
Designing Full-Rate Sponge based AEAD modes

Bishwajit Chakraborty1,2, Nilanjan Datta3, and Mridul Nandi1,3

1 Indian Statistical Institute, Kolkata, India
{bishu.math.ynwa,mridul.nandi}@gmail.com
2 Nanyang Technological University, Singapore

bishwajit.chakrabort@ntu.edu.sg
3 Institute for Advancing Intelligence, TCG CREST, Kolkata, India

nilanjan.datta@tcgcrest.org

Sponge based constructions have gained significant popularity for designing
lightweight authenticated encryption modes. Most of the authenticated ciphers
following the Sponge paradigm can be viewed as variations of the Transform-then-
permute construction. It is known that a construction following the Transform-
then-permute paradigm provides security against any adversary having data com-
plexity D and time complexity T as long as DT � 2b−r. Here, b represents the
size of the underlying permutation, while r pertains to the rate at which the
message is injected. The above result demonstrates that an increase in the rate
leads to a degradation in the security of the constructions, with no security
guaranteed to constructions operating at the full rate, where r = b. This present
study delves into the exploration of whether adding some auxiliary states could
potentially improve the security of the Transform-then-permute construction.

Our investigation yields an affirmative response, demonstrating that a special
class of full rate Transform-then-permute with additional states, dubbed frTtP+,
can indeed attain security when operated under a suitable feedback function and
properly initialized additional state. To be precise, we prove that frTtP+ provides
security as long asD � 2s/2 and T � 2s, where s denotes the size of the auxiliary
state in terms of bits. To demonstrate the applicability of this result, we show
that the construction Orange-Zestmod belongs to this class, thereby obtaining
the desired security. In addition, we propose a family of full rate Transform-then-
permute construction with Beetle like feedback function, dubbed fr-Beetle, which
also achieves the same level of security.

1 Introduction

Since the inception of the Sponge function [2] as a mode of operation for variable
output length hash functions, it has received major attention in the symmetric
key cryptography paradigm. With time, the Sponge mode found its application
in a variety of cryptographic protocols such as message authentication [2,6],
pseudorandom sequence generation [4], and the duplex mode [5] for authenti-
cated encryption. This popularity of the Sponge mode is evident from the num-
ber of Sponge-based designs submitted in the CAESAR competition and the
recently concluded NIST lightweight cryptography (LwC) standardization pro-
cess. A Sponge duplex type scheme Ascon [13] turned out to be the winner of
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the NIST lightweight competition and one of the joint winners in the category of
lightweight applications (resource-constrained environments) in CAESAR com-
petition.

At a high level, Sponge-type constructions consist of a b bit state, which is
split into a c bit inner state, called the capacity, and an r bit outer state, called
the rate, where b = c + r. Traditionally, in Sponge-like modes, r bits of data
absorption and squeezing are done via the rate part at a time. However, there
are a few exceptions, e.g., SpoC [1], where the absorption is done via the capacity
part while the squeezing is done from the rate part. In [3], Bertoni et al. proved
that the Sponge construction is indifferentiable from a random oracle with a
birthday-type bound in the capacity. While it is well-known that this bound is
tight for hashing, for keyed applications of the Sponge, especially authenticated
encryption schemes, such as duplex mode, the security could be significantly
higher.

1.1 Existing Security Bounds for Sponge-type AEAD Schemes

Sponge-type authenticated encryption is mostly done via the duplex construction
[5]. The duplex mode is a stateful construction that consists of an initialization
interface and a duplexing interface. Initialization creates an initial state using
the underlying permutation π, and each duplexing call to π absorbs and squeezes
r bits of data. The security of Sponge-type AEAD modes can be represented and
understood in terms of two parameters, namely the data complexity D (total
number of initialization and duplexing calls to π), and the time complexity T
(total number of direct calls to π).

Initially, Bertoni et al. [5] proved that duplex is as strong as Sponge and achieves
security up to DT � 2c. At Asiacrypt’14, Jovanovic et al. [15] proved that
sponge duplex achieves beyond the birthday bound of the capacity. To be pre-
cise, they have shown that it achieves privacy up to D � min{2b/2, 2κ}, T �
min{2b/2, 2c−log2 r, 2κ}, and integrity up to DT � 2c, D � min{2c/2, 2κ, 2τ},
T � min{2b/2, 2c−log2 r, 2κ}, where τ denotes the tag size. Later, a tight privacy
analysis [16] was also provided. At Asiacrypt’15, Mennink et al. [19] introduced
the full-state duplex and proved that this variant is secure up to DT � 2κ,
D � 2c/2, where κ is the key size. In CHES’18 [8], Chakraborti et al. came up
with a variant of duplex mode, dubbed Beetle, that acheives privacy up to DT �
2b, D � 2b/2, T � 2c, and integrity up to D � min{2b/2, 2c−log2 r, 2r}, T �
min{2c−log2 r, 2r, 2b/2}, when set with κ = c and τ = r. Recently, Chakraborty
et. al. [10] introduced the Transform-then-Permute construction which encom-
passes most of the popular Sponge-type constructions and showed that popular
designs like Beetle can achieve security upto D,T � 2b−r. All the existing anal-
ysis show that increasing r degrades the security of a Sponge type design. If
2r ≥ min{2b−log T , 2b−logD} then the security of all these existing constructions
becomes void.

Chakraborty et al. designed a new Sponge-based authenticated encryption
ORANGE-Zest [11] where the designers introduced some extra-state in the
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protocol to construct a full-rate Sponge type AEAD scheme. This construction
was a round 2 submission to the recently concluded NIST LwC standardiza-
tion process. However, Dobraunig et. al. [14] and Khairallah et al. [17] mounted
forgery attacks on the original and a modified variant of ORANGE-Zest. It
seems interesting to investigate whether these attacks can be avoided with some
minor changes in the design or if there is some inherent flaw in the overall design
strategy.

1.2 Our Contributions

In this paper, we revisit the Transform-then-Permute construction introduced by
Chakraborty et al. [10] and investigate the security dependency on the capacity
in Sponge-type modes. Our contribution is two-fold.

1. Full Rate Transform-then-Permute Mode with Extra State: We show
that at the cost of some additional state, suitable initialization of the extra
state, one can indeed achieve a full rate Transform-then-Permute type au-
thenticated encryption mode with security up to D � 2s/2, T � 2s, where
s denotes the bit-size of this extra state. To do that, we first introduce a
generic class of full rate Transform-then-Permute authenticated encryption
constructions inspired by the Transform-then-Permute construction with the
extra state in Sect. 3.2. First, we describe the general structure of such
construction. Then, we consider a special class of Transform-then-Permute
construction, dub it frTtP, by imposing several restrictions in the underly-
ing feedback function. In Sect. 3.3, we provide the necessary justification for
the choice of these restrictions to achieve the desired security. Roughly, the
restrictions take care of all the necessary conditions required for the correct-
ness and desired security of such constructions along with simplifying the
proof. We prove the generic security of the class of frTtP construction in
Sect. 4 (see Proposition 4). In addition, we also consider a special sub-class
of frTtP constructions, called frTtP+, with some additional restrictions that
obtain a much-simplified security bound (see Theorem 2).

2. Concrete Instantiations: Finally, we demonstrate the applicability of our
results. First, in Sect. 4.1, we show that the modified ORANGE-Zest [11]
belongs to the frTtP+ class, and hence obtains the desired security. This
essentially shows that the weakness in the original ORANGE-Zest [11]
was only due to improper initialization, not a flaw in the underlying design
strategy. Next, in Sect. 4.2, we demonstrate that simple duplex sponge-type
designs, even when extended to full rate using some extra state, do not sat-
isfy one of the necessary conditions for security, and hence, are inherently
insecure. Next, in Sect. 4.3, we consider a family of Transform-then-Permute
constructions following Beetle like feedback, dub fr-Beetle that belong to the
frTtP+ class and hence, achieve the desired security. As a concrete instan-
tiation from the class of fr-Beetle, we demonstrate the example of fr-COFB
that uses combined feedback, as used in CoFB [9].



4 B. Chakraborty et al.

1.3 Significance of the Result

In this subsection, we highlight the significance of our result. We provide com-
parative results among the proposed construction fr-COFB, Orange with existing
constructions such as Sponge-Duplex, Beetle in terms of rate, state, security, and
linear operations. As depicted in Table 1, consider Beetle with b = 256, r = 128
and fr-COFB with s = 128. They both achieve similar security (upto D �
264, T � 2128). However, at the cost of the additional 128 bit additional state
(and necessary additional xor operations), fr-COFB achieves double throughput
as compared to Beetle.

Mode Rate State Linear operations / block Security Bound

Sponge-Duplex [5] r/b 0 r bit xor O
( q2p+σ2

2b−r

)
Beetle [8] r/b 0 r bit xor, r bit shift O(

qp
2b−r

+
qpσ

2b
) [10]

ORANGE-Zestmod [11] 1 s 2b bit xor, (b− s) bit shift O(
σ2+qp

2s
+

qpσ

2b
) [Sect. 4.1]

fr-COFB [This paper] 1 s (2b+ s) bit xor O(
σ2+qp

2s
+

qpσ

2b
) [Sect. 4.3]

Table 1: A Comparative Study of Sponge-based constructions. b and r denote the per-
mutation size and message injection rate, respectively. By state, we mean the additional
state required. The security bound only considers the major terms.

We believe our result is significant in designing high throughput, lightweight au-
thenticated encryption designs as it provides a general guideline for constructing
full-rate sponge-based constructions.

2 Preliminaries

In this paper, for any n ∈ N, (n] (res. [n]) signifies the set {1, 2, . . . , n} (res.
{0, 1, . . . , n}). {0, 1}n denotes the set of bit strings of length n, {0, 1}∗ :=⋃
n≥0{0, 1}n, and Perm(n) signifies the set of all permutations over {0, 1}n. We

say that the two distinct strings a = a1 . . . am and b = b1 . . . bm′ have a common
prefix of length n ≤ min{m,m′} if ai = bi for all i ∈ (n], and an+1 6= bn+1. dxen
(res. bxcn) designates the most (res. least) significant n bits of any bit string x
with |x| ≥ n. We use the notation 〈N〉x to denote the binary representation of N
represented in x bits. We define the falling factorial (n)k := n(n−1) · · · (n−k+1).
For any finite set X , (X )q signifies the set of all q-tuples with distinct elements
from X . X←$X signifies the uniform sampling of X from X , which is indepen-
dent of all other previously sampled random variables. An uniform sampling
of t random variables X1, . . . ,Xt from X without replacement is denoted by
(X1, . . . ,Xt)

wor← X . We use the symbol ? to denote that it can take any possible
values.
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2.1 Authenticated Encryption: Definition and Security Model

Given any key space K, nonce space N , associated data space A, message space
M, ciphertext space C, and tag space T an authenticated encryption scheme
with associated data functionality (or AEAD in short), is a tuple of algorithms
AE = (E : K×N×A×M→ C×T ,D : K×N×A×C×T →M∪{⊥}) such that
for all (K,N,A,M) ∈ K×N×A×M and (C, T ) ∈ C×T , D(K,N,A,C, T ) = M
if and only if E(K,N,A,M) = (C, T ). We call E (res. D) the encryption (res.
decryption) algorithm of AE. For any key K ∈ K, let EK(·) (res. DK(·)) denotes
E(K, ·) (res. D(K, ·)). In this paper, we assume K,N ,A,M, T ⊆ {0, 1}∗ and
C =M.

For b ∈ N, let Π←$ Perm(b), and Γ←$ Func(N×A×M,M×T ). Let ⊥ denote
the degenerate function from (N ,A,M, T ) to {⊥}. We use the superscript ± to
denote bidirectional access to Π. By abuse of notation the oracle corresponding
to a function (like E, Π etc.) is denoted by that function itself.

Definition 1. Consider any AEAD scheme AEΠ defined over (K,N ,A,M, T )
with the random permutation Π as it’s underlying primitive. The AEAD advan-
tage of an adversary A against AEΠ is defined as

AdvAEAD
AEΠ

(A ) :=

∣∣∣∣∣∣ Pr
K←$K

Π±

[
A EK,DK,Π

±
= 1
]
− Pr

Γ,Π±

[
A Γ,⊥,Π± = 1

]∣∣∣∣∣∣ ,
where A ’s response after its interaction with EK, DK, and Π± is deonoted by
A EK,DK,Π

±
. Similarly, A Γ,⊥,Π± denotes A ’s response after its interaction with Γ,

⊥, and Π±.
In this paper, we only consider adversaries which do not make any repetative

or redundant queries. Let qe and qd denote the number of queries to EK and
DK respectively. Let σe and σd denote the sum of input (associated data and
message) lengths across all encryption and decryption queries respectively. Any
adversary making qp primitive calls, qe encryption queries, qd decryption queries
with a total of at most σe and σd blocks of encryption and decryption queries
is called a (qp, qe, qd, σe, σd)-adversary or simply (qp, σ)-adversary, where σ :=
σe + σd.

2.2 Coefficients H Technique

Consider any deterministic yet computationally bounded adversary A using a
black box type interaction with one of two oracles O0 and O1 and trying to differ-
entiate between them. The query-response tuple associated with A ’s interaction
with its oracle is called its transcript. A transcript ω may also contain any other
information that the oracle decides to reveal to the distinguisher at the end of
the game’s query-response phase. This expanded definition of transcript will be
taken into consideration. Suppose Θ1 (res. Θ0) denotes the random transcript
variable for A ’s interaction with O1 (res. O0) . The interpolation probability of
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ω with regard to O is the probability of obtaining a given transcript ω in the
security game with an oracle O. Since A is deterministic, this probability only
depends on the transcript ω and the oracle O. A transcript ω is said to be attain-
able if Pr [Θ0 = ω] > 0. In this paper, O1 = (EK,DK,Π

±) and O0 = (Γ, bot,Π±)
and the adversary is trying to distinguish O1 from O0 in the AEAD sense. We
now state the coefficient H technique(or simply the H-technique), a simple yet
powerful tool developed by Patarin [20]. A proof of this theorem can be found
in a number of papers including [21,12,18].

Theorem 1 (H-technique [20,21]). Let Ω be the set of all transcripts. For
some εbad, εratio > 0, suppose there is a set Ωbad ⊆ Ω satisfying the following:

– Pr [Θ0 ∈ Ωbad] ≤ εbad;
– For any ω /∈ Ωbad, ω is attainable and

Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥ 1− εratio.

Then the distinguishing advantage for any adversary A can be bounded as

Advdist
O1

(A ) ≤ εbad + εratio.

2.3 Multi-chain Graph

In this section, we revisit the multi-chain graph structure and an important
result that bounds the number multi-chains as discussed in Chakraborty et al.
[10].

Multi-chain Graph. Let Θ = {(U1, V1), . . . , (Ut, Vt)} be a list of pairs of b-
bit elements such that U1, . . . , Ut are distinct and V1, . . . , Vt are distinct. For
any such list of pairs, we write domain(Θ) = {U1, . . . , Ut} and range(Θ) =
{V1, . . . , Vt}. Let L be a linear function over b bits with the transformation
matrix L. Given such a list Θ and a linear transformation matrix L, we define a
labeled directed graph GLΘ (call it a multi-chain graph) over the set of vertices
range(Θ). Given Vi, Vj ∈ GLΘ and X ∈ {0, 1}b, we draw an X labeled directed

edge Vi
X−→ Vj in the graph iff

L · Vi ⊕X = Uj .

We can similarly extend this to a label walk W from a node W0 to Wk as

W : W0
X1−−→W1

X2−−→W2 · · ·
Xk−−→Wk

and simply denote it as W0
X−→ Wk where X = (X1, . . . , Xk). Here k is the

length of the walk.

Multi-chain. Let GLΘ be any multi-chain graph as defined above. Given any

fixed levels (X1, . . . , Xk), we say the set of k length walks {Wi : W i
0

(X1,...,Xk)−−−−−−−→
W i
k} form an multi-chain if and only if W i

k = W j
k for all i, j. Note that a multi-

chain is a set of walks and if W is a multi-chain then so is any subset of W. The
following lemma bounds the number of multi-chains of any length.
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Lemma 1. Consider the set of all multi-chains in GLΘ of length k. Let Γk denote
the size of the largest of all such multi-chains of length k. If L is invertible, then

µt := max
k>0

Ex

[
Γk
k

]
≤ 1.

The proof of this lemma can be found in [10].

3 Full-Rate-Transform-then-Permute AEAD

3.1 Revisiting Transform-then-Permute Paradigm

Let us first revisit the Transform-then-Permute construction introduced by Chakraborty
et al. [10]. We assume that the underlying primitive of the construction is a b
bit public permutation and r is the rate of message/associated data injection.
Let κ, ν denote the size of the key and the nonce respectively. For simplicity, we
assume κ < b, ν = b− κ, r ≤ b.
The construction takes a nonce N , an associated data A and a message M as in-
put. We define a formatting function Fmt that maps any (A,M) to (B1, . . . , Ba+m) ∈
({0, 1}b)a+m where a := d|A|/re and m := d|M |/re, such that given any two tu-
ples (A,M) 6= (A′,M ′) and Fmt(A,M) = (B1, . . . , Ba+m) and Fmt(A′,M ′) =
(B′1, . . . , B

′
a′+m′), we have

1. (B′1, . . . , B
′
a) 6= (B1, . . . , Ba) whenever A 6= A′ and a ≤ a′.

2. (B′a+1, . . . , B
′
a+m) 6= (Ba+1, . . . , Ba+m), whenever A = A′ and m ≤ m′.

We consider the Sponge-type construction which takes state output Yi and data
input Bi and generate next state input Xi+1 and the data output Ci using
a linear feedback function E : {0, 1}b × {0, 1}b → {0, 1}b × {0, 1}r. This can
alternatively be represented using a transformation matrix E as follows:[

Xi+1

Ci

]
= E ·

[
Yi
Bi

]
.

Chakraborty et al. [10] considered a special type of Sponge based construction,
dub them as Transform-then-Permute, where the transformation matrix is of the
form

E =

[
? ?[

Ir 0r×(b−r)
] [
Ir 0r×(b−r)

]] .
It is easy to see that accordingly the decryption transformation matrix D would
also have the same form as E. A pictorial description of the Transform-then-
Permute construction is depicted in Fig. 1., most of the Sponge-based AEAD
designs such as Ascon, and Beetle belongs to this category.

We say that a Transform-then-Permute AEAD has Full-rate if r = b. It is well
known that a Full-Rate-Transform-then-Permute construction is not secure:

Proposition 1. Any full-rate Transform-then-Permute AEAD is insecure.

For completeness, we provide the proof of Proposition 1 in Appendix.
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ΠN‖K E

D1

E

Da

Π E

Da+1

C1

E

Dl

Cm

Π T|
d·eτ

Fig. 1: Schematic of the Transform-then-Permute AEAD mode. Fmt(A,M) =
(D1, . . . , Dl). The data outputs during the associated data processing are ignored.

3.2 Full-Rate-Transform-then-Permute AEAD with extra-state

We now define a Full-Rate-Transform-then-Permute (frTtP in short) AEAD mode
which uses an s-bit extra secret state. The necessity of this extra state is evident
from proposition 1.

General Structure of AEAD with extra-state As before considering a
frTtP encryption protocol with a permutation Π of state size b bits, key size κ,
nonce size b− κ and tag size τ .

� Initialization: Given any encryption query of the form (N,A,M), the en-
cryption algorithm first applies a formatting function Fmt that maps any (A,M)
to (B1, . . . , Ba+m) ∈ ({0, 1}b)a+m, where the first a (≥ 1) blocks are generated
from A. The format function should ensure that given any two tuples (A,M) 6=
(A′,M ′) and Fmt(A,M) = (B1, . . . , Ba+m) and Fmt(A′,M ′) = (B′1, . . . , B

′
a′+m′),

we have

(i) (B1, . . . , Ba) 6= (B′1, . . . , B
′
a′), if and only if A 6= A′.

(ii) (B1, . . . , Ba+m) 6= (B′1, . . . , B
′
a′+m′), if and only if (A,M) 6= (A′,M ′).

It is easy to see the following is a simple example of a format function satisfying
the restrictions:

Fmt(A,M) := ozs(A) ‖ oozs(M) ‖ 〈|A|〉b/2 ‖ 〈|M |〉b/2.

Here ozs and oozs means 10? and optional 10? padding to make the blocks
multiple of b bits.

In addition, we define X0 = K‖N ; Y0 = Π(X0). The algorithm uses an extra-
state initialization protocol to generate the initial extra-state S0 = ρ ◦Π(K‖N),
where ρ can be any linear function from {0, 1}b to {0, 1}s with rank s. A trivial
choice of ρ is ρ(B) = bBcs.

� Associated Data and Message Processing: For i ∈ [1, a + m] and a
linear feedback function E : {0, 1}2b+s → {0, 1}2b+s, the algorithm recursively
calculates Yi, Si, Ci as follows:

(Xi, Si, Ci) = E(Yi−1, Si−1, Bi); Yi = Π(Xi).
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Alternatively, we can represent the feedback function via a transformation matrix
as given below: Xi

Si
Ci

 =

E1 E2 E3

E4 E5 E6

E7 E8 E9

Yi−1Si−1
Bi

 .
Accordingly, there should exist a decryption transformation matrix D such thatXi

Si
Bi

 =

D1 D2 D3

D4 D5 D6

D7 D8 D9

Yi−1Si−1
Ci

⇔
Xi

Si
Ci

 = E ·

Yi−1Si−1
Bi

 .
� Ciphertext and Tag generation: Finally the protocol outputs bCa+1‖ · · · ‖Ca+lc|M |
as the ciphertext and bYa+lcτ as the tag.

We represent the generic structure in Figure 2.

Understanding the frTtP Class. Now we define a special class of full rate
Transform-then-Permute, dub frTtp, where we impose the following four condi-
tions on the feedback encryption and decryption matrices:

(C1) E9 = D9 = Ib, (C2) E6 = D6 = 0, (C3) E7 = D7 = Ib, (C4) E2 = E3·E8 ( 6= 0).

Note that the above restrictions ensure the following (via simple linear algebraic
calculations):

D1 = E1 ⊕ E3, D2 = 0, and Di = Ei, ∀i = 3, . . . , 9.

This simplified feedback function for frTtP is depicted in Fig. 3, where the initial
extra state is calculated as S0 = ρ(Y0), for some linear function ρ : {0, 1}b →
{0, 1}s of rank s.
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Π E

B1

Π Π E

Ba

Π Ya
K‖N Y0

ρ
S0

X1

S1

Ya−1

Sa−1

Xa

Sa

E

Ba+1
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Π Π E

Bl

Cl

Π T
Ya

Sa

Xa+1

Sa+1

Yl−1
Sl−1

Xl

Sl

−|Mm|

/
τ

Fig. 2: A frTtP AEAD with extra state. Here (B1, . . . , Bl) = Fmt(A,M). ρ : {0, 1}b →
{0, 1}s is a linear function of rank s.

E

M

Y

S

X

S′

C

≡ Y E1

+

C

E8S

E4

+

S′

E5

S

+

E3

E2

S

X

M

Fig. 3: Simplified Representation of an frTtP feedback function.

3.3 Rationale of the Assumptions on the Feedback Function

In this section, we justify our choices for the encryption and decryption subma-
trices.

� Choice on the Feedback Function. To begin with, let us first state the
following proposition that provides a few necessary conditions for the Encryption
and Decryption Feedback Functions:

Proposition 2. If E and D are the encryption and decryption feedback functions
of a secured frTtP construction, then E ,D must satisfy the following conditions.
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(i) rank(E9) = rank(D9) = b,
(ii) rank(E8) = rank(D8) 6= 0,
(iii) rank(

[
E7 E8

]
), rank(

[
D7 D8

]
) = b.

Proof. Condition (i) follows from the correctness of the construction and the
observation that if rank(E9) 6= b, then there exists M 6= M ′ such that E9 ·M =
E9·M ′, and hence the decryption function will not be deterministic. rank(D9) = b
follows from a similar argument. Conditions (ii) and (iii) are necessary from a
security perspective. Condition (ii) follows from the fact that if rank(E8) = 0 or
rank(D8) = 0 then the internal Y state values are completely determined and
hence the adversary can forge the construction in the same way as the frTtP
construction with no extra-state. For condition 3, suppose rank(

[
E7 E8

]
) 6= b.

Then, there exists a non zero vector γ such that γ · (
[
E7 E8

]
) = 0. Hence,

γ · C = γ ·M with probability 1.

The above necessary conditions are incorporated to define a new simplified suf-
ficient assumptions on the feedback function E :

(C1) E9 = D9 = Ib, (C2) E6 = D6 = 0, (C3) E7 = D7 = Ib, (C4) E2 = E3·E8 ( 6= 0).

Now let us try to justify the above-mentioned assumptions. To justify condition
(C1), observe that with since rank(E9) = b one can simply define M ′ = E9 ·M ,
and proceed with that. For (C2), observe that since M is known, it doesn’t con-
tribute to the randomness of the extra state and hence taking E6 = 0 doesn’t
affect the security of the AEAD scheme. D6 = 0 follows from E6 = 0 and as-
sumption (i). Note that (C3) and (C4) takes care of the necessary conditions
(iii) and (ii) respectively. However, they are stronger assumptions than neces-
sary condition (iii) and (ii) respectively, which are used in simplifying the overall
calculations for the special class of general frTtP feedback functions. Note that
condition (C4) essentially ensure that D2 = 0, i.e., during decryption the permu-
tation input does not depend on the extra state. This condition helps in achieving
the desired bound. As a consequence, we do not have any matching attacks on
frTtP to justify (C3), (C4). Nonetheless, as we will see in section 4, many full-rate
feedback functions used in popular constructions such as Orange-Zest, the one
used in COFB or Beetle satisfy both these conditions. Moreover, in the feedback
functions used in Transform-then-Permute constructions without an extra state,
(C3) is a necessary condition.

� Choice on the Initial Extra-state Generation. Consider a frTtP con-
struction with extra state size s and linear feedback function E as defined above.
Note that during associated data processing no information is leaked. Hence, for
an encryption query say (N,A,M), if a many blocks of associated data are pro-
cessed via format function, then it is not necessary to generate the extra-state
values S0, . . . , Sa−1. Infact, even if Si = 0 for all 0 ≤ i ≤ a − 1, the adversary
cannot compute Ya. So, a possible choice of defining the extra state is to define
it via Ya or nonce N . The following proposition suggests that simply generating
it through (i) a linear function on Ya or (ii) a linear function on N does not
suffice.
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Proposition 3. For any encryption query (N,A,M), let a many blocks be pro-
cessed due to associated data A via the format function. If (i) Sa is independent
or linearly dependent on N , or (ii) S(a) is a linear function of Ya, then there
exists a forging adversary against the frTtP construction.

Proof. For part (i), assume that Sia is independent of N i. Now, suppose an
adversary makes two encryption queries (N1, A,M) 6= (N2, A,M), and corre-
sponding responses are (C1, T 1), (C2, T 2). Let Fmt(A,M) = (B1, . . . , Ba, Ba+1).
It is easy to see that S1

a = S2
a, and hence, Y 1

a = Y 2
a ⊕ C1 ⊕ C2. This implies

X1
a+1 = B1 ·Y 1

a ⊕B2 ·S1
a⊕B3 ·C1 = B1Y

2
a ⊕B2 ·S1

a⊕B1(C1⊕C2)⊕B3 ·C1. Hence,
if an adversary choses C∗ in such a way that B3 · (C∗ ⊕ C1) = B1 · (C1 ⊕ C2)
then (N2, A2, C∗, T 1) is a valid forgery. A similar analysis goes through if Sa is
linearly dependent on N . In that case, we have S1

a ⊕ S2
a = F · (N1 ⊕N2) where

F is some s × ν linear matrix. Here (N2, A2, C∗, T 1) would be a valid forgery,
where B3 · (C∗⊕C1) = B1 · (C1⊕C2⊕E8 ·F · (N1⊕N2))⊕B2 ·F · (N1⊕N2).

For part (ii), let us assume Sa = ρ(Ya). Then, (Ib⊕E8·ρ)·Ya = Ca+1⊕Ba+1. Now,
if rank(Ib⊕E8 ·ρ) = b, then Ya can be calculated as (Ib⊕E8 ·ρ)−1 ·(Ca+1⊕Ba+1).
If rank((Ib⊕E8 · ρ)) < b, then there exists vector γ such that γ · (Ib⊕E8 · ρ) = 0
which implies γ · Ca+1 = γ ·Ba+1 with probability 1.

Now, assuming the underlying primitive Π is the only nonlinear component,
a natural choice for the initial extra-state would be ρ ◦ Π ◦ ρ′(N,K), where
ρ : {0, 1}b → {0, 1}s, ρ′ : {0, 1}κ × {0, 1}ν → {0, 1}b are two linear functions.
A straightforward choice for ρ′(N,K) would be K‖N , which in fact is used in
many popular AEAD protocols such as CoFB [9]. However, this doesn’t work if
no block is processed in the associated data (e.g., empty-associated data) due to
the above Proposition. However, as mentioned in our format function, it always
generates one associate data block to ensure that at least one block is processed
during the associated data, and take ρ′(N,K) = K‖N .

4 Security of frTtP AEAD with Extra State

In this section, we bound the advantage of any AEAD adversary against the
frTtP construction defined in section 3. Consider an frTtP construction with the
encryption and decryption feedback functions E and D respectively. Alongside,
we consider a linear function ρ : {0, 1}b → {0, 1}s of rank s for processing
the initial extra-state. Before proceeding to the exact proposition statement, we
define a notation for multi-collision as follows: Let X1, . . . ,Xµ

wor← D where |D| =
β and β ≥ 4. Let mcµ,β denote the maximum multicollision random variable for
the sample i.e., mcµ,β = maxa |{i : Xi = a}|. We define mcoll(µ, β) := Ex [mcµ,β ].
Given this definition, we now state our main proposition as follows.

Proposition 4. The AEAD advantage of all adversaries making qp many prim-
itive queries, a total of σe blocks in encryption queries, and a total of σd blocks in
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decryption queries against an frTtP construction with s bit extra-state as defined
above, can be bounded as follows

AdvAEAD
frTtP (qp, σe, σd) ≤

qp
2κ

+
9σeqp
2r12

+
2σ2

e

2r12
+

2σ2
e

2r45+r
′
45−s

+
qpσd
2rd

+
2σd
2τ

+
σdσe

2rd+r3−b

+
qpmcoll(σe, 2

τ )

2b−τ
+

2qpmcoll(σe, 2
b+s−r45−r8)

2r45+r12+r8−s−b

+
3σd(σe + σd + qp)

2rd
+
σdqpmcoll(σe, 2

b+s−r45−r8)

2r12+rd+r8−r45−b−s
,

where

r3 := rank(E3); r8 = rank(E8); r12 := rank (E1 ⊕ E2 · ρ) ; rd := rank(D1);

r45 := rank ((E4 · E8 ⊕ E5)
s
) ; r′45 = min

j≤`

{
rank(Is ⊕ (E4 · E8 ⊕ E5)j)

}
.

Here ` denotes the maximum allowed message length.

The above proposition gives a generic security bound on the security of frTtP.
Now let us consider a special simplified class of frTtP, call it frTtP+, with the
following additional restrictions:

rank(E3) = rank(r12) = rank(D1) = b, rank(E8) = s, E4 · E8 ⊕ E5 = α · Is,

where α is a primitive element in GF (2s). As we will see, we can construct several
efficient authenticated cipher construction following frTtP+ paradigm. Now we
state a simplified result on the security of this new class of frTtP constructions.

Theorem 2. The AEAD advantage of any adversary against an authenticated
encryption construction following frTtP+ paradigm making qp many primitive
queries, a total of σ blocks in encryption and decryption queries can be bounded
by

AdvAEAD
frTtP+(qp, σ) ≤ qp

2κ
+

2σ

2τ
+

4τqp
2b−τ

+
8σqp + 3σ2

2b
+

2σ2 + 12(b− s)qp
2s

,

where σ ≤ min{2b−s, 2τ}, ` < 2s.

Proof. First, observe that the restrictions on the encryption matrices, by defini-
tion, ensure r3 = r12 = rd = b, r8 = s. In addition, note that E4 ·E8⊕E5 = α ·Is
implies that (i) r45 := rank ((E4 · E8 ⊕ E5)

s
) = rank(αs · Is) = s and (ii)

r′45 = min
j≤`

{
rank(Is ⊕ (E4 · E8 ⊕ E5)j)

}
= min

j≤`
{rank((αj ⊕ 1) · Is)} = s. This

follows from the fact that α is a primitive element in GF (2s), and ` < 2s. Next,
we simplify all the terms involving mcoll by the following result: mcoll(µ, 2β) ≤
4β, for any µ, β with µ ≤ 2β [10]. We can apply this result as we assume
σ ≤ min{2b−s, 2τ}. Finally, the Theorem follows from Proposition 4 as we sim-
plify all the terms and use σ = σe + σd.
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4.1 Security of Modified ORANGE-Zest

In this section, we discuss the security of the modified variant of ORANGE-
Zest, as proposed in [11]. Note that the construction uses the format func-
tion satisfying the definition and the initial extra secret state is generated by
ρ(Π(K‖N)), where ρ(X) = bXcs. Now let us look at the feedback function of
the design. Note that the feedback function remains the original one, and it is
given as follows.

EORANGE-Zest =


[
Ib−s ⊕A−1 0(b−s)×s

0s×(b−s) 0s×s

] [
0(b−s)×s

Is

]
Ib[

0s×(b−s) α · Is
]

0s 0s×b

Ib

[
0(b−s)×s

Is

]
Ib

 ,

where Ab−s =

[
0(b−s−1)×1 Ib−s

1 01×(b−s)

]
.

It is easy to verify that the above feedback function along with the modified for-
mat function satisfies the definition of frTtP construction. Moreover, the feedback
function satisfies (i) rank(r12) = b, (ii) rank(D1) = b, (iii) E4 · E8 ⊕ E5 = α · Is,
and hence belongs to the frTtP+ family. Hence, applying Theorem 2, we obtain
the security of ORANGE-Zestmod:

AdvAEAD
ORANGE-Zestmod

(σ, qp) ≤
qp
2κ

+
2σ

2τ
+

4τqp
2b−τ

+
8σqp + 3σ2

2b
+

2σ2 + 12(b− s)qp
2s

.

Remark 1. We would like to point out that Dobraunig et al. [14] mounted a
forgery attack on the original construction, i.e., ORANGE-Zest, exploiting
the property that the extra-state doesn’t depend on the nonce under certain
cases (to be precise, for the case of empty associated data), which is a necessary
condition as discussed in Proposition 3. However, the attack is not applicable on
the ORANGE-Zestmod as it follows the proper formatting, as mentioned. This
result shows that the weakness was only due to the initial extra-state generation
protocol, not the weakness of the underlying feedback function. Also, we would
like to highlight that the security becomes void if τ = b, as evident from the
bound, justifying a matching attack as reported by Khairallah et al. [17].

4.2 (In)security of Full Rate Sponge-Duplex and Oribatida

In this subsection, we discuss the full-rate version of conventional Sponge-duplex
which uses some extra-state. The corresponding feedback function can be repre-
sented by Eduplex.

Eduplex =

Ib ? Ib? ? ?
Ib ? Ib

 , EOribatida =

 Ib 0b×b Ib
α · Ib 0 0
Ib Ib Ib

 .
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In [7], Bhattacharjee et al. designed Oribatida, a variant of Sponge-duplex with
extra-state to achieve integrity security in the RUP setting, where plaintexts may
be released before verification. Now let us look at the design of Oribatida when
we make it full-rate. The feedback function of a full-rate Oribatida construction
can be represented as EOribatida.

Now let us consider a full rate Transform-then-Permute construction that uses an
instantiation of Eduplex (and consequently EOribatida) as the underlying feedback
function. By simple linear algebra, one can show that for such a feedback func-
tion, we haveD1 = 0, which essentially says, during decryption, Yi+1 does not de-
pend on Xi. This can be exploited by an adversary A to mount a forgery attack.
Let us assume A makes an encryption query (N,A,M) such that Fmt(A,M) =
(B1, . . . , Ba, Ba+1), and the corresponding response is (C, T ), where |C| = b.
Now, A can choose an A′ such that Fmt(A′,M) = (B1, . . . , Ba−1, B

′
a, Ba+1),

where B′a 6= Ba and makes a forging of the form (N,A′, C, T ). As Sa is gener-
ated using N,K,B1, . . . , Ba−1 which are the same in both the encryption and
decryption queries. As D1 = 0, for both the encryption and decryption queries,
we have Xa+1 = D2 ·Sa⊕D3 ·C validating (N,A′, C, T ) to be a valid forgery. This
attack shows the insecurity of a full-rate variant of conventional Sponge-duplex
(and consequently Oribatida), even when an additional extra state in incorpo-
rated.

4.3 frTtP with Combined and Beetle Feedback

Now let us look at what happened if we use a combined feedback function (as
in CoFB) [9], or use a full-rate version of Beetle feedback [8] incorporating
extra state. The combined and the full-rate Beetle feedback function (dubbed as
Beetle-fb) can be represented as below:

Ecombined =

 G

[
0s
Is

]
Ib

0s×b α · Is 0s×b
Ib 0b×s Ib

 , EBeetle-fb =

ρ1 ? Ib? ? ?
Ib ? Ib

 .
For combined feedback,G is a square matrix of size b, such that bothG andG⊕Ib
are non-singular. On the other hand, Beetle-fb considers a family of feedback
functions with ρ1 is a square matrix of size b such that both ρ1 and ρ1 ⊕ Ib are
non-singular. Hence, we can visualize that combined feedback is essentially one
instantiation from the more generalized Beetle-fb family of feedback functions.

Observe that EBeetle-fb satisfies the conditions rank(D1) = rank(ρ1 ⊕ I) = b.
Next, we consider a sub-family of Beetle-fb where the sub matrices E2, E4, E5, E6, E8

satisfies the condition E8 = E2, rank(E2) = s, E6 = 0, and E4 ·E8⊕E5 = α · Is.
Let us consider the family of frTtP constructions which uses a feedback function
from this new sub-family of Beetle-fb, and call them fr-Beetle family of construc-
tions. It is easy to see that, by the above definition, any fr-Beetle construction
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belongs to frTtP+ class. Thus, applying Theorem 2, we obtain

AdvAEAD
fr-Beetle(σ, qp) ≤

qp
2κ

+
2σ

2τ
+

4τqp
2b−τ

+
8σqp + 3σ2

2b
+

2σ2 + 12(b− s)qp
2s

.

Now let us look at some efficient instantiation of Beetle-fb. More precisely,
we look for the choices of E2, E4, E5, E6, E8 satisfying the above properties.
Interestingly, the choices for E2, E4, E5, E6 in Ecombined satisfy the last three
properties. If we modify the combined feedback function by defining E8 = E2, we
will immediately obtain an efficient instantiation of Beetle-fb. So, let us consider
this modified feedback matrix:

Ecombined+ =


G

[
0 b

2

I b
2

]
Ib

0 b
2×b

α · I b
2

0 b
2×b

Ib

[
0 b

2

I b
2

]
Ib

 .

We dub an frTtP the construction with Ecombined+ feedback function as fr-COFB.
As mentioned already, fr-COFB belongs to the fr-Beetle family of frTtP construc-
tions, and hence obtain the same security bound. The construction fr-COFB is
depicted in Fig. 4.3.

Π G +

B1

Π Π G +

Ba

Π Ya

α

ρ

α α

N‖K Y0 X1 Ya−1 Xa

s0 s1 sa−2 sa−1 sa

Π G

+

+

+

Π

α

Xa Ya

Ba+1

C1

Xa+1

Sa

Ya+1

Sa+1

Π G

+

+

+

Π

α

Xl−1 Yl−1

Bl

Cm

Xl

Sl−1 Sl

Tτ
/

Fig. 4: fr-CoFB. Here (B1, . . . , Bl) = Fmt(A,M) and ρ : {0, 1}b → {0, 1}s is a linear
function of rank s. In the diagram, Bi ⊕ Si−1 represents the bit-wise xor of Bi and
0|Bi|−|Si−1|‖Si−1.

Discussion: Let us look at the original Beetle [8] contruction. Assuming message
injection rate of r bits and state size of b bits, Chakraborty et. al. [10] showed that
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Beetle achieves a security of O
(
σ+qp
2b−r

+
σqp

22b−2r +
σq2p

22b−r

)
. Thus, assuming qpσ �

2b, Beetle construction is secure with a data absorption rate r � b− log(σ+ qp).
Now with our new proposal fr-Beetle, we obtain the full rate with the same level
of security at the cost of an extra state of size s� log(σ2 + qp) bits.

5 Proof of Theorem 2

5.1 Description of the Ideal World

The ideal world responds to the encryption queries, decryption queries, and
primitive queries in the online phase as follows:

(1) On Primitive Query (Wi, diri): The ideal world simulates Π± query hon-
estly. In particular, if diri = 1, it sets Ui ←Wi and returns Vi = Π(Ui). Similarly,
when diri = −1, it sets Vi ←Wi and returns Ui = Π−1(Vi).

(2) On Encryption Query Qi := (Ni,Ai,Mi): It first defines

(Bi,1 . . . Bi,ai , Bi,ai+1, . . . , Bi,li) := Fmt(Ai,Mi)

where ai represents the number of blocks of size b bits generated using associated
data Ai. It then, samples Yi,0, . . . , Yi,li ←$ {0, 1}b. For all 1 ≤ j ≤ li, it then
calculates

Si,j =


ρ · Yi,0, if j = 0

Ej−15 · (E4 ⊕ E5 · ρ) · Yi,0 ⊕
j−1⊕
k=1

Ej−1−k5 · E4 · Yi,k, otherwise.

Next, it computes

Ci,j = Yi,j−1 ⊕ E8 · Si,j−1 ⊕Bi,j , ∀ ai + 1 ≤ j ≤ li.

Finally, it returns (Ci,Ti), where Ci = bCi,ai+1‖ · · · ‖Ci,lic|Mi|, Ti = bYi,licτ .
(3) On Decryption Query Qi := (N∗i ,A

∗
i ,C
∗
i ,T
∗
i ): We only consider non-trivial

decryption queries, and the ideal world always aborts (returns the abort symbol
⊥) for any such query.

Offline Phase of Ideal World. After completion of oracle interaction (the
above three types of queries possibly in an interleaved manner), the ideal oracle
sets E,D,P to denote the sets of all the query indices corresponding to the
encryption, decryption, and primitive queries respectively. Let |E| = qe, |D| =
qd, |P| = qp.

� Extended Transcripts (Encryption Queries). Now we describe the extended
transcript for the encryption queries. It samples K ←$ {0, 1}κ. For all i ∈ E and
j ∈ [0, li], we define

Xi,j =

{
K‖Ni, if j = 0

E1 · Yi,j−1 ⊕ E2 · Si,j−1 ⊕ E3 ·Bi,j , otherwise.
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� Extended Transcripts (Decryption Queries). Now we describe an extended
transcript for the decryption queries. Given any decryption query (N∗i , A

∗
i , C

∗
i , T

∗
i ),

i ∈ D, let (B∗i,1, . . . , B
∗
i,a∗i

) are the blocks generated corresponding to A∗, and

(C∗i,1 . . . , C
∗
l∗i−a∗i

)
b← C∗i . Now, we define an integer pi as follows.

– If ∀i′ ∈ E, N∗i 6= Ni′ , define pi = −1.
– Else, consider i′ ∈ E, such that N∗i = Ni′ . Since the adversary is nonce

respecting there exists a unique i′.
• If ai′ ≤ a∗i , define pi to be the length of the maximum blockwise common

prefix of (B∗i,1, . . . , B
∗
i,a∗i

, C∗i,1 . . . , C
∗
l∗i−a∗i

) and (Bi′,1, . . . , Bi′,a∗i , Ci′,li′−a∗i ,

. . . , Ci′,li′ ).

• Else, a∗i < ai′ . Using the extended encryption transcript, for all j ∈
[a∗i + 1, ai′ ] define,

Ci,j = Yi,j−1 ⊕ E8 · Si,j−1 ⊕Bi,j .

Finally define, pi to be the length of the maximum block-wise common
prefix of (B∗i,1, . . . , B

∗
i,a∗i

, C∗i,1 . . . , C
∗
l∗i−a∗i

) and (Bi′,1, . . . , Bi′,a∗i , Ci′,a∗i+1,

. . . , Cli′ ).

Further, for all i ∈ D and 0 ≤ j ≤ pi, we define the internal states of the ith
decryption query as follows: X∗i,j = Xi′,j , Y

∗
i,j = Yi′,j , S

∗
i,j = Si,j . In addition,

we compute

X∗i,pi+1 =

{
E1 · Y ∗i,pi ⊕ E2 ⊕ S∗i,pi ⊕ E3 ·B∗i,pi+1, if pi < a∗i
D1 · Y ∗i,pi ⊕D3 · C∗i,li−pi , otherwise

and S∗i,pi+1 = Si′,pi+1. Note that by property of Fmt function,X∗i,pi+1 6= X∗i′,pi+1.
However, it might collide with a permutation query, i.e., (X∗i,pi+1, ?, ?) ∈ ωp. To

handle this case, we now consider multi-chain graph GLωp , where L = D1. Note
that it is possible to apply the multi-chain graph as D2 = 0 (justifying our choice
of (C4) for frTtP). Let us assume xi,j := E3 ·C∗i,j−a∗i for all i ∈ D, j ∈ [a∗i , l

∗
i ]. If

a∗i ≤ pi using Y ∗pi+1, we consider all possible labeled walks

Y ∗pi+1

(xi,pi+2,...,xi,j)−−−−−−−−−−→ Y ∗i,k.

Let jmax denote the maximum of all such j values. Now, we define a new integer
p′i in the following way:

p′i =

{
pi, if pi ≤ a∗i or (X∗i,pi+1, ?, ?) /∈ ωp
jmax, otherwise.

Finally, we define

X∗i,p′i+1 =

{
E1 · Y ∗i,p′i ⊕ E2 ⊕ S∗i,p′i ⊕ E3 ·B∗i,p′i+1 if pi < a∗i .

D1 · Y ∗i,p′i ⊕D3 · C∗i,li−p′i otherwise.
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� Extended Adversarial Transcripts. The overall transcript of the adversary
consists of ω = (ωe, ωd, ωp), where the primitive, encryption, and decryption
transcripts are given as follows:

ωp = (Ui, Vi,±)i∈P

ωe = (Ni, Ai,Mi, Xi,j , Yi,j , Si,j , Ci, Ti)i∈E,j∈[li]

ωd = (N∗i , A
∗
i , C

∗
i , T

∗
i , X

∗
i,j , Y

∗
i,j , S

∗
i,j ,⊥)i∈D,j∈[p′i+1].

5.2 Defining and Bounding Bad Transcripts in Ideal World

We now consider some bad events that may occur due to the primitive, encryp-
tion and decryption transcript.

BAD1: ∃ (U, ?, ?) ∈ ωp : K = dUeκ.
BAD2: ∃ (i, j) 6= (i′, j′) such that Si,j = Si′,j′ , where i ∈ E, j ∈ [li], i

′ ∈
E, j′ ∈ [li′ ].
BAD3: ∃ i ∈ E, j ∈ [li] such that (?, Yi,j , ?) ∈ ωp.
BAD4: ∃ i ∈ E, j ∈ [li] such that (Xi,j , ?, ?) ∈ ωp .
BAD5: ∃ (i, j) 6= (i′, j′) such that Yi,j = Yi′,j′ , where i ∈ E, j ∈ [li], i

′ ∈
E, j′ ∈ [li′ ].
BAD6: ∃ (i, j) 6= (i′, j′) such that Xi,j = Xi′,j′ , where i ∈ E, j ∈ [li], i

′ ∈
E, j′ ∈ [li′ ].
BAD7: ∃ i ∈ D, p′i = l∗i and bY ∗i,licτ = T ∗i .
BAD8: ∃ i ∈ D, i′ ∈ E, j′ ∈ [li′ ] such that X∗i,p′i+1 = Xi′,j , where p′i ≤ l∗i − 1.

We would like to point out that the first six events broadly represent some
collisions in the internal states during encryption and primitive queries. Such a
collision essentially induces a collision in the permutation input or output and
makes the transcript permutation incompatible which can be used to perform
privacy attacks. Hence, we call them bad events. The last two bad events are
due to the decryption queries and can lead to forgery attacks.

Now we use the following lemma to upper bound the probability of the bad
events.

Lemma 2. Let us define BAD = BAD1∪ · · · ∪BAD8. We can bound the probability
of BAD as follows.

Pr [BAD] ≤ qp
2κ

+
9σeqp
2r12

+
2σ2

e

2r12
+

σ2
e

2
r45+r′45−s

+
qpmcoll(σe, 2

τ )

2b−τ

+
qpµqpσd

2rd
+
σe + qp

2rd
+

σdσe
2rd+r3−b

+
qpmcoll(σe, 2

b+s−r45−r8)

2r12+r45+r8−b−s

+
σdqpmcoll(σe, 2

b+s−r45−r8)

2r12+rd+r8+r45−b−s
+ +

qpmcoll(σe, 2
b+s−r45−r8)

2r45+r8−s
.

The proof of the Lemma is given in the section B.2.
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5.3 Good Transcript Analysis and Completion of the Proof

In the online phase, the AE encryption, decryption, and direct primitive queries
are faithfully responded to based on Π±. Like the ideal world, after the com-
pletion of interaction, the real world returns all X-values Y-values and S-values
corresponding to the encryption queries only and all the derived X, Y, S values
corresponding to the decryption queries.

Lemma 3. Let Θ0 and Θ1 denote the random transcript variable obtained in
the ideal and real worlds, respectively. For any good transcript ω = (ωp, ωe, ωd),
we have

Pr [Θ1 = w]

Pr [Θ0 = w]
≥ 1−

(
2qd
2τ

+
2σd(σ + qp)

2rd

)
.

Here we briefly discuss an informal proof sketch of the lemma. The tuples ωe is
permutation compatible and disjoint from ωp. So, the union of tuples ωe∪ωp also
remains permutation compatible. Now, in the real world, a decryption query may
return Mi which is not ⊥. However, since a good transcript always aborts on a
decryption query, we need to bound the probability of this event. Suppose for all
0 ≤ j ≤ p′i, Y ∗i,j , S∗i,j and X∗i,j+1 are defined as before.Now, for all i ∈ D, we have
either p′i = li−1 and (X∗i,mi , ?‖T

∗
i ) ∈ ωp∪ωe (call it a Type-1 decryption query)

or p′i < li − 1 but X∗i,p′i+1 /∈ ωp ∪ ωe(call it a Type-2 decryption query). Type-1

decryption queries are taken care of in bad events. To be precise, such queries
are already rejected due to BAD6. For the Type-2 decryption query, observe
that X∗i,p′i+1 is fresh i.e. it has never been queried before by the adversary.

So, Π(X∗i,p′i+1) would be random over a large set. This would ensure a high

probability that such decryption queries will also be rejected. The formal proof
is presented in section B.3.

Proof of Theorem 2: Finally the proof of the theorem is complete as we apply
Lemma 2 and Lemma 3 in Theorem 1.

5.4 Conclusion and Future Direction

In this paper, we introduce a class of full-rate Sponge-type constructions called
the frTtP by introducing an extra-state as compensation for increasing the size of
the rate part. We further extend the result to show that a sub-class of the con-
structions, called frTtP+, achieves security up to D � 2s/2, T � 2s, where
s is the size of the extra-state (in bits). Consequently, we have shown that
ORANGE-Zestmod and a family of constructions following Beetle-like feed-
back functions belongs to the frTtP+ class, and hence, achieve the desired secu-
rity. Extending the result for a more general class of constructions (beyond the
frTtP class) and designing a more efficient full-rate Transform-then-Permute than
ORANGE-Zestmod or fr-COFB can be considered as an interesting open prob-
lem. In fact, one can investigate whether a hybrid feedback function (as used in
HyENA), can be used efficiently to construct a full rate Transform-then-Permute.

Finally, using an extra state may lead to the necessity of increased protection
against a wide variety of side-channel attacks. A concrete side channel analysis
of frTtP schemes is an important open problem and is left for future research.
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Appendix

A Proof of Proposition 1

Consider a TtP construction with full-rate i.e. r = b. Then the encryption feed-
back function E can be written as

E =

[
? ?
Ib Ib

]
.

The weakness of the construction comes from the fact that at each internal state
during the encryption query the previous permutation output can be completely
recovered. More formally an adversary A can forge as follows.

(i) A makes an encryption query (N,A,M) with |M | = b. Suppose the corre-
sponding ciphertext is (C, T ).

(ii) A computes B1‖ . . . ‖Ba+1 = Fmt(A,M), Ya = C ⊕Ba.
(iii) A choses any C ′ 6= C of b bits and makes a forging query of the form

(N,A,C ′, T ′), where T ′ = dΠ (Ya ⊕ C ′)eτ .

It is easy to see that the adversary A succeeds in forging with probability 1.

B Security Proof

B.1 Some Important Mathematical Results

In this subsection, we list down a few important results from linear algebra which
will be used in Appendix B.2.

Proposition 5. Let A be an m× n matrix and B be an n× l matrix. Then,

rank(A ·B) ≤ min{rank(A), rank(B)}.

Corollary 1. Let A be an n× n square matrix.

rank(Ai) ≥ rank(An) ∀i ∈ N.
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Corollary 2. Let A be an m ×m matrix B be an m × n matrix and C be an
n×m matrix.

rank(A⊕B · C) ≤ rank(
[
A B

]
).

Proof. Note that A⊕B · C =
[
A B

]
·
[
Im
C

]
Proposition 6. (Sylvester rank inequality) If A is an m × n matrix and B is
an n× k matrix, then

rank(AB) ≥ rank(A) + rank(B)− n.

B.2 Proof of Lemma 2

We start by bounding the individual bad events and then apply the union bound.

� Bounding BAD1: This is the key recovery event, i.e., the event that the ad-
versary recovers the master key K by direct queries to the internal random
permutation (can be both forward or backward). For a fixed entry (U, ?, ?) ∈ ωp,
the probability that K = dUeκ is bounded by at most 2−κ, as K is chosen
uniform at random from {0, 1}κ. Thus, we have

Pr [BAD1] ≤ qp
2κ
. (1)

� Bounding BAD2: Let us fix i ∈ E, j ∈ [li], i
′ ∈ E, j′ ∈ [li′ ]. We bound the

probability of the event Si,j = Si′,j′ in several cases as given below.

Case 1: i 6= i′, j, j′ = 0. In this case Si,0 = ρ(Yi,0) and Si′,0 = ρ(Yi′,0). Since Yi,0
and Yi′,0 are chosen uniformly at random, varying overall i, i′, the probability of

the event, in this case, is at most
q2e
2s .

Case 2: i 6= i′, j′ = 0, j > 0. In this case Si′,0 = ρ(Yi′,0). By simple algebra, we

can write Si,j = (E4 ·E8⊕E5)j ·ρ(Yi,0)⊕χi,j , for some χi,j which is independent
of Yi,0. Again since Yi′,0 and Yi,0 are chosen uniformly at random, varying overall
i, i′, the probability of the event, in this case, can be bounded by qeσe

2r45 .

Case 3: i 6= i′, j′, j > 0. In this case we can write, Si,j = (E4 ·E8⊕E5)j ·ρ(Yi,0)⊕
χi,j and Si′,j′ = (E4 · E8 ⊕ E5)j

′ · ρ(Yi′,0)⊕ χi′,j′ , for some χi,j , χi′,j′ which are
independent of Yi,0, Yi′,0. Again, since Yi′,0 and Yi,0 are chosen uniformly at ran-

dom, varying over all i, i′, the probability of this case can be bounded by
σ2
e

2r45 .

Case 4: i = i′, j 6= j′. In this case, suppose j > j′, then Si,j = Si,j′ if and only if

(E4 ·E8⊕E5)j
′
(Is⊕(E4 ·E8⊕E5)j−j

′
)ρ(Yi,0) = Ai,j for some Ai,j which is inde-

pendent of Yi,0. Since Yi,0 is chosen at random this case is bounded by
σ2
e

2r45+r′45−s
.
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Combining every case together, we have

Pr [BAD2] ≤ σ2
e

2r45+r
′
45−s

. (2)

� Bounding BAD3: This event is also analyzed in several cases as given below.

Case 1: ∃i, j, a, Yi,j = Va, encryption after primitive. Since Yi,j are chosen uni-
formly at random, this case can be bounded for fixed i, j, a with probability at
most 1/2b. We have at most σe many (i, j) pairs and qp many a indices. Hence,
this case can be bounded by at most σeqp/2

b.

Case 2: ∃i, j, a, Yi,j = Va, dira = +, encryption before primitive. This case can

be bounded by probability at most 1/(2b−qp+1). We have at most σe many (i, j)
pairs and qp many a indices. Thus this can be bounded by at most σeqp/(2

b −
qp + 1) ≤ 2σeqp/2

b (assuming qp ≤ 2b−1).

Case 3: ∃i, j < ai, a, Yi,j = Va, dira = −, encryption before primitive. For j <

ai, since no output is generated hence the probability is bounded by
qpσe
2b

.

Case 4: ∃i, ai ≤ j < li, a, Yi,j = Va, dira = −, encryption before primitive. In this
case, we can not argue as in the previous case as we release Ci,j , and that can
leak information about Yi,j . Note that we can rewrite Yi,j as

Yi,j = E8 · (E4 · E8 ⊕ E5)j · ρ(Yi,0)⊕
j−1∑
k=1

(E4 · E8 ⊕ E5)k−1 · E4 · (Ci,k ⊕Bi,k).

Since Yi,0 is chosen at random, at least rank(E8 · (E4 ·E8⊕E5)j ·ρ) bits of Yi,j is
random, i.e. the adversary can know at most b− rank(E8 · (E4 ·E8⊕E5)j ·ρ) bits
of Yi,j . Now, we claim that rank(E8 ·(E4 ·E8⊕E5)j ·ρ) ≥ r45+r8−s. This follows
since, by Proposition 6, rank(E8 ·(E4 ·E8⊕E5)j ·ρ) ≥ rank(E4 ·E8⊕E5)j+r8−s
and by Corollary 1, rank(E4 ·E8 ⊕E5)j ≥ rank(E4 ·E8 ⊕E5)s = r45. Assuming
mcollY to be the number of multicollisions among all the Yi,j values, we bound
the probability of this case by∑
N

Pr[Case 4 | mcollY = N ]× Pr[mcollY = N ] ≤
∑
N

N × qp
2r45+r8−s

× Pr[mcollY = N ]

≤ qp
2r45+r8−s

× Ex [mcollY ]

≤ qpmcoll(σe, 2
b+s−r45−r8)

2r45+r8−s
.

Case 5: ∃i, a, Yi,li = Va, dira = −, encryption before primitive. Note that dYi,lieτ =
Ti is known to the adversary. Hence this case is similar to Case 3. The only differ-
ence is that the adversary has access to bYi,licτ . Hence doing a similar analysis
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as in the previous case one can show that the probability of this case can be

bounded by
qpmcoll(σe,2

τ )
2b−τ

.

Combining everything together, we have

Pr [BAD3] ≤ 4σeqp
2b

+
qpmcoll(σe, 2

b+s−r45−r8)

2r45+r8−s
+
qpmcoll(σe, 2

τ )

2b−τ
. (3)

� Bounding BAD4: Here we actually bound the event that BAD4 occurs and
BAD1 doesn’t occur. Note that this event occurs if and only if there exists i ∈
E, j ∈ [1, li], k ∈ P such that

[
E1 E2

] [Yi,j−1
Si,j−1

]
= Uk.

∑
k

∑
i,j

Pr [Xi,j = Uk] =
∑
k

∑
i,j

Pr

[[
E1 E2

] [Yi,j−1
Si,j−1

]
= Uk

]
≤
∑
k

∑
i

Pr [(E1 ⊕ E2 · ρ)Yi,0 = Uk]

+
∑
k

∑
i

j>1

Pr [E1 · Yi,j−1 = E2 · Si,j−1 ⊕ Uk]

≤
∑
k

∑
i

Pr [(E1 ⊕ E2 · ρ)Yi,0 = Uk]

+
∑
k

∑
U∈{0,1}b

∑
i

j>1

Pr [E1 · Yi,j−1 = U ]

× Pr

[[
E1 E2

] [ U
Si,j−1

]
= Uk | U

]

Since Yi,0 are chosen uniformly at random,
∑
i Pr [(E1 ⊕ E2 · ρ)Yi,0 = Uk] is

bounded by
qpqe
2r12 .

Since Yi,j−1 is chosen uniformly at random and Si,j−1 is calculated indepen-
dently of Yi,j−1

4 for all j > 1, we get,

Given any fix U ∈ {0, 1}b with a similar analysis as in BAD3,

∑
i,j

Pr [Yi−1 = U ] ≤ 4σe
2b

+
mcoll(σe, 2

b+s−r45−r8)

2r45+r8−s
.

4 Note that Si,j−1 =
j−2⊕
k=1

Ej−2−k
5 E4Yi,k ⊕ Ej−2

5 (E4 ⊕ E5ρ)Yi,0
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Further, if re := rank(
[
E1 E2

]
) then using corollary 2,∑

U∈{0,1}b
Pr

[[
E1 E2

] [ U
Si,j−1

]
= Uk

]
≤ 2b−re ≤ 2b−r12 .

Combining everything, we obtain

Pr [BAD4 ∧ ¬BAD1] ≤ 5qpσe
2r12

+
qpmcoll(σe, 2

b+s−r45−r8)

2r12+r45+r8−b−s
. (4)

� Bounding BAD5: Since all the Yi,j ’s are chosen uniformly at random,

Pr [BAD5] ≤ σe(σe − 1)

2b
. (5)

� Bounding BAD6: Suppose BAD2 doesn’t occur. Since all Yi,j ’s are chosen uni-
formly at random and Si,j are all distinct and independent of Yi,j ,

Pr [BAD6 ∧ ¬BAD2] ≤ σe(σe − 1)

2r12
. (6)

� Bounding BAD7: Suppose the event holds for the i-th decryption query and
N∗i = Ni′ for some i′ ∈ E. We use the multi-chain structure to bound the proba-

bility of this bad event. To be precise, this bad event implies that Y ∗i,pi+1

(xi,pi+2,...,xi,l∗
i
)

−−−−−−−−−−−→
Y ∗i,l∗i

is an element of an (l∗i−pi) length multi-chain inGD1
ωp with label (xi,pi+2, . . . , xi,li)

terminating at some V with (?, V, ?) ∈ ωp, such that bV cτ = T ∗i . Now since the
adversary can make both forward/backward primitive queries, the number of
such V is bounded by qp. Hence, the probability that the above bad holds for
the i-th decryption query is bounded by

qp ×
∑

Y ′
(xi,pi+2,...,xi,l∗

i
)

−−−−−−−−−−−→V

Pr
[
Y ∗i,pi+1 = Y ′

]
≤ qp × µqp(li − pi)× Pr

[
D1 · Y ∗i,pi ⊕ xi,pi+1 = X ′ | (X ′, Y ′) ∈ ωp

]
≤
qp × µqp(li − pi)

2rd
.

Now varying overall i ∈ D,

Pr[BAD7 ∧ (BAD1 ∧ · · · ∧ BAD6)] ≤
∑
i∈D

qp × µqp(li − pi)
2rd

≤ qpσd
2rd

. (7)

Here the last inequality follows from the fact that
∑
i∈D(li−pi) < σd and µqp = 1

(applying Lemma 1 as D1 is invertible).

� Bounding BAD8: To bound this bad event we consider several cases, and
bound the probability for each of the cases.
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Case 1: p′i < ai′ . Since no information is leaked during the associated data pro-
cessing of the encryption queries Yi′,p′i is sampled uniformly at random. Now,
BAD8 occurs if and only if

X∗i,p′i+1 = E1 · Yi′,p′i ⊕ E2 · Si′,p′i ⊕ E3 ·B∗i,p′i+1.

Hence, at least re bits of X∗i,p′i+1 is random, and the probability of this case is

bounded by
σe+qp
2re .

Case 2: ∃i′ ∈ E, j ∈ [li′ ] s.t. ai′ ≤ p′i = pi and X∗i,pi+1 = Xi′,j . Note that, by def-

inition of p′i there exists an i′′ ∈ E such that Yi′′,pi = Y ∗i,pi . Hence, this event
occurs if and only if

D3 · (C∗i,pi+1−a∗i ⊕ ·Ci′,j) = D1 · (Yi′,j−1 ⊕ Yi′′,pi).

Now, by definition of pi, either i′ 6= i′′ or i′ = i′′ but j > pi + 1. In each of the
cases, we have Yi′,j−1, Yi′′,pi are independent and random. Hence, the probability
that any of these happens in the i th query is bounded by at most σe

2rd . Further,
given everything else fixed, there are at most 2b−r3 many possible choices of
B∗i,pi+1. Hence given any i, this event can be bounded by at most σe

2rd+r3−b
.

Varying over all i ∈ D, we bound the probability of this case by σdσe
2rd+r3−b

.

Case 3: p′i > pi and ∃i′ ∈ E, j ∈ [mi′ ] s.t. X∗i,p′i+1 = Xi′,j . This corresponds to the

case when the first nontrivial decryption query block matches a primitive query
and follows a partial chain before and then matches an encryption query block.
Hence, doing a similar analysis as in the event BAD3, the probability of this case

occuring in the i th decryption query can be bounded by
qp
2rd×

mimcoll(σe,2
b+s−r45−r8 )

2r12+r45+r8−s−b

Summing over all i ∈ D, we obtain the bound
σdqpmcoll(σe,2

b+s−r45−r8 )

2r12+rd+r8+r45−b−s .

Combining all the above three cases, we have

Pr
[
BAD8 ∧ (BAD1 ∧ · · · ∧ BAD6)

]
≤ σe + qp

2rd
+

σdσe
2rd+r3−b

+
σdqpmcoll(σe, 2

b+s−r45−r8)

2r12+rd+r8+r45−b−s
.

(8)

Lemma 2 follows from Eqn. (1) - Eqn. (8) as we combine the probability of all
the bad events and apply the union bound.

B.3 Proof of Lemma 3

Fix a good transcript ω. Note that all the input-output pairs for the underlying
permutation are compatible. In the ideal world, all the Y values are sampled
uniformly at random; the list ωp is just the partial representation of Π, and all
the decryption queries are degenerately aborted. Hence we get

Pr [Θ0 = w] ≤ 1

(2b)σe(2b)qp
, (9)
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where σe denotes the total number of blocks present in all encryption queries
including the nonce. In notation σe =

∑
i∈E

li.

Now let us look at the real world. In the real world, for ω we denote the en-
cryption query, decryption query, and primitive query tuples by ωe, ωd, and ωp,
respectively. Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]

= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]
= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·

(
1−

∑
i∈D

Pr[¬ωd,i | ωe, ωp]

)

≤ 1

(2b)σe+qp
·

(
1−

∑
i∈D

Pr[¬ωd,i | ωe, ωp]

)
(10)

Here we have slightly abused the notation to use ¬ωd,i to denote the event that
the i-th decryption query successfully decrypts and ¬ωd is the union ∪i∈D2¬ωd,i
(i.e. at least one decryption query successfully decrypts). The last inequality
follows from the fact that the encryption and primitive queries are mutually
permutation compatible.
From Eqn. 9 and Eqn. 10, we have

Pr [Θ1 = w]

Pr [Θ0 = w]
≥

(
1−

∑
i∈D

Pr[¬ωd,i | ωe, ωp]

)
. (11)

In the rest of this subsection, we will show∑
i∈D

Pr[¬ωd,i | ωe, ωp] ≤
2qd
2τ

+
2σd(σ + qp)

2rd
,

which essentially completes the proof of the Lemma. To prove the above equa-
tion, recall that ¬ωd,i occurs if and only if bΠ(X∗i,mi)cτ = T ∗i , where X∗i,p′i+1 is

fresh. Note that, for all p′i+ 1 < j ≤ li, X∗i,j values have been defined recursively
as follows

X∗i,j = D1 ·
(
Π(X∗i,j−1)

)
⊕D3 ·B∗i,j .

Now we make the following two important observations:

– If X∗i,p′i+1 is not the last block, then the next input block may collide with

some encryption or primitive input block with probability at most
σe+qp

2rd−σe−qp .

Applying this same argument for all the successive blocks till the last one, we
get that if none of the previous block input collides then the probability that

the last block input collides is at most
(σe+qp+l

∗
i−p

′
i+2)

2rd−σe−qp−l∗i+p′i+2 ≤
2(σe+qp+mi)

2rd .

– If the last input block X∗i,li is fresh, then Π(X∗i,l∗i
) = T ∗i with probability at

most 2/2τ , assuming σe + qp ≤ 2b−1.
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Let Ej denotes the event that X∗i,j is fresh and E denotes the event ∧mij=p′i+1Ej

Applying the above two observations, we have∑
i∈D

Pr
Θ1

(¬ωd,i | ωe, ωp) ≤ Pr
Θ1

(¬ωd,i ∧ E | ωe, ωp) + Pr(E).

≤
∑
i∈D

( 2

2τ
+

l∗i∑
j=p′i+1

σd + σe + qp
2rd−1

)
.

≤
∑
i∈D

2

2τ
+

2mi(σe + qp + σd)

2rd

≤ 2qd
2τ

+
2σd(σ + qp)

2rd
.

This completes the proof of 3.
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