()∥.
(2) Let 𝑌 = ObvOverflowPile.Extract().
(3) For every element (𝑘𝑖 , 𝑣𝑖) in 𝑌 , compute its origin bin 𝑑𝑖 =

PRF𝑘𝑖 .
6 Call FBinPlacement (Functionality B.2) on 𝑌 where each

element is obliviously placed in its origin bin, 𝑌1, . . . , 𝑌𝑏 .
(4) Locally: for every 𝑖 ∈ [𝑏], append𝑊𝑖 = 𝑋𝑖 ∥𝑌𝑖 , truncate it to

size 𝐿𝑖 (its origin public load) by removing dummy elements,
and shuffle it.

(5) Return𝑊1, . . . ,𝑊𝑏 .

6We assume that elements that were found in the overflow pile and replaced with
dummies retain their original key so that they can be returned to their origin bins.

Theorem D.4 (Theorem 5.5, restated). Assuming that PRF is a
pseudorandom function, Construction D.3 obliviously implement FHT.
Moreover,

Algorithm Bandwidth Roundtrips

Build 6𝑛 + 14.4𝜖𝑛 + 4𝜖𝑛 log 𝜖𝑛
𝑍

(
3𝑛 + 6.2𝜖𝑛 + 𝜖𝑛 log 𝜖𝑛

𝑍

)
/𝑍

Lookup 8 2
Extract 3𝑛 + 7𝜖𝑛 + 4𝜖𝑛 log 𝜖𝑛

𝑍

(
2𝑛 + 4𝜖𝑛 + 𝜖𝑛 log 𝜖𝑛

𝑍

)
/𝑍

In addition, Build and Extract perform 2(1+𝜖)𝑛
𝑍

· stashBound calls
to Fdict, and Lookup perform stashBound calls to Fdict. The error is
bounded by 4𝑛/𝑍 · exp(−min{ln(𝑍) · stashBound, 𝜖2𝑍/16}).

The bandwidth cost is as follows:
(1) Build: the non-oblivious balls into bins costs 2𝑛 bandwidth

and 𝑛/𝑍 roundtrips. Moving the elements into the overflow
pile obliviously takes 6𝜖𝑛 bandwidth and 2𝜖𝑛/𝑍 roundtrips
- reading 2𝜖𝑍 from each bin and writing it to both places -
4𝜖𝑍 , but in the same roundtrip, utilizing the 2𝑍 local-memory
and reading from 1/𝜖 different bins in the same roundtrip. We
run tight compaction on the overflow pile which costs 4.2 · 2𝜖𝑛
bandwidth and 2.1 ·2𝜖𝑛/𝑍 roundtrips. The build of the overflow
pile costs 4𝜖𝑛 log 𝜖𝑛

𝑍
bandwidth and 𝜖𝑛 log 𝜖𝑛

𝑍

𝑍
roundtrips, and

the build of the major bins costs 4𝑛 and 2𝑛/𝑍 roundtrips.
(2) Lookup we perform lookup in the overflow pile and in a major

bin, therefore we only access 4 blocks in two roundtrips, read
them and writing them back (looking in the overflow pile in
one roundtrip, and in the major bins in the second roundtrip).

(3) Extract: The extract of the overflow pile is 3𝜖𝑛, and 2𝜖𝑛/𝑍
roundtrips (see Claim 5.4). Extract has the reverse access pattern
of Build, where now we run extract of the overflow pile and of
the major bins instead of building them. This means running
oblivious bin placement on the overflow pile (4𝜖𝑛 log 𝜖𝑛

𝑍
band-

width, since we read two bins at a time, this requires 𝜖𝑛 log 𝜖𝑛
𝑍

𝑍
roundtrips), moving the elements from the overflow pile into
the major bins (reading 2𝜖𝑛 and writing them into the major
bins – total of 4𝜖𝑛 bandwidth and 2𝜖𝑛/𝑍 roundtrips), extracting
all bins – 3𝑛 bandwidth (reading total 2𝑛 but writing back just
𝑛). However, this still requires 2𝑛/𝑍 roundtrips (we have 2𝑛/𝑍
bins, in each round we read a bin and write back approximately
half of it).

Error probability.Wefirst bound the probability that a bin exceeds
𝑍 . The expected number of elements in each bin is 𝑍/2. Thus, we
can bound this error by 𝑒−𝑍/6.

Moreover, we sample throwing 𝑛 elements into the major bins.
The expected value of the load in each bin is ` = 𝑍/2. We now
bound the probability that 𝐿𝑖 < ` − 0.5𝜖𝑍/2. Plugging in 𝛿 = 0.5𝜖
to the following Chernoff bound

Pr [𝑋 ≤ (1 − 𝛿)`] ≤ exp(−𝛿2`/2),

we reach an error bound of exp(−𝜖2𝑍/16).
Similarly we sample throwing 𝑛 − 𝑛 · 𝜖 elements into the major

bins. The expected load in each bin is `𝑠 = 𝑍/2 − 𝜖𝑍/2. We now
20

FutORAMa: A Concretely Efficient Hierarchical Oblivious RAM

bound the probability that ℓ𝑖 > `𝑠 +0.5𝜖𝑍/2. Plugging in 𝛿 = 0.5 𝜖
1−𝜖

to the following Chernoff bound

Pr [𝑋 ≥ (1 + 𝛿)`] ≤ exp(−𝛿2`/(2 + 𝛿)),
we reach an error bound of exp(−𝑍𝜖2/(16−12𝜖))) ≤ exp(−𝜖2𝑍/16).
By a union bound over all bins, we get that the error probability is
bounded by 2𝑛/𝑍 · exp(−𝜖2𝑍/16).

We evaluate the error probability of the Build operation. To
this end, we apply a union bound to analyze the error probabil-
ity of each of the underlying operations. Recall that we invoke
overflowPile.Build, Bin.Build (both in the major bins and in the
overflow pile), Compaction on the overflow pile, Balls into bins,
and SampleSecretLoads. Thus, we get error at most
2𝜖𝑛
𝑍
𝑒−𝑍/6 + (2𝑛(1 + 𝜖)/𝑍) · 𝑍−stashBound + 2𝜖𝑛

𝑍
· exp(−𝑍/256)+

2𝑛
𝑍
𝑒−𝑍/6 + 2𝑛/𝑍 · exp(−𝜖2𝑍/16)

≤ 3𝑛
𝑍
· 𝑍−stashBound + 3𝜖𝑛

𝑍
· exp(−𝑍/256) + 3𝑛

𝑍
· exp(−𝜖2𝑍/16)

≤ 3𝑛
𝑍
· exp(− ln(𝑍) · stashBound) + 4𝑛

𝑍
· exp(−𝜖2𝑍/16)

≤ 4𝑛
𝑍
· exp(−min{ln(𝑍) · stashBound, 𝜖2𝑍/16}) .

D.4 Proof of Theorem 6.1
Theorem D.5 (Theorem 6.1, restated). Assuming a secure PRF,
Algorithm 6.2 obliviously implements the ORAM functionality (Func-
tionality A.5). Each access consumes (amortized):
• Bandwidth: log 𝑁

𝑍
· (11(1 + 𝜖) + 8𝜖 log(𝜖𝑁 /𝑍)) + 9,

• Roundtrips:
(
log 𝑁

𝑍
· (6(1 + 𝜖) + 𝜖 log(𝜖𝑁 /𝑍)) + 4.5

)
/𝑍 + log 𝑁

𝑍
.

The error probability for𝑚 accesses is bounded by
4𝑚
𝑍

log 𝑁
𝑍
exp(−min{ln(𝑍) · stashBound, 𝜖2𝑍/16, 𝑍/256}).

Proof: Our ORAM is the standard hierarchical ORAM from [3] so
we refer there for the exact proof. Here, we provide a proof sketch.
Assuming that the hash tables are implemented as an ideal FHT,
we obtain that the access pattern is deterministic. Therefore, we
can separately consider the access pattern and correctness. It is
clear that the access pattern can be simulated - we just call to the
underlying primitives at some public schedule. For correctness -we
replace all invocations of the underlying primitives with their ideal
implementation. To do so, just show that the input assumptions of
those primitives are preserved:
(1) In Step 6c, we have that the input array to intersperseMulti

consists of shuffled arrays since each one of the arrays is an
output of Extract.

(2) In Step 6d, we run hash table build, which assumes that the
input is randomly shuffled.

(3) It is also straightforward that the construction guarantees that
no item is searched twice on the same table between different
Builds.

As such, we can replace the hash tablewithFHT, intersperseMulti
with Fshuffle. At this point, correctness follows from standard hier-
archical ORAM (see [17]).

Efficiency analysis.We conclude with the efficiency analysis of
the whole ORAM. Each access Access(op, addr, data) results with
a single lookup in each level and we also rebuild each level once in

a while. Precisely, we rebuild level 𝑖 with the content of all levels
up to it every 2𝑖 accesses. The content of all level ≤ 𝑖 is collected
by extracting all these levels and then performing intersperseMulti.
We perform an analysis in an amortized sense where we consider
the total cost within a sequence of 𝑛 operations.

Lookup: Lookup within each level costs bandwidth 4 and 2
round trips. In average, half of the levels are not built, and thus we
get expected 2 log 𝑁

𝑍
and log 𝑁

𝑍
, respectively.

Rebuild:We distinguish between rebuilding the last level and
each one of the other levels.

Fix a level 𝑖 < 𝐿 and recall that it holds up to 2𝑖 elements. Re-
building it requires extracting all levels up to 𝑖 − 1, which costs
𝐸bandw = 3 · 2𝑖 + 7𝜖 · 2𝑖 + 4𝜖 · 2𝑖 log 𝜖 ·2𝑖

𝑍
in bandwidth and 𝐸rndt =(

2 · 2𝑖 + 4𝜖2𝑖 + 𝜖2𝑖 log 𝜖2𝑖
𝑍

)
/𝑍 in roundtrips. Then, we shuffle all

extracted lists using intersperseMulti, which costs 9 · 2𝑖 band-
width and 4.5 · 2𝑖/𝑍 roundtrips. Lastly, we rebuild the 𝑖th level
which costs 𝐵bandw = 6 · 2𝑖 + 14.4𝜖 · 2𝑖 + 4𝜖 · 2𝑖 log 𝜖 ·2𝑖

𝑍
and

𝐵rndt = (3 · 2𝑖 + 6.2𝜖2𝑖 + 𝜖2𝑖 log 𝜖2𝑖
𝑍
)/𝑍 , respectively. Upon𝑚 ac-

cesses, we rebuild level 𝑖 around𝑚/2𝑖+1 times. Summing over all
levels 𝑖 < 𝐿 = log 𝑁

𝑍
we get overall bandwidth:

𝐿∑︁
𝑖=ℓ

𝑚

2𝑖+1
·
(
18 · 2𝑖 + 21.4𝜖2𝑖 + 8𝜖2𝑖 log 𝜖 · 2

𝑖

𝑍

)
≤

𝑚 ·
𝐿∑︁
𝑖=ℓ

(
9 + 10.7𝜖 + 4𝜖 log 𝜖 · 𝑁

𝑍

)
≤

𝑚 log
𝑁

𝑍
· (9 + 10.7𝜖 + 4𝜖 log(𝜖𝑁 /𝑍)) .

A similar calculation gives the following bound to roundtrips:

𝑚

𝑍
log

𝑁

𝑍
· (4.75 + 5.1𝜖 + 𝜖 log(𝜖𝑁 /𝑍))

In every 2𝑁 accesses, we also rebuild level 𝐿 from its own content.
We already counted the cost of extracting all levels and rebuilding
the level 𝐿, we need in addition to count for interspersing all levels
with level 𝐿 (additional 9𝑁) and compacting level 𝐿 from 2𝑁 into
𝑁 . This adds at most 18𝑁 . Since this happens once in 2𝑁 accesses,
it contributes additional 9 blocks per access (and 4.5/𝑍 roundtrips).
Summing it all together, the amortized cost per access over all levels,
including all the lookups, is bounded by:

Bandwidth = log
𝑁

𝑍
· (11(1 + 𝜖) + 4𝜖 log(𝜖𝑁 /𝑍)) + 9 . (1)

The error probability of a level 𝑖 is 4·2𝑖
𝑍
· exp(−min{ln(𝑍) ·

stashBound, 𝜖2𝑍/16}). Let 𝐸1 := min{ln(𝑍) · stashBound, 𝜖2𝑍/16}
and 𝐸2 = 𝑍/256, and let 𝐸HT (2𝑖) denote the error associated with
level of size 2𝑖 , and𝐸intersperseMulti (2𝑖) be the error for intersperseMulti
for input of size 2𝑖 . Over the course of𝑚 accesses, the total error

21

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson

probability is:

𝐸𝑅𝑅 =

𝐿∑︁
𝑖=ℓ

𝑚

2𝑖+1
(
𝐸HT (2𝑖) + 𝐸intersperseMulti (2𝑖)

)
=

𝐿∑︁
𝑖=ℓ

𝑚

2𝑖+1

(
2𝑖+2

𝑍
exp(−𝐸1) +

2𝑖+1

𝑍
exp(−𝐸2)

)
≤ 2𝑚

𝑍
log

𝑁

𝑍
(exp(−𝐸1) + exp(−𝐸2))

≤ 4𝑚
𝑍

log
𝑁

𝑍
exp(−min{𝐸1, 𝐸2}) .

□

E OVERVIEW OF OPTORAMA
OptRAM [3] follows the hierarchical paradigm established by Gol-
dreich and Ostrovsky [16, 17]. An ORAM scheme in the hierar-
chical paradigm can be viewed as a technique to reduce the task
of constructing ORAM to constructing an oblivious hash table.
Specifically, a hierarchical ORAM typically consists of log2 𝑁 + 1
levels numbered 0, 1, 2, Each level 𝑖 is an oblivious hash table
that can contain at most 2𝑖 elements. An oblivious hash table is a
data structure that supports the following operations:
• Build takes an input array containing (key, value) pairs and

creates the data structure (we also say a pair is an element, a
block, or an item);

• Lookup receives a key 𝑘 , and returns the value corresponding
to the key 𝑘 contained in the data structure, or returns ⊥ if not
found or if the key looked up is dummy (denoted ⊥).

• Extract is called when the data structure is destructed, and
returns a list of all the elements in the data structure that were
never looked-up.

Optimizing oblivious hash table construction. The original
oblivious hash table implementation suggested by Goldreich and
Ostrovsky [16, 17] is slow and takes 𝑂 (𝑛 log𝑛) time to build for an
input array of size 𝑛. This would result in a non-optimal ORAM
scheme of at least Ω(log2 𝑁). Asharov et al. (following Patel et
al. [36]) showed an oblivious hash table with 𝑂 (𝑛) build time 𝑂 (1)
lookup overhead, in addition to a scan of a stash where few elements

may end up at. The stashes of all hash tables are later merged into
one large table so the cost of looking up the stashes does not affect
the overall complexity. The security of their construction relies on
an input assumption: the input array of Build must be randomly
shuffled. As such, to benefit from the reduction of the extra log𝑛-
factor in Build, the construction must guarantee that whenever a
hash table is being built, the input is randomly shuffled.

Technically, the hash table construction is obtained by hashing
elements into a set of smaller hash tables, each supporting poly-
logarithmically many elements in the input. The smaller hash tables
are implemented, at a high level, by optimizing oblivious Cuckoo
hash to obtain optimal overhead.

The ORAM, at a high level. As mentioned, for a logical memory
of 𝑁 blocks, the ORAM consists of a hierarchy of hash tables, hence-
forth denoted𝑇1, . . . ,𝑇𝐿 where 𝐿 = log𝑁 . Each𝑇𝑖 stores 2𝑖 memory
blocks. We refer to table 𝑇𝑖 as the 𝑖-th level. When receiving an
access request to Read/Write some logical memory address addr,
the ORAM proceeds as follows:
• Read phase. Access each level 𝑇1, . . . ,𝑇𝐿 in order and perform

Lookup for addr. If the item is found in some level𝑇𝑖 , then when
accessing all levels 𝑇𝑖+1, . . . ,𝑇𝐿 look for dummy.

• Write back. If this operation is Read, then store the found data
in the read phase and write back the data value to 𝑇1. If this
operation is Write, then ignore the associated data found in the
read phase and write the value provided in the access instruction
in 𝑇1.

• Rebuild: Every 2ℓ for ℓ ≥ 1 accesses, merge all levels {𝑇𝑗 }1≤ 𝑗≤ℓ
into level ℓ .
Since we use the efficient oblivious hash table construction men-

tioned above, we know that the Read/Write operations will con-
sume only logarithmic overhead. The remaining challenge is to
implement the Rebuild procedure efficiently. To this end, they
again utilize the fact that the (remaining) elements in each level
are randomly shuffled. This allows them to perform the merge in
essentially linear time by running a procedure they call intersperse.
Intersperse merges two randomly shuffled arrays into a joint shuf-
fled array in linear time. This allows to guarantee that the input
assumption is maintained when coming to build a hash table.

22

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries and Building Blocks
	2.1 Basic Building Blocks

	3 Oblivious Tight Compaction
	4 Intersperse
	5 Non-Recurrent Hash Tables
	5.1 Implementing Bins
	5.2 Implementing the Overflow Pile
	5.3 Level
	5.4 Dictionary Implementation

	6 ORAM
	7 Evaluation and Implementation
	7.1 Our Construction
	7.2 Implementation

	8 Conclusion
	References
	A Preliminaries (Cont.)
	A.1 Concentration Bounds
	A.2 Oblivious Computation

	B Details on Building Blocks
	B.1 Oblivious 2-Key Dictionary
	B.2 Oblivious Bin Placement
	B.3 Sample Secret Loads

	C Compaction - The General Case
	D Omitted Proofs
	D.1 Proof of Theorem 3.2
	D.2 Proof of Claim 5.4
	D.3 Construction and Proof of Theorem 5.5
	D.4 Proof of Theorem 6.1

	E Overview of OptORAMa

