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Abstract. Differential-Linear (DL) cryptanalysis is a well known crypt-
analytic technique that combines differential and linear cryptanalysis.
Over the years, multiple techniques were proposed to increase its strength
and applicability. Two relatively recent ones are: The partitioning tech-
nique by Leurent and the use of neutral bits adapted by Beierle et al. to
DL cryptanalysis.
In this paper we compare these techniques and discuss the possibility of
using them together to achieve the best possible DL attacks. We study
the combination of these two techniques and show that in many cases
they are indeed compatible. We demonstrate the strength of the com-
bination in two ways. First, we present the first DL attack on 4-round
Xoodyak and an extension to 5-round in the related key model. We show
that the attacks are possible only by using these two techniques simul-
taneously. In addition, using the combination of the two techniques we
improve a DL attack on 9-round DES. We show that the partitioning
technique mainly reduces the time complexity, and the use of neutral
bits mainly reduces the data complexity, while the combination of them
reduces both the time and data complexities.

Keywords:Differential-Linear Cryptanalysis, Partitioning, Neutral Bits,
Xoodyak, DES.

1 Introduction

1.1 Differential and Linear Cryptanalysis

The two main statistical cryptanalytic techniques are differential cryptanaly-
sis [10] and linear cryptanalysis [27]. Differential cryptanalysis was introduced
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by Biham and Shamir [10]. It analyzes the development of differences of plain-
text pairs through the encryption process. Let E be an n-bit block cipher con-
sisting of r rounds, and denote the input of the i’th round by Xi. A differen-
tial with probability p of t rounds of E is a statistical property of the form

Pr[Xi+t ⊕X ′
i+t = ΩO | Xi ⊕X ′

i = ΩI ] = p, denoted by ΩI
p−→ ΩO. Differential

attacks exploit differential characteristics (with high probability) to recover key
material.

Linear cryptanalysis was published by Matsui [27]. It analyzes the devel-
opment of parities of state bits of a single plaintext through the encryption
process. A linear approximation with bias ϵ is a statistical property of the form
Pr[C · λO = P · λI ] =

1
2 + ϵ, for two masks λI , λO, and · denoting the scalar

product. The quality of such linear approximation is measured by the absolute
value |ϵ|. Linear attacks exploit linear approximations (with high bias) to recover
key material.

Given the strength of both differential and linear cryptanalysis, modern block
ciphers are designed to withstand these attacks. A new block cipher should en-
sure that there are neither high-probability differential characteristics nor high-
bias linear approximations for “many” rounds of the cipher [30], and some design
methodologies have been developed to achieve that (e.g., the wide trail strat-
egy [16]). The result is ciphers with a sufficient number of rounds such that
there are no differential characteristics of probability p ≫ 2−n and no linear
approximations of bias | ϵ |≫ 2−

n
2 .

1.2 Differential-Linear Cryptanalysis

While it is possible to provide resistance against “long” differential character-
istics and linear approximations, “short” characteristics (with high probability
or bias) are inevitable. This fact led to the development of several cryptanalytic
techniques which exploit two “short” characteristics instead of one “long” char-
acteristic. Such techniques look on the cipher E as a decomposition1 E = E1◦E0,
and combine two “short” characteristics, one for E0 and the other for E1, as one
“long” characteristic for E.

The first combined technique is the Differential-Linear (DL in short) crypt-
analysis of Langford and Hellman [21]. DL cryptanalysis studies the relation
between the parity of state bits of two ciphertexts generated from two plaintexts
with a fixed difference. More precisely, given a difference ΩI and state bits λO,
DL cryptanalysis considers plaintexts pair (P, P ′ = P ⊕ΩI), and checks whether

1 We note that some works divide the cipher into three sub-ciphers E = E1 ◦Em ◦E0

(e.g., [3, 11–13, 25, 26]). This is mostly done to better understand the transition
between the two main sub-ciphers E0, E1 and most importantly the dependencies
between the two sub-ciphers. The emphasis of this paper is the external rounds
(rather the internal rounds and the transition). Our results are independent of these
works and thus we use the simpler description of DL attacks.

We note that both partition and neutral bits may still result in subtle dependencies
which may impact the transition, and hence we experimentally verified our results
whenever possible.
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the corresponding ciphertext pair (C,C ′) satisfies C · λO = C ′ · λO. Such a DL

characteristic ΩI → λO relies on a differential characteristic ΩI
p−−→
E0

ΩM and a

linear approximation λM
ϵ−−→
E1

λO, and the probability of the DL characteristic

is:

Pr[C · λO = C ′ · λO | P ⊕ P ′ = ΩI ] =
1

2
+ 2pϵ2.

Later, additional combined attacks were published, such as the boomerang at-
tack [32], the amplified boomerang attack [19], and the rectangle attack [9].

Consider a DL attack based on a differential characteristic with a probability
of p and a linear approximation with a bias of ϵ, the bias of the full distinguisher
is 2pϵ2, and the data complexity of the corresponding DL attack is O

(
p−2ϵ−4

)
.

Therefore, even a small improvement of the inner characteristics may have a large
impact on the data complexity (and as a result also on the time complexity) of
the attack.

Previous Works. Two previous works show how dependencies between plaintext
pairs can improve DL attacks:2 Leurent [22] extends the partitioning technique
of [6] to DL characteristics on ARX ciphers. Using some properties of the mod-
ular addition operator, Leurent shows how to partition the data into disjoint
subsets (the partition is done both in the differential part and the linear part),
such that each subset satisfies the DL characteristic with a higher bias. As a re-
sult, in each subset, the bias is significantly higher, resulting in a gain stemming
from the squaring of this bias.

Beierle et al. [4] suggest a different approach, which adapts the idea of Neutral
Bits [7]. For the differential part, Beierle et al. suggest to look for a subspace U ⊆
Fn
2 , such that given a plaintext pair (P, P ′) satisfying the differential part, then
∀u ∈ U : (P⊕u, P ′⊕u) also satisfies the differential part (with high probability).
Therefore, one right pair w.r.t. the differential characteristic produces a (possibly
large) set of pairs all of which have the same parity in the beginning of the linear
part.

1.3 Our Contributions

The main goal of this paper is to study the combination of these two techniques,
partitioning and neutral bits, to minimize the attack’s data and time complex-
ities. We describe the techniques, compare them, and discuss the possibility of
combining them in Section 3. Then, in Section 4, we present the first DL distin-
guisher on 5-round Xoodoo [14], and show that the use of these two techniques
together allows a key-recovery RK attack on 5-round Xoodyak [15], which is im-
possible using each technique separately.3 Finally, we show how the combination

2 A similar idea is used in the chosen-plaintext linear attack of Knudsen and Mathi-
assen on DES [20].

3 More precisely, we show that each subset in the partitioning (which is defined accord-
ing to the key material) determines a good value for the non-neutral bits. Without
the combination, the distinguisher cannot be used for a key recovery attack.
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of the two techniques can improve two previous DL attacks: We achieve the best
DL attack on 9-round DES [1], which improves the previous DL attack of [8] by
a factor of about 28 (in Section 5), thus, showing that partitioning works also
for S-box based constructions.

2 Notations

– ei (0 ≤ i ≤ n− 1) denotes the n-bit word with zeros in all bits but the i’th
bit, and ei1,...,ij = ei1 ⊕ · · · ⊕ eij .

– The probabilities of differential characteristics are denoted by p, and the
biases of linear approximations are denoted by ϵ.

– For a DL distinguisher, a cipher E is treated as a decomposition E = E1◦E0.
A differential characteristic with a probability of p on E0 is denoted by

ΩI
p−−→
E0

ΩM , and a linear approximation with a bias of ϵ on E1 is denoted

by λM
ϵ−−→
E1

λO.

– For a boolean function f : {0, 1}m → {0, 1}n, the Difference Distribution
Table (DDT in short) is the 2m × 2n table, which is defined by:

DDTf [ΩI , ΩO] = |{(X,X ′) | X ⊕X ′ = ΩI ∧ f(X)⊕ f(X ′) = ΩO}| .

3 Partitioning, Neutral Bits, and Combination of them

3.1 DL Cryptanalysis with Partitioning

The partitioning technique was first proposed to improve the cryptanalysis of
ARX ciphers. In [6] Biham and Carmeli suggest the partitioning technique to im-
prove linear cryptanalysis on FEAL-8X [28]. Leurent [22] extends this technique
to DL cryptanalysis, and uses it to improve a DL attack on 7-round Chaskey [29].
We present here the technique in the DL settings.

The main idea of the partitioning technique is as follows: Let ΩI

1
2±2pϵ2

−−−−−→ λO

be a DL characteristic, based on ΩI
p−−→
E0

ΩM , λM
ϵ−−→
E1

λO. As mentioned above,

the data complexity of an attack based on such a characteristic is O(p−2ϵ−4).
Assume that one can partition the data into s disjoint subsets of plaintexts
A1, A2, . . . , As, such that there is one right subset Ai in which the differential
characteristic holds with significantly higher probability pi ≫ p, while for all
other subsets the differential characteristic does not hold. Formally, denote the
probability of the differential characteristic in a specific subset Ai by pi, we
assume that: ∃1 ≤ i ≤ s : pi ≫ p ∧ ∀j ̸= i : pj ≈ 0. One can now run the
DL attack in each subset Ai independently, resulting in a data complexity of
O(s · p−2

i ϵ−4): Generating about s · p−2
i ϵ−4 plaintext pairs, and performing the

original attack on each subset. Therefore, if s · p−2
i < p−2 then the attack’s

complexity is reduced.4 Figure 1a illustrates the partitioning technique.

4 The partitioning can be applied to plaintexts, ciphertexts, or any other criteria. For
example, in [22] the partitioning is performed also according to the values of the
ciphertexts.
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3.2 Neutral Bits

In [7] Biham and Chen presented the neutral bits technique to improve colli-
sion and near-collision attacks on SHA-0. This idea is used also in secret key
cryptanalysis (e.g., in [18]). Here we adapt the definitions of Biham and Chen
to differential characteristics on block ciphers.

Definition 1 Let ΩI → ΩO be a differential characteristic, the i’th bit of the
block, ei, is called a neutral bit (w.r.t. ΩI → ΩO) if for each input pair (P, P ′)
that satisfies the characteristic, the pair (P ⊕ ei, P

′ ⊕ ei) also satisfies the char-
acteristic.

Using such neutral bits, an adversary can create many right pairs given one
right pair. In addition, Beierle et al. [4] use t neutral bits to create neutral linear
subspace with 2t neutral vectors: Given t neutral bits i1, . . . , it they use all the
vectors of the linear subspace U = span{ei1 , . . . , eit} (i.e., vectors of the form
v =

∑t
j=1 αj · eij , αj ∈ {0, 1}) as neutral vectors.5 Figure 1b illustrate this idea.

Reducing Attack’s Complexity Using Neutral Bits. Let ΩI

1
2+2pϵ2

−−−−−→ λO be a DL

characteristic that relies on a differential ΩI
p−−→
E0

ΩM and a linear approximation

λM
ϵ−−→
E1

λO. The data complexity of an attack based on such a characteristic

is O(p−2ϵ−4). As was done in [4], assume that we have a neutral subspace U
(w.r.t. ΩI → ΩM ) with |U| ≥ c · ϵ−4 for a small c, then it is possible to reduce
the data complexity by a factor of p−1: Generate p−1 plaintext pairs (Pi, P

′
i =

Pi ⊕ ΩI), and ask for sets of ϵ−4 plaintext pairs of the form {(Pi ⊕ u, P ′
i ⊕ u) |

u ∈ U}. For the set where (Pi, P
′
i ) is a right pair w.r.t. the differential, then all

the pairs (Pi ⊕ u, P ′
i ⊕ u) are right pairs w.r.t. the differential. Hence, once we

have such a pair, then we have ϵ−4 plaintext pairs that satisfy the differential
part, which is sufficient to detect a bias of ϵ2 in the ciphertext pairs.

When the neutral subspace is not big enough,6 it is possible to use a neutral
subspace w.r.t. the beginning of the differential (and not the entire differential):

Assume that E0 = E01 ◦E00, and the differential ΩI
p−−→
E0

ΩM is composed from

two shorter differentials ΩI
p0−−→
E00

Ω1, Ω1
p1−−→
E01

ΩM (for p0 · p1 = p), and we have

a neutral subspace U w.r.t. ΩI
p0−−→
E00

Ω1 with |U| ≥ p−2
1 ϵ−4, then it is possible to

reduce the data complexity by factor of p−1
0 .

In addition, Beierle et al. [4] show that it is possible to use probabilistic
neutral bits (PNBs, in short) [2]: Given an input pair (P, P ′) that satisfies the
differential, the pair (P ⊕ ei, P

′ ⊕ ei) also satisfies the characteristic with high
probability7 (see also [17]).

5 It should be noted that not always all the vectors in the linear subspace are neutral
(see [7] that discusses such examples). However, in all of the cases discussed here
this is the scenario.

6 Similar issue also affected chosen-plaintext linear cryptanalysis [20].
7 The probability should be significantly higher than the differential’s probability.
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ΩI ΩM

A1
...
As

(a) Partitioning: One good subset.

ΩI ΩM

{(P ⊕ u, P ′ ⊕ u) : u ∈ U}

(P, P ′)

(b) Neutral Bits: Many right pairs from one.

Fig. 1: The Partitioning Technique and the Neutral Bits Idea.

Beierle et al. [4] use these two observations to offer an improved DL attack
on Chaskey [29], which achieves better results than achieved by [22] using the
partitioning technique, and to perform an improved DL attack on Chacha [5].

3.3 A Comparison Between Partitioning and Neutral Bits

We note that these two previous techniques actually improve the data complexity
in two different ways:

1. In the partitioning technique, the adversary identifies a subset of the data
in which the probability of the differential (or the bias) is higher than for
random data. This subset is identified according to an external condition on
the data (and not on the pairs among themselves), and therefore cannot be
chosen in advance.

2. In the neutral bits technique, the adversary generates subsets of data in
advance (with an internal condition on the pairs among themselves), such
that in each subset all the pairs satisfy the differential part together (or not).

In other words, the goal of the partitioning technique is to increase the bias by
using a partial subset of the data in which the bias is higher. In contrast, the
neutral bits technique takes one right pair and generates many right pairs.

In addition to the data complexity reduction, the effect of these techniques on
the time complexity should be examined. Beierle et al. [4] point out an advantage
of the neutral bits technique: While usually the partitioning technique requires
guessing key material which results in increasing the time complexity, the neutral
bits technique is independent of the key. However, it depends on the attack
details, and it is possible to achieve lower time complexity using the partitioning
technique than using neutral bits (see, e.g., Sections 5.2.2 and 5.2.3).

3.4 Combining Partitioning and Neutral Bits

When the two techniques refer to the same part of the DL characteristic, then the
use of neutral bits may obviates the use of partition. For example, in the case of
the two DL attacks [4,22] on Chaskey [29], Leurent [22] uses partitioning in both
the differential characteristic and the linear approximation, and Beierle et al. [4]
improve the attack by using neutral bits in the differential characteristic instead
of partitioning. Beierle et al. do not apply neutral bits on top of the partitioning
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technique, but replace the partitioning technique on the differential part with
neutral bits. However, we point out two situations in which it is possible to use
the two techniques together on the differential part, which leads to an attack
with lower complexities than can be achieved by using each technique separately.

1. In some cases each subset in the partitioning determines a good value for
the non-neutral bits (i.e., an input with this determined value and any value
for the neutral bits satisfies the differential part). In Section 4 we present
the first DL distinguisher on 5-round Xoodoo [14], and then we apply this
idea and show how a combination of the two techniques together allows us
to attack 5-round Xoodyak [15].

2. In some cases it is possible to decompose the differential characteristic into
two parts, and to perform the partitioning technique on the first part and
the neutral bits technique on the second part, to take advantage of these
two techniques.8 We use this idea to improve the DL attack of [8] on round-
reduced DES [1] in Section 5.

4 New DL Attacks on Round-Reduced Xoodyak

In this section we present the first DL distinguishers on 4- and 5-round Xoodoo [14],
and use them to perform key-recovery attacks on 4- and 5-round Xoodyak [15].
We show that the key-recovery attacks are possible only by using the partitioning
technique and the neutral bits idea together.

A Brief Description of Xoodyak. Xoodyak is a cryptographic primitive for hash-
ing, authenticated encryption, and MAC computation, and is one of the finalists
of the NIST LightWeight Cryptography (LWC) competition. Xoodyak relies on
Xoodoo, a family of 384-bit to 384-bit permutations. A 384-bit state is repre-
sented by three planes, each consists of four 32-bit lanes. The lanes within a
plane are indexed by x, the planes are indexed by y, and the bits within a lane
are indexed by z (see Figure 2). In addition, the i’th bit (0 ≤ i < 384) of a state
S is denoted by Si. Given a state of three planes S = (A0, A1, A2), each round
is defined by the following 5 steps:

θ : P ← A0 ⊕A1 ⊕A2

E ← P ≪ (1, 5)⊕ P ≪ (1, 14)
Ay ← Ay ⊕ E, y ∈ {0, 1, 2}

ρwest : A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι : A0 ← A0 ⊕ Ci

χ : By ← Ay+1 (mod 3) ∧Ay+2 (mod 3), y ∈ {0, 1, 2}
Ay ← Ay ⊕By, y ∈ {0, 1, 2}

ρeast : A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8),

8 This idea was used in [20].
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32-bit lane (z axis)

Four lanes
(x axis)

Three planes
(y axis)

Fig. 2: A Xoodoo state.

where Ay ≪ (i, j) denotes the left rotation which moves the bit in (x, z) to the
new position (x + i (mod 4), z + j (mod 32)), Ci is a round constant, and Ay

denotes the bitwise complement of Ay. All operations but χ are affine.
Xoodyak uses two modes: hash mode and keyed mode. Here, we discuss

the keyed mode, and in particular the initialization phase: The first plane is
initialized by an 128-bit key, and the additional two planes by a 256-bit nonce.
Then, Xoodoo is performed on the initialized state, and the first 192 bits are
visible and XORed to the first block of the plaintext.

4.1 4-Round DL Attack on Xoodyak

We now present the first DL distinguisher9 on 4-round Xoodoo, and then a DL
attack that based on it. Recall that the first plane A0 is initialized by an 128-bit
key, and the last two planes A1, A2 are initialized by a 256-bit nonce. Therefore,
to mount a DL attack on Xoodoo, the DL characteristic is restricted: the input
difference can be only in the last two planes, and the active bits of the output
mask can be only in the first 192 bits, which are visible.

4.1.1 Description of Our Distinguisher. To choose the input difference
we examine the first two steps of the round function: θ and ρwest. We note that
given an input difference with two active bits in one column, then θ does not
change the difference, and ρwest shifts each bit by a different number of positions,
resulting in two active S-boxes in the S-box layer χ (the constant addition does
not change the difference). For comparison, if the input difference contains only
one active bit then after θ, in addition to this active bit, there are three additional
active bits at two columns, and ρwest shifts each bit by a different number of
positions, resulting in 7 active S-boxes in the first S-box layer. We thus consider
an input difference of the form (0, ei, ei), 0 ≤ i < 128.

Following the rotation-invariant property of Xoodoo’s characteristics, and for
sake of clarity, we consider the input difference (0, e0, e0), but this characteristic
can be rotated (each word is rotated by the same amount of bits). This input

9 Liu et al. [24] present a 4-round rotational DL distinguisher, with the highest possible
bias of 1

2
, without any attack that uses it. We give in the ePrint version the rotational

DL distinguisher used by Liu et al. and recall that rotational DL distinguisher is not
a DL distinguisher.
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difference leads to two active S-boxes before χ: S-box 11 with an input difference
of 4 and S-box 32 with an input difference of 2. Denote the output differences
(after χ) at S-box 11 by Ω11, and the output differences (after χ) at S-box 32 by
Ω32. According to the DDT of χ we have: Ω11 ∈ {4, 5, 6, 7}, Ω32 ∈ {2, 3, 6, 7} in a
uniform distribution. We experimentally tested the bias of each DL characteristic
with each of the 16 possible differences (Ω11, Ω32) after the first χ layer, and
output mask of one or two active bits after 3.5 additional rounds of Xoodoo.
The best result was obtained for the output mask10 (0, e15, 0). The combination
(Ω11, Ω32) = (4, 2) results in a bias of +2−6, where as (Ω11, Ω32) = (4, 6) results
in a bias of +2−8. The other differences have a bias of about zero. Summing all
of these characteristics, we get the following DL characteristic:

(0, e0, e0)
≈2−9.68

−−−−−−−−−−→
4-round Xoodoo

(0, e15, 0).

The bias is calculated as follows: 1
16 · 2

−6 + 1
16 · 2

−8 + 14
16 · 0 ≈ 2−9.68. In terms

of state indexes, the input difference is e128,256 and the output mask is e143. We
experimentally verified the bias, using 228 pairs, observing a bias of about 2−9.7.

4.1.2 Attacking 4-Rounds Xoodyak. We now present an attack, which
reveals four key bits of the initialized state. It is should be noted that in this
case it is impossible to reveal key bits using a classical DL attack: Assume that we
generate about 221.3 nonce pairs (this number was calculated according to [31])
with the required input difference, and we compute the number of pairs that are
the same on the output mask of the output. Indeed, about 221.3 ·

(
1
2 + 2−9.7

)
pairs are expected to be equal on the output mask, but it does not tell us
anything about the key as the question which pairs satisfy the DL characteristic
is independent of the key (like in [24]). We show that using neutral bits and the
partitioning technique, it is possible to reveal four key bits.

Finding The Neutral Bits. We now look for bits of the initial state, and in
particular those initialized by the nonce, that do not influence the output of the
two active S-boxes in the first χ: S-box 11 and S-box 32. Denote the initial state
by S, and the state just before the S-box layer χ by T (i.e., T = ι◦ρwest ◦ θ(S)).
In these terms, the two non-active bits of the 11’th S-box are: T11, T139, and
the two non-active bits of the 32’nd S-box are: T32, T288. Each of them could be

10 In detail, for each 0 ≤ i < 128, when the input difference is (0, ei, ei), the best
results occurs for the output mask (0, e32·⌊ i

32
⌋+(15+i (mod 32)), 0). It should be noted

that since the mask is in the second plane and only the first 64 bits of this plane are
visible, we can not use all the 128 characteristics, but only the 64 characteristics for
which 0 ≤ i < 64. However, this fact does not impact our analysis.
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Fig. 3: The non-neutral bits used in the DL attack on 4-round Xoodyak. Each
colored bit of the state before χ is defined as the XOR of the appropriate colored
bits of the initialized state.

represented as the XOR of 7 bits of the initial state, as follows (see Figure 3):

T11 = ⊕
i∈I11

Si, I11 = {11, 102, 125, 230, 253, 358, 381},

T139 = ⊕
i∈I139

Si, I139 = {70, 93, 198, 221, 235, 326, 349},

T32 = ⊕
i∈I32

Si, I32 = {18, 27, 32, 146, 155, 274, 283},

T288 = ⊕
i∈I288

Si, I288 = {7, 16, 135, 144, 263, 272, 309}.

(1)

It means that there are 28 bits of the initial state that influence the two active
S-boxes (i.e., that influence the two non active bits of each active S-box), and 18
of them are initialized by the nonce. Therefore, we have 256− 18 = 238 neutral
bits. By fixing all the 18 bits that influence these active S-boxes (i.e., all the non-
neutral bits) in all of the nonces, we get the same values at the active S-boxes,
which yields the same output difference. Hence, by generating about 24 sets of
about 213.34 nonce pairs (this number was calculated according to [31] for success
rate of 95%), each is defined by another fixed value of the non-neutral bits, the
good values (i.e., the values which satisfy (Ω11, Ω32) = (4, 2)) are expected to
appear in about one set, which has the highest bias. To produce an attack using
this characteristic, we need also the partitioning technique.

Using the Partitioning Technique. We now describe how the partitioning tech-
nique allows us to link between the good set (or, in other words, the good values
for the non-neutral bits) and four key bits. As mentioned above, given a right
pair (i.e., a pair that satisfies the first round) S = K ∥ N,S′ = K ∥ N ′ (where,
K is the key, and N,N ′ are the nonces), we know that (Ω11, Ω32) = (4, 2). Ac-
cording to the DDT of χ, the transition 4 → 4 occurs when the input values
are 2 and 6 and the transition 2→ 2 occurs when the input values are 1 and 3.
Thus, according to Eq. (1):

T11 = T ′
11 = 0,

T139 = T ′
139 = 1,

T32 = T ′
32 = 1,

T288 = T ′
288 = 0,
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where T = ι ◦ ρwest ◦ θ(S), T ′ = ι ◦ ρwest ◦ θ(S′). Therefore, we get the following
four equations:

K11 ⊕K102 ⊕K125 = N230 ⊕N253 ⊕N358 ⊕N381,
K70 ⊕K93 = N198 ⊕N221 ⊕N235 ⊕N326 ⊕N349 ⊕ 1,
K18 ⊕K27 ⊕K32 = N146 ⊕N155 ⊕N274 ⊕N283 ⊕ 1,
K7 ⊕K16 = N135 ⊕N144 ⊕N263 ⊕N272 ⊕N309,

(2)

where the key bits are indexed by 0 ≤ i < 128 and the nonce bits are indexed
by 128 ≤ i ≤ 383. It means that there is a partitioning of the space to 16
subsets, depending on four key values: K11 ⊕ K102 ⊕ K125,K70 ⊕ K93,K18 ⊕
K27⊕K32,K7⊕K16. Each value for these key values determines another subset
of the non-neutral nonce bits, in which the characteristic has a bias of 2−6,
instead of 2−9.7 when the nonces are generated randomly without the use of
these techniques. The data complexity required to find four key bit is about
24 · 213.34 · 2 = 218.34 chosen nonces, and the time complexity is about 218.34

4-round Xoodoo calls. We experimentally verified the attack using 100 different
keys.11 The observed success rate was 85%. Following the rotation-invariant
property of Xoodoo’s characteristics, it is possible to recover the entire key with
data complexity of about 223.34 chosen nonces and time complexity of about
223.34 4-round Xoodoo calls.

4.2 5-Round Related-Key DL Attack on Xoodyak

We now present the first DL distinguisher on 5-round Xoodoo, and then a
related-key DL attack based on it. To construct our 5-round DL distinguisher
we first construct a 4-round DL distinguisher and then add one round at the
beginning.

4.2.1 Description of Our Distinguisher. Similarly to the input difference
(0, ei, ei) of the 4-round DL characteristic that described in Section 4.1, the input
differences of the form (ei, ei, 0) and (ei, 0, ei) are also good candidates, with an
additional requirement: Due to the fact that there is an active bit in the first
plane, initialized by a key, an attack using these characteristics requires related
keys. Our experiments show that (ei, 0, ei) offers better results than (ei, ei, 0)
and thus the reminder of our analysis concentrates on input difference of this
form.

Following the rotation-invariant property of Xoodoo’s characteristics, and for
sake of clarity, we consider the input difference (e0, 0, e0), but this characteristic
can be easily rotated. This input difference leads to two active S-boxes before
χ: S-box 0 with an input difference of 1 and S-box 11 with an input difference
of 4. Denote the output differences (after χ) at S-box 0 by Ω0, and the output
differences (after χ) at S-box 11 by Ω11. According to the DDT of χ we have:
Ω0 ∈ {1, 3, 5, 7}, Ω11 ∈ {4, 5, 6, 7} in a uniform distribution. We experimentally

11 All the experiments can be found in https://github.com/ArielWeizman/AW/blob/master/Xoodoo.
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tested the bias of each DL characteristic with each of the 16 possible differences
(Ω0, Ω11) after the first χ layer and output mask of one or two active bits after
3.5 more rounds of Xoodoo. The best result was obtained for the output mask
(e0, 0, 0). The combinations (Ω0, Ω11) ∈ {(1, 4), (1, 6)} result in a bias of −2−3,
the combinations (Ω0, Ω11) ∈ {(1, 5), (1, 7), (3, 4), (3, 6)} result in a bias of −2−5,
and the combinations (Ω0, Ω11) ∈ {(3, 5), (3, 7)} result in a bias of −2−7. The
other differences have a bias of about zero. Summing all of these characteristics,
we get the following DL characteristic:

(e0, 0, e0)
≈−2−5.36

−−−−−−−−−−→
4-round Xoodoo

(e0, 0, 0).

The bias is calculated as follows: − 2
16 ·2

−3− 4
16 ·2

−5− 2
16 ·2

−7+ 8
16 ·0 ≈ −2

−5.36.
In terms of state indexes, the input difference is e0,256 and the output mask is
e0. We experimentally verified the bias, using 228 pairs.12

We now add one round at the beginning, by performing the inverse of the
round function step by step. First, ρ−1

east transforms (e0, 0, e0) to (e0, 0, e88). Then
χ−1 maintains this difference with probability of 2−4 (i.e., 2−2 for each S-box),
which is not changed by ι−1. Finally, the difference (e0, 0, e88) is transformed by
θ−1 ◦ ρ−1

west to ΩI = (ΩA0, ΩA1, ΩA2), where

ΩA0 = a8b23b19 98810919 52674513 95a876f3x
ΩA1 = a8b23b18 98810919 52674513 95a876f3x
ΩA2 = a8b23b18 98810919 52676513 95a876f3x.

Therefore, the entire DL distinguisher for 5-round Xoodoo is:

(ΩA0, ΩA1, ΩA2)
−2−9.36

−−−−−−−−−−→
5-round Xoodoo

(e0, 0, 0).

4.2.2 Attacking 5-Round Xoodyak. The 5-round attack is quite similar
to the 4-round attack and therefore we give here only a brief description of the
attack. The two active S-boxes in the first χ layer are: S-box 0 with an input
difference of 1 and S-box 88 with an input difference of 4. Denote the initial state
by S and T = ι ◦ ρwest ◦ θ(S). In these term the two non-active bits of the 0’th
S-box are T128, T256 and the two non-active bits of the 88’th S-box are T88, T216.
Each of them could be represented as follows:

T128 = ⊕
i∈I128

Si, I128 = {82, 91, 210, 219, 224, 338, 347},

T256 = ⊕
i∈I256

Si, I256 = {103, 112, 231, 240, 277, 359, 368},

T88 = ⊕
i∈I88

Si, I88 = {42, 51, 88, 170, 179, 298, 307},

T216 = ⊕
i∈I216

Si, I216 = {10, 19, 138, 147, 184, 266, 275}.

(3)

12 In detail, for each 0 ≤ i < 128, when the input difference is (ei, 0, ei), the best results
occur for the output mask (ei, 0, 0).
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Therefore, we have 256 − 19 = 237 neutral bits. By fixing all the 19 bits that
influence these active S-boxes in all of the nonces, we get the same values at the
active S-boxes, which yields the same output difference. Hence, by generating
about 24 sets of about 212.04 initial state pairs (this number was calculated
according to [31] for a success rate of 95%), each is defined by another fixed
value of the non-neutral bits, the good values (i.e., the values which satisfy
(Ω0, Ω88) = (1, 4)) are expected to appear in about one set, which has the
highest bias.

As mentioned above, given a good pair (i.e., a pair that satisfies the first
round) S = K ∥ N,S′ = (K ∥ N) ⊕ ΩI , we know that (Ω0, Ω88) = (1, 4).
According to the DDT of χ, the transition 1→ 1 occurs when the input values
are 4 and 5 and the transition 4→ 4 occurs when the input values are 2 and 6.
Thus, according to Eq. (3):

T128 = T ′
128 = 0

T256 = T ′
256 = 1

T88 = T ′
88 = 0

T216 = T ′
216 = 1

where T = ι ◦ ρwest ◦ θ(S), T ′ = ι ◦ ρwest ◦ θ(S′). Therefore, we get the following
four equations:

K82 ⊕K91 = N210 ⊕N219 ⊕N224 ⊕N338 ⊕N347,
K103 ⊕K112 = N231 ⊕N240 ⊕N277 ⊕N359 ⊕N368 ⊕ 1,
K42 ⊕K51 ⊕K88 = N170 ⊕N179 ⊕N298 ⊕N307,
K10 ⊕K19 = N138 ⊕N147 ⊕N184 ⊕N266 ⊕N275 ⊕ 1.

(4)

It means that there is a partitioning of the space to 16 subsets, depending on
four key values: K82 ⊕ K91,K103 ⊕ K112,K42 ⊕ K51 ⊕ K88,K10 ⊕ K19. Each
value for these key values determines another subset of the non-neutral nonce
bits, in which the characteristic has the bias of 2−5.36, instead of 2−9.36 when
the nonces are generated randomly. Algorithm 1 describes the attack. The data
complexity required to reveal four key bits is about 24 · 212.04 · 2 = 217.04 chosen
nonces, and the time complexity is about 217.04 5-round Xoodoo performances.
We experimentally verified the attack using 100 different keys. The observed
success rate was 89%. Following the rotation-invariant property of Xoodoo’s
characteristics, it is possible to recover the entire key with data complexity of
about 222.04 chosen nonces and time complexity of about 222.04 5-round Xoodoo
encryptions. Table 1 compares previous and ours attacks.

5 Improved DL Attacks on Round-Reduced DES

In [8] Biham et al. present two attacks on round-reduced DES. The 8- and 9-
round attacks are based on a 7-round DL distinguisher composed of a 4-round
differential characteristic and a 3-round linear approximation. We now show how
to use the partitioning technique to decrease the attacks’ complexity. Then we
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Algorithm 1 DL Attack on 5-Round Xoodyak (Recovering 4 key bits).

Set an array keyOptions of 24 key values to zeroes. The keyOptions bits are
defined as the XOR of the key bits from Eq. (4).
for all k ∈ {0, 1}4 do

Fix values for the non-neutral nonce bits, that satisfy Eq. (4).
for all 1 ≤ i ≤ 212.04 do

Generate a nonce (according to the fixed bits) Ni, and set the pairs
(S = K ∥ Ni, S

′ = (K ∥ Ni)⊕ΩI) as two initial states.
Request the output of these initial states after the first performance of

Xoodoo, denoted by (Oi, O
′
i).

if Oi0 = O′
i0

then
Increment keyOptions[k].

end if
end for

end for
Output the key k such that keyOptions[k] = min{keyOptions[j]}.

Attack’s Type Rounds Complexity

Zero-sum distinguisher [23] 12 233

Differential-linear attack (Sect. 4.1) 4 223.34

Differential-linear RK attack (Sect. 4.2) 5 222.04

Table 1: Comparison of attacks on Xoodyak

show an improvement of the 9-round attack using neutral bits. Finally, we show
how to combine the partitioning technique and the neutral bits to get the best
known attack against 9-round DES.

Brief Description of DES [1]. DES is a 64-bit block size, 56-bit key size block
cipher, composed of 16 Feistel rounds. Each round is defined by

FKr
(x, y) = (y, x⊕ P (S(E(y)⊕Kr))),

where E : {0, 1}32 → {0, 1}48 is a linear expansion function, Kr is the round key,
S is an S-box layer consisting of 8 different S-boxes Si : {0, 1}6 → {0, 1}4 (1 ≤
i ≤ 8) that performed in parallel on 8 different 6-bit parts, and P : {0, 1}32 →
{0, 1}32 is a bit permutation.

5.1 Description of Biham et al.’s Attacks [8]

The 8-Round Attack [8]. To attack 8-round DES Biham et al. use the following
distinguisher on 7-round DES and additional round after it covered by guessing
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some key bits. The distinguisher uses the decomposition of 7-round DES to
E1 ◦ E0, where E0 consists of rounds 1–4 and E1 consists of rounds 5–7. E0 is
covered by the truncated differential characteristic

ΩI = 00808200 60000000x
p= 14

64−−−→
E0

ΩM = 00W0XY 0Z ????U???x,

where U ∈ {0, 1, 2, . . . , 7},W,X ∈ {0, 8}, Y, Z ∈ {0, 2}, and ? is an unknown
value (see Figure 4a). The linear approximation for E1 is:

λM = 21040080 00008000x
ϵ=0.195−−−−−→

E1

λO = λM .

Hence, the bias of the full DL characteristic is about 2pϵ2 = 2−5.9.
The 8-round attack of [8] is as follows: Ask for the encryption of 212.82 plain-

text pairs with input difference of ΩI = 00808200 60000000x, and initialize an
array of 26 counters to zeros (corresponding to the six key bits entering to S1

in the last round). Then, for each possible key, compute each ciphertext pair
backwards by one round and check if the parity of the resulting pair is equal in
the mask λO = 21040080 00008000x. If yes, increment the related entry in the
array. The highest entry in the array should correspond to the six key bits. The
data and time complexity of this attack both are about13 213.82.

The 9-Round Attack [8]. To attack 9-round DES, an additional round preceding
the distinguisher is used, covered by guessing additional key material. In order to
minimize the number of actives S-boxes in this round, they replace the 4-round
truncated differential. The main replacement is in the first round, where the new
first round differential is:

40000000x
p′= 12

64−−−−→
F

00000202x.

Using this characteristic, there are only two active S-boxes in the first round: S6

and S8. The bias of the new 7-round DL characteristic is thus 2p′ϵ2 ≈ 2−6.13.
In [8], 27 structures each consisting of 29 plaintexts are generated as follows:

1. Select a plaintext P0.
2. Select the plaintexts P1, . . . P255 which differ from P0 by all the possible sub-

sets of the eight bits related to the output of S6 and S8 according to the P
permutation of the round function (i.e., the bits masked by 18222828 00000000x).

3. Select the plaintexts P256, . . . P511 as Pi = Pi−256 ⊕ 40000000 00000202x.

Now, for each possible guess of 12 key bits related to S6 and S8 in the first round,
find in each structure the 28 appropriate pairs such that the input difference for
the second round is 00000202 40000000x, and perform the 8-round attack on
them. The data complexity of this attack is about 216 chosen plaintexts. The
time complexity is about 216 · 218 · 3

72 ≈ 229.42 9-round DES encryptions (each
parity computation takes about 3 S-boxes out of 72 in 9-round DES).

13 We note that the time complexity is about 212.82 ·2 ·26 one S-box evaluations, which
are equivalent to about 213.82 8-round encryptions.
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ΩI =
00808200 60000000x

F 14
64⊕

F 1⊕
F 1⊕
F 1⊕

ΩM =
00W0XY 0Z ????U???x

60000000xP (E0000000x)

= 00808200x

0 0

60000000xP (?0000000x)

= 00W0XY 0Zx

00W0XY 0Zx P (0?????0?x)

=????U???x

(a) The Differential Characteristic
Used in [8].

ΩG ∥ Pr ⊕ P ′
r =

60000000x

F 1⊕
F 1⊕
F 1⊕
F 1⊕

ΩM =
00W0XY 0Z ????U???x

Pr ⊕ P ′
r

= 60000000x

ΩG

0 0

60000000xP (?0000000x)

= 00W0XY 0Zx

00W0XY 0Zx P (0?????0?x)

=????U???x

(b) Our Improved Differential Charac-
teristic.

Fig. 4: Comparison between the differential characteristic used in [8] and ours.

5.2 Our Improved Attacks On Round-Reduced DES

5.2.1 Improved 8-Round Attack, Using Partitioning. We now revisit
the 8-round attack of [8], based on the 4-round truncated differential ΩI =

00808200 60000000x
p= 14

64−−−→
E0

ΩM =????U??? 00W0XY 0Zx. Instead of using

standard plaintext pairs with the difference ΩI , i.e., randomly selected P and
P ′ = P ⊕ΩI , we propose to use structures in a similar way to that of [20]: Fix
two right half values R,R′ = R ⊕ 60000000 (60000000x is the input difference
of F in the first round). Now, generate a structure of 24 left halves L0, . . . , L15,
containing all the possible values in the four bits corresponding to the output of
S1 (i.e., bits 9, 17, 23, 31). The structure contains all the 25 plaintexts induced
by the two right halves and the 24 left halves. We get that all the plaintext pairs
(P, P ′) (from any structure) have the same input values for F in the first round
(R,R′, respectively), and thus have the same output difference of F in the first
round. Denote this output difference by ΩG. Obviously, ΩG is key dependent.

We now partition the plaintext pairs according to the value of ΩG (which
has 10 possible values): Each time we concentrate only on plaintext pairs with
difference ΩG in the left half, i.e., pairs with zero difference at the beginning of
the second round with probability of 1. For the correct subset, the probability
of the differential characteristic is 1 instead of 14

64 , and the bias of the entire DL
characteristic is 2 ·1 · (2 · (− 20

64 )
2)2 ≈ 2−3.71 instead of 2−5.9. Figure 4b illustrates

the new differential characteristic.
Our attack thus tries all the possible values of ΩG, and for each such value

tries to recover the 6 key bits entering S1 in the last round (which is done as
in [8]). Given the correct output difference ΩG, we can also recover some key
material for the first round.

The data complexity of this attack is about 210.14 chosen plaintexts. This
number was calculated according to [31] for a success rate of 75% (i.e., the
right key, ΩG combination has the highest bias). Note that since we run over all
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the 10 possible output differences in the first round and all 26 possible keys, the
number of the possible keys in the formula of [31] is replaced by 26 ·10 = 640. The
time complexity is mainly affected by checking the parities of the appropriate
ciphertexts. Since there are about 210.14 ciphertexts and we check it for each six
key bits and for each output difference in the first round, the time complexity
is about 210.14 · 640 · 1

64 ≈ 213.46 8-round DES encryptions (The parity of each
plaintext should be checked about 640 times, each test takes about one S-box
computation out of the 64 S-boxes of a full 8-round encryption). This improved
attack was experimentally verified using 100 different keys with a success rate of
76%. Table 2 compares the previous attack and ours for a success rate of 75%.14

5.2.2 Improved 9-Round Attack, Using Partitioning. The idea of run-
ning over the output differences in the first round can also be extended to the
9-round attack. Instead of guessing the 12 key bits related to S6 and S8 in the
first round, it is possible to partition the plaintext pairs according to the output
difference of S6 and S8: Fix two right half values Pr, P

′
r = Pr ⊕ 00000202x, and

generate the structures as described in [8]. The input differences of S6 and S8

(after the expansion permutation of DES) are both 4. The fixing ensures that in
all of the pairs, the differences in S6 and S8 are composed from the same values,
which ensures that all the output differences are the same. Now, we guess the
output differences in S6 and S8, and select the appropriate plaintext pairs from
each structure according to that. For input difference of 4 in S6 and S8, there
are 9 and 10 possible output differences, respectively. Hence, the plaintext pairs
for the attack are selected from 90 possibilities, instead of 4096 as in [8]. The
rest of the attack remains the same. Given the right output differences in the
first round, we can also recover key material for the first round.

According to [31], since the right key is revealed from only 26 · 90 ≈ 212.5

options (instead of 218 in the original attack), about 215.44 chosen plaintexts are
needed to detect the right key with a success rate of 75%. The time complexity
is about 215.44 · 26 · 90 · 1

72 ≈ 221.76 9-round DES encryptions. This improved
attack was experimentally verified using 100 different keys with a success rate
of 78%.

A subtle point should be noted: In contrast to the analysis in Section 3.1
which claims for reducing the data complexity using the partitioning technique,
in our case the main effect of this idea is reducing the time complexity. The reason
is that Biham et al. [8] already used structures to ensure that enough pairs with
the required input difference exist in the data, and the key guessing is needed to
identify the structure. This idea affects the data complexity in the same way as
the partitioning technique. However, there is a subtle difference between their
structures and the partitioning technique: their structures heavily depend on
the specific structure of DES, while the partitioning technique is more general.
To emphasize this difference between the two ideas, consider a DES variant
for which the P -permutation is an 8-bit key dependent permutation. For this
variant, the structures of Biham et al. [8] are of size 232 to ensure that indeed

14 All the experiments can be found in https://github.com/ArielWeizman/AW/blob/master/DES.
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all the required pairs exist in the data, since the positions of the relevant bits
after the P -permutation are unknown. However, most of these plaintexts are not
going to be used in the attack. In comparison, the partitioning technique would
define a structure of 215.44 plaintexts for each of the 28 possible P -permutations,
i.e., a total of 223.44 plaintexts.

5.2.3 Improved 9-Round Attack, Using Neutral Bits. We now show
how to use neutral bits in order to minimize the attack’s complexity. The goal
is to find a subspace U ⊆ F64

2 such that if a pair (P, P ′) satisfies the differential
characteristic, than ∀u ∈ U : (P ⊕ u, P ′ ⊕ u) also satisfies the differential char-
acteristic. Recall that the differential characteristic covers rounds 2–5 (the first
round is covered by guessing key material). The first round of the differential
characteristic is

40000000x
12
64−−→
F

P (30000000x) = 00000202x

(the rest of the characteristic has probability 1). In the left half, all the bits
that are masked by 07fffffex do not affect the input values of S1 in the second
round, and thus they are neutral bits. In the right half, the six bits that af-
fect the input values of S1 in the second round come from six different S-boxes
(S2, S4, S5, S6, S7, S8), thus the bits that are masked by 60600000x are also neu-
tral bits. Note that since all these neutral bits do not affect S1 in the second
round, every linear combination of them is also neutral (unlike in the case of [7]).
Thus, all these neutral bits are a basis for the desired neutral subspace U ⊆ F64

2

with 230 neutral vectors. Now, the bits that are masked by 18222828x in the
left half can be used to define the structures used in the attack. Each structure
defines 4 different pairs entering S1 in the second round, i.e., 4 subsets of 26 pairs
each (since there are six bits that are masked by 00222828x), such that either
all of them satisfy the differential characteristic, or no one satisfies it. Using the
other 24 neutral bits, it is possible to increase the size of these subsets up to 230

right pairs.15

We now compute the data complexity. Since each structure (which is de-
fined according to a fixed value) generates four subsets, and for each subset the
probability of being a right subset is 12

64 , the probability that all of the four sub-

sets are wrong is
(
1− 12

64

)4
. Thus, the probability of having at least one right

subset, given s structures, is 1 −
(
1− 12

64

)4s
. Therefore, using two structures

we get a probability of about 0.81 to have a right subset. Hence, for a success
rate of 75% of the entire attack, a success rate in each subset is needed to be
about 0.75

0.81 ≈ 0.93. Now, given such a subset of pairs such that all of them sat-
isfy the differential characteristic, the bias of the DL approximation is about
2−3.71, as before. According to [31], about 210.57 pairs are needed to detect the
18 key bits with success rate of 93%. Therefore, increasing each structure by

15 For attacks that needed more plaintext pairs, we refer the reader to the chosen
plaintext linear cryptanalysis techniques suggested Knudsen and Mathiassen [20].
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Rounds [8]17 Partitioning Neutral Bits Combination

8
Data (CP) 213.82 210.14 – –

Time (Enc.) 213.82 213.46 – –

Recovered Key Bits 6 6 – –

9
Data (CP) 216 215.44 214.57 214.1

Time (Enc.) 229.42 221.76 228 222

Recovered Key Bits 18 6 18 6

Table 2: Comparison of DL attacks on round-reduced DES.

24.57 plaintexts, using the neutral bits, is sufficient. Thus the data complex-
ity is about 213.57 · 2 = 214.57 chosen plaintexts. The time complexity is about
214.57 · 218 · 3

72 ≈ 228 9-round DES encryptions. This improved attack was exper-
imentally verified using 100 different keys with a success rate of 79%.

5.2.4 Improved 9-Round Attack, Using a Combination of Partition-
ing and Neutral Bits. We note that the main effect of the partitioning tech-
nique is on the time complexity, and that of the neutral bits is on the data com-
plexity. Therefore, combining these two techniques together can reduce both.
To do that, we fix two right half values Pr, P

′
r = Pr ⊕ 00000202x, generate the

structures as described in [8], and partition the data according to the output dif-
ference of S6 and S8 as described in Section 5.2.2. As described in Section 5.2.3,
each structure defines 4 subsets of 26 pairs that satisfy together the differential
characteristic. To increase the size of these subsets, note that since the right half
is fixed in all of the inputs, the neutral bits are only those from the left half that
are masked by 07fffffex. However, the resulting neutral subspace is big enough
for the attack. Algorithm 2 describes the improved attack.

Since the right key is detected from only 26 · 90 options (instead of 218 in
Section 5.2.3), about 210.1 pairs are needed in each subset to detect the right key
with a success rate of 93% (which leads to a success rate of 75% of the entire
attack). Thus, the data complexity is about 213.1 · 2 = 214.1 chosen plaintexts.
The time complexity is about 214.1 · 26 · 90 · 3

72 ≈ 222 9-round DES encryptions.
This improved attack was experimentally verified using 100 different keys with
a success rate of 77%. Table 2 compares the previous attacks and ours for a
success rate of 75%.

16 Since each plaintext pair passes the differential characteristic has zero difference in
the bits masked by λM (i.e., (P ⊕ P ′) · λM = ΩM · λM = 0), the sign of the bias is
necessarily positive.

17 The values given here are calculated according to [31] for success rate of 75%, which
differs a bit from [8].
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Algorithm 2 Improved Attack on 9-Round DES (Recovering 6 key bits and
the output difference ΩG).

Fix a random right half value R.
Set16max counter = 0.
for all iteration ∈ {0, 1} do

Fix a random value for all left half non-neutral bits Lfixed.
Generate 24.1 structures Si as follows:
for all Structure Si do

Select A random left half value for all neutral bits Li
rand.

Set Li
0 = Lfixed ⊕ Li

rand, P
i
0 = Li

0 ∥ R.
Select the plaintexts P i

1, . . . , P
i
255 which differ from P i

0 by all the 255
possible subsets of the eight bits masked by 18222828 00000000x.

Set P i
j = P i

j−256 ⊕ 40000000 00000202x,∀256 ≤ j ≤ 511.
end for
Request the ciphertexts of these plaintexts.
for all K1 ∈ {0, 1}6 (The subkey entering S1 in the last round) do

for all ΩG (The output difference of F in the first round, of two plain-
texts Pi, Pj , such that 0 ≤ i ≤ 255, 256 ≤ j ≤ 511). do

Select the pairs with difference ΩG in the left half.
Partially decrypt all these pairs through S-box S1 of the last round.
Check how many ciphertext pairs are equal in the parity of the five

bits masked by 21040080 00008000x and denote this number by c.
if c > max counter then

Set max counter = c,Kmax = K1, Ωmax = ΩG.
end if

end for
end for

end for
Output Kmax, Ωmax.

6 Conclusions

In this paper we discussed the possibility of combining two techniques to improve
DL attacks: The partitioning technique, which is used to find a subset of the data
in which the bias of the entire distinguisher is higher than using random data;
and the use of neutral bits, which is used to create many right pairs given one
right pair.

When using neutral bits, two issues should be taken in account: First, the
probability of each neutral bit: The basic definition of a neutral bit [7] is: if
(P, P ′) is a right pair then (P ⊕ ei, P

′ ⊕ ei) is also a right pair with probability
of 1. But, in practice, it is possible to use almost neutral bits, which satisfy the
condition with probability of p < 1 [4]. Second, the transition from t neutral bits
to 2t neutral vectors: Although all the vectors in the linear span of some neutral
vectors are expected to be neutral, this is not always the case [7]. We note that
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for the three ciphers discussed in this paper are based on S-boxes, and in such
ciphers all the neutral bits satisfy with probability of 1, and the transition to
linear subspace works as expected.

We also point out a case in which a link between the partitioning and the
neutral bits ideas allow us to perform the first DL attack on 5-round Xoodyak.
We also showed that when these two techniques are performed on different parts
of the DL characteristic, then it is possible to combine them to achieve the best
results. We applied combinations of them to improve two DL attacks, on 9-round
DES, and we achieve the best DL attack, significantly improving previous DL
results.
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A A Rotational DL Distinguisher On 4-Round
Xoodoo [24]

In [24] Liu et al. present the first rotational DL distinguisher on 4-round Xoodoo,
by constructing a 3-round rotational DL distinguisher and adding one round at
the beginning. They show that given a pair with all-zero difference and left-rotate
amount of one bit (i.e., (P, P ′ = P ≪ 1)), then after 3-round Xoodoo there are
many high-biased bits, including the highest bias of half on the following masks:
10000x at lane (1, 0), 20000x at lane (1, 1), and 1000000x at lane (3, 2). To add
one round at the beginning they note that since the round constant is XORed
right after the two linear steps, it is possible to choose an input RX-difference
such that the injection of the round constant cancels the difference, resulting
in an all-zero difference and left-rotate amount of one bit. For the first round
constant of 4-round Xoodoo C = 00000480x, the required input difference is
ΩI = (ΩA0, ΩA1, ΩA2) where

ΩA0 = 484ccc80 3ab9821a 37b6cde9 45a3f0cbx,
ΩA1 = 484cc800 3ab9821a 37b6cde9 45a3f0cbx,
ΩA2 = 484cc800 3ab9821a 37b6cde9 45a3f0cbx.

Therefore, given a plaintext pair (P, P ′) and their ciphertext pair (after 4-round
Xoodoo) (C,C ′) we have:

Pr [λ · (C ≪ 1) = λ · C ′ | P ′ = (P ≪ 1)⊕ΩI ] = 1.


