
Unbalanced Private Set Intersection from Homomorphic Encryption and Nested
Cuckoo Hashing

Kußmaul, Jörn
joern.kussmaul@gmail.com

Akram, Matthew
matthew.akram.zaher.farid@sap.com

Tueno, Anselme
anselme.tueno@sap.com

Abstract
Private Set Intersection (PSI) is a well-studied secure two-
party computation problem in which a client and a server
want to compute the intersection of their input sets without
revealing additional information to the other party. With this
work, we present nested Cuckoo hashing, a novel hashing
approach that can be combined with additively homomor-
phic encryption (AHE) to construct an efficient PSI protocol
for unbalanced input sets. We formally prove the security of
our protocol against semi-honest adversaries in the standard
model. Our protocol yields client computation and communi-
cation complexity that is sublinear in the server’s set size and
is thus of interest to clients with limited resources. The im-
plementation and empirical evaluation of our protocol using
the exponential ElGamal and BGV/BFV encryption schemes
attests to state-of-the-art practical performance.

1 Introduction

Due to the rise of the world-wide-web, client-server proto-
cols are omnipresent nowadays, and privacy requirements for
legal and personal reasons are becoming more demanding.
Currently, in practice, data is only encrypted during transmis-
sions or storage but not when processed. As such, a server that
performs computations with encrypted data first decrypts the
data and thus must possess the secret key. Even if the server
is assumed to behave honestly, security vulnerabilities might
allow attackers to observe the processed data or fully control
the server’s computations. Over the last decades, techniques
have been developed to process data securely without leaking
sensitive information to the processing server.

The invention of garbled circuits by Yao [90] and the
Goldreich-Micali-Wigderson (GMW) protocol [44] have laid
the cornerstones for the computation on encrypted data
(COED) field and are called generic secure multi-party com-
putation (MPC) techniques. Both protocols can securely
evaluate any fixed (boolean, respectively arithmetic) circuit
and, as such, any computable functionality on the parties’

inputs. Fully homomorphic encryption (FHE) is another cryp-
tographic solution that allows COED and is usually consid-
ered the holy grail of cryptography. While many asymmetric
cryptosystems like ElGamal [33] or Rivest–Shamir–Adleman
(RSA) [84] offer some homomorphism (e.g., multiplications
on ciphertexts), Gentry [40] invented an FHE scheme that
allows (arbitrarily many) multiplications and additions and as
such, any computable functionality on the parties’ inputs. For
many functionalities, e.g., with large inputs, a secure computa-
tion using a generic MPC or FHE circuit is often less efficient
than custom protocols [77]. Hence, for particular functions
with great practical interest, special-purpose protocols have
been developed, such as for private set intersection (PSI), but
also private information retrieval (PIR) [3; 5; 7; 24; 62; 67],
Sealed-Bid Auctions [6] and more.

In this work, we will consider special-purpose protocols for
the PSI problem. PSI is a secure two-party computation (2PC)
problem where two parties want to learn which items they
have in common without leaking anything else to the other
party. PSI is a highly researched 2PC problem with a large and
growing number of applications. Some of the most popular ap-
plications include Private Contact Discovery [46; 65; 89], Ad-
vertisement Conversion Rate [51; 52] and Password Breach-
ing Alerts [87].

1.1 Related Work
We differentiate between PSI protocols that use interactive
masking, unbalanced PSI protocols, and constructions in other
security models or with different functionalities.

Masking Elements Most PSI protocols involve interactive
masking of the input elements and a (local) intersection cal-
culation on the masked elements. In practice, especially for
contact discovery, mostly naïve hashing approaches are used,
where (salted) hashes of the items are sent to the other party
[46]. These approaches, however, are insecure and, e.g., offer
no forward-secrecy and are vulnerable to dictionary attacks
[46; 78; 89]. The first semi-honest secure PSI protocol by

1

Meadows [66] (later revisited by Huberman et al. [49]), called
DH-PSI, uses adapted Diffie-Hellman (DH) key exchanges
and random oracles to mask the input elements such that two
identical elements get the same mask. The masked elements
are then sent to the other party, which computes the intersec-
tion. De Cristofaro and Tsudlik [29] later presented a simi-
lar protocol based on blind RSA signatures, where Rosulek
and Trieu [85] ported DH-PSI to the malicious adversary
setting. The (computationally) fastest PSI protocols replace
many computationally expensive calculations like exponenti-
ations with symmetric key operations by, e.g., using oblivious
transfer (OT) extensions [53; 77]. The efficiency is improved
by using customized hashing schemes to securely compare
each receiver element with a subset of the sender’s set [77].
State-of-the-Art PSI protocols utilize Cuckoo hashing [77],
permutation-based Cuckoo hashing [74; 78], and the so-called
sparse oblivious transfer (SpOT) structure [72] to further en-
hance the practical communication and computation costs. In
theory, instead of directly using OT to check set membership
securely, Kolesnikov et al. [60] have constructed PSI proto-
cols based on oblivious pseudo-random function (OPRF), and
later Garimella et al. [38] abstracted the hashing and mask-
ing steps by introducing Oblivious Key-Value Stores. Novel
approaches use state-of-the-art PSI hashing structures with
Vector Oblivious Linear Evaluation to build the fastest PSI
protocols [19; 57; 83] that also provide the lowest commu-
nication costs for many input sizes. However, all mentioned
PSI protocols in this category yield a sender and receiver’s
communication and computation complexity which is at least
linear in the larger set size. In practice, e.g., in a mobile con-
tact discovery application, the mobile client must download
and process gigabytes of data for large server databases (230

server items). Even though the processing is very fast due to
symmetric primitives and native CPU instructions (e.g., AES-
NI [45]), a large amount of data can lead to poor running
times and also high monetary costs (e.g., for mobile internet).

Protocols for Unbalanced Sets Several protocols work un-
der the assumption that the number of elements in the input
sets are unbalanced. This assumptions can be used to decrease
the computation or communication costs of the client (i.e., the
party with fewer items). Kiss et al. [59] present a framework
for unbalanced PSI that is especially suitable for the applica-
tion of private mobile discovery. Resende & Aranha [81; 82]
have improved the performance in Kiss et al.’s framework
using customized filter techniques and fast elliptic curve mul-
tiplications [1]. However, protocols in Kiss’ framework gener-
ally suffer from false positives, high communication costs, or
a large client state. Falk et al. [34] port the fast OPRF-based
of Kolesnikov et al. to the unbalanced setting, which, however,
still requires linear communication complexity in the larger
set size.

Homomorphic encryption provides a secure way to eval-
uate polynomials to check if an input element is part of an-

other party’s input set. However, a naïve approach would
require either precomputing many encrypted polynomials
on the client side (including high communication costs) or
computing many computationally inefficient homomorphic
multiplications on the server. To reduce the complexity, Freed-
man et al. [36; 37] make use of hashing (later extended by
Pinkas et al. [77]). However, for N server items, the protocol
of Freedman et al. still requires computing and sending O(N)
encrypted messages. Chen et al. [22; 23] use (leveled) FHE
to efficiently compute the polynomials and significantly re-
duce the client’s communication and computation complexity.
However, their protocol is only practical for set items with
small bit-lengths (≈32-bit) and requires complex adjustment
of security-critical parameters. Cong et al. [27] later improved
this work to support larger item bit-lengths. Novel PSI con-
structions [4; 8] in the laconic cryptography framework [80]
offer asymptotically optimal communication. However, these
protocols rely on heavy computations and are impractical
compared to non-laconic protocols.

Different Security Models and Functionalities Besides
the standard 2PC model with exactly two parties, many PSI
protocols in other models have been presented. We only focus
on PSI protocols with two parties’ inputs but refer to the
literature for so-called multi-party PSI protocols [12; 61].
Kerschbaum’s protocol [56] uses a trusted third party (TTP) to
achieve malicious security and to outsource the computation
to another party without inputs. Demmler et al. [30] modify
current PIR constructions (based on function secret sharing
(FSS) [16]) and add additional hashing schemes to build a
fast PSI protocol with low communication costs. However,
the modified PIR scheme requires that the server’s input is
shared in a two non-colluding server model. Our protocol can
be framed as an improved single-server variant of PIR-PSI.

Besides the PSI protocols that rely on other security mod-
els, some protocols do not output the intersection itself but,
depending on the application, e.g., the number of elements
in the intersection. The already mentioned protocol for com-
putation of advertisement conversion rates [51] calculates
and outputs the sum of associated payloads. Other protocols
[75; 76] combine a PSI hashing scheme with generic MPC
circuits to allow arbitrary computations on the set intersec-
tion. Ciampi and Orlandi [25; 64] present schemes for secure
computation on intersections compatible with different MPC
and FHE techniques. Janneck et al. [54] combine this idea
with the low communication protocol of Cong et al. [27] to
any functionality on the intersections with one round of com-
munication. However, protocols for arbitrary computations
on the intersection yield worse computational performance
compared to other PSI protocols.

2

1.2 Contributions
In this work, we construct a client-server hashing scheme that
might be of independent interest, e.g., for multiserver PIR-PSI
or multi-message keyword PIR [88]. Based on our hashing
scheme, we propose a novel generic unbalanced PSI protocol
that can be instantiated with any additively homomorphic en-
cryption scheme, has a low, one-round communication, and
offers various communication-computation complexity trade-
offs. We present improved protocol instantiations based on the
additively homomorphic exponential ElGamal [28] scheme
and based on the Brakerski/Fan-Vercauteren (BFV) [17; 35]
and Brakerski-Gentry-Vaikuntanathan (BGV) [18] (leveled)
fully homomorphic encryption schemes (in Subsection 3.5).
Our concrete protocol instantiations are constructed for an un-
balanced PSI scenario and have some similarities with Chen
et al. [23] combined with ideas from PIR-PSI [30]. We de-
scribe several protocol extensions, including efficient server
updates and secure set-size computations. Since our protocol
offers a sublinear client computation and communication (in
the server size), it is especially suitable for clients with fewer
computational resources (like mobile clients). We have imple-
mented our schemes using state-of-the-art secure computation
libraries. Our evaluations attest to practical performance, in-
cluding low communication overhead. The description of our
implementation and the evaluation is presented in Section 5.

1.3 Outline
In Section 2, we introduce the preliminaries of our work. Sec-
tion 3 shows our unbalanced PSI protocol constructions. The
security and complexity analyses are presented in Section 4.
Section 5 shows empirical evaluations of our implementa-
tions.

2 Preliminaries

We assume knowledge of basic mathematical structures (e.g.,
groups), basic probability theory, complexity theory (e.g.,
probabilistic polynomial time (PPT) algorithms), and founda-
tions of cryptography which include security definitions for
set and ciphertext indistinguishability like Indistinguishabil-
ity under chosen-plaintext attack (IND-CPA), and concrete
security assumptions like Decisional Diffie-Hellman (DDH)
and lattice-based learning with errors (LWE). Most of what
we assume can be found in the book of Katz and Lindell [55]
or Yang et al.’s tutorial [63] (for lattice-based matters).

2.1 Notations and Terminology
With items or elements, we refer to ρ-bit strings, also inter-
preted as ρ-bit unsigned integers (or boolean values if ρ = 1.
The bit-wise exclusive or (XOR) is indicated by ⊕, and the
bit-wise negation by ¬. With v← l, we denote the assignment

of the value of l to variable v. If the value of a variable v is
uniformly at random from a set S, we write v←$ S. For an ar-
ray A of size n and i ∈ {1, . . . ,n}, A[i] denotes the ith entry in
A. Depending on the context, we interpret an array of length k
as a k-dimensional vector or (k× l)-dimensional matrix if the
array entries are arrays of length l. With A⊤, we denote the
transposition of a vector or matrix A, and with ⟨,⟩, we denote
the dot product. The ring of integers modulo N ∈N is denoted
as ZN . With Zn

N , we denote the n-dimensional cartesian prod-
uct of ZN with component-wise addition and multiplication
modulo N. The multiplicative subgroup of ZN is denoted as
Z×N . We write a+b := (a+b mod N) for calculations over
Zn

N (or ZN) and omit (mod N) in our notation. For any i ∈N,
Hi denotes a universal hash function (as defined in subsub-
section 2.4.1).

For any two j,k ∈ N with j ̸= k, we assume that H j ̸= Hk.
CTH1,...,Hk denotes a Cuckoo hash table (as defined in subsub-
section 2.4.2) corresponding to the hash functions H1, . . . ,
Hk. We omit H1, . . . , Hk and writxe CT if the concrete hash
functions are apparent by the context. With M, we refer to a
finite set of elements and write CTH1,...,Hk(M) for a Cuckoo
table filled with the elements in M but also omit M if the set
is clear from the context.

In our secure two-party computation scenario, the party
that receives output is called the receiver, and the other party
is called the sender. In the unbalanced PSI case, the receiver
is called the client (marked as C), and the sender is called the
server (marked as S). Each party has a finite set of elements
where Y indicates the client’s set and X indicates the server’s
set.

2.2 Secure Two-Party Computation

Nowadays, in cryptography, methods are offered and re-
searched that enable privacy-preserving (and correctness-
preserving) computations between two parties, so-called se-
cure two-party computation (2PC). For 2PC, we will only
consider semi-honest adversaries with static corruptions in
the standalone execution model [48]. Since PSI protocols
have a deterministic functionality, we later use separate semi-
honest security requirements for correctness, client privacy,
and server privacy, as defined by Hazay and Lindell [48].

2.2.1 Private Set Intersection

PSI protocols are modeled as a 2PC for the intersection of
two sets that belong to different parties. In the PSI literature,
many different functionalities related to PSI have been pro-
posed (e.g., [27; 51; 69]). Some differ only in formal details,
while others consider certain output variations. The common
asymmetric PSI problem we focus on in this work requires
that only the client learns the intersection which is shown in
Figure 1.

In general, PSI protocols always leak information about

3

Receiver Sender

PSI|Y |×|X |ρ

Y X

Y ∩X

Figure 1: PSI functionality for set sizes |X |, |Y | and items of
bit-length ρ.

the size of at least one party’s set. To formally overcome
this problem, PSI protocols assume the client’s and server’s
set sizes are publicly known system parameters (or output to
both parties). However, in practice, one could obfuscate the
exact set sizes, e.g., by adding a random amount of dummy
elements to the input sets. Our proposed constructions are not
restricted to certain set size parameter combinations, although
they are optimized for |Y | ≪ |X |.

2.2.2 Private Information Retrieval

Private information retrieval (PIR) is another famous problem
in the COED field, where a client wants to retrieve a database
entry at an index i from a server. In this scenario, the server
shall not learn which database entry has been queried by the
client. The database is assumed to be public (in contrast to
PSI). The restriction that the communication shall be sublin-
ear in the size of the database prohibits the trivial solution of
just sending the whole database as plaintext to the client. Pro-
tocols that also hide the database entries are called secure PIR
protocols. Novel PIR protocols show running time improve-
ments compared to the trivial (no-)solution [5]. PIR protocols
can be divided into two classes, protocols that replicate the
database among multiple non-colluding servers [16; 20; 24]
and non-replicating protocols that make use of homomorphic
encryption (HE) [3; 7; 62; 67]. The PIR-PSI [30] protocol is
based on the former class of non-colluding server PIR, while
our protocol uses some constructions similar to HE-based
PIR protocols. For an overview of current PIR schemes and
formal definitions, we refer to Ali et al. [5].

2.3 Homomorphic Encryption

We define a public key encryption (PKE) scheme as 3-tuple
of PPT algorithms as by Katz and Lindell [55]. If the spe-
cific keys are irrelevant or clear from the context, the keys
will be omitted in the notation (e.g., Enc(m) instead of
Enc(kpk,m)). Secure PKE schemes require randomly drawn
numbers in the encryption step. For a PPT PKE encryp-
tion Enc(m), Enc(m;r) is a deterministic algorithm such that
Enc(m) = Enc(m;r), if r is used as randomness in the encryp-
tion step of Enc(m).

We consider homomorphic encryption (HE) as PKE
schemes that additionally allow operating on ciphertexts

using a PPT algorithm EvalHom that outputs a cipher-
text c′ ∈ C , given the public key kpk and two ciphertexts
c1,c2 ∈ C as inputs. For any Dec(c1) = m1 and Dec(c2) =
m2, we assume that we can define a group (M ,⊗) with
Dec(EvalHom(kpk,c1,c2)) = m1 ⊗m2. Remark, some HE
definitions use, instead of the public key, a third evaluation
key as input to EvalHom. For formal definitions of homomor-
phic encryption, we refer to Katz and Lindell [55] and Li et
al. [63].

2.3.1 Additively Homomorphic Encryption

The homomorphic property of HE schemes assumes the exis-
tence of any group over the plaintext space with a correspond-
ing ciphertext evaluation algorithm. For COED, additively
homomorphic encryption (AHE) schemes where plaintext
groups are of type (ZN ,+) are of particular interest.

We will write c1⊞ c2 instead of EvalHom(kpk,c1,c2) for
AHE schemes and use c⊞m as shorthand notation for
c⊞Enc(m). Remark that with ciphertexts additions, cipher-
texts c ∈ C can be multiplied with scalars s ∈ ZN by an
s-fold homomorphic addition of c with c. The complexity
of the ciphertext-plaintext multiplication can be reduced to
be polynomial in the bit-length of s by reusing the subto-
tals. We assume the ciphertext scalar multiplication to be a
PPT algorithm and denote it as c⊡ s. The subtraction of two
ciphertexts c1,c2 ∈ C is defined and written as c1 ⊟ c2 :=
c1 ⊞ (c2⊡ (−1 mod N)). Likewise, for a ciphertext c ∈ C
and a message m ∈M , we define c⊟m := c⊟Enc(m) and
m⊟ c := Enc(m)⊟ c. Given an AHE scheme and a cipher-
text c← Enc(b1) with b1 ∈ {0,1}, we can interpret b1 as a
boolean value and calculate the negation of b1 on the en-
crypted ciphertext as ¬c := Enc(1)⊟ c. With the ciphertext
negation, we define the XOR of c← Enc(b1) and a plain bit
b2 ∈ {0,1} as c⊕1 := 1⊟ c and c⊕0 := 0⊞ c.

2.3.2 (Exponential) ElGamal Encryption

The ElGamal encryption scheme is an IND-CPA PKE scheme
secure under the DDH assumption.

Definition 2.1 (ElGamal encryption). Let G be a PPT algo-
rithm that given 1κ, for a security parameter κ ∈ N, returns a
group G with prime order p, generator g and group operation
⊙. For κ ∈ N, group (G, p,g,⊙)← G

(
1λ
)
, message space

G, key space Zp×G and a ciphertext space G×G, the El-
Gamal encryption scheme is a 3-tuple (Gen,Enc,Dec) of the
following PPT algorithms:

• Gen(1κ): Given a security parameter κ ∈ N, Gen(1κ)
randomly draws ksk←$ Zp and outputs

(
ksk,gksk

)
.

• Enc
(
kpk,m

)
: Given a public key kpk ∈ G and a mes-

sage m ∈G, Enc(kpk,m) randomly draws r←$ Zp and
outputs

(
gr,kr

pk⊙m
)
.

4

• Dec(ksk,(c1,c2)): Given a secret key ksk ∈ Zp and a
ciphertext (c1,c2) ∈ G×G, the decryption algorithm
Dec outputs the message

(
c1
−ksk ⊙ c2

)
.

For our later introduced PSI protocols, we require an AHE
scheme. For ElGamal, we find no plaintext groups (ZN ,+) in
which the DDH problem is considered hard. However, for an
element m ∈ Zp, we can encrypt the exponentiation gm [28].
The security of the new scheme directly follows from the
security of the underlying scheme (for any IND-CPA secure
encryption). Remark that we can no longer (efficiently) de-
crypt since we would have to calculate the discrete logarithm
(dlog) to retrieve m from gm. However, for all our construc-
tions, we only need to decrypt Enc(0) but can encrypt any
plaintext m ∈ Z|G|.

2.3.3 (Leveled) Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) requires, in extension
to AHE, the possibility to multiply ciphertexts with other ci-
phertexts. Given ciphertexts c1,c2 ∈ C , we will write c1⊡ c2
for the homomorphic multiplication algorithm. With the BFV
[17; 35] and BGV [18] schemes, two similar FHE schemes
have been proposed that are based on a variation of the LWE
problem over certain rings (so-called ring LWE). Even though
these schemes allow bootstrapping [39], they are often used as
so-called leveled FHE schemes. Leveled FHE schemes allow
you to specify the number of homomorphic operations that
can be correctly decrypted without a bootstrapping step. How-
ever, for an increasing number of homomorphic operations,
the computational complexity of the scheme’s algorithms also
increases. Since homomorphic additions and scalar multipli-
cations increase the error much less than ciphertext-ciphertext
multiplications, the number of ciphertext-ciphertext multipli-
cations is usually the crucial factor. BFV and BGV have the
advantageous property that the plaintext space can be defined
as Zn

p, for some n ∈N and prime p ∈N. For increasing κ ∈N,
n also increases and with it the number of messages Zp that
can be encrypted in one ciphertext. The decryption of homo-
morphically evaluated ciphertexts thus leads to component-
wise additions or multiplications of the corresponding plain-
text vectors. This property allows so-called single instruction
multiple data (SIMD), where, e.g., the same scalar s ∈Zp can
be homomorphically multiplied to all encrypted messages effi-
ciently. Many state-of-the-art PIR protocols make use of BFV
[17; 35] and BGV [18] and show how to outperform classic
protocols based on the Paillier [71] or ElGamal schemes, as
shown by Ali et al. [5].

2.4 Hashing

Depending on the usage, different requirements are placed on
hash functions. We will use hash functions to map elements
to indices of arrays, also called hash tables.

2.4.1 Universal Hashing

We will use universal hash functions for all our constructions
and provide a simple definition based on universal hashing
families.

Definition 2.2 (Universal Hashing Family). For an l ∈ N, a
family of hash functions H ⊆ {H | H : {0,1}∗→{0, . . . , l}}
is called a universal hashing family if

∀x,y ∈ {0,1}∗,x ̸= y : Pr
H∈H

[H(x) = H(y)]≤ 1
l
, (1)

If we refer to a hash functions H, we assume H has been
uniformly chosen from a universal hashing family H . We
then say H is a universal hash function.

2.4.2 Cuckoo Hashing

Placing each item of a set at the calculated hash index in a
hash table is denoted as simple hashing. Different elements
can map to the same index, which requires that multiple ele-
ments can be placed at the same hash table index in a so-called
bin. Cuckoo hashing [70] makes use of multiple hash func-
tions and, thus, multiple possible indices per element but only
allows at most one item per hash table index. For k differ-
ent hash functions H1, . . . ,Hk, that map elements to indices,
Cuckoo hashing requires that every element is placed at one
of the k different indices H1, . . . ,Hk. The challenge of Cuckoo
hashing is to find a placement for the items that meets these
requirements which is not always possible. However, it can
be shown that the probability of Cuckoo hashing failures de-
creases rapidly with the hash table size as well as the number
of hash functions [30; 38; 78]. We will later adjust the param-
eters such that failures occur with negligible probability in a
statistical security parameter λ.

Blocked Cuckoo Hashing Dietzfeldinger and Weidling
[31] proposed blocked Cuckoo hashing, a variation where
instead of one item per position, for a fixed number δ ∈N, up
to δ elements are placed in the same bin. There are various
strategies to create a δ-block Cuckoo hash table [31]. We use
a random-walk approach, where for an insertion into a filled
bin, a random element is swapped and reinserted into the ta-
ble. Remark that blocked Cuckoo hashing is a generalization
of Cuckoo hashing and thus, a 1-block Cuckoo hash table is
equivalent to a standard Cuckoo hash table. With t, we refer
to the table size, which is t := (l · δ) for a blocked Cuckoo
hash table. Blocked Cuckoo hashing can also be phrased as a
compromise between Cuckoo hashing and so-called k-choice
hashing. For blocked Cuckoo hashing no theoretical analysis
of failure probabilities (for all parameters) exists [76] and is
left for future work.

5

2.5 Hashing-based Private Set Intersection
For PSI, we cannot only use simple hashing and securely com-
pare the elements in the filled bins because this would leak
too much information. State-of-the-art PSI protocols combine
2PC building blocks like OT with customized hashing data
structures, including Cuckoo hashing [30; 77], permutation-
based Cuckoo hashing [74], 2D Cuckoo hashing [76], SpOT
[72] and probe-and-XOR of strings (PaXoS) [73]. The basic
idea is to use hashing structure where the size of each bin and
table can be set independently of the elements.

2.5.1 Private Set Membership-based PSI

Private set membership (PSM) protocols can securely check
for a client’s item if it is part of a server’s set and can be
constructed, e.g., based on OT [77] or FHE [23]. We can effi-
ciently extend PSM to (asymmetric) PSI protocols by using
Cuckoo hashing [77]. The client places her items in a Cuckoo
table CTH1,...,Hk . The server uses the same hash functions
H1, . . . ,Hk to place his elements in a simple hash table where
each item is placed at the hash indices of all hash functions.
Since both parties use the same hash functions, an item e that
is part of the intersection will be placed in the server hash
table bin corresponding to the client Cuckoo hash table index.
The PSI Cuckoo hashing procedure with k = 2 hash functions
is illustrated in Figure 2. In all our figures, we illustrate items
a, . . . ,z as circled letters a , . . . , z .

b ea

Server

𝑆𝑇𝐻1,𝐻2

j

b e

h k

g

m n r

k

e

n

b

m

g

r

b

r

j

e

g

kh

e is mapped to
𝐻1(e) and 𝐻2(e)

Client

ea b

e is mapped to
𝐻1(e) or 𝐻2(e)

𝐶𝑇𝐻1,𝐻2

h

⊥𝑆

𝑚𝑎𝑥𝑏

⊥𝐶

⊥𝑆 ⊥𝑆

j

m

𝑙

Figure 2: Structure of PSI protocols based on Cuckoo hashing
and PSM. The element e and the k possible positions of e in
the hashing scheme are highlighted. Dummy elements are
denoted by ⊥C for the client, respectively ⊥S for the server.

To calculate the set intersection, the client securely checks
for every Cuckoo hash table index if the placed item is con-
tained in the corresponding server bin using a PSM protocol.
For empty client table positions, dummy or random elements
are used [77]. If using dummy elements, the client dummy
element⊥C must be different from the server dummy element
⊥S. Also, PSM protocols might leak the number of items in
the PSM input set. For PSM-based PSI protocols, we need
to hide this information, otherwise, the client could learn the
number of items per bin and, thus, extra information about

the server’s set. The bins of the simple table can be filled with
dummy elements up to a constant maximum size maxb ∈ N
to solve this problem. The maximum size maxb is chosen
such that the probability that the server places more items in
a bin is negligible [78]. As mentioned in subsubsection 2.4.2,
Cuckoo hashing can fail. The occurrence of failures during
a protocol execution can leak extra information about the
items in the set. One need to choose the parameters so that
the failure probability is negligible [30; 38; 77; 78].

2.5.2 PIR-based Private Set Intersection Protocols

With PIR-PSI [30], another Cuckoo hashing-based PSI ap-
proach for asymmetric PSI settings was presented. In PIR-
PSI, the server uses Cuckoo hashing while the client uses
simple hashing. Since the client might have multiple items
per single table index, we cannot use PSM protocols as de-
scribed before. To calculate the intersection, the client needs
to securely compare her elements with items at the corre-
sponding indices in the server Cuckoo hash table without
leaking information about the used indices. We later formal-
ize this functionality as private indexed equality (PIE) in
Subsection 3.2. However, the switched hashing roles allow us-
ing other very communication-efficient MPC building blocks
but also require the element comparison to hide the Cuckoo
hash index on a match (from the client). Otherwise, the client
would learn (too much) information about the server’s Cuckoo
item placement and, thus, the server items themselves. PIR-
PSI utilizes FSS with at least two non-colluding semi-honest
servers to perform the secure comparison.

3 Our Protocol

In this chapter, we will present our PSI protocol constructions
which can be phrased as a single server PIR-PSI solution with
an improved hashing structure.

3.1 Nested Cuckoo Hashing

Our hashing approach, called nested Cuckoo hashing, com-
bines client Cuckoo hashing as in PSM-PSI protocols [74]
with server-sided Cuckoo hashing as by Demmler et al. [30].
We can thus, reduce the number of needed element compar-
isons for PIR-based PSI schemes (without using the binning
of Demmler et al. [30]). Nested Cuckoo hashing could also
be used with the FSS-based multiserver approach of PIR-PSI
[30]. We combine nested Cuckoo hashing with adjusted PSM
protocols based on the exponential ElGamal AHE scheme
and the BFV and BGV (leveled) FHE schemes. The result-
ing (single-server) PSI protocols can also be phrased as a
Cuckoo hashing with PSM protocol, as described in subsub-
section 2.5.1, but with a PSM protocol based on server-sided
Cuckoo hashing and modified PIR constructions.

6

In the proposed PSM-based PSI protocols with Cuckoo
hashing [77], the client uses k1 hash functions H1, . . . ,Hk1 to
hash her items into a Cuckoo hash table. The server uses the
same hash functions to store his items in the bins of a simple
hash table. In comparison, nested Cuckoo hashing extends the
server’s simple hashing with an additional hashing step. For
every simple table bin i, the server places the corresponding
items in a (blocked) Cuckoo hash table CT i

S using a second set
of k2 hash functions H ′1, . . . ,H

′
k2

. Remark, the server can use
the same k2 hash functions for every bin, which we assume
for the rest of this paper. We denote the client Cuckoo table as
the outer Cuckoo hash table with k1 hash functions mapping
to {1, . . . , l1}. The server’s Cuckoo hash tables are denoted as
inner Cuckoo hash tables with k2 hash functions mapping to
{1, . . . , l2}.

The nested Cuckoo hashing construction for PSI is illus-
trated in Figure 3 where k1 = k2 = 2, |Y | = |X |

2 = 6, l1 = 4,
and l2 = 3.

The hashing scheme of Pinkas et al. [77] guarantees that
if an item e is in the intersection of the client and server’s
PSI input sets, then e is included in the server bins at in-
dices H1(e), . . . ,Hk1(e). With nested Cuckoo hashing, we
can further specify that e is placed at exactly one index
H ′1(e), . . . ,H

′
k2
(e).

b ea
Client

Server

a b e

j

b e

h k

g

m n r

𝐶𝑇𝐻1
′ ,𝐻2

′

e is mapped to
𝐻1
′(e) or 𝐻2

′(e)
at bin 𝐻1(e)

and

𝐻1
′(e) or 𝐻2

′(e)
at bin 𝐻2(e)

𝐶𝑇𝐻1
′ ,𝐻2

′ 𝐶𝑇𝐻1
′ ,𝐻2

′ 𝐶𝑇𝐻1
′ ,𝐻2

′

h

e is mapped to
𝐻1(e) or 𝐻2(e)

𝐶𝑇𝐻1,𝐻2

m

j

ng

k

r

h

e

e

m

g

j

b

r

k

𝐻2
′(e)

𝑙1

𝑙2

b

𝐻1
′(e)

Figure 3: Client Cuckoo Hashing and server nested Cuckoo
hashing for parameters k1 = 2, l1 = 4, k2 = 2, and l2 = 3.

3.2 Generic Private Set Intersection Protocol
Our nested Cuckoo hashing scheme allows PSI protocols to
be based on a protocol that securely compares an item with
multiple items at given indices. We call this functionality
private indexed equality (PIE). In detail, for a given k,N ∈ N,
the PIEk×N

1 functionality is a two-party functionality between
a receiver and a sender. The sender inputs an array of N
items A := (a1, . . . ,aN). The receiver inputs an index set J ⊆
2{1,...,N} with |J| = k and an item e. As output, the receiver
only learns a bit indicating whether the item e is equal to at
least one item a j at any index j ∈ J. Remark that the receiver
shall not learn the index of a match. Our definition of PIE

can also serve as a generalization of the approach used by
PIR-PSI [30]. The PIE functionality is illustrated in Figure 4.

Receiver Sender

PIEk×N
1

e,J a1, . . . ,aN

∃ j ∈ J : e = a j

Figure 4: PIEk×N
1 functionality with one receiver item e, k =

|J| indices, and N sender elements a1, . . . ,aN .

By combining nested Cuckoo hashing and a protocol for
the PIE functionality, called PIE protocol, we can build effi-
cient and secure PSI protocols as described in the following.
The client uses hash functions H1, . . . ,Hk1 to place her items
in a Cuckoo hash table CTC and initializes an empty set R.
The server uses hash functions H1, . . . ,Hk1 and H ′1, . . . ,H

′
k2

to

place his items in a nested Cuckoo hash table (CT 1
S , . . . ,CT l1

S).
For each index i in the client’s outer Cuckoo hash table,

the client and server run a PIEk2×l2
1 protocol with the corre-

sponding item e := CTC[i] and the indices J := {H ′1(e), . . . ,
H ′k2

(e)}, where the server inputs the ith Cuckoo table CT i
S .

The PIE protocol outputs to the client whether e is equal to
CT i

S [j] for any j ∈ J. If the PIE protocol outputs 1, the client
adds e to the result set R. After the loop over all Cuckoo hash
table indices, the client outputs R. Naturally, depending on
the hash parameters, many Cuckoo and nested Cuckoo hash
table entries are empty (cf. [72]). For empty client Cuckoo
hash table positions, the client inputs a dummy element ⊥C
to the PIE. The server places dummy element ⊥S at every
empty nested Cuckoo hash table position. The dummy ele-
ments need to be different (i.e.,⊥C ̸=⊥S) and should also not
be valid input items in order to avoid information leakage and
false positives. If we use ⊥S = 0, we gain some performance
improvements, as mentioned in Subsection 4.2. The nested
hashing construction guarantees that if and only if e is in the
intersection, e is placed at index j in the Cuckoo table CT i

at the server for exactly one j ∈ J. The generic PIE-based
PSI protocol using nested Cuckoo hashing is presented in
Figure 5.

The sizes of all hash tables (and the stash) t1, t2 have to be
set prior to the protocol execution according to the (public set)
sizes of the server and client. To build a secure PSI protocol us-
ing Cuckoo hashing or nested Cuckoo hashing approach, one
needs to adjust the hashing parameters (i.e., k1,k2 and l1, l2)
such that the probability of hashing failures is below a certain
threshold (e.g., 2−40). Related works on PSI with Cuckoo
hashing [30; 74; 78] have empirically measured needed slack
factors β1 such that for t1 = l1 = β1 · |Y |1, the probability of
client Cuckoo hashing failures is sufficiently small. In compar-
ison to Pinkas et al. [77], when using nested Cuckoo hashing,
the server places the items of each simple hashing bin in a

1In the case of single-server Cuckoo hashing.

7

Cuckoo table. As such, we need to set t2 = β2 ·maxb where
maxb is an upper bound on the maximum simple hashing
bin size. For any fixed values of t1 and |X |, we can find an
mb ∈ N such that maxb =

|X |
t1

+mb is an upper bound on the
maximum simple hashing bin size with sufficiently high prob-
ability [30; 78]. Since the server creates t1 Cuckoo tables, if
we assume an independent failure probability per table, we
need a failure probability of approximately 2−40

t1
per table to

achieve an overall nested Cuckoo hashing failure probabil-
ity of 2−40. However, since the failure probabilities are not
independent and the average bin size is just |X |t1

, we expect
the average failure probability per nested Cuckoo hash table
is much lower. A detailed analytical analysis of the failure
probability of Cuckoo hashing (and thus also nested Cuckoo
hashing) is still an open research question and left for future
work.

3.3 Private Set Intersection from AHE

By using AHE, in this section, we will construct a PIE pro-
tocol and thus, a PIE-based PSI protocol. This protocol is
represented in Figure 5 and with pseudocode in Appendix A.
Assume we have an AHE scheme Π = (Gen,Enc,Dec) with
a message space Zp for a prime p. A PIEk2×N

1 scheme based
on Π can be constructed as follows. The client first generates
a key pair (ksk,kpk)← Gen(1κ) and sends the public key kpk
to the server in a one-time setup phase. For a PIE input ele-
ment e, the client encrypts e as Enc(e). For all indices j in
the index set J, the client creates an N-dimensional encrypted
index vector EIV with EIVj = Enc(1) and EIVi = Enc(0) for
all i ∈ {1, . . . ,N}\{ j}. The client sends the public key kpk,
the encrypted message Enc(e), and all EIV s to the server. For
each EIV the server computes c←⟨EIV,A⟩, cd← c⊟Enc(e),
and finally c f ← cd ⊡ r with a random r←$ M \ {0}. All
server calculations can be performed using Π’s plaintext mul-
tiplication and homomorphic addition algorithms. Remark
that c is an encryption of the jth server element, and cd is an
encryption of the subtraction between e and a j. As such, mul-
tiplying cd with a random element r←$ M \{0}, c f yields
an encryption of 0 if e = a j and an encryption of a uniformly
random element (unequal to 0) otherwise. Before sending
back c f to the client, the server shuffles the c f s for all j ∈ J
such that the client does not learn the index of a match.

Sublinear Complexity Our AHE-based PIE protocol re-
quires the client to send an N-dimensional encrypted index
vector. Thus, the communication complexity is linear in the
size of the server array. We can use an approach similar to
Kushilevitz and Ostrovsky [62] to reduce the complexity.
Assume N = N1 ·N2 with N1,N2 ∈ N, the server can place
each Cuckoo table vector A = (a1, . . . ,aN) in a (N1×N2)-
dimensional matrix A′ = (a′i, j) where a′i, j = a(i−1)·N2+ j for i∈
{1, . . . ,N1} and j ∈ {1, . . . ,N2}. The client sends the public

key and her encrypted item Enc(e) to the server. For each hash
index i ∈ {1, . . . ,k2}, the client computes the column index
j′ := (j mod N1)+1 and sends an N1-dimensional encrypted
index vector EIV with EIVj′ = Enc(1) and EIVi = Enc(0) for
all i ∈ {1, . . . ,N1}\{ j′}. The server computes the homomor-
phic dot product of all EIV i with every column in A′, i.e., the
homomorphic matrix-matrix product A′⊡ (EIV 1, . . . ,EIV k

2).
For every resulting encrypted array entry c, the server again
subtracts Enc(e) and multiplies with a new random r←$ Z×p .
The server now shuffles all k2 ·N2 elements before sending
them back. The client needs to check whether one of the re-
ceived items is an encryption of 0. By adjusting N1 and N2
differently, we obtain the possibility to vary between index
vector size (O(k2 ·N1)) and response set size (O(k2 ·N2)). Re-
mark, if we set N1 = N and N2 = 1, we get our unimproved
protocol. If we set N1 = 1 and N2 = N, we get a simple PSM
protocol. However, if we adjust N1 = N2 = ⌈

√
N⌉ we achieve

a protocol with sublinear (square-root) communication com-
plexity. For all i ∈ {N + 1, . . . ,N1 ·N2}, we can add server
dummy elements to A. By introducing a parameter σ ∈ R+,

called skewness, and set N1⌈
√

N ·σ⌉ and N2 = ⌈
√

N
σ
⌉, we can

consider varying fractions N1
N2

. Notice, when using the sub-
linearity improvement, the resulting protocol is not a secure
PIE protocol anymore, since the client also learns whether her
items equal other server items at indices in the same matrix
row (which are not in J). However, for our PSI construction,
it is sufficient since the server items are distinct, J is fully
determined by e, and the server only places e at j ∈ J.

Blocked Cuckoo hashing For sublinear communication
complexity, instead of Cuckoo hashing each bin and placing
it in a matrix, the server can directly use blocked Cuckoo
hashing (as described in subsubsection 2.4.2). The server uses
δ-block Cuckoo hash tables with δ = N2 to reach a similar
protocol with the same sublinear communication but a smaller
hashing failure probability [72]. The failure rate is empirically
evaluated in Subsection D.7.

Multi-table Cuckoo hashing In the original paper on
Cuckoo hashing by Pagh and Rodler [70], each hash func-
tion Hi points to a different hash table CT [i]. It can be ben-
eficial to use multiple tables per Cuckoo hash table, where
a hash function Hi maps an element e to CT [i][Hi(m)]. As
such, the Cuckoo table is a (k× l)-dimensional matrix of
size t := k · l, where {0, . . . , l} is the range of the hash func-
tions. The k separate hash tables can be smaller than a single-
table Cuckoo hashing under comparable hashing failure prob-
abilities (as shown in Subsection D.7). Using multi-table
Cuckoo hashing, we can adjust our PIE protocols for PSI as
follows. For each q ∈ {1, . . . ,k2}, instead of comparing an
item e to the k2 items CT [H ′1], . . . ,CT [H ′k2

] in the same single-
table Cuckoo hashing vector, we compare it to the elements
CT ′[1][H ′1(e)], . . . ,CT ′[k2][H ′k2

(e)] in a multi-table Cuckoo

8

𝑏

Client

Input:Set Y

Create Cuckoo hash table of Y
𝑅 ← { }
Foreach table index 𝑖 ∈ {1, … , 𝑙1}:

Choose element e ≔ 𝐶𝑇[𝑖]
Calculate second indices
𝐽 ≔ {𝐻1

′(e), … , 𝐻𝑘2
′ (e)}

If 𝑏 = 1: 𝑅 ← 𝑅 ∪ {e}

Output: 𝑅

Server

Input:Set X

Create Nested Cuckoo hash table of X

Foreach table index 𝑖 ∈ {1, … , 𝑙1}:

Choose 𝑖th inner Cuckoo table 𝐶𝑇𝑖

𝑃𝐼𝐸1
𝑘2×𝑙2

e, 𝐽 𝐶𝑇𝑖

Loop:

Figure 5: Generic PSI protocol using nested Cuckoo hashing and PIE.

hash table. Assuming that |CT |= k2 · |CT ′[q]|, we can reduce
the communication and computation complexity per PIE by
factor k2.

Precomputed Encrypted Index Vector As described in
subsubsection 2.3.1, the server can compute the XOR of an en-
crypted bit and a plaintext bit. Using XOR for AHE schemes,
we can shift the transfer of the encrypted index vector to an
item-independent precomputation phase as follows. For each
outer index i, the client generates k2 random l2-bit vectors
rERV and sends all ERV := Enc(rERV) bit-wise encrypted to
the server. Later in the online phase, for an element e at index
i, instead of sending the large encrypted index vectors EIV ,
the client flips the H ′j(e)th bit of rERV and sends it as plaintext
to the server. The server now bit-wise computes the XOR
of the encrypted randomness vector ERV and the plaintext
randomness rERV . Since the H ′j(e)th bit has been flipped in
rERV , the resulting ciphertext is an encryption of 1 at position
H ′j(e) and an encryption of 0 otherwise. The random vectors
rERV can be generated using a pseudo random function (PRF)
thus, the client does not need to store the potentially large
random vectors between the precomputation phase and the
online phase.

Supporting Stashes We can include stashes for every inner
Cuckoo hash table on the server side but additionally must
hide if a matching item was part of the stash or the hash table
(in the PIE step). The server computes the encrypted com-
parison of every stash element with Enc(e) (by subtracting
and multiplying with randomness). The encrypted compari-
son results are added to the result list before shuffling. The
full protocol PSI protocol with stashes and δ-block Cuckoo
hashing is given in Algorithm 1 on page 28.

3.4 Exponential ElGamal-based Protocol
The scheme can directly instantiate our generic construction
(in Subsection 3.2). This subsection presents an improved pro-
tocol instantiation with exponential ElGamal to deal with the
impossibility of efficiently decrypting arbitrary ciphertexts,
computational improvements, and server privacy aspects that
are not covered by our generic scheme.

Avoiding Ciphertext Decryption For exponential ElGa-
mal, since we assume the DDH problem (and thus, the discrete
logarithm) to be difficult in G, we cannot decrypt arbitrary
ciphertext efficiently. However, for our protocol, we only need
to check if an encrypted element decrypts to 0. This check
can be performed by computing c1

ksk which equals to c2, if
and only if (c1,c2) = Enc′(0;r).

Simultaneous Multi-Exponentiation Given an encrypted
index vector EIV = (EIV1, . . . ,EIVN) and a vector A =
(a1, . . . ,aN) as in our generic AHE-based PIE protocol. The
homomorphic dot product is defined as

⟨EIV,A⟩ := (EIV1 ⊡a1)⊞ · · ·⊞ (EIVN ⊡aN). (2)

Let c := (c1,c2) := ⟨EIV,A⟩. If we instantiate the encryp-
tion with the exponential ElGamal scheme, we can write

EIV =
(
(EIV 1

1 ,EIV 2
1), . . . ,(EIV 1

N ,EIV 2
N)
)
∈ (G×G)N

and the calculation of the dot product can be simplified as

c1 =
⊙

1≤q≤N

(
EIV 1

q
)aq and c2 =

⊙
1≤q≤N

(
EIV 2

q
)aq

. (3)

Computations, as in Equation 3, are called simultaneous
multi-exponentiation and different algorithms have been pro-
posed to increase the efficiency compared to a naïve approach
[68]. Especially for elliptic curve cryptography (ECC) sys-
tems, simultaneous multi-exponentiation algorithms can be

9

adjusted to certain elliptic curve types to further increase the
computational performance [47]. Our exponential ElGamal-
based PSI scheme can directly benefit from these algorithms
to improve the homomorphic dot product computation.

Extended Precomputation We can extend the precompu-
tation approach described in Subsection 3.3 by performing
additional computations on the server. The extended precom-
putation requires that the input set is already available on the
server. Assume the server receives an encrypted randomness
vector

ERV =
(
ERV1 = Enc(rERV

1), . . . ,ERVN = Enc(rERV
N)

)
(as in Subsection 3.3). Instead of waiting for the client to send
the plaintext randomness, the server creates two new vectors
V0,V1 using its input A = (a1, . . . ,aN) as

V 1 := (ERV1 ⊡a1, . . . ,ERVN ⊡aN) (4)

V 0 :=
(
a1 ⊟V 1

1 , . . . ,aN ⊟V 1
N
)
. (5)

Note that if the client has sent randomness rERV
i = 1, then

V 0
i = Enc(ai) and V 1

i = Enc(0). Analogue, if rERV
i = 0, then

V 0
i = Enc(0) and V 1

i = Enc(ai). After receiving the bit-
flipped plaintext randomness r′ERV , the server calculates

c :=V
r′ERV
1

1 ⊞ · · ·⊞V
r′ERV
N

N . (6)

If the bit r′ERV
i has been flipped, then V

r′ERV
i

i = Enc(ai). Oth-

erwise, V
r′ERV
i

i = Enc(0). The presented precomputation ap-
proach allows performing the homomorphic scalar multipli-
cations for the dot product in an offline phase (with available
server input). Thus, only (potentially) faster homomorphic
additions must be computed in the online phase. Remark, the
extended precomputation also works for the generic AHE-
based PSI scheme but cannot be combined with the batched
computation presented in Subsection 3.5.

Server Privacy In all our ElGamal-based constructions and
implementations, we are using groups G for ElGamal-based
schemes in which the DDH problem is assumed to be hard.
The DDH assumption leads to an IND-CPA secure encryp-
tion scheme, which, however, does not imply that the client
(which holds the secret key) cannot receive additional infor-
mation from c f as used in our AHE-based construction. The
server might not use freshly drawn randomness in the homo-
morphic calculations, especially when using simultaneous
multi-exponentiation algorithms, which can lead to insecure
PSI protocol instantiations. For our improved ElGamal-based
PSI protocol, we perform an additional so-called rerandomiza-
tion step at the end of each PIE. The server draws randomness
r←$ Zp and calculates c f ← c f ⊞Enc(0;r). In Section 4, the
necessity for the rerandomization step is analyzed in more
detail.

3.5 BGV/BFV-based Protocol
As a second protocol instantiation, we will use the BGV and
BFV (leveled) FHE schemes. In this section, with Zn

p, we
refer to the message space of the (leveled) FHE schemes for
a prime p ∈ N.

Batched Computation State-of-the-art performances of
2PC protocols based on (leveled) FHE schemes heavily rely
on SIMD operations. Our BGV/BFV-based PSI protocol
uses a similar packed encoding as shown by Chen et al.
[22; 23]. Each outer Cuckoo table (consisting of the client el-
ements and dummy elements ⊥C) is encoded in one plaintext
and thus encrypted to one ciphertext. So instead of encrypt-
ing Enc(CT [i]) for every i ∈ {1, . . . , l1}, we directly encrypt
Enc((CTC[1], . . . ,CTC[l1])). We do the same for all EIV s
across all outer Cuckoo hash indices. Let EIV i be the ith
sent encrypted index vector as in Subsection 3.2. For each
j ∈ {1, . . . ,k2}, the client sends a packed EIV ′, with

EIV ′1 = Enc
((

EIV 1
1 , . . . ,EIV l1

1

))
...

...

EIV ′l2 = Enc
((

EIV 1
l2 , . . . ,EIV l1

l2

))
(7)

As such, we can avoid the outer For loop shown in Figure 5
and perform a batched PIE computation. The batched PIE
can be performed similarly to the server computation in the
generic AHE-based protocol in Subsection 3.3. We will not
cover the details of the plaintext encoding but refer to the
rich literature [17; 18; 35]. However, for the shuffling of the
server’s encrypted result list, a problem arises, as shown in
the next paragraph. We discuss a different packing approach
beneficial for small |Y | in Appendix E.

Hide Cuckoo Locations In our generic protocol, we ran-
domly permute the vector of encrypted results per inner
Cuckoo table. As such, the client does not learn the hash
function index q ∈ {1, . . . ,k2} of a matching item (or if the
item has been placed in the stash). When using packed en-
cryptions, as described in the previous paragraph, we cannot
(efficiently) permute the element independently across each
inner Cuckoo table. However, if the server does not permute
the elements independently, the client might learn the index
of the hash function H ′q, where an element has been placed.
We propose a solution based on BGV and BFV’s ciphertext-
ciphertext multiplications as follows. Let (cd)q be the result
of the PIE homomorphic subtraction for hash function H ′q
with q ∈ {1, . . . ,k2}. For a client PIE input element e, the ci-
phertext (cd)q is an encryption of aH ′q(e)−e for a server input
(a1, . . . ,al2). Before multiplying with a random r←$ Z×p , the
server computes

c′d := (cd)1 ⊡ · · ·⊡ (cd)k2 . (8)

10

Remark, c′d is an encryption of 0, if and only if e equals to
aH ′q(e) for one q ∈ {1, . . . ,k2}. For small k2, this approach is
efficient and reduces the number of decryptions for the client.

When using blocked Cuckoo hashing, the server again
needs to randomly permute the bins (before the homomorphic
computations) to hide matching bin indices from the client.

Circuit Privacy As for the exponential ElGamal-based Pro-
tocol, using an IND-CPA secure HE scheme does, in general,
not hide the server input from the client. In the literature,
hiding the server input and the (circuit) structure of the com-
putation, is referred to as circuit privacy. Circuit privacy can
be achieved by an additional bootstrapping step or noise flood-
ing [40; 43]. However, for BGV and BFV, more efficient con-
structions for circuit privacy have been proposed[15]. For PSI,
we might even construct more efficient approaches that only
hide the server inputs but not the (public) circuit structure. In
theory, if the PIE server result c f encrypts a random value, we
will assume that a PPT simulator exists such that the client
cannot distinguish c f from a simulated ciphertext (that has no
access to the server input).

Arbitrarily Sized Plaintexts HE schemes only support
evaluation on constant predetermined plaintext bitlengths.
When evaluating our protocol with longer plaintexts, we need
to adjust our protocol. We proceed analogously to the Mi-
crosoft APSI library based on Cong et al. [27]. This proceeds
roughly as follows. Each word is separated into multiple sub-
words that are each short enough to be processed by our
regular PSI scheme. We use our normal scheme to inform
the client about partial matches, which they can then use to
check complete matches. This leaks extra information about
the server’s set and can lead to false positives. In order to
alleviate security concerns, an OPRF is applied to the words
before they are separated into separate subwords. This means
that the client no longer learns anything about the server’s
set from partial matches, and false positives now happen at
random, but with very small probability. For performance rea-
sons, the words can also be hashed and truncated beforehand.
Runtime analysis of this protocol is simple, since its scales
linearly with the length of the words after truncation. If each
word is separated into, for example, three subwords, then it is
equivalent to running our normal protocol on client and server
sets that is three times the size. For a more detailed overview,
we refer to the work of Cong et al. [27].

4 Analysis

With π, we will refer to our generic AHE-based PSI proto-
col as described in Subsection 3.2). Remark, in theory, X
and Y are also bit-string that encode sets of fixed cardinality
consisting of ρ-bit strings. Let Zp be the plaintext space of Π.

4.1 Security
Our PSI protocol is secure against semi-honest adversaries
in the standalone model without random oracles. We do
not provide a security proof for the more generic PIE-based
construction in Subsection 3.2, which, however, would be
straightforward using parts of the correctness proof of subsub-
section 4.1.1 and simulators for the views of the underlying
semi-honest secure PIE protocol. For simplicity, we omit no-
tations for the universes of indices for indexed probability
ensembles. So, e.g., we write X instead of X ∈ 2{x|x∈{0,1}

ρ}.
We separate the semi-honest security into independent claims
for correctness, client privacy, and server privacy. The details
of the analysis and the proofs can be found in Appendix B.

4.1.1 Correctness

Correctness says that the output of the PSI protocol shall not
be (computationally) distinguishable from the ideal output
X ∩Y as follows.

[Correctness] Our PSI protocol π provides correctness,
meaning that,

{outputπ(X ,Y,κ)}X ,Y,κ
c≡ {(/0,X ∩Y)}X ,Y .

The correctness of BGV/BFV-based protocol also directly
follows from subsubsection 4.1.1 and the description in Sub-
section 3.5. As mentioned in subsubsection 2.3.3, leveled
FHE schemes allow you to specify the number of homomor-
phic operations that can be performed such that an operated
ciphertext can still be correctly decrypted. We will not go into
detail about how to choose the correct parameters for BGV
and BFV but refer to the rich literature [9; 17; 18; 35; 58].
Remark that the number of needed homomorphic scalar mul-
tiplications and additions can be deduced from the public
parameters k1,k2, l1, l2.

4.1.2 Client Privacy

In our PSI construction, client privacy follows from the secu-
rity of the underlying encryption scheme (similarly to [23]).
Loosely speaking, we can efficiently simulate server protocol
views such that if an attacker could distinguish the real pro-
tocol view of the server from our simulated one, the attacker
could break the underlying encryption scheme. To model the
PSI input set sizes as public parameters, the simulator for the
server’s view additionally receives the client’s set size |Y | as
input.

[Client Privacy] Let Π be an IND-CPA secure AHE
scheme, then, our generic PSI protocol π instantiated with
Π (as shown in Algorithm 1) provides client privacy, i.e.,
there exist a PPT algorithm SimS, such that

{viewπ
S(X ,Y,κ)}X ,Y,κ

c≡ {SimS(1κ,X , /0, |Y |)}X ,Y,κ .

11

4.1.3 Server Privacy

The simulator for the client’s view of our PSI protocol π ad-
ditionally receives the server’s set size |X | as input. Remark,
server privacy is not implied by the IND-CPA security of
the underlying AHE encryption scheme. We need to assume
that the client does not learn anything else from a ciphertext
c f := (⟨EIV,A⟩⊟Enc(e))⊡ r than a bit b indicating e = a j
(for an index vector EIV with Enc(1) at position j and Enc(0),
otherwise). We treat this problem theoretically for any AHE
scheme (according to our definition in subsubsection 2.3.1)
but mention that this can be solved by rerandomization or
circuit privacy. More formally, we assume that simulators
Sim′b for b ∈ {0,1} exist that output an encrypted ciphertext.
If e = a j, Sim′1 shall be computationally indistinguishable
from the correct c f (as in Algorithm 1 with Dec(c f) = 0).
Likewise, for e ̸= a j, Sim′0 shall be computationally indis-
tinguishable from the c f (with Dec(c f) = r for r ←$ Z×p).
Loosely speaking, Sim′0 simulates server results that decrypt
to randomness r ̸= 0 for non-matching elements, while Sim′1
simulates server results that decrypt to 0 for matching client
elements.

[Server Privacy] Assume simulators Sim′0,Sim′1 (as de-
scribed in subsubsection 4.1.3) exist for the PSI protocol
π (as shown in Algorithm 1), then, π provides client privacy,
i.e., a PPT algorithm SimC exists, such that

{viewπ
C(X ,Y,κ)}X ,Y,κ

c≡ {SimC(1κ,Y,X ∩Y, |X |)}X ,Y,κ .

4.2 Complexity
To ease the understanding of our complexity analysis, we
recall the most important parameters. The size of client and
server’s sets are |Y | and |X |, respectively. The number of outer
and inner hash functions are k1 and k2, respectively. For multi-
table Cuckoo hashing, the table sizes of the (δ-block) Cuckoo
hash tables are t1 = β1 · k1 · l1 and t2 = β2 · k2 · l2 for the outer
and inner Cuckoo hash tables, respectively.

The sizes of parameters like β1,β2,k1,k2, l1, l2 depend on
other parameters and on the security parameter κ ∈ N. How-
ever, we will omit an explicit parameterized notation (e.g.,
l1(κ,k1,β1)) and refer to the parameter description in Subsec-
tion 3.1. With t1 and t2, we denote the number of elements
(including dummy elements) in the outer Cuckoo table and
each inner Cuckoo hash table, respectively.

We assume that the server uses multi-table δ-block inner
Cuckoo hash tables, and thus, t2 = k2 ·δ · l2. An analysis for
single-table hash tables is analogous. Let γ denote the bit-
length of an encoded ciphertext. For simplicity, assume the
encoded parameters, keys, and set sizes |Y |, |X | have been
exchanged in a precomputation/setup phase.

[Complexity] The complexities of our PSI protocol π can
be summarized as follows:

• The client has a computation complexity of

O
(

1+σ√
σ
·
√
·β1 · |Y | · k2 ·β2 · k1 · |X |

)
(9)

• The server has a computation complexity of

O(β1 ·β2 · |Y | ·mb +β2 · k1 · |X |) (10)

• The communication complexity is

O
(

γ · 1+σ√
σ
·
√
·β1 · |Y | · k2 ·β2 · k1 · |X |

)
(11)

5 Implementation and Evaluation

PSI protocols are custom 2PC and, thus, MPC protocols with
a high practical value. Considering the practical relevance, we
have implemented and empirically evaluated the performance
of our protocol.

5.1 Implementation
The implementation of our protocols is based on the
libscapi [11] framework and the OpenFHE library [9]. As
an underlying universal hash function family, we have im-
plemented tabulation hashing [79], which has been shown to
provide reasonable failure rates for Cuckoo hashing. For the
δ-block Cuckoo hashing insertion step, a random-walk strat-
egy is used [31], i.e., if a bin exceeds the maximum bin size
δ, a randomly chosen element inside that bin gets replaced.

Exponential ElGamal We have implemented the exponen-
tial ElGamal scheme based on libscapi’s ElGamal imple-
mentation, which can be used with various underlying DDH-
secure groups. Our implementation uses libscapi’s wrap-
pers for OpenSSL’s ECC implementations [86], including the
wNAF-based interleaving exponentiation method [68] for si-
multaneous multi-exponentiation. For the PRF used in our
precomputation extension, we use libscapi’s PRF imple-
mentation based on the advanced encryption standard (AES)
[32].

BGV/BFV OpenFHE provides a generic interface for the
(leveled) FHE schemes with batched computations which
we have used to implement our BGV/BFV-based protocol.
As mentioned before, to achieve circuit privacy and, thus,
server privacy, we need an additional bootstrapping, noise-
flooding, or OPRF step. We have omitted circuit privacy in
our implementation and evaluation and assume a preliminary
OPRF step as in [27]. The BGV and BFV implementations
in OpenFHE use variations that have been presented in subse-
quent works [42; 58] and improve the computational perfor-
mance of the original constructions [17; 18; 35].

More details about the implementation are given in Ap-
pendix C.

12

5.2 Performance Evaluation
In this section, we show that our protocols are practical for
large server sets of a million server items and client set sizes
of thousands of elements. We evaluate our protocols on an
Amazon Web Services, Inc. (AWS) cloud instance powered
by an Intel Xeon Scalable processor (Skylake 8151) with 24
virtual cores, up to 4.0 gigahertz (GHz) clock speed, and 192
gigabytes (GB) of random-access memory (RAM). The pa-
rameters of the cloud instance are chosen to be comparable
to previous work on FHE-based protocol [27]. We use the
Ubuntu 20.04 LTS Linux distribution as operating system and
run the client and server on the same system. The client and
server communicate over a virtual network loopback inter-
face with unrestricted bandwidth. The client uses a single
thread for all evaluations. Except the evaluation in subsub-
section 5.2.2 and D.5, the server uses one main thread (as
described in Subsection 5.1) and an additional thread for the
homomorphic computations. However, the main thread one
proceeds if at least one other thread has terminated and thus,
we also do not count the main thread.

We evaluate the performance for each phase (e.g., online
phase) in terms of communication and computational costs.
The communication costs are measured as the median of
transmitted data in megabytes (MB). The transmitted data
denote the sum of sent and received data by the client (except
in Figure 13, where we differentiate between incoming and
outgoing communication costs). We only consider application
data and omit the overhead of underlying transmission control
protocol (TCP) protocol. To measure the joint computation
cost of the client and server per phase (including the com-
munication), at the end of each phase, the server signals the
client that he has finished the computation. The computation
costs are measured by the client as median running times in
seconds (s).

5.2.1 Different Encryption Schemes

|X | 216 220 221 222

Elgamal 187.51 720.23 — —
BFV 1.38 6.89 10.25 25.24
BGV 1.61 8.66 14.27 20.79

Table 6: Total PSI computation costs of our BGV/BFV and
ElGamal-based PSI schemes. For ElGamal, ρ = 128, while
for BGV and BFV, ρ = 32 with |Y |= 4096.

In this subsection, we will compare the BGV/BFV-based
protocol implementation with the exponential ElGamal-based
version. Due to implementation restrictions (as also in [23]),
we compare item bit-lengths ρ = 32 for BGV/BFV with ρ =
128 for ElGamal. Figure 6 shows the total running times of our
PSI protocol version, and Figure 7 shows the communication
costs. For BGV and BFV, we make use of packed ciphertexts
and SIMD operations (as described in Subsection 3.5).

|X | 216 220

Elgamal 55.88 143.94
BFV 25.19 50.39
BGV 26.51 51.70

Table 7: PSI communication costs in MB of our BGV/BFV
and ElGamal-based PSI schemes. For ElGamal, ρ = 128,
while for BGV and BFV, ρ = 32.

The computation time is about 100 times lower when us-
ing BGV/BFV instead of exponential ElGamal and also show
that for our PSI protocol, BFV is faster than BGV. However,
we compare bit sizes of ρ = 32 for BGV/BFV with ρ = 128
bits for exponential ElGamal. Larger bit sizes for BGV/BFV
would increase the computation time and communication
size. For Elgamal, the impact of item bit length on computa-
tion time is minor and considered in Subsection D.4. Also,
achieving server privacy for BGV/BFV would require, e.g.,
an additional noise-flooding or OPRF step which would in-
crease the communication and computation costs. As such,
this evaluation serves as an overview for the used schemes
and does not provide a fair comparison between our ElGamal
and BGV/BFV-based instantiations.

5.2.2 Parallelization

Figure 8 shows the improvements using a varying number of
threads. We can observe that for 8 threads, the total running
time decreases by up to ≈74% (for |Y |= 128 and |X |= 220).
We expect the minimal improvement for a larger number of
server threads is due to the unchanging effort for the client
and the client-server interaction.

|X | 128 512 2048 128 512 2048
|Y | 65536 1048576
1 25.7 35.5 62.5 317.8 347.8 415.7
8 6.7 11.5 25.5 52.1 67.4 102.7
16 5.2 9.7 23.8 36.5 56.0 87.3
24 5.4 10.1 23.1 37.7 53.0 86.1

Table 8: Online computation costs (s) of our ElGamal-based
PSI scheme for different numbers of server threads.

Overall, the figures show that, depending on the applica-
tion and input set sizes, our protocols achieve practical perfor-
mance, especially for small client set sizes. The communica-
tion for |Y |= 32,k1 = 3, and |X |= 220 is less than 84 bits per
server element. We expect that for an more unbalanced case,
the bits per server element decreases, as asymptotically shown
in Subsection 4.2. As we will discuss in Subsection D.6, the
implementation offers potential for better ciphertext encod-
ings and thus, smaller communication costs. A more in depth
discussion of the benefits of this technique in comparison to
other techniques as well as some suggestions for future work
can be found in Appendix E.

13

References

[1] Marius A. Aardal and Diego F. Aranha. 2DT-GLS:
Faster and exception-free scalar multiplication in the
GLS254 binary curve. IACR Cryptol. ePrint Arch., page
748, 2022.

[2] Mehmet Adalier and Antara Teknik. Efficient and secure
elliptic curve cryptography implementation of curve
p-256. In Workshop on elliptic curve cryptography
standards, volume 66, pages 2014–2017, 2015.

[3] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR : Private information
retrieval for everyone. Proceedings on Privacy Enhanc-
ing Technologies, avril 2016:155–174, April 2016.

[4] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam
Garg, Mohammad Hajiabadi, and Sihang Pu. Laconic
private set intersection and applications. In Kobbi Nis-
sim and Brent Waters, editors, Theory of Cryptogra-
phy, Lecture Notes in Computer Science, pages 94–125,
Cham, 2021. Springer International Publishing.

[5] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication–computation trade-offs in PIR.
pages 1811–1828, 2021.

[6] Ramiro Alvarez and Mehrdad Nojoumian. Comprehen-
sive survey on privacy-preserving protocols for sealed-
bid auctions. Comput. Secur., 88, 2020.

[7] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. Pir with compressed queries and amortized query
processing. pages 962–979, 2018.

[8] Diego F. Aranha, Chuanwei Lin, Claudio Orlandi, and
Mark Simkin. Laconic private set-intersection from
pairings. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’22, pages 111–124, New York, NY, USA, Novem-
ber 2022. Association for Computing Machinery.

[9] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi,
David Bruce Cousins, Saroja Erabelli, Nicholas Genise,
Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo
Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy
Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan
Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod
Vaikuntanathan, and Vincent Zucca. Openfhe: Open-
source fully homomorphic encryption library. Cryptol-
ogy ePrint Archive, Paper 2022/915, 2022.

[10] Saikrishna Badrinarayanan, Peihan Miao, and
Tiancheng Xie. Updatable private set intersection.
Cryptology ePrint Archive, 2021.

[11] Bar Ilan University Cryptography Research Group. Lib-
scapi - the secure computation api.

[12] Aslı Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona
Samardjiska, and Jelle Vos. Practical multi-party pri-
vate set intersection protocols. IEEE Transactions on
Information Forensics and Security, 17:1–15, 2022.

[13] Daniel J. Bernstein. Curve25519: New diffie-hellman
speed records. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, Public Key Cryptog-
raphy - PKC 2006, pages 207–228, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[14] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM
de Souza, Vinodh Gopal, et al. Intel HEXL (release 1.2).
https://github.com/intel/hexl, 9 2021.

[15] Florian Bourse, Rafaël Del Pino, Michele Minelli, and
Hoeteck Wee. Fhe circuit privacy almost for free. Cryp-
tology ePrint Archive, Paper 2016/381, 2016.

[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015,
Lecture Notes in Computer Science, pages 337–367,
Berlin, Heidelberg, 2015. Springer.

[17] Zvika Brakerski. Fully homomorphic encryption with-
out modulus switching from classical gapsvp. Cryptol-
ogy ePrint Archive, Paper 2012/078, 2012.

[18] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption with-
out bootstrapping. ACM Transactions on Computation
Theory, 6(3):13:1–13:36, July 2014.

[19] Dung Bui and Geoffroy Couteau. Private set intersection
from pseudorandom correlation generators. Cryptology
ePrint Archive, Paper 2022/334, 2022.

[20] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with poly-
logarithmic communication. In Jacques Stern, editor,
Advances in Cryptology — EUROCRYPT ’99, Lecture
Notes in Computer Science, pages 402–414, Berlin, Hei-
delberg, 1999. Springer.

[21] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror May-
dan, Jeff McDonald, and Ramesh Menon. Parallel pro-
gramming in openmp, 2001.

[22] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
Labeled PSI from fully homomorphic encryption with
malicious security. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 1223–1237, New York, NY,
USA, October 2018. Association for Computing Ma-
chinery.

14

https://github.com/intel/hexl

[23] Hao Chen, Kim Laine, and Peter Rindal. Fast private set
intersection from homomorphic encryption. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’17, page
1243–1255, New York, NY, USA, 2017. Association
for Computing Machinery.

[24] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and
Madhu Sudan. Private information retrieval. Journal of
the ACM, 45(6):965–981, November 1998.

[25] Michele Ciampi and Claudio Orlandi. Combining pri-
vate set-intersection with secure two-party computa-
tion. In Dario Catalano and Roberto De Prisco, ed-
itors, Security and Cryptography for Networks, Lec-
ture Notes in Computer Science, pages 464–482, Cham,
2018. Springer International Publishing.

[26] Charles J Clopper and Egon S Pearson. The use of
confidence or fiducial limits illustrated in the case of the
binomial. Biometrika, 26(4):404–413, 1934.

[27] Kelong Cong, Radames Cruz Moreno, Mariana
Botelho da Gama, Wei Dai, Ilia Iliashenko, Kim
Laine, and Michael Rosenberg. Labeled PSI from
homomorphic encryption with reduced computation
and communication, 2021.

[28] Ronald Cramer, Rosario Gennaro, and Berry Schoen-
makers. A secure and optimally efficient multi-authority
election scheme. In Walter Fumy, editor, Advances in
Cryptology — EUROCRYPT ’97, Lecture Notes in Com-
puter Science, pages 103–118, Berlin, Heidelberg, 1997.
Springer.

[29] Emiliano De Cristofaro and Gene Tsudik. Practical
private set intersection protocols with linear complexity.
In Radu Sion, editor, Financial Cryptography and Data
Security, Lecture Notes in Computer Science, pages 143–
159, Berlin, Heidelberg, 2010. Springer.

[30] Daniel Demmler, Peter Rindal, Mike Rosulek, and
Ni Trieu. PIR-PSI: Scaling private contact discovery.
Proceedings on Privacy Enhancing Technologies, 4:159–
178, 2018.

[31] Martin Dietzfelbinger and Christoph Weidling. Bal-
anced allocation and dictionaries with tightly packed
constant size bins. Theoretical Computer Science,
380(1):47–68, June 2007.

[32] Morris Dworkin, Elaine Barker, James Nechvatal, James
Foti, Lawrence Bassham, E. Roback, and James Dray.
Advanced encryption standard (aes), 2001.

[33] Taher ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In

George Robert Blakley and David Chaum, editors, Ad-
vances in Cryptology, Lecture Notes in Computer Sci-
ence, pages 10–18, Berlin, Heidelberg, 1985. Springer.

[34] Brett Hemenway Falk, Daniel Noble, and Rafail Ostro-
vsky. Private set intersection with linear communication
from general assumptions. In Proceedings of the 18th
ACM Workshop on Privacy in the Electronic Society,
WPES’19, pages 14–25, New York, NY, USA, Novem-
ber 2019. Association for Computing Machinery.

[35] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, Paper 2012/144, 2012.

[36] Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and
Benny Pinkas. Efficient set intersection with simulation-
based security. Journal of Cryptology, 29(1):115–155,
January 2016.

[37] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In Chris-
tian Cachin and Jan L. Camenisch, editors, Advances in
Cryptology - EUROCRYPT 2004, Lecture Notes in Com-
puter Science, pages 1–19, Berlin, Heidelberg, 2004.
Springer.

[38] Gayathri Garimella, Benny Pinkas, Mike Rosulek,
Ni Trieu, and Avishay Yanai. Oblivious key-value stores
and amplification for private set intersection. In Tal
Malkin and Chris Peikert, editors, Advances in Cryp-
tology – CRYPTO 2021, Lecture Notes in Computer
Science, pages 395–425, Cham, 2021. Springer Interna-
tional Publishing.

[39] Robin Geelen and Frederik Vercauteren. Bootstrapping
for bgv and bfv revisited. Cryptology ePrint Archive,
Paper 2022/1363, 2022.

[40] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, STOC ’09,
pages 169–178, New York, NY, USA, May 2009. Asso-
ciation for Computing Machinery.

[41] Craig Gentry and Shai Halevi. Compressible fhe with
applications to pir. Cryptology ePrint Archive, Paper
2019/733, 2019.

[42] Craig Gentry, Shai Halevi, and Nigel P. Smart. Ho-
momorphic evaluation of the aes circuit. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology – CRYPTO 2012, pages 850–867, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[43] Craig Gentry and Zulfikar Ramzan. Single-database
private information retrieval with constant communi-
cation rate. In Proceedings of the 32nd international

15

conference on Automata, Languages and Programming,
ICALP’05, pages 803–815, Berlin, Heidelberg, July
2005. Springer-Verlag.

[44] O Goldreich, S Micali, and A Wigderson. How to play
any mental game. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages
218–229, 1987.

[45] Shay Gueron. Intel’s new AES instructions for en-
hanced performance and security. In Orr Dunkelman,
editor, Fast Software Encryption, Lecture Notes in Com-
puter Science, pages 51–66, Berlin, Heidelberg, 2009.
Springer.

[46] Christoph Hagen, Christian Weinert, Christoph Sendner,
Alexandra Dmitrienko, and Thomas Schneider. All the
numbers are us: Large-scale abuse of contact discovery
in mobile messengers. In NDSS, 2021.

[47] Darrel Hankerson, Scott Vanstone, and Alfred J.
Menezes. Guide to Elliptic Curve Cryptography.
Springer New York, January 2004.

[48] Carmit Hazay and Yehuda Lindell. Efficient Secure
Two-Party Protocols: Techniques and Constructions. In-
formation Security and Cryptography. Springer, Berlin,
Heidelberg, 2010.

[49] Bernardo A. Huberman, Matt Franklin, and Tad Hogg.
Enhancing privacy and trust in electronic communities.
In Proceedings of the 1st ACM Conference on Electronic
Commerce, EC ’99, page 78–86, New York, NY, USA,
1999. Association for Computing Machinery.

[50] Ilia Iliashenko and Vincent Zucca. Faster homomorphic
comparison operations for bgv and bfv. Cryptology
ePrint Archive, Paper 2021/315, 2021.

[51] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sar-
var Patel, Shobhit Saxena, Karn Seth, Mariana Raykova,
David Shanahan, and Moti Yung. On deploying secure
computing: Private intersection-sum-with-cardinality.
In IEEE European Symposium on Security and Privacy,
EuroS&P 2020, Genoa, Italy, September 7-11, 2020,
pages 370–389. IEEE, 2020.

[52] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel,
Shobhit Saxena, Karn Seth, David Shanahan, and Moti
Yung. Private intersection-sum protocol with applica-
tions to attributing aggregate ad conversions. Cryptology
ePrint Archive, Paper 2017/738, 2017.

[53] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 17-21, 2003, Proceedings,

volume 2729 of Lecture Notes in Computer Science,
pages 145–161. Springer, 2003.

[54] Jonas Janneck, Anselme Tueno, Jörn Kußmaul, and
Matthew Akram. Private computation on set intersec-
tion with sublinear communication. Cryptology ePrint
Archive, Paper 2022/1137, 2022.

[55] Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography, Second Edition. CRC Press,
2014.

[56] Florian Kerschbaum. Outsourced private set intersec-
tion using homomorphic encryption. In Proceedings
of the 7th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’12, pages 85–
86, New York, NY, USA, May 2012. Association for
Computing Machinery.

[57] Florian Kerschbaum, Erik-Oliver Blass, and Ra-
soul Akhavan Mahdavi. Faster secure comparisons with
offline phase for efficient private set intersection, 2022.

[58] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revis-
iting homomorphic encryption schemes for finite fields.
In Mehdi Tibouchi and Huaxiong Wang, editors, Ad-
vances in Cryptology – ASIACRYPT 2021, pages 608–
639, Cham, 2021. Springer International Publishing.

[59] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and
Benny Pinkas. Private set intersection for unequal set
sizes with mobile applications. Proc. Priv. Enhancing
Technol., 2017(4):177–197, 2017.

[60] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 818–829,
New York, NY, USA, 2016. Association for Computing
Machinery.

[61] Vladimir Kolesnikov, Naor Matania, Benny Pinkas,
Mike Rosulek, and Ni Trieu. Practical multi-party pri-
vate set intersection from symmetric-key techniques.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17,
pages 1257–1272, New York, NY, USA, October 2017.
Association for Computing Machinery.

[62] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: single database, computationally-private infor-
mation retrieval. In Proceedings 38th Annual Sympo-
sium on Foundations of Computer Science, pages 364–
373, 1997.

[63] Yang Li, Kee Siong Ng, and Michael Purcell. A tutorial
introduction to lattice-based cryptography and homo-
morphic encryption, 2022.

16

[64] Jack P. K. Ma and Sherman S. M. Chow. Secure-
computation-friendly private set intersection from obliv-
ious compact graph evaluation. In Proceedings of the
2022 ACM on Asia Conference on Computer and Com-
munications Security, ASIA CCS ’22, pages 1086–1097,
New York, NY, USA, May 2022. Association for Com-
puting Machinery.

[65] Moxie Marlinspike. Technology preview: Private con-
tact discovery for signal, 2017.

[66] Catherine Meadows. A more efficient cryptographic
matchmaking protocol for use in the absence of a contin-
uously available third party. In 1986 IEEE Symposium
on Security and Privacy, pages 134–134, April 1986.
ISSN: 1540-7993.

[67] Muhammad Haris Mughees, Hao Chen, and Ling Ren.
OnionPIR: Response efficient single-server PIR. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’21, pages
2292–2306, New York, NY, USA, November 2021. As-
sociation for Computing Machinery.

[68] Bodo Möller. Algorithms for multi-exponentiation.
In Serge Vaudenay and Amr M. Youssef, editors, Se-
lected Areas in Cryptography, Lecture Notes in Com-
puter Science, pages 165–180, Berlin, Heidelberg, 2001.
Springer.

[69] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov.
The rise of paillier: Homomorphic secret sharing and
public-key silent OT. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EU-
ROCRYPT 2021, Lecture Notes in Computer Science,
pages 678–708, Cham, 2021. Springer International Pub-
lishing.

[70] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. In Friedhelm Meyer auf der Heide, editor, Algo-
rithms — ESA 2001, Lecture Notes in Computer Science,
pages 121–133, Berlin, Heidelberg, 2001. Springer.

[71] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In Jacques Stern, edi-
tor, Advances in Cryptology — EUROCRYPT ’99, Lec-
ture Notes in Computer Science, pages 223–238, Berlin,
Heidelberg, 1999. Springer.

[72] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. SpOT-light: Lightweight private set intersection
from sparse OT extension. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Lecture Notes in Computer Science,
pages 401–431, Cham, 2019. Springer International Pub-
lishing.

[73] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. PSI from PaXoS: Fast, malicious private set
intersection. In Anne Canteaut and Yuval Ishai, ed-
itors, Advances in Cryptology – EUROCRYPT 2020,
Lecture Notes in Computer Science, pages 739–767,
Cham, 2020. Springer International Publishing.

[74] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection us-
ing permutation-based hashing. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 515–530,
2015.

[75] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based PSI with linear communication. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2019, Lecture Notes in Computer
Science, pages 122–153, Cham, 2019. Springer
International Publishing.

[76] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient circuit-based PSI via cuckoo
hashing. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 125–157. Springer, 2018.

[77] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
23rd USENIX Security Symposium (USENIX Security
14), pages 797–812, San Diego, CA, 2014. USENIX
Association.

[78] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on ot extension.
ACM Trans. Priv. Secur., 21(2), 1 2018.

[79] Mihai Pǎtraşcu and Mikkel Thorup. The power of simple
tabulation hashing. Journal of the ACM, 59(3):14:1–
14:50, June 2012.

[80] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic
function evaluation and applications. In 2018 IEEE
59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 859–870, 2018.

[81] Amanda C. D. Resende and Diego F. Aranha. Faster
unbalanced private set intersection. In Sarah Meikle-
john and Kazue Sako, editors, Financial Cryptography
and Data Security, Lecture Notes in Computer Science,
pages 203–221, Berlin, Heidelberg, 2018. Springer.

[82] Amanda C. D. Resende and Diego F. Aranha. Faster un-
balanced private set intersection in the semi-honest set-
ting. Journal of Cryptographic Engineering, 11(1):21–
38, April 2021.

17

[83] Peter Rindal and Phillipp Schoppmann. VOLE-PSI:
Fast OPRF and circuit-PSI from vector-OLE. In Anne
Canteaut and François-Xavier Standaert, editors, Ad-
vances in Cryptology – EUROCRYPT 2021, Lecture
Notes in Computer Science, pages 901–930, Cham,
2021. Springer International Publishing.

[84] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126,
February 1978.

[85] Mike Rosulek and Ni Trieu. Compact and malicious
private set intersection for small sets. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, pages 1166–1181,
New York, NY, USA, November 2021. Association for
Computing Machinery.

[86] The OpenSSL project. Openssl — cryptography and
ssl/tls toolkit.

[87] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from creden-
tial stuffing with password breach alerting. In Nadia
Heninger and Patrick Traynor, editors, 28th USENIX
Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, pages 1556–1571.
USENIX Association, 2019.

[88] Zhusheng Wang, Karim Banawan, and Sennur Ulukus.
Private set intersection: A multi-message symmetric
private information retrieval perspective. IEEE Transac-
tions on Information Theory, 68(3):2001–2019, 2022.

[89] Christian Weinert. Practical Private Set Intersection
Protocols for Privacy-Preserving Applications. PhD the-
sis, Technical University of Darmstadt, Germany, 2021.

[90] Andrew C. Yao. Protocols for secure computations. In
23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), pages 160–164, 1982.

A Protocol Details

Algorithm 1 shows the pseudocode for an PSI protocol instan-
tiation using AHE and blocked Cuckoo hashing.

B Full Analysis

First, we will mention some details we have omitted for sim-
plicity. The set sizes |X | and |Y | are disclosed to the parties
before the computation. The decision to use multi-table or

single-table Cuckoo hashing and the number of hash functions
k1 and k2 are hyperparameters of the protocols. Depending
on the set sizes and hyperparameters, the parties deduce pa-
rameters for the hashing families (e.g., l1 and l2). We assume
that all our protocol constructions have an item-independent
precomputation phase in which necessary cryptographic key
material, hash function descriptions, and randomness are ex-
changed. Since we consider semi-honest behavior, we simply
specify that the client chooses all necessary parameters and
keys and sends them to the server. Emerging problems of
parameter choices by malicious clients are out of scope of
this work.

We have not specified the PSI protocol behavior if Cuckoo
hashing fails. In contrast to Cuckoo hashing used in non-
cryptographic algorithms [70], in the case of failures, we must
not choose other hash functions and repeat the hashing. Re-
peating the hashing would implicitly make the hash functions
item-dependent, which could leak information about used in-
puts and makes it impossible to simulate indistinguishable
views in the proofs. Instead, we specify that if failures occur,
the parties send a failure signal to the other party, immediately
stop the protocol execution, and output /0. However, we will as-
sume hashing to fail with negligible probability in a statistical
security parameter λ ∈ N. Thus, the concrete behavior in the
case of failures does not influence the (asymptotic) security
as shown in the following proofs. For simplicity, we consider
one security parameter κ ∈ N and assume κ = λ to avoid
dealing with an additional security parameter. In practice,
variants to handle client hash failures might be interesting,
like skipping and dropping items e that lead to failure in the
hashing insertion step. Thus, the PSI output would become
(X ∩Y)\{e}. However, we remark that hashing parameters
with non-negligible failure probability lead to an insecure PSI
protocol.

We assume that the parameters of the used AHE scheme
Π are chosen such that homomorphically evaluated cipher-
texts decrypt to the correct result (as mentioned in Subsec-
tion 2.3). Again, the parameter selection for Π has to be
item-independent and solely deduced from public parameters.

B.1 Security Proofs

[Correctness] Our PSI protocol π provides correctness, mean-
ing that,

{outputπ(X ,Y,κ)}X ,Y,κ
c≡ {(/0,X ∩Y)}X ,Y .

Proof. Let E1 be the event that hashing succeeds and E2 =
¬E1. For any fixed X , Y , and κ, let D be an PPT distinguisher
with output in {0,1}, let D1 := D(1κ,outputπ(X ,Y,κ)),
D2 := D(1κ,(/0,X ∩Y)), and

Advπ
corr := Pr[D1]−Pr[D2] := Pr[D1 = 1]−Pr[D2 = 1],

18

then,

Advπ
corr =Pr[E1] ·Pr[D1| E1]+Pr[E2] ·Pr[D1| E2]−Pr[D2]

≤Pr[D1| E1]+negl(κ)−Pr[D2].

It is left to show that, in the event of E1, outputπ(X ,Y,κ) =
(/0,X ∩Y) and thus, Pr[D1| E1] = Pr[D2]. Since the server out-
puts nothing, we are only interested in the client’s output in
the event of E1. Let H1, . . . , Hk1 and H ′1, . . . , H ′k2

be the used
hash functions in π. Assume e ∈ X ∩Y , then e ∈ Y and e is
placed at one i ∈ {H1(e), . . .Hk1(e)} in the outer client hash
table. Likewise, e ∈ X , thus, e is placed in all inner Cuckoo
tables CT i for i ∈ {H1(e), . . .Hk1(e)}. The client and server
use the same indices J := H ′1(e), . . . ,H

′
k2
(e) to create the en-

crypted index vectors and insert e into the inner Cuckoo hash
table. Thus, the description of our construction in Subsec-
tion 3.3 shows that the AHE-based PIE outputs True to the
client.

For e /∈X∩Y , either e∈Y ∧e /∈X or e /∈Y . If e∈Y ∧e /∈X ,
e is placed at a Cuckoo index i, but e is unequal to every server
element and e ̸=⊥S, thus, the AHE-based PIE outputs False
(as described in Subsection 3.3). If e /∈ Y , either e = ⊥C or
the client does not place e in the Cuckoo table. If a dummy
element ⊥C is placed at a Cuckoo position i, since we assume
that ⊥C is unequal to the server dummy element ⊥S and also
no valid input element, the corresponding AHE-based PIE
comparison outputs False.

ElGamal-based Protocol Correctness of the ElGamal-
based protocol with the improvements of simultaneous multi-
exponentiation and the extended precomputation follows from
subsubsection 4.1.1 and the constructions in Subsection 3.4.
Since ElGamal provides ciphertext freshness and soundness,
we can do arbitrarily many homomorphic evaluations without
worrying about the correctness of the decryption. However,
the cardinality of the underlying group |G| = p has to be
larger than 2ρ to encode all possible elements e ∈ {0,1}ρ as
exponents m ∈ Zp.

BGV/BFV-based Protocol The correctness of BGV/BFV-
based protocol also directly follows from subsubsection 4.1.1
and the description in Subsection 3.5. As mentioned in sub-
subsection 2.3.3, leveled FHE schemes allow you to spec-
ify the number of homomorphic operations that can be per-
formed such that an operated ciphertext can still be correctly
decrypted. We will not go into detail about how to choose
the correct parameters for BGV and BFV but refer to the
rich literature [9; 17; 18; 35; 58]. Remark that the number
of needed homomorphic scalar multiplications and additions
can be deduced from the public parameters k1,k2, l1, l2.

[Client Privacy] Let Π be an IND-CPA secure AHE
scheme, then, our generic PSI protocol π instantiated with
Π (as shown in Algorithm 1) provides client privacy, i.e.,

there exist a PPT algorithm SimS, such that

{viewπ
S(X ,Y,κ)}X ,Y,κ

c≡ {SimS(1κ,X , /0, |Y |)}X ,Y,κ .

Proof. We construct the simulator SimS as follows:

• Uniformly and randomly choose rS (as simulation of the
servers random tape).

• Generate all parameters and keys based on the hyper
parameters and set sizes |X |, |Y | (as in π).

• For every possible outer Cuckoo table index i, generate a
simulated encrypted element Enc(r0) and for every q ∈
{1, . . . ,k2} generate an simulated encrypted index vector
Enc(r1), . . .Enc(rl2) with ri←$ Zp for all i∈ {0, . . . , l2}.

• Encode the generated parameters, keys, and encrypted
values as bit-string m1

S.

• Output
(
X ,rS,m1

S
)
.

Remark, viewπ
S contains the hashing and encryption param-

eters and keys, as well as the encrypted client Cuckoo table
entries and corresponding encrypted index vectors. The input
set, random tape, parameters, and keys of viewπ

S and SimS are
identically distributed. If the scheme does not provide client
privacy, a PPT D exists that successfully distinguishes a set
of encrypted random values from another set of encrypted
concrete (potentially not uniformly distributed) values. Since
we assume Π to be IND-CPA secure, such a distinguisher
cannot exist, which concludes the proof by contradiction.

We assume ElGamal, BGV, and BFV to be IND-CPA se-
cure. Thus, the client privacy of the concrete constructions
directly follows from subsubsection 4.1.2.

Precomputation The protocol with (extended) precompu-
tation yields a slightly different server’s view, but the proof is
similar. A simulator Sim′S for the server’s view viewπ

S(X ,Y,κ)
for the PSI protocol with (extended) precomputation can be
constructed as follows. Let SimS be the simulator with output(
X ,rS,m1

S
)

as described in the proof of subsubsection 4.1.2.
Sim′S modifies m1

S and adds a random bit b←$ {0,1} for
each outer Cuckoo table index, each q ∈ {1, . . . ,k2}, and each
possible index j ∈ {1, . . . , l2}. Assume π uses a PRF to gen-
erate the random values, in the proof, we first replace the
PRF generated values by values drawn uniformly and ran-
domly. Now, again, the security follows from the IND-CPA
security of the underlying AHE scheme as in the proof of
subsubsection 4.1.2.

[Server Privacy] Assume simulators Sim′0,Sim′1 (as de-
scribed in subsubsection 4.1.3) exist for the PSI protocol
π (as shown in Algorithm 1), then, π provides client privacy,
i.e., a PPT algorithm SimC exists, such that

{viewπ
C(X ,Y,κ)}X ,Y,κ

c≡ {SimC(1κ,Y,X ∩Y, |X |)}X ,Y,κ .

19

Proof. We construct the simulator SimC as follows:

• Choose rC (as simulation of the servers random tape)
uniformly at random.

• Generate all parameters and keys based on the hyper-
parameters and set sizes |X |, |Y | (as in π). Encode the
parameters as params ∈ {0,1}∗.

• Create a Cuckoo hash table CT with the items Y using
the deduced parameters params.

• For every possible Cuckoo table index i, use
Sim′0(params) to generate a list L of simulated
encrypted random results with the same number of
ciphertexts as L in π. If CT [i] ∈ X ∩Y , for one l ∈ L, use
Sim′1(params) instead of Sim′0(params).

• Shuffle each L (independently and) uniformly at random.

• Concatenate the encode parameters params and the shuf-
fled list L as bit-string m1

C.

• Output
(
Y,rC,m1

C
)
.

As in subsubsection 4.1.2, the simulated parameters, ran-
dom tape, and input are identically distributed as in viewπ

C.
By assumption, for every b ∈ {0,1}, the output of Sim′b is
indistinguishable from the server result c f . Thus, by shuf-
fling at random and since c f decrypts to 0 at most once per
Cuckoo index i, the simulated output and the view of π are
computationally indistinguishable.

ElGamal-based Protocol For the ElGamal-based protocol,
we do not need the general assumption of simulating server
results c f . Server privacy can be achieved by rerandomiz-
ing c f ← c f ⊞Enc(0) (as mentioned in Subsection 3.4). The
rerandomized ciphertexts Enc(e;r) are distributed like fresh
ciphertexts but for an integer r chosen uniformly at random by
the server. We can thus instantiate Sim′0(params) := Enc(r)
for r←$ Zp and Sim′1(params) :=Enc(0). Remark the server
privacy for our ElGamal-based protocol does not require com-
putational assumptions and, thus, provides perfect indistin-
guishability.

BGV/BFV-based Protocol Server privacy for the
BGV/BFV-based protocol requires different techniques than
for the ElGamal-based construction. Since homomorphic
computations increase the error term (as mentioned in
subsubsection 2.3.3), fresh encryptions Enc(0) are not
indistinguishable from an c f that decrypts to 0. We can
solve this problem by establishing circuit privacy [15].
However, maybe more efficient approaches are possible if the
requirement to hide the FHE circuit structure is omitted. For
our later evaluation, we assume an additional OPRF masking
step as in [27], which also allows simulating the server results
without the input of X \Y .

B.2 Complexity Proofs
[Complexity] The complexities of our PSI protocol π can be
summarized as follows:

• The client has a computation complexity of

O
(

1+σ√
σ
·
√
·β1 · |Y | · k2 ·β2 · k1 · |X |

)
(9)

• The server has a computation complexity of

O(β1 ·β2 · |Y | ·mb +β2 · k1 · |X |) (10)

• The communication complexity is

O
(

γ · 1+σ√
σ
·
√
·β1 · |Y | · k2 ·β2 · k1 · |X |

)
(11)

Computation For each outer Cuckoo table index i, the
client encrypts k2 index vectors and the item (or dummy el-
ement) at the Cuckoo table position i. Each encrypted index
vector EIV contains l2 elements. Thus, the client encrypts
O(t1 · (1+ k2 · l2)) elements.

The server multiplies each entry of EIV with the corre-
sponding inner δ-block Cuckoo hashing table entry for each
bin d ∈ {1, . . . ,δ}, which leads to O(t1 · k2 · l2 ·δ) homomor-
phic scalar multiplications. Remark, if we set ⊥S = 0, the
server does not need to perform a homomorphic scalar multi-
plication for dummy elements.

For each d ∈ {1, . . . ,δ} and k′ ∈ {1, . . . ,k2}, the result is
(homomorphically) summed up, subtracted, and scalar mul-
tiplied. We ignore the complexity of the shuffle step, which
can be performed very efficiently (and also use precomputed
random permutations). Remark, the homomorphic subtraction
can be avoided if the client instead sends Enc(−e) for each
element (or dummy value) e at an outer Cuckoo table posi-
tion. Thus, overall, the server needs to perform O(t1 ·k2 ·δ · l2)
homomorphic scalar multiplications and additions.

Considering parameters β1, β2, this leads to t1 = β1 · |Y |
and t2 ∈ O

(
β2 ·
(

k1·|X |
t1

+mb

))
for mb ∈ N. Thus, the server

computational complexity simplifies to

O
(

β1 · |Y | ·β2 ·
(

k1 · |X |
β1 · |Y |

+mb

))
= O(β1 ·β2 · |Y | ·mb +β2 · k1 · |X |). (12)

Remark, |Y | ≪ |X | and mb is small (as shown in Subsec-
tion D.1). Thus, in practice, k1 · |X | is the dominating factor.
For simplicity and as in related work [30; 78], in the following,
we assume mb ∈ N to be of constant size.

For each outer Cuckoo table index i, the client receives
O(k2 · δ) ciphertexts c f . If the client has placed a dummy
element at index i, the client can skip the decryption step.
Also, if a server result c f has decrypted to 0, the client does not

20

need to decrypt any other c f for the same outer Cuckoo table
entry anymore. However, this might introduce side-channel
leakage if an attacker can observe the computation time of
the client (as discussed in Subsection D.6). The expected
computational complexity for these decryption improvements
is omitted in our big O notation.

Let t2 = β2 ·
(

k1·|X |
t1

+mb

)
with constant mb, we can adjust

l2 =
⌈√

t2·σ
k2

⌉
and δ =

⌈√
t2

σ·k2

⌉
to achieve sublinear com-

plexity for a skewness σ≈ l2
δ

, as described in Subsection 3.3.
Thus, overall, if we omit mb, the client encrypts

O(t1 · k2 · l2) = O

(
β1 · |Y | · k2 ·

⌈√
β2 · k1 · |X | ·σ

β1 · |Y | · k2

⌉)
(13)

elements. For l2 larger than 1, which follows for |Y | ≪ |X |
(and adequate k2 and σ), we can simplify the term as

O

(
β1 · |Y | · k2 ·

√
β2 · k1 · |X | ·σ

β1 · |Y | · k2

)
= O

(√
σ ·β1 · |Y | · k2 ·β2 · k1 · |X |

)
(14)

Likewise, for δ larger than 1, we can do the same simplifica-
tions, which shows that the client performs

O

(√
1
σ
·β1 · |Y | · k2 ·β2 · k1 · |X |

)
(15)

decryptions. Thus, we have shown the claim of sublinear
computation complexity (in |X |) for the client (assuming
|Y | ≪ |X |).

Communication The communication complexities of the
client and server can be deduced from the number of per-
formed encryptions and decryptions of the client. In the online
phase, the client sends, and the server receives

O
(

γ ·
√

σ ·β1 · |Y | · k2 ·β2 · k1 · |X |
)

(16)

bits. Likewise, the server sends, and the client receives

O

(
γ ·
√

1
σ
·β1 · |Y | · k2 ·β2 · k1 · |X |

)
(17)

bits. Thus, we have shown the claim of sublinear communica-
tion complexity (in |X |) of our protocol (assuming |Y | ≪ |X |).

Precomputation The precomputation extension generally
increases the computation complexity of the server and client.
However, the computationally expensive generation of the
encryption index vectors by the client can be performed in an
item-independent precomputation phase. The online commu-
nication can be reduced since instead of γ bits for the entries in
EIV , only a single bit is sent in the online phase, as evaluated
in Figure 17.

ElGamal-based Protocol In practice, the number of group
operations ⊙ and, thus, the computational complexity can
be reduced by using simultaneous multi-exponentiation.
More detailed complexity analyzes of simultaneous multi-
exponentiation, also denoted as simultaneous multiple point
multiplications, can be found in the literature [47; 68]. How-
ever, the computational complexity of simultaneous multi-
exponentiation depends on the distribution of the used ex-
ponents and, thus, in the case of PSI, the server elements X .
This might introduce side-channel leakage, as discussed in
Subsection D.6.

The extended precomputation for the ElGamal-based proto-
col also increases the computational complexity of the server
and client. In comparison to the simple precomputation, as
described in Subsection 3.3, the extended precomputation re-
duces the number of homomorphic scalar multiplications in
the online phase by an additional offline phase (with available
server input). However, this comes at the cost of computing
and storing twice as many homomorphic scalar multiplica-
tions on the server.

BGV/BFV-based Protocol To hide the server’s inner
Cuckoo table position in the BGV/BFV-based protocol
with batched computation, additional k2 · δ homomorphic
ciphertext-ciphertext multiplications are computed, as de-
scribed in subsubsection 5.2.1. This increases the server com-
putation complexity but decreases the number of client de-
cryptions. If u ∈ N plaintexts can be packed into the same
ciphertext, the batched computation reduces the server and
client complexities by up to factor u (as also discussed in
subsubsection 5.2.1). However, for larger u, in general, also γ

and the complexity of homomorphic operations increase.

C Implementation Details

We have separated the execution of our protocols into precom-
putation, offline, and online phases as follows.

Precomputation Phase In the precomputation phase, no
inputs are available to the parties, but they can exchange item-
independent materials such as randomness, keys, or hash func-
tions. For our PSI protocol, in the precomputation phase, the
client sends the public encryption keys and the hash func-
tions to the server. Using the precomputation extension (as
described in Subsection 3.3 and Subsection 3.4), the client
also sends the encrypted random vectors ERV . In this phase,
the server receives the AHE public key and the hash func-
tions to the server. For the ElGamal-based scheme, the server
computes encryptions of zero for the later rerandomization of
ElGamal ciphertexts (as described in Subsection 3.4).

Offline Phase In the offline phase, the parties cannot com-
municate but make computations on their inputs and received

21

data from the precomputation phase. In our implementation,
the offline phase includes creating the outer Cuckoo hash
table and encrypting each outer Cuckoo hash table entry and
all index vectors EIV .

Online Phase In the online phase, the client sends the en-
crypted outer Cuckoo table entries and EIV s to the server.
The server computes the encrypted results c f (as described in
Algorithm 1) and sends them back to the client.

Parallelization The practical performance of our PSI pro-
tocol implementation is improved through parallel computa-
tions. We implement parallelization only for the server in
accordance with our setting of a client with limited com-
putational resources. However, parallelization for the client
could be added. We implement multi-threading for the nested
Cuckoo hashing creation on the server by using OpenMP [21].
Likewise, OpenMP can be used within the OpenFHE frame-
work to parallelize the computation of the BGV/BFV-based
protocol implementation. For our ElGamal-based version, we
have implemented a more fine-granular multi-threading ap-
proach, described as follows. The server uses one main thread
to read the data from the client, distributes the homomorphic
computations workloads to other threads, gathers the results
c f , and sends them back to the client. As such, with more than
one thread, the server can perform homomorphic computa-
tions before the client has sent all encrypted items. Likewise,
depending on the server thread scheduling, the client can al-
ready decrypt server results before the server has performed
all homomorphic operations.

D Further Evaluations and Details

D.1 Parameters

For the evaluation, we use different (not equidistant) client
set sizes |Y | ∈ {32,128,512, 1024,2048,4096} and server
sets of size |X | of 216 = 65536 and 220 = 1048576 filled with
random elements of fixed bit length ρ. Unless otherwise spec-
ified, we use ρ = 128 bits for the ElGamal-based protocol and
ρ = 32 bits for the BGV/BFV-based version considered in
subsubsection 5.2.1. For a practical evaluation, we first have
to select many parameters accordingly to our assumption for
hashing failures and security levels. Selecting the parameters
for our hashing scheme and the BGV/BFV-based protocol is
highly non-trivial. We use the slack factors formulas interpo-
lated by Demmler at al. [30] for β1, where t1 := β1 · k1 · l1 are
the number of possible entries in the client’s Cuckoo hash ta-
ble. Remark, as in the evaluation of PIR-PSI [30], we choose
β1 to reach a client Cuckoo table failure rate of ≤2−20. How-
ever, we could decrease the failure probability, e.g., to 2−40

with an increase of β1 logarithmically in the failure proba-
bility [30]. For our BGV/BGV-based protocol, we can even

show that larger β1s lead to better performance results for
small client set sizes due to the batched computation (as dis-
cussed in subsubsection 5.2.1). However, for fixed BGV/BFV
parameters, the outer Cuckoo table size t1 and thus, β1 can
only be increased to a limited extent.

For the server’s nested Cuckoo hash table, we first use
the empirically interpolated formula of Demmler et al. [30]
to calculate a needed maximum bin size maxb =

k2·|X |
t1

+mb
such that the simple hashing into bins, with maximum bin
size maxb, fails with probability ≤ 2−40. To determine the
size of the Cuckoo hash tables t2, maxb is multiplied with
another slack factor β2 = 1.1 (according to Subsection D.7)
and the resulting value is rounded up. The used parameter
combinations are given in Table 9.

For the inner Cuckoo hash tables (inside the nested Cuckoo
hash table), we use large δ =

⌈√
t2

σ·k2

⌉
and thus, l2 =⌈√

t2·σ
k2

⌉
. We set σ = 1, if not stated otherwise (like in Sub-

section D.3). For our evaluations, we always use k2 = 2 multi-
table Cuckoo hashing without a stash. Note, we have not
observed any hashing failures during the evaluation when
using these parameters.

For our evaluations with exponential ElGamal, we use the
P-256 elliptic curve [2] which offers an expected security
level of 128 bits. The parameter selection for the BFV/BGV
schemes uses OpenFHE to set the security level to 128 bits
and to adjust the number of packed ciphertext for the batched
computation accordingly [9]. Further, we use other OpenFHE
default parameters [9]. We have not activated hardware accel-
eration for the lattice-based FHE computations which can be
added for OpenFHE using Intel’s homomorphic encryption
acceleration library (HEXL) [14].

D.2 Different Number of Outer Cuckoo Hash
Functions

We investigate the influence of parameters k1 ∈ {2,3} on the
performance of our ElGamal-based protocol. The differences
of Cuckoo hashing for k1 ∈ {2,3} has also been subject to
analyses of other PSI protocols like PIR-PSI [30]. Subsec-
tion 4.2 has shown that the computation and communication
costs (theoretically) increase with an increasing k1. However,
as also mentioned in Section 4, the parameters cannot be cho-
sen independently. For smaller k1, we need to increase β1
to reach the same Cuckoo hashing failure probability [30].
Figure 10 shows that the communication costs for k1 = 2 is
larger than k1 = 3 (for all other parameter combinations).

For most parameter combinations, Figure 11 shows that the
online running time for k1 = 3 is smaller (than for k1 = 2).
This observation is counter-intuitive but can be explained
with the higher slack factors β1 for k1 = 2 (given in Table 9).
Remark, that in comparison to k1 = 2, for k1 = 3, the server
needs to insert almost 50% more items into the nested Cuckoo
hash table. We expect that for larger server set sizes (and other

22

Table 9: Hashing parameters used for our evaluations. Cuckoo
hashing factor β1 is chosen according to the interpolated
formulas by Demmler at al. [30] and β2 = 1.1, as argued in
Subsection D.7.
|Y | |X | k1 β1 l1 maxb t2
32 65536 2 27.62 442 256 282
128 65536 2 18.15 1162 128 141
512 65536 2 11.92 3053 70 77

1024 65536 2 9.66 4949 54 60
2048 65536 2 7.83 8022 42 47
4096 65536 2 6.35 13004 34 38

32 1048576 2 27.62 442 2770 3047
128 1048576 2 18.15 1162 1156 1272
512 1048576 2 11.92 3053 507 558

1024 1048576 2 9.66 4949 344 379
2048 1048576 2 7.83 8022 237 261
4096 1048576 2 6.35 13004 166 183

32 65536 3 1.26 14 5201 5722
128 65536 3 1.27 55 1468 1615
512 65536 3 1.29 220 445 490

1024 65536 3 1.30 443 256 282
2048 65536 3 1.30 890 154 170
4096 65536 3 1.31 1791 97 107

32 1048576 3 1.26 14 76950 84645
128 1048576 3 1.27 55 20139 22153
512 1048576 3 1.29 220 5322 5855

1024 1048576 3 1.30 443 2766 3043
2048 1048576 3 1.30 890 1466 1613
4096 1048576 3 1.31 1791 795 875

parameters held constant), using k1 = 2 will at some point
offer better performance results.

D.3 Different Cuckoo Table Skewness
In the rest of the evaluation, we will only consider k1 = 3.
Recall, for a blocked (inner) Cuckoo table, the parameter σ

specifies the ratio between the number of hash indices l2 and
the size of the bins δ. The theoretical complexity analysis
in Section 4 shows that a parameter σ = 1 provides the best
asymptotic communication and computation complexity. We
want to test different values σ ∈ {0.5,1,2,3} for the perfor-
mance of the practical implementation.

Figure 12 shows that σ = 1 also provides the best practical
performance over (almost) all parameter combinations. If we
look at the online and offline phases separately, the picture is
somewhat different. Remember, for large values of σ, the size
of the encrypted index vector EIV increases and thus also the
amount of elements the client has to encrypt. At the same
time, the number of server results c f , and thus, the number of
decryptions required by the client decreases. Larger values of
σ allow more computational effort to be shifted to the offline

32 512 4096 32 512 4096

65536 1048576

k = 2 13.7 55.8 172.1 44.9 132.8 336.1

k = 3 2.9 13.5 55.9 10.9 46.0 143.9

0

50

100

150

200

250

300

350

400

C
om

m
u
n
ic

at
io

n
 i
n
 M

B

|Y|

|X|

Figure 10: PSI communication costs for k = k1 = 2 and k =
k1 = 3 using ElGamal.

32 512 4096 32 512 4096

65536 1048576

k = 2 30.9 88.3 242.5 255.7 375.9 652.0

k = 3 21.7 35.5 89.6 302.2 347.8 472.6

0
100
200
300
400
500
600
700

O
n
li
n
e

T
im

e
in

 s

|Y|

|X|

Figure 11: PSI online computation costs for k = k1 = 2 and
k = k1 = 3 using ElGamal.

phase. The relationship becomes clear in Figure 13. The data
the client has to encrypt corresponds to the outgoing bytes,
whereas the server results correspond to the incoming bytes.
Figure 13 also shows that the total communication is minimal
for σ = l2

δ
= 1. E.g., for |X | = 220, the communication for

σ = 1 is 22.10 = 11.02 + 11.08, while for the other σ ∈
{0.5,2,3}, the total communication is 23.35 or 25.42.

For σ = 1, Figure 12 also shows that the total running
time of the ElGamal-based scheme is only around 10%−
25% higher (for |X |= 220) than the online time (compared to
Figure 11). Thus, the Cuckoo hashing and encryption of the
client is a minor part of the total computation costs. Remark
for σ = 1, the client needs to check whether Dec(c f) = 0 for
as many ciphertexts as the client sends as encrypted index
vectors EIV . If we assume the comparison Dec(c f) = 0 to be
as efficient as encryption, we can underpin the claim that our
protocol is suitable for clients with limited resources.

23

128 512 2048 128 512 2048

65536 1048576

0.5 44.6 77.8 165.2 393.3 492.3 719.4

1 36.3 58.8 122.5 361.7 431.2 586.8

2 38.5 64.5 132.8 363.0 441.1 619.8

3 41.2 70.5 141.7 371.2 460.8 664.3

0
100
200
300
400
500
600
700
800

T
o
ta

l
R

u
n
n
in

g

T
im

e
in

 s

|Y|

|X|

S
k
ew

n
es

s

Figure 12: Total PSI computation costs for a varying skewness
σ ∈ {0.5,1,2,3} using ElGamal with a client set size |Y |=
128.

D.4 Item Lengths

In this subsection, we evaluate the influence of the items
bit-length ρ ∈ {32,128,255} on the performance of the ex-
ponential ElGamal-based protocol. To retain a security level
of 128 bits for the evaluation, we use the P-256 elliptic curve
also for small ρ, e.g., ρ = 32. Naïvely, for ρ > 256, we would
require using elliptic curves with more elements. However, we
could use a collision-resistant hash function to compute the
PSI protocol on hashed fingerprints with a negligible collision
probability in the resulting bit-length [78].

Figure 14 shows that the computational costs are almost
independent of the used input bit-lengths ρ. However, we can
clearly observe that for all parameter combinations, a larger ρ

leads to a slightly higher running time. From a performance
viewpoint, the running time differences are insignificant. How-
ever, different running times for varying bit-length indicate
side-channel leakage, as we will discuss in Subsection D.6.
Remark, informally, since we use the P-256 elliptic curve
for all different ρ, and all sent communication data is either
item-independent or encrypted, the communication costs are
independent of ρ.

D.5 Precomputation

In the following, we will analyze the performance of our ex-
tended precomputation variation for our exponential ElGamal-
based PSI protocol (as described in Subsection 3.4). Remark,
the client protocol is the same for the extended precomputa-
tion and simple precomputation described in Subsection 3.3).
Likewise, the communication costs are identical. To avoid
long evaluations and allow testing more parameter combi-
nations, we have used 24 server threads for the following
protocol executions.

S → C C → S S → C C → S

65536 1048576

0.5 4.26 2.24 15.50 7.85

1 3.02 3.07 11.02 11.08

2 2.18 4.32 7.80 15.55

3 1.77 5.25 6.34 19.08

0

5

10

15

20

25

C
o
m

m
u
n
ic

a
ti

o
n

in
 M

B

Communication

|X|

S
k
ew

n
es

s

Figure 13: PSI communication costs for a varying skewness
σ ∈ {0.5,1,2,3} using ElGamal with a client set size |Y |=
128.

32 128 512 32 128 512

65536 1048576

32 26.8 36.2 58.7 331.0 359.8 431.0

128 26.9 36.3 58.8 331.2 361.7 431.2

255 27.0 36.3 58.8 333.1 366.1 432.2

0
50

100
150
200
250
300
350
400
450
500

T
ot

a
l
R

u
n
n
in

g
T

im
e

in
 s

|Y|

|X|

B
it

-l
en

gt
h

Figure 14: Total computation costs of our ElGamal-based PSI
scheme for different item bit-length ρ.

In Figure 15, we can indeed show that (at least for larger
server set sizes) the online running time decreases when using
the extended precomputation variant. However, the compu-
tation costs for the precomputation + offline phase highly
increase, as shown in Figure 16. Especially for |Y | ≪ |X |,
the precomputation + offline phase takes up to ≈15 times as
long as for the standard exponential ElGamal-based protocol.
Remark, in the offline phase, the extended precomputation
variant can utilize all 24 threads on the server. In our stan-
dard exponential ElGamal-based protocol, the computational
effort of the precomputation and offline phase lies almost
completely on the single-threaded client.

In comparison to the standard variant, Figure 17 shows that
the online communication of the extended precomputation
variant is almost halved. In more detail, Figure 17 shows

24

32 128 512 2048 32 128 512 2048

65536 1048576

Standard 3.5 5.4 10.1 23.1 30.8 37.7 53.0 86.1

Precomp 2.7 4.7 9.8 23.6 16.9 24.1 40.2 75.7

0

20

40

60

80

100

O
n
li
n
e

R
u
n
n
in

g
T

im
e

in
 s

|Y|

|X|

Figure 15: Online computation costs of our extended precom-
putation and standard ElGamal-based PSI schemes.

32 128 512 2048 32 128 512 2048

65536 1048576

Standard 5 11 24 60 23 41 81 170

Precomp 28 36 54 106 350 378 437 579

0
100
200
300
400
500
600
700

P
re

co
m

p
u
ta

ti
on

 +
 O

ff
li
n
e

R
u
n
n
in

g
T

im
e

in
 s

|Y|

|X|

Figure 16: Precomputation + offline computation costs of our
extended precomputation and standard ElGamal-based PSI
schemes.

that especially the outgoing client communication is reduced
by a factor ≈ 290 (for |Y | = 32 and |X | = 220). Since we
use σ = 1 for these evaluations, for the standard exponential
ElGamal-based variant, the amount of sent and received bytes
by the client are almost equal (as shown in Figure 13). Thus
by increasing σ, we could reduce the online communication
of the extended precomputation variant. However, the total
communication costs, including the precomputation phase,
are always higher when using the extended precomputation
in comparison to the standard variant.

D.6 Practical Aspects
More and more PSI protocols are actually implemented and
deployed [51; 89]. We will therefore discuss some aspects
that are relevant in practice.

Practical Security A practical security problem is side-
channel leakage, which is not considered in our security

32 128 512 2048 32 128 512 2048

65536 1048576

Standard 3.1 6.2 13.8 34.7 11.7 22.3 46.0 99.1

Precomp 1.6 3.1 7.0 17.8 5.9 11.2 23.1 50.0

0

20

40

60

80

100

120

O
n
li
n
e

C
om

m
u
n
ic

at
io

n

in
 M

B

|Y|

|X|

Figure 17: Online communication costs of our extended pre-
computation and standard ElGamal-based PSI schemes.

32 128 512 2048 32 128 512 2048

65536 1048576

Standard 1.56 3.12 6.99 17.79 5.85 11.17 23.08 49.98

Precomp 0.02 0.05 0.22 0.87 0.02 0.06 0.22 0.88

0

10

20

30

40

50

60

O
u
tg

oi
n
g

C
li
en

t
O

n
li
n
e

C
om

m
u
n
ic

at
io

n
 i
n
 M

B

|Y|

|X|

Figure 18: Outgoing online communication costs for the client
using our extended precomputation scheme.

model. If the running times for certain input item distribu-
tions differ, an adversary might gain additional information
about the parties’ inputs. The (non-constant) multiplications
of plaintext with encrypted data are prone to introduce side-
channel leakage since, generally, larger plaintexts increase
the computation time. We remark that side-channel leakage
is an actual problem of our implementations (as indicated
in Figure 14). However, in practice, the running time can
be randomly increased to obfuscate the exact value. A more
secure approach could avoid timing side-channels by using
randomized input elements by an additional OPRF masking
step.

Implementation Performance Our current exponential El-
Gamal implementation supports all elliptic curves offered
by the OpenSSL ECC interface [86]. However, other non-
supported elliptic curves like Curve25519 [13] or GLS254
[1; 8] provide faster group operations and might improve
practical performance. The libscapi library provides a nice

25

interface to access different PKE schemes. However, when
using ECC-based ElGamal, using libscapi comes at the cost of
many datatype conversions during the computation. An imple-
mentation that directly links to and uses the same datatypes
as OpenSSL [86] could, thus, improve the performance of the
ElGamal-based implementation. Likewise, libscapi’s encod-
ing of ECC-based ElGamal ciphertexts could be improved by
using elliptic curve point compression [55] or, at least, binary
encoding of a curve point’s (x,y) ∈ Z2

p coordinates. With mi-
nor implementation adjustments, we expect to decrease the
communication overhead by at least 50%.

Server Updates For applications like contact discovery
[30], it is desirable to support updates of the input sets and
compute the updated intersection without executing the whole
PSI protocol again. PSI protocols that efficiently support up-
dates have been considered by Kiss et al. [59] and Badri-
narayanan et al. [10]. The complexity of an update step
should thereby only increase with the number of additions
and deletions, but not the set size itself. For our ElGamal-
based scheme, we can use the same server update approach
as presented by Janneck et al. [54].

D.7 Hashing Failure Evaluation
As mentioned, theoretical analyses of the hashing failure prob-
abilities for Cuckoo hashing and especially blocked Cuckoo
hashing are missing and left for future work. However, similar
to other works on hashing-based PSI [30; 76; 78], we empir-
ically measure the failure probabilities of the used δ-block
Cuckoo hashing as a foundation for the later performed eval-
uation. We will use the interpolated formulas of Demmler et
al. [30] for the adjustment of the slack factor β1 of the outer
Cuckoo hash table. For the nested Cuckoo hash table and thus,
the δ-block inner Cuckoo hashing we evaluate the failure prob-
ability with k = k2 = 2 hash functions using the random-walk
reinsertion strategy with tabulation hashing [31; 79].

For each parameter combination, we perform at least 10000
hashing attempts. The number of hashing attempts it not high
enough to empirically validate failure probabilities of, e.g.,
2−40, as also discussed in related works [30; 38; 78]. For a
failure probability of 2−40, we need expected 240 hashing at-
tempts to observe on hash failure which is infeasible due to
limited computational resources. However, to strengthen the
validity of our empirical evaluation, we provide 99.99% confi-
dence intervals [26] for the estimated failure probabilities. As
in related work [30; 78], we use an input set chosen uniformly
at random. In the following evaluation, we call β the ratio
between the table size and the number of elements. Since we
want to adjust δ = O(

√
|X |/|Y |) for sublinear communica-

tion, we want to use large δ (assuming |Y | ≪ |X |). Figure 19
shows that with already δ = 8, the failure probability is so
low that for β > 1.008, we observe no failure. For the fol-
lowing evaluation, we will use δ-block Cuckoo hashing with

β2 = 1.1, which is far higher than the interpolated β≈ 1.012
for a failure probability of≤ 2−40 However, from a theoretical
point of view, this argumentation is questionable and requires
a closer analysis in future work. Remark, that we do not use
Cuckoo table stashes in our evaluation, since blocked Cuckoo
hashing already decreases the failure probability sufficiently.

0.0 -0.1
-2.2

-6.8

-15.0

R² = 0.99997

-50

-40

-30

-20

-10

0
1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014

Lo
ga

ri
th

m
ic

 E
rr

or

Pr
ob

ab
ili

ty

Ratio between the table size and the number of elements

Measured

Interpolated

Figure 19: Failure Rate (log2 of mean failure probability)
for 8-block Cuckoo Hashing using k = 2 hash functions and
inserting 8000 elements. The error bars show the 99.99%
Clopper-Pearson confidence intervals [26]. The interpolation
uses polynomials of degree ≤3 for which the coefficient of
determination R2 is shown.

E Discussion

We expect our proposed nested Cuckoo hashing scheme to be
of independent interest for other PSI-related 2PC protocols.
Likewise, the formalization of private indexed equality (PIE)
can serve as a basis for future work and be directly applied
to PIR-PSI [30]. The AHE-based PSI protocol (described
in Subsection 3.3) with δ-block Cuckoo hashing scheme
achieves sublinear communication complexity for any AHE
scheme. Thus, our protocol could also be used with other
AHE schemes like Paillier [71].

A problem remains in the complex analysis of failure rates
for the nested Cuckoo scheme, especially the combination
of failure rates for the maximum bin size (as discussed by
Pinkas et al. [78]) and the δ-block Cuckoo hashing. Even if
we rely on empirical bounds, selecting the correct parameters
for the nested Cuckoo hashing is non-trivial. However, given
empirically interpolated failure probability equations like in
PIR-PSI, this step could be automated like for parameters of
(leveled) FHE schemes [9].

Exponential ElGamal-based Protocol Our exponential
ElGamal-based constructions in Subsection 3.4, only relies
on the simple ElGamal encryption and DDH assumption. Re-
mark, additively homomorphic exponential ElGamal is easy
to implement given practical libraries like OpenSSL [86].

With total running times of less than 7 seconds and commu-
nication of≈6 MB (for |Y | ≤ 128, |X |= 216), our evaluations

26

in Subsection 5.2 attest to practical performance when using
parallelization. For applications like private contact discovery,
smaller online running times (e.g., <1 second) for larger sets
are desirable and achieved by other protocols [23; 61; 72].
However, due to the familiarity of the underlying encryption
scheme, the small communication costs, and the simple imple-
mentation, we expect our exponential ElGamal-based protocol
to be actually relevant for certain practical applications.

BGV/BFV-based Protocol Our evaluation shows that for
many input sizes, the BGV/BFV-based protocol variant out-
performs our ElGamal-based approach, e.g., by a factor of
≈100 for |Y |= 4096. Using hardware acceleration for lattice-
based schemes like Intel’s HEXL extension might further
improve the practical performance. However, the comparison
is only valid for small bit sizes of ρ = 32, which might be un-
suitable for many practical applications. Likewise, to ensure
server privacy, we would require an additional OPRF mask-
ing step. Remark, the underlying cryptographic ring LWE
assumption is well-established (in the meanwhile) and might
be secure against quantum computers (in contrast to DDH).

E.1 Comparison to FHE-based PSI [22; 23;
27]

Chen et al. [23] have presented another PSI protocol based
on (leveled) FHE (referred to as FHE-PSI). This work has
been later improved by Chen et al. [23] and Cong et al. [27] to
achieve state-of-the-art performance. As mentioned in Subsec-
tion 1.1, FHE-PSI uses homomorphic evaluations of polyno-
mials to check item membership. Depending on the ciphertext
packing, our BGV/BFV-based protocol needs only a constant
number of ciphertext-ciphertext multiplications. The many
improvements of FHE-PSI allow to perform a server online
computation in ≈ 2.34 s (for |Y |= 4096 and |X |= 220). This
comes at the cost of an offline computation time taking ≈ 29
s. Remark, to achieve semi-honest security, the offline time
cannot be reused for other client’s [22]. For the same pa-
rameters |Y |, |X | we achieve a total running time of 6.89 s
which additionally includes the offline computation, client
computation and communication. Remark, that Cong et al.
allow bit-lengths ρ > 80 where ours are only ρ = 32 as in
Chen et al. [23]. However, we think our scheme can support
larger bit-lengths and so-called labeled PSI analogous to the
improvements of Cong et al. [27] and Chen et al. [22]. In
contrast to Cong et al., our BGV/BFV-based protocol could
also benefit from many PIR improvements as outlined in Sub-
section E.3.

E.2 Comparison to DH-based PSI [82; 85]

Rosulek and Trieu have presented improvements to the orig-
inal DH-PSI protocol [49] leading to a fast protocol for

small set sizes. Depending on the application, our ElGamal-
based protocol is also only practical for small server set sizes
|X | ≤ 216. In comparison to DH-PSI, our protocol is adapted
to a unbalanced asymmetric setting assuming a client with
less computational resources. An asymmetric execution of
DH-PSI would require that the client performs O(|X |) expo-
nentiations (whereas we require O(

√
|X |)). For |Y |= 32 and

|X | = 220), we only need communication costs of 10.9 MB
(as shown in Figure 10 in the appendix). A similar (asym-
metric) execution using DH-PSI would require at least ≈ 30
MB. Resende and Aranha have presented another protocol
based on DH for the (asymmetric) unbalanced setting which
achieves performance comparable to our FHE-based proto-
col [82]. However, the used filter techniques introduce false-
positives and require a large client state (linear in O(|X |)) that
is transferred in an item-dependent precomputation phase.
Further, in contrast to other DH-based protocols [82; 85], our
homomorphic encryption based approach allows extensions
like labeled PSI [22] and so-called PSI-CA (outlined in Sub-
section E.3).

E.3 Future Work
In this section, we provide an overview of potential future
work based on our PSI protocol and the described extensions.
We expect our nested Cuckoo hashing construction also offers
a basis for potential future work, which is not discussed in
this work.

Generic Post-Computation Different variations of the PSI
functionality have been proposed [27; 37; 51; 52; 76]. In
the so-called PSI-CA problem, the client shall only learn the
cardinality of the set intersection [37]. Our AHE-based PSI
protocol (without FHE ciphertext packing) can be adjusted to
solve the PSI-CA problem with almost no extra computational
effort. Instead of sending back the server results for each outer
Cuckoo table position, the server shuffles all ciphertext results
c f before sending them back. If a shuffled c f decrypts to 0,
the client only learns that one item x ∈ X equals one y ∈ Y
and can, thus, compute the intersection set cardinality |X ∩Y |.
However, we are also interested in computing any fixed but ar-
bitrary function on the intersection as considered by some PSI
protocols [54; 64; 69; 75]. For BFV/BFV, instead of simply
subtracting and randomizing in our AHE-based comparison
step, the server could use improved homomorphic compar-
isons [50] that yield an encryption of one if the elements are
equal and an encryption of zero otherwise. The encrypted
zeroes and ones can be used to run (leveled) FHE circuits for
arbitrary functionalities.

Hashing Guarantees The problem with all Cuckoo
hashing-based PSI protocols is a missing analytical bound
for the hashing failure probability. Recently, Garimella et al.
[38] have presented a construction based on several Cuckoo

27

hashing tables that can provably reduce the failure probability
given a higher (empirically validated) failure rate per table.
However, the construction of Garimella et al. [38] is based on
an encodings for masked elements that does not fit our com-
parison approach. The question of whether a variation of our
AHE-based scheme can be combined with the constructions
of Garimella et al. [38] is left for future work. The δ-blocked
Cuckoo hashing on the server side also suffers from missing
theoretical failure analyses. However, the theoretical results
mentioned by Pinkas et al. [72] might offer implications for
our constructions for large values of δ.

Improvements from PIR schemes Our protocol uses ideas
many ideas from PIR protocol constructions, especially the
bit-wise encryption of the index vectors and the construc-
tion for square-root complexity [5; 62]. As such, we expect
that our protocol can directly benefit from a compressions of
the encrypted index vector as proposed by Angel et al. [7].
Likewise, compressible FHE [41] could be used to reduce
the computation complexity. State-of-the-Art PIR protocols
also reduce the [5; 7; 67] server result size. However, com-
bining our AHE-based comparison with the compression of
the server result is not straightforward. Future work for the
BGV/BFV-based variant could consider a different ciphertext
packing approach. Instead of packing together all client ele-
ments, for each outer Cuckoo table entry, the corresponding
client element and EIV could be packed into one (or more)
ciphertexts. The resulting protocol would benefit from very
small client set sizes in comparison to our packed batched
computation (as shown in subsubsection 5.2.1). However, the
alternative packing approach requires homomorphically rotat-
ing ciphertexts, which might increase the running times for
larger |Y |.

Algorithm 1 PSI from nested Cuckoo hashing and AHE
Require: H1, . . . ,Hk1 : M →{1, . . . , l1}

and H ′1, . . . ,H
′
k2

: M →{1, . . . , l2}
1: procedure SERVER-PSI(X)
2: (CT 1,stash1), . . . ,(CT l1 ,stashl1) ← CREATENEST-

EDCUCKOOHASHTABLE(X)
3: for i← 1, . . . , l1 do
4: L← []
5: cC← RECEIVEENCRYPTEDELEMENT()
6: for j← 1, . . . ,k2 do
7: EIV j ← RECEIVEENCRYPTEDINDEXVEC-

TOR()
8: for d← 1, . . . ,δ do ▷ For each bin in the

inner δ-block CT
9: cS← ⟨EIV j,CT i[d]⟩ ▷

Homomorphically evaluated dot product
10: r←$ M \{0} ▷ Fresh randomness
11: c f ← r⊡ (cS ⊟ cC)
12: PUSHTOLIST(L, c f)
13: end for
14: end for
15: for e ∈ stashi do
16: r←$ M \{0}
17: c f ← r⊡ (cS ⊟ e)
18: PUSHTOLIST(L, c f)
19: end for
20: L← SHUFFLE(L) ▷ Random permutation
21: SENDRESULTLIST(L)
22: end for
23: end procedure
24: procedure CLIENT-PSI(Y)
25: CT ← CREATECT(Y)
26: R←{}
27: for i← 1, . . . , l1 do
28: e←CT [i]
29: c← Enc(e)
30: SENDENCRYPTEDELEMENT(c)
31: for j← 1, . . . ,k2 do
32: EIV j←CREATEENCRYPTEDINDEXVECTOR(H ′j(e))
33: SENDENCRYPTEDINDEXVECTOR(EIV j)
34: end for
35: L← RECEIVERESULTLIST()
36: for c ∈ L do
37: if DECRYPT(c) = 0 then R← R∪{e}
38: end if
39: end for
40: end for
41: return R
42: end procedure

28

	Introduction
	Related Work
	Contributions
	Outline

	Preliminaries
	Notations and Terminology
	Secure Two-Party Computation
	Private Set Intersection
	Private Information Retrieval

	Homomorphic Encryption
	Additively Homomorphic Encryption
	(Exponential) ElGamal Encryption
	(Leveled) Fully Homomorphic Encryption

	Hashing
	Universal Hashing
	Cuckoo Hashing

	Hashing-based Private Set Intersection
	Private Set Membership-based psi
	pir-based Private Set Intersection Protocols

	Our Protocol
	Nested Cuckoo Hashing
	Generic Private Set Intersection Protocol
	Private Set Intersection from ahe
	Exponential ElGamal-based Protocol
	BGV/BFV-based Protocol

	Analysis
	Security
	Correctness
	Client Privacy
	Server Privacy

	Complexity

	Implementation and Evaluation
	Implementation
	Performance Evaluation
	Different Encryption Schemes
	Parallelization

	Protocol Details
	Full Analysis
	Security Proofs
	Complexity Proofs

	Implementation Details
	Further Evaluations and Details
	Parameters
	Different Number of Outer Cuckoo Hash Functions
	Different Cuckoo Table Skewness
	Item Lengths
	Precomputation
	Practical Aspects
	Hashing Failure Evaluation

	Discussion
	Comparison to FHE-based PSI Chen2017, Chen2018, Cong2021
	Comparison to DH-based PSI Rosulek2021a, Resende2021
	Future Work

