
Fine-grained Policy Constraints for Distributed Point

Function

Keyu Ji
jikeyu@zju.edu.cn

Bingsheng Zhang
bingsheng@zju.edu.cn

Kui Ren
kuiren@zju.edu.cn

Abstract

Recently, Servan-Schreiber et al. (S&P 2023) proposed a new notion called private
access control lists (PACL) for function secret sharing (FSS), where the FSS evalu-
ators can ensure that the FSS dealer is authorized to share the given function with
privacy assurance. In particular, for the secret sharing of a point function fα,β , namely
distributed point function (DPF), the authors showed how to efficiently restrict the
choice of α via a specific PACL scheme from verifiable DPF. In this work, we show
their scheme is insecure due to the lack of assessment of β, and we fix it using an
auxiliary output. We then propose more fine-grained policy constraints for DPF. Our
schemes allow an attribute-based access control w.r.t. α, and a template restriction for
β. Furthermore, we show how to reduce the storage size of the constraint representa-
tion from O(N) to O(logN), where N is the number of constraints. Our benchmarks
show that the amortized running time of our attribute-based scheme and logarithmic
storage scheme is 2.5× - 3× faster than the state-of-the-art with 215 constraints.

1 Introduction

Function secret sharing (FSS) is first introduced by Boyle et al. [1]. The FSS dealer generates
and distributes the secret shares of a function f to multiple evaluators. The FSS evaluators
can locally evaluate f(x) on any common input x. Distributed point function (DPF) [2]
is a useful FSS instance for the function family of point functions, which is usually used
to privately search and update distributed data. A variety of important applications have
benefited from the efficient realization of DPF, including but not limited to distributed
ORAM [3–5], private heavy hitters [6], and privacy-preserving machine learning [7–9].

On top of function privacy, one may also want to restrict the set of functions to be
evaluated in practice. That is, only authorized users can obliviously access the specific
data. There have been several access control solutions from the literature on anonymous
communication [10–12]. But their methods are tailor-made for the specific application.
Recently, Servan-Schreiber et al. [13] propose a new notion called private access control lists
(PACL) to abstract the access control for FSS. They provide two practical PACL schemes for
DPF, named the DPF-PACL and the VDPF-PACL from verifiable DPF (VDPF). However,
we observe that their VDPF-PACL ensures security only if the function output is restricted
to a pre-fixed public value. It results in significant limitations on the scope of applications
and in fact even can not support anonymous communication, where the function output is
determined by user’s message. More specifically, a point function fα,β is defined to be the
function f such that f(α) = β and f(x) = 0 for x 6= α. We refer to α as the special input
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of fα,β , and refer to β as the special value. In VDPF-PACL, the point functions with the
same special input α are mapped to a public verification key vkα and a secret key skα that
is the discrete logarithm of vkα. The verifiers use function shares to evaluate fα,β on the
list of verification keys and obtain the secret shares of JvkαβK. The authors claims that the
user without knowledge of skα can not pass the verification for any point function with the
special input α. Unfortunately, when the special output β is freely selected by the user,
we find a malicious adversary who can break their protocol by setting β := vkα/g

r for any
forged secret key r.

Furthermore, in many scenarios, one may do not know the exact identities of all autho-
rized users. Instead, it is able to describe them based on descriptive attributes or credentials.
For instance, considering an e-Healthy system, healthcare professionals want to access elec-
tronic medical records for diagnosis or clinical research. Since these records contain a large
amount of private information, patients may hope to restrict users only with the doctors in
specific hospitals and/or the medical researchers in research centers can access their records,
without knowing the personal identities of those people. Unfortunately, we note that nei-
ther the DPF-PACL nor the VDPF-PACL of [13] can be trivially extended to support the
class of attribute-based access control due to their lack of protection against users’ collusion
attacks. That is, if the secret key skα consists of multiple subkeys {skα,i} according to
multiple required attributes, a group of users, each with some attributes, can join together
to reconstruct the valid secret key and then pass the PACL verification.

In this work, we fix the VDPF-PACL in [13], and extend the PACL to more fine-grained
policy constraints (PC) for DPF, which imply a series of PC constructions for complex
FSS classes derived from DPF [8, 14]. Our solutions mainly focus on 2-party DPF, and
they can be generalized to multi-party cases as in [13]. In addition, we observe that as the
constraint number grows larger, the key selection step becomes the performance bottleneck.
To improve efficiency, we propose a new technique to reduce the size of the representation
of constraints from linear to logarithmic.

Our contributions. As mentioned above, we first formally show the VDPF-PACL pro-
posed by [13] is insecure against a malicious user. We then propose a fix using VDPF with
auxiliary output. Namely, given a point function fα,β , we transform it to a new point func-
tion fα,(β,1), and secretly share fα,(β,1) via VDPF technique instead of fα,β . Noice that, the
first coordinate of the new function output is equal to the output of fα,β for applications,
and second coordinate is either 0 or 1 which enables the verifiers to jointly validate the
access control.

Next, we propose several schemes for DPF with more fine-grained policy constraints. Our
schemes black-box use VDPF, and they support attribute-based access control w.r.t. the
special input α and template restriction for the special output β. The latter one is handy
in the case of constraint writing, e.g., signature templates. For readability, we present
the above two types of policy constraints separately; nevertheless, we emphasize that they
can be easily composed. In particular, our attribute-based PC scheme is inspired by the
attribute-based encryption (ABE) [15–18]. It can handle constraints in disjunctive normal
form (DNF), in which the literals in DNFs represent the attributes of users.

In our template-based PC scheme, each constraint divides the output of the associated
functions into free bits and restricted bits. We say a function satisfies the policy constraint
iff all restricted bits of its output equal to 0; while the free bits can be chosen arbitrarily. Our
construction is based on the fact that AND operation ∧ is distributive over XOR operation
⊕; therefore, the verifiers can locally computes the XOR secret shares of the AND result
between the XOR-shared function output and the restraint string.
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Moreover, we introduce a new DPF primitive named incremental VDPF (IVDPF). It
allows two evaluators obliviously obtain the (scaled) bit-decomposition of the special input
of the shared point function. Based on IVDPF, we construct a PC scheme that improves
the DPF-PACL in [13]. It reduces both the storage size of the constraint representation and
the computational complexity of the key selection from O(N) to O(logN), where N is the
number of constraints.

In Section 7, we show the performance of our scheme is much more efficient than the
state-of-the-art PACLs [13]; our attribute-based scheme reduce the amortized running time
of VDPF-PACL by 2× - 4×. In addition, when the number of constraints is large, our
IVDPF-PC scheme significantly improves the performance compared to DPF-PACL. For
instance, the verification speed of IVDPF-PC is 2.5× faster than DPF-PACL with 215

constraints.

Related work. Recent anonymous communication systems usually utilize DPF to enable
users privately write messages [10–12, 19]. To prevent private data against malicious users,
some of them design ad-hoc methods of access control for DPF. The “mailbox” system
Express [10] assigns λ-bit virtual addresses to each mailbox, which is regardless of the actual
number of mailboxes. Only users who know the secret virtual address can deposit message
into the corresponding mailbox. Its long virtual address causes costly overhead for DPF
evaluation, and its verification requires interaction between servers and client. Sabre [11]
improves Express by a secret-shared non-interactive proof. It achieves less communication
and computation costs, but requires an extra aided-server for auditing the well-formedness
of DPF. Spectrum [12] constructs an anonymous broadcasting system. It proposes a new
access control mechanism via secret-shared Carter-Wegman MAC [20]. That is, servers
holds a secret-shared MAC tag from a unique secret-shared message for each broadcast
channel. Servers only allow the client who knows the valid MAC tag to write messages to
the corresponding channel via DPF.

Servan-Schreiber et al. [13] abstracts PACL for FSS from these concrete applications.
They improve Spectrum’s technique to more efficient PACLs for DPF, and propose a general
PACL for P/poly FSS. However, their general PACL relies on costly secret-shared non-
interactive proofs and is not quit efficient in practice.

2 Preliminary

Notations. Let λ be the security parameter. Let JxK denote the additively secret sharing
of an object x. JxK ← AddShareG,n(x) stands for generating n additive shares of x, where
JxK := {x(0), . . . , x(n−1)} and x =

∑
i∈Zn x

(i) over G. Let 〈x〉 denote the multiplicatively
secret sharing of an object x. 〈x〉 ← MulShareG,n(x) stands for generating n multiplicative
shares of x, where 〈x〉 := {x(0), . . . , x(n−1)} and x =

∏
i∈Zn x

(i) over G.

Function Secret Sharing. An FSS scheme includes two algorithms (Gen,Eval). It allows
a dealer to generate secret shares of a function f : D → G by Gen. Using the function
shares, evaluators can locally execute Eval to produce additive shares of f(x) for any x ∈ D,
without learning information about f . DPF [2] is a useful FSS instance for the function
family of point functions. In order to achieve malicious security for DPF, researchers provide
a primitive, verifiable DPF (VDPF) [6, 21]. It is a special DPF that additionally allows
evaluators to check whether the dealer’s inputs are well-formed point function. The VDPF
scheme is defined as follows:
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Definition 1 (Verifiable Distributed Point Function [21]). A 2-party VDPF scheme, pa-
rameterized by a function family F := {f : {0, 1}n → G} of point functions, consists of
three PPT algorithms (Gen,Eval,Verify) defined as follows:

• (f
(0)
α,β , f

(1)
α,β) ← Gen(1λ, fα,β) is the share generation algorithm that takes input as the

security parameter 1λ and a point function fα,β ∈ F . It outputs a pair of VDPF keys,
i.e., the additive shares of Jfα,βK.

• ({y(b)
x }x∈X , τ (b)) ← Eval(b, f

(b)
α,β , X) is the verifiable evaluation algorithm that takes

input as an index b ∈ {0, 1}, a VDPF key f
(b)
α,β, and a set of function inputs X ⊆

{0, 1}n. It outputs a tuple of values. The first set of values are the FSS outputs, which
are additive shares of fα,β(x), x ∈ X. The second item is a token τ (b) that is used to
verify the well-formedness of the shared function.

• 1/0← Verify(τ (0), τ (1)) is the verification algorithm that takes input as a pair of tokens.
It outputs 1 for accept or 0 for reject.

A secure VDPF must satisfy three properties as follows:

• Correctness. For all f ∈ F , X ⊆ {0, 1}n, it holds that

Pr


(f (0), f (1))← Gen(1λ, f);

({y(0)
x }, τ (0))← Eval(0, f (0), X);

({y(1)
x }, τ (1))← Eval(1, f (1), X) :

∀x ∈ X, y
(0)
x + y

(1)
x = f(x) ∧

Verify(τ (0), τ (1)) = 1

 = 1

• Privacy. For a function f ∈ F and a set of inputs X ⊆ {0, 1}n, define the view
ViewVDPF(b, f,X) as the probability distribution ensemble {(f (b), τ (1−b))}λ, where (f (0), f (1))←
Gen(1λ, f), ({y(1−b)

x }x∈X , τ (1−b))← Eval(1− b, f (1−b), X). There exists a PPT simu-
lator Sim such that for all f ∈ F , X ⊆ {0, 1}n, we have:

ViewVDPF(b, f,X) ≈c Sim(1λ, b,F , X)

• Soundness. There exists a negligible function negl such that for any X ⊆ {0, 1}n,

and ({y(b)
x }x∈X , τ (b))← Eval(b, f (b), X) for b ∈ {0, 1}, it holds that

Pr

[
Verify(τ (0), τ (1)) = 1 :∣∣∣{x ∈ X|y(0)

x + y
(1)
x 6= 0}

∣∣∣ ≤ 1

]
≥ 1− negl(λ)

Disjunctive normal form. DNF is a disjunction of conjunctions of literals. A k-DNF is
a DNF in which every conjunction is of size k. In our paper, each literal x indicates a user’s
attribute ax, and ¬x corresponds to a different and contradictory attribute ax′ from ax.

Bilinear Maps and the assumption. Let G,Gt be two multiplicative cyclic groups of
prime order p, and g be a generator of G. We say e is a bilinear map e : G×G→ Gt, if it
has two properties:

• Bilinearity: e(ua, vb) = e(u, v)ab, ∀u, v ∈ G, a, b ∈ Zp.
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• Non-degeneracy: e(g, g) 6= 1.

The decisional Bilinear Diffie-Hellman (BDH) assumption [15,17] is that, given a bilinear
map e : G × G → Gt, for a, b, c, z ← Zp, no PPT adversary can distinguish the tuple
(ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z) with more than a negligible advantage.

XOR-collision resistant. Following the definition in [21], we say a function family H is
XOR-collision resistant if no PPT adversary given a randomly sampled h← H can find four
values x0, x1, x2, x3 such that {x0, x1} 6= {x2, x3} and h(x0) ⊕ h(x1) = h(x2) ⊕ h(x3) 6= 0
with more than a negligible probability.

3 Policy Constraints for FSS

In this section, we present a formal definition of policy constraints for FSS, which can be
viewed as a generalization of PACL proposed by [13]. Let F be a function family. The policy
constraints for F consists of a constraint list Λ := {Λi}i∈ZN and an efficiently computable
predicate Check. Each constraint Λi determines a set of authorized functions Qi ⊆ F , and
Qi ∩ Qj = ∅ for any i 6= j. More specifically, the constraint Λi contains ` verification keys
{vki,j}j∈Z` associated with the subsets {Qi,j}j∈Z` respectively, such that

⋃
j∈Z` Qi,j = Qi.

Given a function f and a secret key sk, we have Check(Λ, f, sk) = 1 if and only if f belongs
to an authorized subset, say Qi,j , and (vki,j , sk) belongs to a relation R. Note that, N, `
are integers in poly(λ). In this paper, we focus on PC for 2-party FSS where two verifiers
securely attest Check = 1 over the secret-shared function and the secret key, and define it
as follows:

Definition 2 (Policy Constraints for 2-party FSS). Let F be a function family. Suppose
(Gen,Eval) instantiate a 2-party FSS scheme for F . A PC scheme for 2-party FSS consists
of four PPT algorithms (PolicyGen,Prove,Audit,Verify):

• (Λ, ξ) ← PolicyGen(1λ,F) is the policy generation algorithm that takes input as the
security parameter 1λ and the description of a function family F . It determines the
authorized function sets {Qi ⊆ F}i∈ZN , and outputs a constraint lists Λ := {Λi}i∈ZN
and a trapdoor ξ. Anyone holding ξ is able to generate valid secret keys for Λ.

• sk ← SKGen(1λ, id, ξ) is the secret key generation algorithm that takes input as the
security parameter 1λ, a policy index id1 and a trapdoor ξ. It outputs a secret key sk.

• (π(0), π(1)) ← Prove(Λ, f, sk) is the proof generation algorithm that takes input as a
constraint list Λ, function f ∈ F and a secret key sk. It outputs the proof shares
(π(0), π(1)). If it is clear in the context, we denote JπK := (π(0), π(1)).

• τ (b) ← Audit(b,Λ, f (b), π(b)) is the audit algorithm that takes input as an index b ∈
{0, 1}, a constraint list Λ, a function share f (b) and a proof share π(b). It outputs an
audit token τ (b).

• 1/0← Verify(τ (0), τ (1)) is the verification algorithm that takes input as two tokens. It
outputs 1 for accept or 0 for reject.

1The representation of id depends on the concrete system, e.g. integers for PACL [13] and attributes for
our attributed-based PC scheme.
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The above algorithms implicitly take group descriptions as their input. For readability, we
omit them in the syntax when they are clear in the context. We say a PC scheme is secure
if it satisfies three properties as follows:

• Correctness. For any (Λ, ξ) ← PolicyGen(1λ,F), function f ∈ F and secret key
sk← SKGen(1λ, id(f,Λ), ξ)2, we have

Pr


(π(0), π(1))← Prove(Λ, f, sk);
(f (0), f (1))← Gen(1λ, f);
{τ (b) ← Audit(Λ, f (b), π(b))|b ∈ {0, 1}} :
Verify(τ (0), τ (1)) = 1

 = 1

• Privacy. For a constraint list Λ, a function f ∈ F and a secret key sk, define the
view ViewPC(b,Λ, f, sk) as the probability distribution ensemble {(π(b), τ (1−b))}λ, where
(π(0), π(1)) ← Prove(Λ, f, sk) and τ (1−b) ← Audit(Λ, f (1−b), π(1−b)). There exists a
PPT simulator Sim such that for all f ∈ F and sk, the following two distributions are
computationally indistinguishable:

ViewPC(b,Λ, f, sk) ≈c Sim(1λ, b,Λ)

• Soundness. We say PC is sound, if for any PPT adversary A with oracle access to
GetKey, it holds that

Pr[SoundnessA,b(λ) = 1] ≤ negl(λ)

where SoundnessA,b(λ) is depicted in Fig. 1.

• SoundnessA,b(λ):

1 (Λ, ξ)← PolicyGen(1λ,F)

2 (JfK, JπK)← AGetKey(1λ,Λ)

3 τ (0) ← Audit(Λ, f (0), π(0))
4 τ (1) ← Audit(Λ, f (1), π(1))

5 return Verify(τ (0), τ (1)) = 1

∧ ((∀i, f /∈ Qi) ∨ f /∈ T )

• Oracle GetKey(f,Λ):

1 Find a valid sk of f in Λ

2 Q∗ :=
⋃
R(vki,j ,sk)

Qi,j
3 T := T ∪Q∗
4 return sk

• Initialization: Set T :=
⋃
R(vki,j ,∅)Qi,j .

Game Soundness

Figure 1: PC soundness game.

Remark 1. We note that the privacy definition of [13] is problematic and does not capture
the practice. Notice that the scheme allows simultaneous messaging, i.e., all the parties
can send messages to each other in the same round. Following the simulation paradigm,
typically, rushing adversary model is considered; that is, the adversary’s messages can be
generated at the end of the round, after seeing the honest parties’ messages. However, in
the privacy definition of [13], the simulator is given the adversary’s message as input, which
deviates from the reality.

2Here we abuse the notation id as a function that outputs the policy index corresponding to f .
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3.1 Threat model

Our PC system involves the following entities:

• the data owner who determines the policy constraints by PolicyGen and outsources
data to servers,

• the user (i.e., the prover) who wants to access data and proves it satisfies the constraint
by Prove, and

• the servers (i.e., the verifiers) securely verify the access proof using Audit and Verify.

In a real-world application, the user needs a valid secret key as authorization to pass the
verification. We assume there exists a trusted authority to issue the secret keys.

In this paper, we consider the malicious security for a single corrupted party among one
prover and two verifiers. More specifically, as described in Definition 2, a secure PC scheme
for 2-party FSS protects function privacy as long as one of the two servers is honest, and
guarantees soundness against any malicious users.

4 Revisiting VDPF-PACL [13]

The recent work [13] presents PACL schemes for the class of (verifiable) DPFs. In this
section, we show their VDPF-PACL scheme is not sound.

The VDPF-PACL scheme. The VDPF-PACL scheme assumes G := F∗p is a group with
order p − 1 and generator g in which the discrete logarithm problem is computationally
intractable. Without loss of generality, let ` = 1 and focus on 2-party VDPF. Given a
family F := {f : {0, 1}n → Fp} of point functions, the VDPF-PACL initiates constants:

• PolicyGen(1λ,F):

1 N := 2n

2 for i ∈ ZN :

3 ski ← Zp−1, vki := gski

4 Λi := vki, ξi := ski

5 return Λ := {Λi}i∈ZN , ξ := {ξi}i∈ZN

In [13], the VDPF-PACL uses Schnorr Proof over Secret Shares (SPoSS) as a build-
ing block. SPoSS is a discrete-logarithm zero-knowledge proof-of-knowledge over an ad-
ditively secret-shared element. More specifically, it consists three PPT algorithms: (1)
SPoSS.Prove(x)→ (π(0), π(1)) takes as input the discrete logarithm x of w base g, and out-
puts the secret sharing of a non-interactive zero-knowledge proof; (2) SPoSS.Audit(b, w(b), π(b))→
τ (b) takes as input the additive share of w and the SPoSS proof share, outputs a verification
token; (3) SPoSS.Verify(τ (0), τ (1)) takes as input the tokens of two verifier, outputs 1 if and
only if w(0) + w(1) = gx over the field Fp.

Here, we briefly describe the access process of VDPF-PACL based on SPoSS. First of
all, the user chooses an point function fα,β ∈ F , and secret-shares it to two servers using
the VDPF technique. Meanwhile, the user plays the role of the prover to provide a SPoSS
proof of the secret key sk ∈ Zp−1 for the secret-shared JgskK as follows:
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• Prove(Λ, fα,β , sk):

1 (π(0), π(1))← SPoSS.Prove(sk)

2 return (π(0), π(1))

Upon receiving the proof shares from the user, each server Pb ∈ {P0, P1} as a verifier

obliviously select the target verification key by the function share f
(b)
α,β and audits the SPoSS

proof using Audit algorithm:

• Audit(b,Λ, f
(b)
α,β , π

(b)):

1 ({y(b)
i }i∈ZN , τ

(b)
0 )← VDPF.Eval(b, f

(b)
α,β ,ZN )

2 w(b) :=
∑N−1
i=0 Λi · y(b)

i

3 τ
(b)
1 ← SPoSS.Audit(b, w(b), π(b))

4 return τ (b) := (τ
(b)
0 , τ

(b)
1 )

Finally, two verifiers exchange their audit tokens τ (0), τ (1), and verify the well-formedness
of VDPF and the SPoSS proof using Verify algorithm:

• Verify(τ (0), τ (1)):

1 Parse τ (0) := (τ
(0)
0 , τ

(0)
1 )

2 Parse τ (1) := (τ
(1)
0 , τ

(1)
1 )

3 return VDPF.Verify(τ
(0)
0 , τ

(1)
0 ) ∧ SPoSS.Verify(τ

(0)
1 , τ

(1)
1 )

It is easy to see, Verify outputs 1 if and only if both the VDPF and the SPoSS verification
pass.

Attack description. In light of the VDPF-PACL, the SPoSS just guarantees that the
additively secret-shared JwK := gskα · JβK is equal to gJskK over the field Fp. This ignorance
of β is vulnerable, and we show how to exploit it. We construct an adversary A who breaks
the soundness of VDPF-PACL:

• AGetKey(1λ,Λ):

1 α← {0, 1}n, r ← Zp−1

2 β := gr · vk−1
α (mod p)

3 Jfα,βK← VDPF.Gen(1λ, fα,β)

4 JπK← Prove(Λ, fα,β , r)

5 return (Jfα,βK, JπK)

Using the VDPF keys Jfα,βK, two verifiers obliviously obtains a scaled verification key JwK :=
Λα · JβK := JgrK, and thus the proof π for x over w is verified by SPoSS. In addition, since
Jfα,βK encodes a point function, the VDPF verification passes. Therefore, the algorithm
Verify outputs 1 with the probability 1. In a word, A successfully forges a proof by choosing
an appropriate β ∈ Fp.
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Our fix. Our attack is based on this fact that the private value β of the point function is
adversarially chosen from Zp, and it scales the verification key vkα. Naively, if the verifiers
additionally check β = 1, our attack is fixed. However, in many applications, one may need
to use the customized β. For example, in anonymous communication systems [10–12, 19],
the value of β is determined by the message that the user wants to send. To overcome
this problem, we introduce an auxiliary output. In particular, for any point function fα,β :
{0, 1}n → Zp, we can construct a new point function fα,(β,1) : {0, 1}n → Z2

p, where the tuple
(β, 1) denotes the new special output in the range Z2

p, and the second item 1 of this tuple is
named the special auxiliary output. We let user secret-share the new point function fα,(β,1)

via VDPF to be evaluated. After that, the verifiers use the auxiliary outputs to select the
target verification key, and then jointly check if the special auxiliary output is equal to 1.
More specifically, we adapted the algorithms Audit and Verify of the VDPF-PACL as follows:

• Audit(b,Λ, f
(b)
α,(β,1), π

(b)):

1 ({y(b)
i }i∈ZN , τ

(b)
0 )← VDPF.Eval(b, f

(b)
α,(β,1),ZN )

2 Parse y
(b)
i := (y

(b)
i,0 , y

(b)
i,1 ) ∈ Z2

p for i ∈ ZN

3 w(b) :=
∑N−1
i=0 Λi · y(b)

i,1

4 τ
(b)
1 ← SPoSS.Audit(b, w(b), π(b))

5 τ
(b)
2 := H(b+ (−1)b ·

∑
y

(b)
i,1 )

6 return τ (b) := (τ
(b)
0 , τ

(b)
1 , τ

(b)
2 )

• Verify(τ (0), τ (1)):

1 Parse τ (0) := (τ
(0)
0 , τ

(0)
1 , τ

(0)
2 )

2 Parse τ (1) := (τ
(1)
0 , τ

(1)
1 , τ

(1)
2 )

3 return IVDPF.Verify(τ
(0)
0 , τ

(1)
0 ) ∧ SPoSS.Verify(τ

(0)
1 , τ

(1)
1 ) ∧ τ (0)

2 = τ
(1)
2

where H := {0, 1}∗ → {0, 1}λ be a collision-resistant hash function. We note that, the

equality of τ
(0)
2 = τ

(1)
2 restricts the non-zero element in {y(0)

i,1 + y
(1)
i,1 } is equal to 1, which

ensures JwK is always a valid (i.e., non-scaled) verification key in Λ. Therefore, the adversary
cannot forge a proof π by scaling verification key.

5 Fine-grained PC schemes for DPF

In this section, we propose the fine-grained PC schemes for 2-party DPF. We adopt the
verifiable DPF with auxiliary output as described above. Similar to [13], our PC schemes
are applicable to complex FSS classes derived from DPFs.

5.1 Attribute-based policy constraints

One common approach of all previous DPF access control schemes is that they view the
secret key as a fixed private string. Therefore, when the system aims to grant the access
right of the function f to a user with multiple certain credentials or attributes, the previous
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schemes fail to distinguish whether these attributes are (jointly) held by a group of colluding
users or the valid individuals.

We propose an attribute-based PC (Attr-PC) construction to resolving this drawback.
Our concept draws inspiration from the ABE technique of [15–18]. At a high level, we make
each constraint be an m-DNF with ` conjunctions, and each conjunction is considered as
a verification key. The literals in DNFs indicate the attributes of users. The verifiers first
obliviously obtain a secret-shared conjunction in the target constraint, which is equivalent
to an ABE ciphertext. The verifiers then use the proof shares to jointly “decrypt” the
selected ciphertext and check if the decryption is successful without revealing the prover’s
attributes.

The challenge of this approach is how to securely “decrypt” a secret-shared ciphertext.
The standard ABE scheme is usually constructed by a bilinear map e. Naively, the verifiers
are required to evaluate the bilinear map over two secret-shared arguments in MPC, such as
e(〈E〉, 〈A〉). However, this would result multiple exchange of messages between the verifiers.
For this issue, we let the prover locally compute and distribute the secret shares of the
bilinear map result because it knows both arguments E,A. To prevent the prover from
cheating through such assistance, we introduce a multi-verifier ZK proof of knowledge (ZK-
PoK) to ensure the prover holds the corresponding witness matching the computed bilinear
map result.

5.1.1 Multi-verifier ZK-PoK

It is a non-interactive proof between a prover and two verifiers. Let e be a bilinear map
e : G × G → Gt, where G,Gt have the prime order p and g is the generator of G. The
verifier Pb holds secret shares E(b) ∈ G, k(b) ∈ Gt for b ∈ {0, 1}. The prover holds group
elements E := E(0) ·E(1), A ∈ G. The prover wants to convince the verifiers that k(0) ·k(1) =
e(E(0) · E(1), A).

Definition 3 (Multi-verifier ZK-PoK). A non-interactive 2-verifier ZK proof of knowl-
edge over the secret shares 〈E〉 ∈ G, 〈k〉 ∈ Gt consists of three PPT algorithms (Prove,
Audit,Verify) defined as follows:

• (π(0), π(1)) ← Prove(A,E) is the proof generation algorithm that takes input as two
group elements A,E ∈ G. It outputs proof shares (π(0), π(1)). If it is clear in the
context, we denote 〈π〉 := (π(0), π(1)).

• τ (b) ← Audit(b, π(b), E(b), k(b)) is the audit algorithm that takes input as an index
b ∈ {0, 1}, a proof share π(b) and multiplicative shares E(b) ∈ G, k(b) ∈ Gt. It outputs
an audit token.

• 1/0 ← Verify(τ (0), τ (1)) is the verification algorithm that takes input as two audit
tokens. It outputs 1 for accept or outputs 0 for reject.

We say a protocol is a secure ZK-PoK if it satisfies the following properties:
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• Prove(A,E ∈ G):

1 (A(0), A(1))← MulShareG,2(A)

2 (x(0), x(1), y(0), y(1), z(0), z(1))← BeaverZp,2
3 x := x(0) + x(1)

4 y := y(0) + y(1)

5 s(0), s(1) ← {0, 1}λ //Random nonces

6 r(0) := H(s(0), A(0), x(0), y(0), z(0))
7 r(1) := H(s(1), A(1), x(1), y(1), z(1))

8 r := r(0) ⊕ r(1)

9 B := A · g−x ∈ G
10 C := Er · g−y ∈ G
11 π(0) := (A(0), B, C, x(0), y(0), z(0), r, s(0))
12 π(1) := (A(1), B, C, x(1), y(1), z(1), r, s(1))

13 return (π(0), π(1))

• Audit(b, π(b), E(b) ∈ G, k(b) ∈ Gt):
1 Parse π(b) := (A(b), B, C, x(b), y(b), z(b), r, s(b))

2 r̂(b) := H(s(b), A(b), x(b), y(b), z(b))

3 D(b) := e(C,B)b · e(C, g)x(b) · e(g,B)y
(b)

·e(g, g)z(b) · (k(b))−r

4 T
(b)
0 := A(b) · g−x(b) , T

(b)
1 := (E(b))r · g−y(b)

5 return τ (b) := (T
(b)
0 , T

(b)
1 , D(b), r̂(b), r, B,C)

• Verify(τ (0), τ (1)):

1 Parse τ (0) := (T
(0)
0 , T

(0)
1 , D(0), r̂(0), r, B,C)

2 Parse τ (1) := (T
(1)
0 , T

(1)
1 , D(1), r̂(1), r, B,C)

3 return r̂(0) ⊕ r̂(1) = r ∧ T (0)
0 · T (1)

0 = B ∧
T

(0)
1 · T (1)

1 = C ∧ D(0) ·D(1) = 1

• Parameters: Let e : G× G→ Gt be a bilinear map. The prime number p is the order of G,Gt and g

is the generator of G. Let H : {0, 1}∗ → {0, 1}λ be a hash function that we model as a random oracle.

Construction ZK-PoK

Figure 2: Multi-verifier ZK proof of knowledge.

• Completeness. For all E,A ∈ G and k := e(E,A), it holds that

Pr



(E(0), E(1))← MulShareG(E);
(k(0), k(1))← MulShareGt(k);
(π(0), π(1))← Prove(A,E);
τ (0) ← Audit(0, π(0), E(0), k(0));
τ (1) ← Audit(1, π(1), E(1), k(1)) :
Verify(τ (0), τ (1)) = 1

 = 1

• Knowledge soundness. If there exists a PPT adversary A such that for all group
elements E ∈ G, k ∈ Gt, A produces 〈π∗〉 such that Verify(τ (0), τ (1)) = 1 with proba-
bility δ(λ), then there exists an efficient knowledge extractor E and negligible function
negl, such that

Pr

[
A← EA(E, k) :
k = e(E,A)

]
≥ δ(λ)− negl(λ)

• Zero knowledge. For group elements A,E ∈ G and k := e(E,A), define the view
ViewZK-PoK(b, A,E) as the probability distribution ensemble {(π(b), τ (1−b))}λ, where
(π(0), π(1)) ← Prove(A,E) and τ (1−b) ← Audit(1 − b, π(1−b), E(1−b), k(1−b)). There
exists a PPT simulator Sim such that for all E,A ∈ G and k := e(E,A), the following
two distributions are statistically indistinguishable:

ViewZK-PoK(b, A,E) ≈ Sim(1λ, b,G,Gt)

We describe our construction in Fig. 2. It leverages the bilinearity of the bilinear map
to check the consistency of the arguments and result. That is, suppose A := gα, E := gβ

and k := e(g, g)γ , the verifiers are able to check whether e(〈A〉, 〈E〉) = 〈k〉 by verifying
Jα · β − γK = 0 in the exponent basing e(g, g). Naively, the prover first generates the
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multiplicative secret shares of 〈A〉, where the exponents of all shares basing g form the
additively secret-shared JαK. To eliminate the interaction of verifiers in the calculation of
〈e(〈A〉, 〈E〉)〉 := e(g, g)Jα·βK, we make the prover derives a Beaver triple (JxK, JyK, JzK) such
that xy = z over the field Zp [22], and compute the intermediate results B := gα−x, C :=
gβ−y. Using the Beaver triple and the intermediate results, each verifier can locally compute
the multiplicative secret share of 〈e(〈A〉, 〈E〉)〉 following Beaver’s multiplication protocol.
More specifically, the verifiers jointly compute Jα·βK = (β−y)(α−x)+(β−y)JxK+(α−x)JyK+
JzK in the exponent basing e(g, g). Later, the verifiers compute 〈D〉 := 〈e(g, g)α·β〉/〈k〉 :=
e(g, g)Jα·β−γK, and audit the consistency of the intermediate results. Finally, the verifiers
exchange their shares to check D = e(g, g)0 = 1 and the validation of intermediate results.

Unfortunately, if a malicious prover shares an invalid multiplication triple (i.e., xy =
z + ∆, for some constant ∆ 6= 0) to the verifiers, the naive approach above would fail. As
described in [23], this attack can be defended against by introducing a random number r
(distributed independently to ∆) and verifying rJαβK − rJγK = 0. Inspired by SPoSS [13],
we exploit Fiat-Shamir transform [24] and let the prover obtain r from a random oracle H
with random nonces s(0), s(1), which is used to mask the other inputs to H [25].

Security. We show the security of the construction described in Fig. 2 with the following
theorem, and its proof can be found in Appendix B.1.

Theorem 1. Let p be a prime chosen with respect to the security parameter λ and let
e : G × G → Gt be a bilinear map, where G,Gt are two multiplicative cyclic groups with
order p. Let H : {0, 1}∗ → {0, 1}λ be a random oracle. The ZK-PoK described in Fig. 2 is
secure under the random oracle model.

5.1.2 Construction using ZK-PoK

Our Attr-PC construction is depicted in Fig. 3. Each constraint is a m-DNF so that each
verification key associated with m attributes. We focus on the point function family F :=
{f : {0, 1}n → G̃} and set each Qi,j := {fi,v ∈ F|v ∈ G̃} for simplicity.

The method PolicyGen generates a public constraint list Λ for F . More specifically,
PolicyGen selects random w, t ∈ Zp as the trapdoor. For each verification key vki,j ∈ Λi, it
determines m required attributes {ad}d∈Zm , and randomly samples a mask si,j ∈ Zp and a
polynomial q with degree m− 1, such that q(0) = si,j . Using the polynomial q, it calculates

{Bi,j,d := gt·q(d+1)−H′(ad)·si,j}d∈Zm associated with m required attributes. In conclusion,
vki,j := (Ci,j := e(g, g)w·si,j , Ei,j := gsi,j , {Bi,j,d}d∈Zm), where the first element Ci,j is what
the prover should prove it can recover (i.e., successfully “decrypt”), and other elements
ensure that a prover can recover Ci,j if and only if it holds all the required attributes.

We assume that there is a trusted authority (TA) holding the trapdoor ξ := (w, t) of the
constraint list Λ, and the TA issues the secret key sk according to user’s attributes. The
algorithm SKGen in Fig. 3 defines the secret key generation method. The TA computes
L := gr,K := gw+tr using a random mask r, and calculates Ai := gH

′(ai)r for each attribute
ai. Since sk := (L,K, {Ai}) is randomized by r, it provides the security against users’
collusion attack. Note that, H ′ is a collision-resistant hash function, thus the probability of
{H ′(ai)}i∈Zm = {H ′(ãi)}i∈Zm is negligible for any attribute sets {ai}i∈Zm 6= {ãi}i∈Zm .

As show in algorithm Prove, for a point function fα,β , the prover first selects the target
verification key vkα,ρ := (Cα,ρ, Eα,ρ, {Bα,ρ,d}d∈Zm) from the public Λ by fα,β and sk. It
then computes the proof shares using sk and Eα,ρ. The proof JπK includes a pair of VDPF
keys Jfη,(β,1)K where η := α`+ ρ for selecting the verification key vkα,ρ, two elements L,K
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• PolicyGen(1λ,F):

1 w, t← Zp, ξ := (w, t)

2 W := e(g, g)w, T := gt

3 for i ∈ ZN , j ∈ Z`:
4 Choose {ad}d∈Zm over the universe of

attributes
5 si,j ← Zp, Ci,j := W si,j , Ei,j := gsi,j

6 Sample a random polynomial q with degree

m− 1, such that q(0) = si,j
7 for d ∈ Zm:

8 Bi,j,d := T q(d+1) · g−H
′(ad)·si,j ∈ G

9 vki,j := (Ci,j , Ei,j , {Bi,j,d}d∈Zm )
10 Λi := {vki,j}j∈Z` ,∀i ∈ ZN
11 return (Λ := {Λi}i∈ZN , ξ)

• SKGen(1λ, {ai}i∈Zm , ξ):
1 Parse ξ := (w, t)
2 r ← Zp, L := gr,K := gw+t·r

3 for i ∈ Zm: Ai := gH
′(ai)·r ∈ G

4 sk := (L,K, {Ai}i∈Zm )
5 return sk

• Prove(Λ, fα,β ∈ F , sk):

1 Select the target vkα,ρ from Λ which can be

successfully “decrypted” by sk.
2 Parse vkα,ρ := (C,E, {Bd}d∈Zm )

3 Parse sk := (L,K, {Ad}d∈Zm )

4 for d ∈ Zm:
5 (A

(0)
d , A

(1)
d )← MulShareG,2(A)

6 k
(0)
d := e(E,A

(0)
d ), k

(1)
i := e(E,A

(1)
d )

7 (ϕ
(0)
d , ϕ

(1)
d )← ZK-PoK.Prove(Ad, E)

8 η := α · `+ ρ

9 Jfη,(β,1)K← VDPF.Gen(1λ, fη,(β,1) ∈ F ′)
10 π(0) := (f

(0)
η,(β,1)

, L,K, {k(0)
d , ϕ

(0)
d }d∈Zm )

11 π(1) := (f
(1)
η,(β,1)

, L,K, {k(1)
i , ϕ

(0)
i }i∈Zm )

12 return (π(0), π(1))

• Audit(b,Λ, f
(b)
α,β , π

(b)):

1 Parse each

vki,j := (Ci,j , Ei,j , {Bi,j,d}d∈Zm ) ∈ Λ

2 Parse π(b) := (f
(b)
η,(β,1)

, L,K, {k(b)
d , ϕ

(0)
d }d∈Zm )

3 ({y(b)
i }i∈ZN , τ

(b)
0 )← VDPF.Eval(b, f

(b)
α,β ,ZN )

4 ({ỹ(b)
i }i∈ZN` , τ

(b)
1 )← VDPF.Eval(b, f

(b)
η,(β,1)

,ZN`)

5 Parse each ỹ
(b)
i := (ỹ

(b)
i,0 , ỹ

(b)
i,1 )

6 τ
(b)
2 := H(b+ (−1)b ·

∑
ỹ

(b)
i,1 )

7 τ
(b)
3 :=

⊕
i∈ZN H((y

(b)
i −

∑
j∈Z` ỹ

(b)
i·`+j,0)||i)

8 C(b) :=
∏n−1
i=0

∏`−1
j=0 C

−ỹ(b)
i·`+j,1

i,j

9 E(b) :=
∏n−1
i=0

∏`−1
j=0 E

−ỹ(b)
i·`+j,1

i,j
10 for d ∈ Zm:

11 B
(b)
d :=

∏n−1
i=0

∏`−1
j=0 B

−ỹ(b)
i·`+j,1

i,j,d

12 F
(b)
d := e(B

(b)
d , L) · k(b)

d

13 τ̃
(b)
d ← ZK-PoK.Audit(b, ϕ

(b)
d , E(b), k(b))

14 F
(b)
m :=

∏
d∈Zm (F

(b)
d )∆d+1,m(0)

15 if b = 0:
16 τ

(b)
4 := H(e(E(b),K)/(F

(b)
m · C(b)))

17 else

18 τ
(b)
4 := H((F

(b)
m · C(b))/e(E(b),K))

19 return τ (b) := ({τ (b)
i }i∈[0,4], {τ̃

(b)
i }i∈Zm )

• Verify(τ (0), τ (1)):

1 return ∀i ∈ [0, 1],VDPF.Verify(τ
(0)
i , τ

(1)
i )

∧ ∀i ∈ [2, 4], τ
(0)
i = τ

(1)
i

∧ ∀i ∈ Zm,ZK-PoK.Verify(τ̃
(0)
i , τ̃

(1)
i )

• Parameters: Let F := {f : {0, 1}n → G̃},F ′ := {f : {0, 1}n+log ` → G̃× Zp} be two function families

of point functions, and N := 2n. Let e : G× G→ Gt be a bilinear map. The prime number p is the

order of G,Gt and g is the generator of G. Let H : {0, 1}∗ → {0, 1}4λ be a hash function sampled
from a family H that is both collision-resistant and XOR-collision-resistant. Let H′ : {0, 1}∗ → Zp be

a hash function sampled from a family H′ that is collision-resistant. Set Lagrange coefficients as

∆i,m(x) :=
∏
j∈[m]/{i}

x−j
i−j .

Construction Attr-PC

Figure 3: The construction of Attr-PC using ZK-PoK, where f
(b)
α,β is sampled from

VDPF.Gen(1λ, fα,β).

from sk, and the multiplicative shares of 〈ki〉 := e(Eα,ρ, Ai) with the corresponding ZK-PoK
proof for i ∈ Zm. According to the SKGen, the elements L,K contain no information about
prover’s attributes.

Upon receiving the shares of a point function Jfα,βK and the corresponding proof JπK,
the verifiers, say P0 and P1, locally execute Audit to select the target verification key 〈vkα,ρ〉
and obtain the audit tokens. More specifically, denote JτK := {τ (0), τ (1)} as the audit tokens
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computed by P0 and P1, respectively. The verifiers computes inner product in the exponent
between Λ and the evaluation result of Jfη,(β,1)K to get 〈vkα,ρ〉. Later, they try to recover
〈Cα,ρ〉 using proof shares. For d ∈ Zm, suppose 〈kd〉 in the proof JπK = e(Eα,ρ, Ad) and Ad
corresponds to the same attribute ad as Bα,ρ,d. The random mask H ′(ad) · sα,ρ in Bα,ρ,d is
eliminated by computing 〈Fd〉 := e(〈Bd〉, L) · 〈kd〉 := e(g, g)tr·q(d+1). Therefore, if the proof
JπK is valid, the verifiers can obtain 〈Fm〉 := e(g, g)tr·q(0) through Lagrange interpolating
formula, and e(Eα,ρ,K)/Fm = e(g, g)tsα,ρ = Cα,ρ. The verifiers generate Jτ4K to check this
equality. In particular, this process applies prover-assisted bilinear map computation, so that
it results a series of ZK-PoK audits and the corresponding tokens {Jτ̃dK}d∈Zm . Moreover,
we introduce Jτ0K, . . . , Jτ3K to ensure the selected verification key belongs to Λα. The first
two tokens Jτ0K, Jτ1K are VDPF tokens of Jfα,βK, Jfη,(β,1)K, respectively. They attest the
well-formedness of point functions. The token Jτ2K is computed by hashing the subtractive
shares of the different between the sum of the auxiliary outputs of Jfη,(β,1)K and the value

1. The equality check of τ
(0)
2 = τ

(1)
2 in Verify restricts that the special auxiliary output of

Jfη,(β,1)K is equal to 1. The token Jτ3K is computed by XOR-accumulating the hash values of
the subtractive shares of the different fα,β(i)−

∑
j∈Z` ỹi`+j,0 for i ∈ ZN , j ∈ Z`, where ỹi`+j,0

is the first item of the evaluation result of fη,(β,1)(i` + j). We observe that, the equality

τ
(0)
3 = τ

(1)
3 holds only if η ∈ [α`, α` + `). Finally, the verifiers exchange their audit tokens

and then use Verify to determine whether the shared function Jfα,βK should be evaluated or
rejected.

Security. We show the security of our Attr-PC scheme described in Fig. 3 with the following
theorem, and its proof can be found in Appendix B.2.

Theorem 2. Let p be a prime chosen with respect to the security parameter λ and let
e : G × G → Gt be a bilinear map, where G,Gt are two multiplicative cyclic groups with
order p. Let H : {0, 1}∗ → {0, 1}4λ be a hash function sampled from a family H that is
both collision-resistant and XOR-collision-resistant. The Attr-PC construction in Fig. 3 is
a secure PC scheme as described in Definition 2 under the decisional BDH assumption.

5.2 Template-based policy constraints

In this section, we propose a template-based PC (Tpl-PC) scheme to restrict the function
output. It is aimed at the point function family F whose range is a binary field. In our
Tpl-PC scheme, each authorized set Qi is represented by ` restraint strings {rsi,j}j∈Z` , such
that Qi := {fi,v ∈ F|∃j ∈ Z`, v ∧ rsi,j = 0}. That is, the restraint string rsi,j divides
the function output into free bits and restricted bits. A point function with special input
i matches rsi,j if and only if all restricted bits of its special output are equal to 0. For
clarity, we let R(·, ·) ≡ 1 and omit vk. Note that, it can be extended to fain-grained content
constraints by setting different restraint strings according to different verification keys for a
non-trivial R.

Fig. 4 presents our Tpl-PC construction. Given the function family F := {f : {0, 1}n →
F2t}, the initialization method PolicyGen sets up N constraints by determining the restraint
strings rsi,j . In Prove, the prover generates a proof for the point function fα,β ∈ F with
the secret key ∅. The target rsα,ρ is selected by the condition β ∧ rsα,ρ = 0, and the
proof shares are a pair of VDPF keys Jfη,βK where η := α` + ρ. During the verification
process, the verifiers first executes the algorithm Audit to generate audit tokens. More
specifically, they obliviously obtain the secret-shared Jrsα,ρ ∧ βK by computing the inner
product between the evaluation result of Jfη,βK and the constraints Λ. For b ∈ {0, 1}, the
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• PolicyGen(1λ,F):

1 for i ∈ ZN , j ∈ Z`
2 Choose the string rsi,j ∈ Z2t

3 Λi := {rsi,j}j∈Z` , ∀i ∈ ZN
4 return (Λ := {Λi}i∈ZN , ∅)

• Prove(Λ, fα,β ∈ F , sk := ∅):
1 Select the target rsα,ρ from Λ, s.t.,

β ∧ rsα,ρ = 0

2 η := α · `+ ρ

3 Jfη,βK← VDPF.Gen(1λ, fη,β ∈ F ′)
4 π(0) := f

(0)
η,β , π(1) := f

(1)
η,β

5 return (π(0), π(1))

• Audit(b,Λ, f
(b)
α,β , π

(b)):

1 Parse π(b) := f
(b)
η,β

2 ({y(b)
i }, τ

(b)
0 )← VDPF.Eval(b, f

(b)
α,β ,ZN )

3 ({ỹ(b)
i }, τ

(b)
1 )← VDPF.Eval(b, f

(b)
η,β ,ZN`)

4 τ
(b)
2 :=

⊕
i∈ZN H(y

(b)
i ⊕ (

⊕
j∈Z` ỹ

(b)
i·`+j)||i)

5 τ
(b)
3 := H(

⊕
i∈ZN ,j∈Z` rsi,j ∧ ỹ

(b)
i·`+j)

6 return τ (b) := {τ (b)
i }i∈[0,3]

• Verify(τ (0), τ (1)):

1 return ∀i ∈ [0, 1],VDPF.Verify(τ
(0)
i , τ

(1)
i )

∧ ∀i ∈ [2, 3], τ
(0)
i = τ

(1)
i

• Parameters: Let F := {f : {0, 1}n → F2t} and F ′ := {f : {0, 1}n+log ` → F2t} be function families

of point functions, N := 2n. Let H : {0, 1}∗ → {0, 1}4λ be a hash function sampled from a family H
that is both collision-resistant and XOR-collision-resistant.

• The SKGen algorithm always outputs ∅.

Construction Tpl-PC

Figure 4: The construction of Tpl-PC, where f
(b)
α,β is sampled from VDPF.Gen(1λ, fα,β).

verier Pb compute audit token τ
(b)
3 as the hash value of the share (rsα,ρ ∧ β)(b). In Verify,

the equality check of τ
(0)
3 = τ

(1)
3 guarantees rsα,ρ ∧ β = 0. To prevent the malicious prover

from providing a mismatched fη′,β′ to cheat the verifiers, we introduce the additional audit
tokens Jτ0K, Jτ1K, Jτ2K that are similar to our Attr-PC scheme.

Security. We show the security of our Tpl-PC scheme described in Fig. 4 with the following
theorem, and its proof can be found in Appendix B.3.

Theorem 3. Let λ be security parameter. Let H : {0, 1}∗ → {0, 1}4λ be a hash function
sampled from a family H that is both collision-resistant and XOR-collision-resistant. The
Tpl-PC construction in Fig. 4 is a secure PC scheme as described in Definition 2.

5.3 Efficiency

In this section, we offer an optimization for PC schemes, and discuss the composition of
PCs for different policies.

DPF tensoring. To support the general ` ≥ 1, we introduce a separate VDPF Jfη,(β,1)K
to select the target item in Λ. It results O(λ · (n + log `)) communication overhead from
the prover to the verifiers. As observed in prior work [13], the selecting VDPF Jfη,(β,1)K
can reuse the “backbone” of the VDPF Jfα,βK, which is the DPF tensoring described by
Boyle et al. [14]. Loosely speaking, the evaluation result of Jfα,βK can be considered as
the n-th level results of Jfη,(β,1)K. Therefore, the selecting VDPF only needs to represent a
point function with domain size `, and then the communication overhead can be reduce to
O(λ · log `).

Multi-policy constraints. We observe that, for the same function family F , different
PC schemes share a common “backbone” of selecting VDPFs. The difference between
their selecting VDPFs is the special auxiliary outputs with respect to the different policy
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Figure 5: DPF with layer outputs

constraints. Due to the privacy of VDPF, all items in the VDPF evaluation result are
pseudo-random and independent to each other. Therefore, multiple PC schemes for the same
F can form a composite construction for multi-policy constraints using a single selecting
VDPF. Here, the selecting point function is converted to a new function with sufficient
auxiliary outputs for all PCs. The security of the composite construction depends on the
security of VDPF and the original multiple PC schemes.

6 PC for DPF with Logarithmic Storage Size

Previous PC schemes (including PACLs in [13]) require that each verifier stores at least N
verification keys for N constraints. This is a consequence of the fact that the underlying
DPF extends to a vector of length N to indicate the 1-out-of-N constraint selection. This
selection step becomes the performance bottleneck when N is large. In this section, we
describe how to construct PC with logarithmic storage size for constraint representation to
reduce the selection cost.

For simplicity, we focus on ` = 1. Intuitively, we use 2 logN public keys to represent N
verification keys as constraints. Let G be a group with the generator g and α1, . . . , αlogN

be the bits of α. We set the public keys to (ki,0 := gri,0 , ki,1 := gri,1)i∈[logN ], and denote the
α-th constraint by vkα :=

∏
i∈[logN ] ki,αi . Only the prover who has the discrete-logarithm

knowledge of vkα can produce a valid proof for α-th constraint.
There are two challenges to this intuition. First, for a point function fα,β , the verifiers

can not obliviously bit-decompose the special input α using standard DPF technique. To
overcome this problem, we present a verifiable DPF scheme with layer outputs, called incre-
mental VDPF (IVDPF). In IVDPF, if the evaluation input set contains α, the layer outputs
of the evaluation result form the (scaled) bit decomposition of α. The second is that if
the secret key is exactly the discrete logarithm of the corresponding verification key, then a
malicious user with access to multiple constraints may be able to compute the valid secret
keys of other constraints. We introduce bilinear map to address this problem, which blinds
the discrete logarithm.

6.1 Incremental VDPF

An incremental VDPF consists of three PPT algorithms (Gen,Eval,Verify). The share gen-
eration algorithm Gen produces the secret shares of the point function fα,β with the special
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• Parameters: Let u be the bit length of the element in G. Let

G : {0, 1}λ → {0, 1}λ+u be a PRG.

• ConvG(s):

1 v := G(s)

2 if |G| = 2u: return the group element represented by the first u

bits of v
3 return the group element corresponding to v

Algorithm ConvG

Figure 6: Pseudocode for converting a string s to an element in G. Due to the secure PRG
G, if the string s is random, ConvG(s) is a pseudo-random element in G.

layer outputs {β′i}. The verifiable evaluation algorithm Eval evaluates the function share
over a set of inputs X, and produces the additive shares of the function outputs and the
layer outputs with a token. The verification function Verify takes input as tokens, and out-
puts 1 for accept if and only if the function outputs have at most one non-zero item and
the layer outputs match with the special input α. The formal definition of our IVDPF is
described in Definition 4, which can be found in Appendix A.

Our IVDPF construction is inspired by the CPRG optimization of distributed DPF
generation [3] and the incremental DPF [6]. Recap the underlying DPF representation [14]
of the VDPF solution [21]. For a point function fα,β : {0, 1}n → G, each of the two DPF
keys defines a GGM-style binary tree [26] with 2n leaves, and every node in the tree is
labeled by a pseudo-random value. The DPF construction guarantees the invariant of a pair
of keys at each level i. That is, if a node is in the special path (i.e., the path from the root to
the α-th leaf), its labels in two trees are different and independent; otherwise, its labels are

identical. Let αi denote the i-th bit of α. As shown in Fig. 5, for the accumulations z
(b)
i,0 , z

(b)
i,1

of all left children and right children at level i, we have z
(0)
i,αi
6= z

(1)
i,αi

and z
(0)
i,ᾱi

= z
(1)
i,ᾱi

.

Therefore, we can instruct the i-th layer output by making z
(0)
i,αi

, z
(1)
i,αi

reconstruct β′i and

correcting z
(0)
i,ᾱi

, z
(1)
i,ᾱi

to 0.
The details of our IVDPF is illustrated in Fig. 7. In particular, the label of each note

includes a pseudo-random seed s̃(b) and a control bit t(b). They generate the labels of
children with the help of the corresponding correction word cw. As observed by [6], using
the seed s̃(b) directly in the generation of both children and layer output would compromise
its pseudo-randomness, which is required for security. Therefore, an extra PRG evaluation
of Conv is employed to expend s̃(b) to a new pseudo-random seed s(b) for children and an
element w(b) for the layer output.

Preventing malicious dealer. The VDPF technique from [21] can ensure the dealer
shares a well-formed point function. However, a malicious dealer may also attempt to cause a
mismatch between the layer outputs and the point function outputs. For instance, the dealer
secret-shares a point function fα,β to two evaluators, while the layer outputs embedded in
the function shares correspond to the binary representation of a different integer α′ 6= α. To
defend against this attack, we enable evaluators to verify that two trees defined by a pair of
IVDPF keys only differ at one node per level. It forces that the nodes with different labels
exactly form the special path. More specifically, we follow the verification method of the
standard VDPF scheme [21] to check each level. During the key generation, for each level i,
we introduce a verification correction word csi to correct the hash values of the different
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• Gen(1λ, fα,β ∈ F , {β′i ∈ G′i}i∈[n])

1 Let α1, . . . , αn be the bits of α

2 Sample random s
(0)
0 , s

(1)
0 ← {0, 1}λ

3 t
(0)
0 := 0, t

(1)
0 := 1

4 for i := 1 to n:

5 s
(b)
L ||s

(b)
R ||t

(b)
L ||t

(b)
R ← G(s

(b)
i−1) for b ∈ {0, 1}

6 if αi = 0: keep := L, lose := R

7 else: keep := R, lose := L

8 scw := s
(0)
lose ⊕ s

(1)
lose

9 tcwL := t
(0)
L ⊕ t

(1)
L ⊕ αi ⊕ 1

10 tcwR := t
(0)
R ⊕ t

(1)
R ⊕ αi

11 cwi := (scw, tcwL , t
cw
R )

12 s̃
(b)
i := s

(b)
keep ⊕ t

(b)
i−1 · s

cw for b ∈ {0, 1}

13 t
(b)
i := t

(b)
keep ⊕ t

(b)
i−1 · t

cw
keep for b ∈ {0, 1}

14 α[1,i] := α1|| . . . ||αi
15 csi := H(s̃

(0)
i ||t

(0)
i ||α)⊕H(s̃

(1)
i ||t

(1)
i ||α[1,i])

16 s
(b)
i ||w

(b)
i ← Conv{0,1}λ×G′i

(s̃
(b)
i )

17 lcwi := (−1)t
(1)
i · [β′i − w

(0)
i + w

(1)
i ]

18 ocw := (−1)t
(1)
n ·(β−ConvG(s

(0)
n )+ConvG(s

(1)
n ))

19 f
(0)
α,β := (s

(0)
0 , (cwi, csi, lcwi)i∈[n], ocw)

20 f
(1)
α,β := (s

(1)
0 , (cwi, csi, lcwi)i∈[n], ocw)

21 return (f
(0)
α,β , f

(1)
α,β)

• Eval(b, f
(b)
α,β , X):

1 Parse f
(b)
α,β := (s0, t0, (cwi, lcwi)i∈[n], ocw)

2 t0 := b, τi := csi
3 z

(b)
i := 0 for i ∈ [n]

4 for x ∈ X:

5 Let x1, . . . , xn be the bits of x

6 for i := 1 to n:
7 sL||sR||tL||tR ← G(si−1)

8 Parse cwj := (scw, tcwL , t
cw
R )

9 if xi = 0: keep := L

10 else: keep := R

11 s̃i||ti := (skeep||tkeep)⊕ ti−1 · (scw||tcwkeep)
12 x[1,i] := x1|| . . . ||xi
13 τi := τi ⊕H′(τi ⊕H(s̃i||ti||x[1,i])⊕ ti · csi)
14 si||wi ← Conv{0,1}λ×G′i

(s̃i)

15 z
(b)
i,xi

:= z
(b)
i,xi

+ (−1)b · (wi + ti · lcwi)

16 y
(b)
x := (−1)b · (ConvG(sn) + tn · ocw)

17 τ (b) :=
⊕
i∈[n] τi

18 return ({y(b)
x }x∈X , {z

(b)
i,0 , z

(b)
i,1 }i∈[n], τ

(b))

• Verify(τ (0), τ (1))

1 return τ (0) = τ (1)

• Parameters: Let F := {f : {0, 1}n → G} be a function family of point functions, and G′1, . . . ,G′n be

layer output groups. Let G : {0, 1}λ → {0, 1}2λ+2 and ConvG : {0, 1}n → G (cf. Fig. 6) be two

pseudorandom generators. Let H : {0, 1}λ+1+n → {0, 1}4λ be a hash function sampled from a family
H that is both collision-resistant and XOR-collision-resistant, and H′ : {0, 1}4λ → {0, 1}2λ be a hash

function sampled from a family H′ that is collision-resistant.

Construction IVDPF

Figure 7: The construction of incremental VDPF.

labels (i.e., the seeds and control bits) to be identical. In the verifiable evaluation, we let
the evaluators check that all the corrected hash values are equal. Since a correct word can
only correct at most one difference, this equality check guarantees that all other nodes at
level i have the same labels on two trees.

Security. We show the security of our IVDPF scheme described in Fig. 7 with the following
theorem, and its proof can be found in Appendix B.4.

Theorem 4. Let λ be the security parameter. Let G : {0, 1}λ → {0, 1}2λ+2 and ConvG :
{0, 1}n → G be pseudorandom generators, H : {0, 1}λ+1+n → {0, 1}4λ be a hash function
sampled from a family H that is both collision-resistant and XOR-collision-resistant, and
H ′ : {0, 1}4λ → {0, 1}2λ be a hash function sampled from a family H′ that is collision-
resistant. The construction from 7 is a secure IVDPF scheme for the function family F :=
{f : {0, 1}n → G} of point functions and the layer output group {G′i}i∈[n], as described in
Definition 4.
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• PolicyGen(1λ,F):

1 for i ∈ [n]:

2 ri,0, ri,1 ← Zp
3 ki,0 := e(g, g)ri,0 , ki,1 := e(g, g)ri,1

4 Λ := {(ki,0, ki,1)}i∈[n], ξ := {ri,0, ri,1}i∈[n]

5 return (Λ, ξ)

• SKGen(1λ, α, ξ):

1 d :=
∑
i∈[n] ri,αi

2 c← Z∗p, sk0 := gc, sk1 := d/c
3 return sk := (sk0, sk1)

• Prove(Λ, fα,β ∈ F , sk):

1 Parse sk := (sk0, sk1)

2 s← Z∗p, u := sks0
3 JvK← AddShareZp,2(sk1/s)

4 π(0) := (u, v(0)), π(1) := (u, v(1))

5 return (π(0), π(1))

• Audit(b,Λ, f
(b)
α,β , π

(b)):

1 Parse π(b) := (u, v(b))
2 Parse Λ := {(ki,0, ki,1)}i∈[n]

3 (Y, Z, τ
(b)
0 )← IVDPF.Eval(b, f

(b)
α,β ,ZN )

4 Parse Z := {z(b)
i,0 , z

(b)
i,1 }i∈[n]

5 τ
(b)
1 :=

⊕
i∈[n]H(z

(b)
i,0 + z

(b)
i,1 − b)

6 vk(b) :=
∏
i∈[n] k

z
(b)
i,0

i,0 · k
z
(b)
i,1

i,1
7 if b = 0:

8 τ
(b)
2 := H(e(u, gv

(b)
)/vk(b))

9 else:

10 τ
(b)
2 := H(vk(b)/e(u, gv

(b)
))

11 return τ (b) := (τ
(b)
0 , τ

(0)
1 , τ

(0)
2 )

• Verify(τ (0), τ (1)):

1 return
IVDPF.Verify(τ

(0)
0 , τ

(1)
0 ) ∧ ∀i ∈ [2], τ

(0)
i = τ

(1)
i

• Parameters: Let F := {f : {0, 1}n → G̃} be function family of point functions, and N := 2n. Let

e : G× G→ Gt be a bilinear map, where G,Gt are two multiplicative cyclic groups with the prime

order p, and g is the generator of G. Let H : {0, 1}∗ → {0, 1}2λ be a hash function sampled from a
family H that is collision-resistant.

Construction IVDPF-PC

Figure 8: The construction of IVDPF-PC, where f
(b)
α,β is sampled by

IVDPF.Gen(1λ, fα,β , {1 ∈ Zp}n).

6.2 Construction using incremental VDPF

We describe our PC scheme from incremental VDPF in Fig. 8. It is aimed to constraint the
function family F := {f : {0, 1}n → G̃} of point functions. Let N := 2n. Our IVDPF-PC
scheme supports N different constraints for F and only require each verifier stores 2 logN
public keys {ki,0, ki,1}i∈[n]. Our intuition is that verifiers obliviously obtain the target
verification key vkα :=

∏
i∈[n] k

zi,0
i,0 ·k

zi,1
i,1 using the layer outputs of the shared function fα,β ,

and then check that the prover holds a valid secret key encoding the discrete logarithm of
the corresponding vkα.

To defend against the attack on the linear composition of discrete logarithms, we generate
the verification keys using a biliear map e : G × G → Gt. Let g be the generator of
G. Each verifier stores (e(g, g)ri,0 , e(g, g)ri,1)i∈[n] to represent Λ. The algorithm SKGen
products the randomized secret key use the trapdoor ξ := {ri,0, ri,1}i∈[n]. More specifically,
for each vkα ∈ Λ, d :=

∑
i∈[n] ri,αi is the discrete logarithm of vkα to the base e(g, g).

SKGen samples random c ∈ Zp and outputs a secret key as sk := (gc, d/c). Note that,
e(gc, gd/c) = e(g, g)c·d/c = e(g, g)d. The proof generation method Prove re-randomizes two
items in sk to obtain u, v respectively. It then produces the proof shares consisting of the
random u and the additive shares of JvK. Upon receiving the proof shares, the verifiers can

jointly compute 〈e(u, gv)/vkα〉 to obtain the audit tokens τ
(0)
2 , τ

(1)
2 using Audit, and then

exchange tokens to check e(u, gv)/vkα = 1 in Verify. In addition, we let the verifiers verify
the well-formedness of the function shares using IVDPF scheme and check whether each
special layer output is equal to 1. It guarantees that the verifiers obtain a valid verification
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Table 1: Performance of proof generation. For our Attr-PC scheme, we set each constraint
to 5-DNF.

# of keys per Λi 1 25 210 215

DPF-PACL [13] 0.3 µs 1.37 µs 2.74 µs 3.13 µs

VDPF-PACL [13] 30.1 ms 29.3 ms 29.9 ms 29.3 ms

Attr-PC (Ours) 23.1 ms 23.1 ms 23.2 ms 22.8 ms

Tpl-PC (Ours) 0.6 µs 1.49 µs 2.65 µs 3.05 µs

IVDPF-PC (Ours) 31.7 µs 41.6 µs 50.2 µs 63.8 µs

SK-Tpl-PC 29.1 ms 30.2 ms 29.4 ms 29.3 ms

Attr-Tpl-PC 23.0 ms 23.6 ms 23.2 ms 22.8 ms

key.

Security. We show the security of our IVDPF-PC scheme described in Fig. 8 with the
following theorem, and its proof can be found in Appendix B.5.

Theorem 5. Let p be a prime chosen with respect to the security parameter λ. Let e :
G×G→ Gt be a bilinear map, where G,Gt are two multiplicative cyclic groups with order
p. Let H : {0, 1}∗ → {0, 1}4λ be a hash function sampled from a family H that is both
collision-resistant and XOR-collision-resistant. The IVDPF-PC construction in Fig. 8 is a
secure PC scheme as described in Definition 2 under the decisional BDH assumption.

7 Implementation and benchmark

Our PC schemes are implemented in Go and C. We implement the underlying DPF followed
by [14, 21] and employ the optimization of the FSS tensor technique in [14]. AES-128 is
chosen for PRG in DPF, and we implement it by Intel’s AES-NI. We instantiate the bilinear
map e in the elliptic curve BLS12-381 [27], and adopt the efficient BLS12-381 implementation
in [28]. In addition, we use SHA-256 as the hash function in our constructions.

Our benchmarks are executed on a server with Intel Xeon Silver 4214 CPU at 2.20GHz
running Ubuntu 20.04.5 LTS; with 48 vCPUs and 128 GB Memory. Each experiment result
is an average from 500 - 1000 evaluations. For the purpose of comparison, we also perform
the same benchmarks for the DPF-PACL and VDPF-PACL from [13]. We rerun the source
code [29] provided by the original authors, where the DPF-PACL uses the group G as the
P-256 elliptic curve group, and the VDPF-PACL uses the group G := Z∗p with a 3072-bit
prime p as specified in RFC3526 [30]. In addition, we evaluate two PC schemes for multi-
policy: the SK-Tpl-PC composed of the VDPF-PACL and our Tpl-PC; and the Attr-Tpl-PC
composed of our Attr-PC and Tpl-PC.

Parameters. Set λ = 128 and n = 32. In practical, such as mailbox system [10], constraints
are applied to a registered set X, and the verifiers evaluate DPF on X rather than full
domain. Denote N = |X| as the number of constraints, ` as the number of verification keys
per constraint.

Optimizations. We reduce the communication cost between the verifiers by XOR-accumulating
some audit tokens (including the VDPF/IVDPF tokens), which are hash values and verified
by a simple equality check in Verify.
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Table 2: Proof size and audit token size in bytes, where s` is the standard DPF key size for
the domain size ` and m is the conjunction size in our Attr-PC scheme.

Proof Size Token Size

DPF-PACL [13] 32 + s` 64

VDPF-PACL [13] 1952 + s` + 64 816

Fixed VDPF-PACL 1952 + s` + 64 880

Attr-PC (Ours) 584m+ s` + 64 64 + 1240m

Tpl-PC (Ours) s` + 64 64

IVDPF-PC (Ours) 128 + s` + 96 log ` 64

SK-Tpl-PC 1952 + s` + 64 880

Attr-Tpl-PC 584m+ s` + 64 64 + 1240m

7.1 Prover costs

Table 1 compares the proving costs of schemes. We note that, using the FSS tensor opti-
mization, the computational complexity of Prove is log-linear in `. The DPF-PACL and our
Tpl-PC schemes achieve an overwhelming performance advantage, because their operations
are minimal except for generating (V)DPF keys. Our IVDPF-PC requires O(n) group op-
erations for layer outputs in IVDPF key generation, resulting in additional running time.
In our Attr-PC scheme, the prover needs to generate the ZK-PoK proof for each attribute,
which is bottlenecked by group exponentiation operations. However, the proving time of our
Attr-PC remains below 25 ms for ` ≤ 215. For the composite PC schemes, multiple policies
share a common selecting point function to save a VDPF generation. Due to the succinct
of the underlying DPF representation, this optimization appears insignificant in the proof
generation.

7.2 Communication costs

There are two communication rounds in our PC schemes and PACLs: one is that the prover
distributes the proof shares to the verifiers; the other is that two verifiers exchange their
audit tokens. Table 2 reports the concrete communication costs of the two rounds. Let s`
be the standard DPF key size for the point functions with domain size `. The VDPF key
size of [21] is s` + 64 bytes, and our IVDPF key size is s` + 96 log ` bytes due to the log `
correction seeds and layer output correction words.

The proof size and token size of our Tpl-PC and IVDPF-PC are smaller than those
of VDPF-PACL. For our Attr-PC scheme, its proof size is linear in the size m of each
conjunction, where m is the number of required attributes per verification. Since the VDPF-
PACL scheme supports the verification with only one “attribute”, our Attr-PC scheme
outperforms the VDPF-PACL for the amortized proof size over the number of attributes.
Compared to the sum of multiple PCs, the composite PC schemes save one VDPF key in
proof and save one hash value in audit token.

In particular, we compare our fixed VDPF-PACL with the VDPF-PACL in [13]. As
shown in Table 2, our security improvement is almost free, in fact it only increases the
token size by 64 bytes.
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Figure 9: Comparison of the amortized verification overhead, where VDPF-PACL refers
to [13]. The run-time is amortized by the number of constraints. Our Attr-PC scheme is
additionally amortized by the conjunction size m = 5.

7.3 Verification costs

The verifiers executes Audit and Verify sequentially for verification. Thus, we take the total
run-time of the two algorithm as the verification cost. We compare our Attr-PC for 5-DNF,
Tpl-PC and the VDPF-PACL schemes in Fig. 9, while the VDPF evaluation of fα,β is
the baseline. As the number of constraints increases, the amortized overhead of VDPF-
PACL and Attr-PC decreases. This is because the overhead of the SPoSS/ZK-PoK and the
equality check are amortized over the number of constraints. On the contrary, the amortized
overhead of our Tpl-PC plateaus at the beginning due to its minimal operations.

Furthermore, with the amortization of the attribute number, the verification time of our
Attr-PC scheme is 2× - 4× faster than the VDPF-PACL as shown in Fig. 9. To demonstrate
the performance of our Attr-PC scheme with respect to the number of attributes, we report
its running time amortized only the constraint number in Fig. 10. We observe that the
verification cost of Attr-PC is linear in the number of attributes, while the gradient decreases
as the number of constraints grows. For the composite PCs, their verification time are
less than the sum of the corresponding single-policy schemes because it halves the VDPF
evaluations. This advantage would be significant when the domain of the selecting point
function is large.

To demonstrate the advantage of our IVDPF-PC scheme, we plot the run-time of ver-
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Figure 10: Verification time of our Attr-PC amortized only by the number of constraints.
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Figure 11: Verification performance of DPF-PACL [13] and our IVDPF-PC scheme.

ification by steps in Fig. 11. It shows that, for the DPF-PACL scheme of [13], obliviously
selecting the target verification key is the most costly step. Because the DPF-PACL uses
N verification keys to represent N constraint, and requires O(N`) group exponentiation
operations in the key selection step. Our IVDPF-PC scheme reduce the representation of
the constraint list to 2 logN public keys, so that only O(` logN) group exponentiation op-
erations are required. Therefore, our IVDPF-PC scheme is significantly more efficient than
the DPF-PACL when N and ` are large. For instance, our IVDPF-PC scheme improves
performance by a factor of 2.5× with 215 constraints.
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A Definition of incremental VDPF

We define the incremental VDPF as follows:

Definition 4 (Incremental VDPF). Let F := {f : {0, 1}n → G} be a function family of
point functions, and {G′i}i∈[n] are groups for special layer outputs. A 2-party incremen-
tal VDPF scheme for F and {G′i}i∈[n] consists of three PPT algorithms (Gen,Eval,Verify)
defined as follows:

• (f
(0)
α,β , f

(1)
α,β) ← Gen(1λ, fα,β , {β′i}i∈[n]) is the share generation algorithm that takes in-

put as a security parameter 1λ, a point function fα,β ∈ F and the special layer outputs
{β′i ∈ G′i}i∈[n]. It outputs a pair of IVDPF keys, i.e., the additive shares of Jfα,βK.

• ({y(b)
x }x∈X , {zi,0, zi,1}i∈[n], τ

(b)) ← Eval(b, f
(b)
α,β , X) is the verifiable evaluation algo-

rithm that takes input as an index b ∈ {0, 1}, a IVDPF key f
(b)
α,β and a set of in-

puts X ⊆ {0, 1}n. It outputs a tuple of values. The first set of values are the FSS
outputs, which are additive shares of fα,β(x), x ∈ X. The second set of values are
additive shares of layer outputs. The last item is a token that is used to verify the
well-formedness of the shared function.

• 1/0 ← Verify(τ (0), τ (1) is the verification algorithm that takes input as two tokens. It
outputs 1 for accept or outputs 0 for reject.

A secure IVDPF must satisfy three properties as follows:
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• Correctness. For all fα,β ∈ F , X ⊆ {0, 1}n, {β′i ∈ Gi}i∈[n], let (f
(0)
α,β , f

(1)
α,β) ←

Gen(1λ, fα,β , {βi}i∈[n]), it hold that

Pr



(Y (0), Z(0), τ (0))← Eval(0, f
(0)
α,β , X);

(Y (1), Z(1), τ (1))← Eval(1, f
(1)
α,β , X) :

∀x ∈ X, y(0)
x + y

(1)
x = f(x) ∧

∀i ∈ [n], z
(0)
i,ᾱi

+ z
(1)
i,ᾱi

= 0 ∧
z

(0)
i,αi

+ z
(1)
i,αi

= (α[1,i] ∈ X[1,i]) · β′i ∧
Verify(τ (0), τ (1)) = 1


= 1

where Y (b) := {y(b)
x }x∈X , Z(b) := {z(b)

i,0 , z
(b)
i,1 }i∈[n] for b ∈ {0, 1}, αi is the i-th bit of

α, α[1,i] denotes the i-bit prefix of α, and X[1,i] denotes the set of i-bit prefixes of all
element in X.

• Privacy. For a point function f ∈ F , the special layer outputs B := {β′i ∈ G′i}i∈[n],
and a set of inputs X ⊆ {0, 1}n, define the view ViewVDPF(b, f,B,X) as probability
distribution ensemble {(f (b), τ (1−b))}λ, where (f (0), f (1)) is sampled by Gen(1λ, f, B),

and ({y(1−b)
x }x∈X , {zi,0, zi,1}i∈[n], τ

(1−b)) is computed by Eval(1− b, f (1−b), X). There
exists a PPT simulator Sim such that for all f ∈ F , B := {β′i ∈ G′i}i∈[n], X ⊆ {0, 1}n,
the following two distributions are computationally indistinguishable:

ViewVDPF(b, f,B,X) ≈c Sim(1λ, b,G, {G′i}i∈[n], X)

• Soundness. We say IVDPF is computationally sound, if ∀X ⊆ {0, 1}n and ({y(b)
x }x∈X , {z(b)

i,0 , z
(b)
i,1 }i∈[n],

τ (b))← Eval(b, f
(b)
α,β , X) for b ∈ {0, 1}, the following probability is at least 1− negl(λ)

Pr


Verify(τ (0), τ (1)) = 1 :∣∣∣{x ∈ X|y(0)

x + y
(1)
x 6= 0}

∣∣∣ ≤ 1 ∧
∀i ∈ [n], |Ci| ≥ 1 ∧ ∀x ∈ X,
(¬(y

(0)
x + y

(1)
x 6= 0) ∨ (∀i ∈ [n], xi ∈ Ci))


where xi is the i-th bit of x, Ci := {0, 1}/{1− j|z(0)

j,0 + z
(1)
j,0 6= 0, j ∈ {0, 1}}.

B Security proofs

B.1 Proof of Theorem 1

Proof. We prove the ZK-PoK construction in Fig. 2 satisfies the properties in Definition 3.

Completeness. We show that if k := e(E, k), then Verify outputs 1. In Fig. 2, Verify

outputs 1 if and only if r̂(0) ⊕ r̂(1) = r, T
(0)
0 · T (1)

0 = B, T
(0)
1 · T (1)

1 = C and D(0) ·D(1) = 1.

The equality of r̂(0)⊕ r̂(1) = r, T
(0)
0 · T (1)

0 = B, T
(0)
1 · T (1)

1 = C follows by inspection. To see
why it holds that D(0) ·D(1) = 1, observe that

D(0) ·D(1) =e(C,B) · e(C, g)x · e(g,B)y · e(g, g)z · k−r

=e(E · g−y, Ar · g−x) · e(E · g−y, g)x
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· e(g,Ar · g−x)y · e(g, g)z · k−r

=e(E,A)r · e(g, g)−xy · e(g, g)z · k−r

=e(E,A)r · k−r

=1 by assumption that k = e(E,A)

Knowledge soundness. We construct an efficient extractor E that recovers A with respect
to k,E from the output of an adversary A. The extractor E proceeds as follows:

1 Run A(E, k) to obtain its output (π(0), π(1)) where

π(0) := (A(0), B,C, x(0), y(0), z(0), r, s(0))

π(1) := (A(1), B,C, x(1), y(1), z(1), r, s(1))

2 Output A := A(0) ·A(1)

If (π(0), π(1)) is a valid ZK-PoK proof, then T
(0)
1 T

(1)
1 = C and D(0)D(1) = 1. In turn,

we have that (1) Er · g−y′ = (E′)r · g−y, and (2) e(E′, A)r · e(g, g)−xy
′ · e(g, g)z · k−r = 1

for some randomness r. The adversary A can choose arbitrary x, y, y′, z, E′. For (1), let
∆y := y − y′, ∆E := E′/E. We have Er · g∆y−y · (∆E · E)−r · gy = 1 which reduces to
g∆y · ∆−rE = 1. Thus, either (a) the adversary A obtains r from the random oracle H
such that g∆y · ∆−rE = 1, (which happens with negligible probability), or (b) ∆y = 0 and
∆E = 1, i.e., E = E′, y = y′. Therefore, we can assume E = E′, y = y′ in (2). Suppose that
z = xy + ∆ for some ∆ [23]. We have e(E,A)r · e(g, g)−xy · e(g, g)z · k−r + e(g, g)∆ which
reduces to (e(E,A)/k)r ·e(g, g)∆ = 1. Thus, either (a) the malicious prover obtained r from
the random oracle H such that (e(E,A)/k)r = e(g, g)−∆, (which happens with negligible
probability), or (b) e(E,A) = k and ∆ = 0. Therefore, the output A by the extractor E is
the argument of the bilinear map with respect to E, k, as required.

Zero knowledge. We construct an efficient simulator Sim for the view of any verifier Pb.
On input (1λ, b,G,Gt), the simulator Sim proceeds as follows:

1 A(b) ← G, x(b), y(b), z(b) ← Zp;
2 r̂(b), r, s(b) ← {0, 1}λ, B,C ← G;

3 π(b) := (A(b), B,C, x(b), y(b), z(b), r, s(b));

4 T
(1−b)
0 , T

(1−b)
1 ← G, D(1−b) ← Gt;

5 τ (1−b) := (T
(1−b)
0 , T

(1−b)
1 , D(1−b), r ⊕ r̂(b), r, B,C);

6 Output (π(b), τ (1−b)).

In the real view of the verifier Pb, π
(b) consists of (1) secret shares A(b), x(b), y(b), z(b),

(2) random nonce s(b), (3) immediate results B,C, and (4) the distributed Fiat-Shamir
randomness r. All these values are generated by the prover. (1), (2) and (3) are uniformly
distributed. (4) is uniformly distributed due to the random nonce s(b) as described in [25].

In addition, τ (1−b) consists of (1) secret shares T
(1−b)
0 , T

(1−b)
1 , D(1−b), (2) share of random

oracle outputs r̂(1−b) and r, and (3) immediate results B,C. (1) is uniformly distributed
due to the secret share z(b). (2) is uniformly distributed due to random nonce s(0), s(1).
Since r̂ = r when the prover is honest and r is given to all verifiers, (2) reveals no new
information. (3) is uniformly distributed due to the random x, y.

Therefore, the distribution output by Sim is identically to the view of verifier Pb, which
concludes the proof of zero-knowledge.
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B.2 Proof of Theorem 2

Proof. We prove the Attr-PC construction in Fig. 3 satisfies the properties in Definition 2.

Correctness. For the secret-shared point function Jfα,βK, we have JyiK = β if i = α and
yi = 0 otherwise. For the secret-shared point function Jfη,(β,1)K, we have JỹiK = (β, 1) if
j = η and JỹiK = (0, 0) otherwise. As such,

C := C(0) · C(1) := Cα,ρ := e(g, g)ws

E := E(0) · E(1) := Eα,ρ := gs

Bd := B
(0)
d ·B

(1)
d := Bα,ρ,d := gd·q(d+1)−H′(ad)·s, ∀d ∈ Zm

Fd := e(Bd, L) · kd := e(Bd, L) · e(E,Ad),∀d ∈ Zm

where s ∈ Zp, q is a (m− 1)-degree polynomial such that q(0) = s, {ad}d∈Zm are attributes
associated to the verification key vkα,ρ = (Cα,ρ, Eα,ρ, {Bα,ρ,d}d∈Zm).

We show that if the secret key sk := (L,K, {Ad}d∈Zm) is generated by the same attributes
{ad}d∈Zm as vkα,ρ (i.e., R(vkα,ρ, sk) = 1), then the algorithm Verify outputs 1. As shown
in Fig. 3, Verify outputs 1 if and only if (1) ∀i ∈ Zm, ZK-PoK.Verify(τ̃ (0), τ̃ (1)) = 1 and

(2) ∀i ∈ [0, 1], VDPF.Verify(τ
(0)
i , τ

(1)
i ) = 1 and (3) ∀i ∈ [2, 4], τ

(0)
i = τ

(1)
i . The equality

of (1) and (2) follows from the correctness of ZK-PoK and VDPF. For (3), the equality of

τ
(0)
i = τ

(1)
i ,∀i ∈ [2, 3] follows from the special output ỹα,1 = 1 and η := α·`+ρ ∈ [α`, α`+`).

To see why τ
(0)
4 = τ

(1)
4 , observe that

Fz =
∏
d∈Zm

F
∆d+1,m(0)
d

=
∏
d∈Zm

(e(Bd, L) · e(E,Ad))∆d+1,m(0)

=
∏
d∈Zm

e(g, g)tr·q(d+1)·∆d+1,m(0)

= e(g, g)trs by Lagrange interpolation formula

Therefore, we have
e(E,K)

Fz · C
=

e(g, g)s(w+tr)

e(g, g)trs · e(g, g)ws
= 1 and

e(E(0),K)

F
(0)
z · C(0)

=
F

(1)
z · C(1)

e(E(1),K)
, i.e.,

τ
(0)
4 = τ

(1)
4 as required.

Privacy. We construct an efficient simulator Sim for the view of any verifier Pb. We use the
efficient simulator SimVDPF and SimZK-PoK to generate the view of the VDPF output and the
view of the ZK-PoK output, respectively. On input (1λ, b,Λ), the simulator Sim proceeds as
follows:

1 (f (b), τ
(1−b)
0 )← SimVDPF(1λ, b,F ,ZN )

2 (f̃ (b), τ
(1−b)
1 )← SimVDPF(1λ, b,F ′,ZN`)

3 τ
(1−b)
2 := τ

(b)
2 , τ

(1−b)
3 := τ

(b)
3

4 L,K ← G, k
(b)
i ← Gt,∀i ∈ Zm

5 Compute τ
(b)
2 , τ

(b)
3 , τ

(b)
4 using Λ, f (b), f̃ (b), L, K and {k(b)

i }i∈Zm according to Audit
described in Fig. 3
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6 τ
(1−b)
2 := τ

(b)
2 , τ

(1−b)
3 := τ

(b)
3 , τ

(1−b)
4 := τ

(b)
4

7 (ϕ
(b)
i , τ̃

(1−b)
i )← SimZK-PoK(1λ, b,G,Gt)

8 π(b) := (f̃ (b), L,K, {k(b)
i , ϕ

(b)
i }i∈Zm)

9 τ (1−b) := ({τ (1−b)
i }i∈[0,4], {τ̃

(1−b)
i }i∈Zm)

10 Output (π(b), τ (1−b))

In the real view of the verifier Pb, π
(b) consists of (1) the function share f

(b)
α,(β,1), (2) the

values L,K, (3) the secret shares k
(b)
i , and (4) the corresponding ZK-PoK proofs ϕ

(b)
i for

i ∈ Zm. The distribution of (1) is computationally indistinguishable from the output of
SimVDPF due to the privacy of VDPF definition. (2) and (3) are uniformly distributed due
to random r, w, t. The distribution of (4) is statistically indistinguishable from the output
of SimZK-PoK due to the privacy of ZK-PoK definition. In addition, τ (1−b) consists of (1) the

VDPF tokens τ
(1−b)
2 , τ

(1−b)
3 , (2) the audit tokens τ

(1−b)
2 , τ

(1−b)
3 , and (3) the ZK-PoK tokens

{τ̃ (1−b)
i }i∈Zm . The distribution of (1) is computationally indistinguishable from the output

of SimVDPF. For (2), τ
(1−b)
2 , τ

(1−b)
3 , τ

(1−b)
4 are equal to τ

(b)
2 , τ

(b)
3 , τ

(b)
4 . The distribution of (3)

is statistically indistinguishable from the output of SimZK-PoK.
We conclude that the distribution output by Sim is computationally indistinguishable

from the distribution of the real view of Pb, as required.

Soundness. Assume that there exists an efficient adversary A and a non-negligible function
δ such that:

Pr[SoundnessA,b(λ) = 1] ≥ δ(λ)

Extract fα,β , f̃ from the output by A in SoundnessA,b(λ). By the soundness property of

VDPF, we can assume fα,β and f̃ are point functions. Since H is a collision-resistant hash

function, the equality check of τ
(0)
2 = τ

(1)
2 and τ

(0)
3 = τ

(1)
3 restricts A to outputting f̃ with

the special input η ∈ [α`, α`+ `) and the special output (β, 1), i.e., f̃ = fη,(β,1). (See details
in Appendix B.3 below.) It implies that verifiers obtain secret shares of vkα,ρ from Λ and
ρ := η − α`. In addition, for any f ∈ F , there exists i such that f ∈ Qi in Fig. 3, which
implies that A wins only if fα,β /∈ T .

We construct a PPT adversary B that breaks the decisional BDH assumption using A.
On input (1λ, ga, gb, gc, r), the adversary B proceeds as follows:

1 (Λ, ξ)← PolicyGen(1λ,F)

2 α′ ← ZN , ρ′ ← Z`, u0, . . . , um−1, s← Zp
3 Reset vkα′,ρ′ := (e(ga, gb), gs, {gud}d∈Zm) in Λ

4 Run AGetKey(1λ,Λ) to get fα,β , π := (fη,β ,K, L,−)

5 if η 6= α′`+ ρ′, repeat step 6 (up to λ times)

6 F cd := e(gc, Lud) · (gc, Asd) for d ∈ Zm
7 Compute F cm using {F cd}d∈Zm according to Audit

8 e(g, g)abcs := e(gc,K)s/F cm, by the requirement e(gs,K)/Fm = e(ga, gb) of valid
proof

9 Output rs = e(g, g)abcs
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Analyze the behavior of B. The input to B is generated by uniform a, b, c, z ∈ Zp
and r ← (e(g, g)abc, e(g, g)z). The adversary B runs A on constraint list Λ, which is con-
structed by the output of PolicyGen(1λ,F) and vkα′,ρ′ = (e(ga, gb), gs, {gud}d∈Zm). The
view of A when run as a subroutine by B is distributed computationally indistinguishable
to A’s view in game SoundnessΛ,A(λ), because: (1) sα′,β′ is distributed identically to s;
(2) the tuple (e(g, g)w, e(g, g)s, e(g, g)ws) is computationally indistinguishable to the tuple
(e(g, g)w, e(g, g)s, e(g, g)ab) where a, b is uniformly random in Zp (otherwise, the decisional
BDH assumption is simply broken); (3) {Bα′,ρ′,d}d∈Zm is distributed uniformly due to the
random (m − 1)-degree polynomial q. Since B wins if the output of A is valid fα′,β , π and
η 6= α′`+ ρ′ for fη,β in π, we have that∣∣∣∣Pr[B(e, ga, gb, gc, r) = (r = e(g, g)abc)]− 1

2

∣∣∣∣
≥ (1− (1− 1

N`
)λ) · Pr[SoundnessΛ,A(λ) = 1]

≥ (1− e− λ
N` ) · δ(λ)

≥

{
λ

2N` · δ(λ) 0 ≤ λ
N` ≤ 1.59

(1− e−1.59) · δ(λ) λ
N` > 1.59

Since N, ` is polynomial in λ, λ
2N` is non-negligible in λ. Thus B succeeds to distinguish

(ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z) with a non-negligible advantage, contradicting
the decisional BDH assumption.

B.3 Proof of Theorem 3

Proof. We prove the Tpl-PC construction in Fig. 4 satisfies the properties in Definition 2.

Correctness. For the secret-shared point function Jfα,βK, we have JyiK = β if i = α and
yi = 0 otherwise. For the secret-shared point function Jfη,βK, we have JỹiK = β if j = η and
JỹiK = (0, 0) otherwise. We show that if ∃ρ, β ∧ rsα,ρ = 0 (i.e., fα,β ∈ Qα,ρ), the algorithm

Verify outputs 1. In Fig. 4, Verify outputs 1 if and only if ∀i ∈ [0, 1],VDPF.Verify(τ
(0)
i , τ

(1)
i ) =

1 and ∀i ∈ [2, 3], τ
(0)
i = τ

(1)
i . The equality of the former follows from the correctness of

VDPF. The equality of τ
(0)
2 = τ

(0)
2 follows from η ∈ [α · `, α · ` + `). For the the equality

of τ
(0)
3 = τ

(1)
3 , observe that rsα,ρ ∧

⊕
i∈ZN`JỹiK = rsα,ρ ∧ JβK = J0K. Hence, it holds that

τ
(0)
3 = τ

(1)
3 , as required.

Privacy. We construct an efficient simulator Sim for the view of any verifier Pb. We use the
efficient simulator SimVDPF to generate the view of the VDPF output. On input (1λ, b,Λ),
the simulator Sim proceeds as follows:

1 (f (b), τ
(1−b)
0 )← SimVDPF(1λ, b,F ,ZN )

2 (f̃ (b), τ
(1−b)
1 )← SimVDPF(1λ, b,F ′,ZN`)

3 Compute τ
(b)
2 , τ

(b)
3 using Λ, f (b) and f̃ (b) according to Audit described in Fig. 4

4 τ
(1−b)
2 := τ

(b)
2 , τ

(1−b)
3 := τ

(b)
3

5 Output (π(b) := f̃ (b), τ (1−b) := {τ (1−b)
i }i∈[0,3])
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The distribution output by Sim is computationally indistinguishable from the distribution

of the real view of Pb, because: (1) the proof share π(b) and audit tokens τ
(1−b)
0 , τ

(1−b)
1 are

output by the simulator SimVDPF, which guarantees the computational indistinguishability;

(2) the audit tokens τ
(1−b)
2 , τ

(1−b)
3 are equal to τ

(b)
2 , τ

(b)
3 in the real view, when the prover

is honest.

Soundness. Suppose for contradiction that there exists a PPT adversary A and a non-
negligible function δ such that Pr[SoundnessA,b(λ) = 1] ≥ δ(λ) Extract f, f̃ from the output
by A in SoundnessA,b(λ). As described in Fig. 4, it holds that R(·, ·) ≡ 1 in Tpl-PC scheme,
which implies T :=

⋃
i∈ZN Qi. Hence, to win the game Soundness, the adversary A need

to make Verify output 1 and ∀i, f /∈ Qi. In Fig. 4, Verify outputs 1 if and only if (1)

∀i ∈ [0, 1],VDPF.Verify(τ
(0)
i , τ

(1)
i ) = 1, (2) τ

(0)
2 = τ

(1)
2 , and (3) τ

(0)
3 = τ

(1)
3 . For (1), by

the soundness property of VDPF, we can assume f, f̃ encodes point functions fα,β , fη,β′ ,
respectively. Let {yi}, {ỹi} be evaluation results of VDPF keys of fα,β , fη,β′ . For (2), if
η /∈ [α · `, α · ` + `) or β 6= β′, the adversary A should find a string s such that there exist
a ∈ ZN , b ∈ {0, 1}, we have

H(s||a) =
⊕

i∈ZN/{a}

H(y
(b)
i ⊕ (

⊕
j∈Z`

ỹ
(b)
i·`+j)||i)

⊕
⊕
i∈ZN

H(y
(1−b)
i ⊕ (

⊕
j∈Z`

ỹ
(1−b)
i·`+j )||i),

{y(1−b)
i ⊕ (

⊕
ỹ

(1−b)
i·`+j )||i} ∪ {s||a} 6= {y(b)

i ⊕ (
⊕
ỹ

(b)
i·`+j)||i}. It contradicts the XOR-collision-

resistant of H. Hence, we can assume η ∈ [α ·`, α ·`+`) and β = β′. For (3), let ρ := η−α`.
If 6 ∃i, f ∈ Qi, i.e., β ∧ rsα,ρ 6= 0, A should find a string s′ such that for an adversarially

chosen b ∈ {0, 1}, H(s′) := H(
⊕

i∈ZN ,j∈Z` rsi,j ∧ ỹ
(b)
i·`+j) but s′ 6=

⊕
i∈ZN ,j∈Z` rsi,j ∧ ỹ

(b)
i·`+j . It

contradicts the collision-resistant of H.

B.4 Proof of Theorem 4

Proof. We prove the IVDPF construction in Fig. 7 satisfies the properties in Definition 4.

Correctness. Except for the accumulated layer outputs {zi,0, zi,1}i∈[n], our IVDPF is same
as the incremental DPF construction of Boyle et al. [14]. Given the shared function Jfα,βK
and the input set X, for each level i, the layer outputs zi,0, zi,1 are generated by summing
the i-bit prefix evaluation results of the point functions. Since only α[1,i] := α1|| . . . ||αi leads

to a non-zero prefix evaluation result, we have z
(0)
i,ᾱi

+ z
(1)
i,ᾱi

= 0 and z
(0)
i,αi

+ z
(1)
i,αi

= (α[1,i] ∈
X[1,i]) · β′i.

Privacy. We construct an efficient simulator Sim for the view of any evaluator Pb. On
input (1λ, b,F , {Gi}i∈[n], X), the simulator Sim proceeds as follows:

1 s
(b)
0 ← {0, 1}λ, ocw← G

2 for i := 1 to n:

3 cwi ← {0, 1}λ+2, csi ← {0, 1}4λ, lcwi ← G′i
4 f∗ := (s

(b)
0 , (cwi, csi, lcwi)i∈[n], ocw)

5 ({y∗x}, {z∗i,0, z∗i,1}, τ∗)← IVDPF(b, f∗, X)
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6 Output (f∗, τ∗)

In the real view of Pb, the IVDPF key f (b) consists of (1) random seed s
(b)
0 which is

distributed identically to the output of Sim, (2) the correction words (cwi, csi)i∈[n], where
each one is XOR’d with the output of the PRG G and (3) the output correction words
(lcwi)i∈[n], ocw, where each one is added with the pseudorandom output of Conv. Since Pb
does not known the seeds of G and Conv, (2) and (3) are computationally indistinguishable
from random elements. In addition, the audit token τ (1−b) is equal to τ (b), and the evaluator
holding f (b) can locally compute it. Therefore, we conclude that the output of Sim is
computationally indistinguishable from to the view of verifier Pb.

Soundness. Given the input setX ⊆ {0, 1}n, each evaluator has ({y(b)
x }x∈X , {zi,0, zi,1}i∈[n], τ

(b))←
Eval(b, f

(b)
α,β , X). Denote Ci := {0, 1}/{1− j|z(0)

j,0 +z
(1)
j,0 6= 0, j ∈ {0, 1}}. In addition, at every

level i, each evaluator has a set of seeds and control bits, denoted as {s̃(0)
i,v , t̃

(0)
i,v , }v∈X[1,i]

and {s̃(1)
i,v , t

(1)
i,v }v∈X[1,i]

. The evaluators have the same correction seed csi. Let τ̃
(b)
i,v :=

H(s̃
(b)
i,v ||t

(b)
i,v ||v) and τ

(b)
i,v := τ̃i,v ⊕ t(b)i,v · csi for b ∈ {0, 1}. We consider two cases as follows:

Case 1: We prove that no PPT adversary A can construct VIDPF keys such that for∣∣∣{x ∈ X|y(0)
x + y

(1)
x 6= 0}

∣∣∣ > 1 or ∃i ∈ [n], |Ci| < 1, it holds that Verify(τ (0), τ (1)) = 1. Sup-

pose for contradiction thatA constructs a key that satisfies the above condition. There exists

i ∈ [n], two distinct u, v ∈ X[1,i] such that s̃
(0)
i,u||t̃

(0)
i,u 6= s̃

(1)
i,u||t̃

(1)
i,u and s̃

(0)
i,v ||t̃

(0)
i,v 6= s̃

(1)
i,v ||t̃

(1)
i,v , and

∀x ∈ X[1,i] we have τ
(0)
i,x = τ

(1)
i,x to make Verify(τ (0), τ (1)) = 1 (due to the collision-resistant

of H ′). Because of the collision-resistant of H, we have τ̃
(0)
i,u 6= τ̃

(1)
i,u and τ̃

(0)
i,v 6= τ̃

(1)
i,v . Hence,

the adversary A needs to find csi such that csi = τ̃
(0)
i,u ⊕ τ̃

(1)
i,u = τ̃

(0)
i,v ⊕ τ̃

(1)
i,v . It contradicts the

XOR-collision-resistant of H.
Case 2: We prove that no PPT adversary A can construct VIDPF keys such that ∃x ∈
X, (∃i ∈ [n], xi /∈ Ci) ∧ (y

(0)
x + y

(1)
x 6= 0), it holds that Verify(τ (0), τ (1)) = 1. Suppose for

contradiction that there exists a level i such that for a node u ∈ X[1,i], such that s̃
(0)
i,u||t̃

(0)
i,u =

s̃
(1)
i,u||t̃

(1)
i,u, and Conv{0,1}λ×G′i(s̃

(0)
i,u) 6= Conv{0,1}λ×G′i(s̃

(1)
i,u). It contradicts the property of the

PRG Conv.
In conclusion, the construction in Fig. 7 satisfies the soundness property of Definition 4.

B.5 Proof of Theorem 5

Proof. We prove the IVDPF-PC construction in Fig. 8 satisfies the properties in Definition 2.
Correctness. For the secret-shared point function Jfα,βK, we have JyiK = β if i = α and
yi = 0 otherwise. As such,

vk := vk(0) · vk(1) =
∏
i∈[n]

e(g, g)i,αi = e(g, g)
∑
i∈[n] ri,αi

We show that if the secret key (sk0, sk1) ← SKGen(α, ξ), Verify outputs 1. In Fig. 8, Verify

outputs 1 if and only if IVDPF.Verify(τ
(0)
0 , τ

(1)
0 ) = 1 and ∀i ∈ [1, 2], τ

(0)
i = τ

(1)
i . The equality

of the former follows from the correctness of IVDPF. The equality of τ
(0)
1 = τ

(1)
1 follows

from the special layer outputs equal to 1. To see why it holds that τ
(0)
2 = τ

(1)
2 , observe that
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e(u, gv) = e(sk0, g
sk1) =

∑
i∈[n] ri,αi = vk. So

e(u, gv
(0)

)

vk(0)
=

vk(1)

e(u, gv(0))
, i.e., τ

(0)
2 = τ

(1)
2 , as

required.

Privacy. We construct an efficient simulator Sim for the view of any verifier Pb. We use
the PPT simulator SimIVDPF to generate the view of the IVDPF output. On input (1λ, b,Λ),
the simulator Sim proceeds as follows:

1 u← Gt, (v(0), v(1))← AddShareZp,2(0)

2 π(b) := (u, v(b))

3 (f (b), τ
(1−b)
0 )← SimIVDPF(1λ, b,F ,ZN )

4 Compute τ
(b)
1 , τ

(b)
2 using f (b),Λ according to Audit

5 τ
(1−b)
1 := τ

(b)
1 , τ

(1−b)
2 := τ

(b)
2

6 τ (1−b) := (τ
(1−b)
0 , τ

(1−b)
1 , τ

(1−b)
2 )

7 Output (π(b), τ (1−b))

The distribution output by Sim is computationally indistinguishable from the distribution
of the real view of Pb, because: (1) v(b), u are distributed uniform in the real view; (2) audit

token τ
(1−b)
0 are output by the simulator SimVDPF, which guarantees the computational

indistinguishability; (3) audit tokens τ
(1−b)
1 , τ

(1−b)
2 are equal to τ

(b)
1 , τ

(b)
2 in the real view,

when the prover is honest.

Soundness. Suppose for contradiction that there exists a PPT adversary A and non-
negligible function δ such that:

Pr[SoundnessA,b(λ) = 1] ≥ δ(λ)

Extract fα,β from the output by A in SoundnessΛ,A(λ). By the soundness property of
IVDPF, we can assume fα,β are point functions with special input α and valid special layer

outputs. Since H is a collision-resistant hash function, the inspection of τ
(0)
1 = τ

(1)
1 restricts

A to outputting IVDPF with special layer outputs equal to 1, which implies that both
verifiers obtain secret shares of vk := e(g, g)

∑
i∈[n] ri,αi .

We construct an efficient adversary B that breaks the decisional BDH assumption. On
input (1λ, ga, gb, gc, r), the adversary B proceeds as follows:

1 (Λ, ξ)← PolicyGen(1λ,F), α′ ← ZN
2 Reset vki,α′i in Λ, s.t.,

∏
i∈[n] vki,α′i = e(ga, gb)

3 Run AGetKey(1λ,Λ) to get fα,β , π := (u, v)

4 if α′ 6= α, repeat step 4 (up to λ times)

5 Compute e(g, g)abc := e(u, gc)v by the requirement e(u, gv) = e(ga, gb) for valid proof

6 Output r = e(g, g)abc

Similar to the proof of Theorem 2 (cf. Appendix B.2), B succeeds to distinguish the tuples
(ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z) with a non-negligible advantage contradicting
the decisional BDH assumption.
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