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Abstract

In the traditional consensus problem (aka Byzantine agreement), parties are required to agree
on a common value despite the malicious behavior of some of them, subject to the condition that
if all the honest parties start the execution with the same value, then that should be the outcome.
This problem has been extensively studied by both the distributed computing and cryptographic
protocols communities. With the advent of blockchains, whose main application—a distributed
ledger—essentially requires that miners agree on their views, new techniques have been proposed
to solve the problem, and in particular in so-called “permissionless” environments, where parties
are not authenticated or have access to point-to-point channels and, further, may come and go
as they please.

So far, the fastest way to achieve consensus in the proof-of-work (PoW)-based setting of
Bitcoin, takes O(polylogκ) number of rounds, where κ is the security parameter. We present the
first protocol in this setting that requires expected-constant number of rounds. Furthermore,
we show how to apply securely sequential composition in order to yield a fast distributed ledger
protocol that settles all transactions in expected-constant time. Our result is based on a novel
instantiation of “m-for-1 PoWs” on parallel chains that facilitates our basic building block,
Chain-King Consensus. The techniques we use, via parallel chains, to port classical protocol
design elements (such as Phase-King Consensus, super-phase sequential composition and others)
into the permissionless setting may be of independent interest.

∗An abridged version of this paper appears in Proc. EUROCRYPT 2024.
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1 Introduction

Byzantine agreement (BA, aka consensus) is a classical problem introduced in [PSL80] that asks n
parties to agree on a message so that three properties are satisfied: (i) termination, (ii) agreement
and (iii) validity, in a setting where any t of the parties may behave maliciously. Validity enforces the
non-triviality of solutions, as it requires that if the non-faulty/“honest” parties start the execution
with the same value, then that should be the output value.

BA has been classically considered in a “permissioned setting”: the parties running the protocol
are setup so they are able to reliably and directly communicate with each other, or have access to a
public-key directory that reliably lists all their public keys. This is captured by a suitable network
or trusted setup assumption. The “permissionless setting,” on the other hand, was introduced with
the development of the Bitcoin blockchain [Nak08], and refers to an environment where parties
may enter the protocol execution at will, the communication infrastructure is assumed to deliver
messages without reliably identifying their origin, and the trusted setup is reduced to the existence
of an unpredictable public string—the “genesis block” (which sometimes for simplicity we will just
refer to as a CRS [common reference string], or “public-state setup” [GK20]).

BA in the permissionless setting above using proofs of work (PoW)1 was first (formally) studied
in [GKL15]. In terms of running time, the protocols presented in [GKL15] run in O(polylogκ)
rounds, where κ is the security parameter and address the binary input case, where the parties wish
to agree on a single bit. Subsequent work improved on various aspects at the expense of stronger
assumptions. For example, Andrychowicz and Dziembowski [AD15] offered a multi-valued BA
protocol also based on PoWs (RO) but with no trusted setup, assuming in addition the existence of
existentially unforgeable signatures, and with a running time proportional to the number of parties.
The latter was in turn improved by Garay et al. [GKLP18] to O(polylogκ) rounds, and just assuming
PoWs and no trusted setup. Recently, an expected-constant-round BA protocol was introduced
by Das et al. [DEF+22], by requiring in addition to the Andrychowicz and Dziembowski [AD15]
assumptions the existence of verifiable delay functions (VDFs) [BBBF18]. Refer to Table 1 for a
comparison of existing PoW-based (or “PoW-inspired”) BA protocols.

Protocol Setup & assumptions Round complexity

[AD15] RO + SIG O(n)

[GKL15] CRS + RO O(polylogκ)

[GKLP18] RO O(polylogκ)

[EFL17] RO + SIG + TLP Expected O(1)

[DEF+22] RO + SIG + VDF Expected O(1)

This paper CRS + RO Expected O(1)

Table 1: Round complexity of PoW-based (or PoW-inspired) permissionless Byzantine agreement
protocols, with their corresponding setup and cryptographic assumptions.

Given the above state of the art, in this work we focus on the question of solving permis-
sionless BA in the original PoW-based blockchain model of Bitcoin with expected-constant round
complexity.

1As implemented in the Bitcoin blockchain, via hash functions modeled as a random oracle (RO) [BR93].
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1.1 Overview of Our Results

We present a new permissionless PoW-based multi-valued BA protocol that has expected-constant
round complexity and demonstrate how it can be used to solve permissionless state machine repli-
cation (SMR, or, equivalently, a distributed ledger) [Sch90] with fast settlement. In more detail,
our results are as follows.

A new PoW-based permissionless consensus protocol. We put forth Chain-King Consensus—the
first PoW-based permissionless consensus protocol that achieves agreement and validity in expected-
constant time. Our construction is based on mining on parallel chains, and “emulating” a classical
“phase-king” consensus protocol [BGP89] with a randomized chain (the “chain-king”) selection rule
on top of the parallel chains construction. Our protocol is based on the following ideas.

First, we revisit the parallel chain technique (cf. [FGKR18, BKT+19, FGKR20]) as a method
for combining multiple blockchains advancing in parallel. Our key observation is that running
m = polylog(κ) parallel chains is sufficient to maintain independence via an m×12 PoW tech-
nique [GKL15] (while prior work set m = Θ(κ) and hence at best was only able to argue “sub-
independence”; see [FGKR20]). In fact, our protocol runs m independent instances of 2×1 PoWs,
with the latter component being responsible for transaction processing.3 The key property we uti-
lize is that in a constant number of rounds, a fraction of the m parallel chains will be sufficiently
advanced to offer a form of “common prefix” property (cf. [GKL15]) with a constant probability of
success.

Second, and contrary to prior work on parallel chains, we “slice” the chain progression into stages
where parallel chains can cross-reference each other. In the first stage, parties converge on their
views and ensure fresh randomness is introduced; in the second stage they process transactions; and
in the third, they prepare for the cross referencing by the upcoming stage, after which the stages
rotate indefinitely. A key property of our cross-referencing rule is the concept of a dense chain—a
strengthening of the concepts of “chain growth” and “chain quality” [GKL15]. Given the short
length of each stage (a constant number of rounds), chain density ensures that the adversary faces
difficulties to create multiple compromised chains. The key conclusion of this chain structure is
phase-oblivious agreement, which refers to the fact that, on a large fraction of chains, the majority
of input values are contributed by honest parties.

The core agreement component of our protocol follows the “phase king” approach (cf. [BG89,
BGP89]). The key idea of porting this protocol design technique to the permissionless setting is
to map the chains in the parallel chains cluster to the roles of the different parties in the classical
protocol. As a result, the king itself is one of the chains. Moreover, due to the “dilution” of
adversarial power that occurs in the parallel chains setting, we can set the king deterministically to
be a specific chain. This technique, which may be of independent interest, results in our “Chain-
King Consensus” algorithm.

Chain-King Consensus is one-shot, in the sense that it will provide just a single instance of
agreement in the permissionless setting in expected-constant time. The natural question given
such protocol is whether it is possible to apply sequential self-composition with running time re-
maining expected linear in the number of instances. This is a delicate task due to non-simultaneous
termination (cf. [CCGZ16]). We provide a round-preserving sequential composition solution that
first adapts Bracha termination [Bra84] to the permissionless setting and reduces the “termination
slack” among honest parties to 1 phase. Then, we adapt the super-phase expansion technique
of [CCGZ16] to widen the interval between state updates from 1 phase to 4 phases. We identify a

2Pronounced “m-for-1.”
3As in [GKL15], the “transactions” being processed in a BA protocol are the input values being proposed by the

parties.
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set of good properties for a sequence of phases that when they occur parties that are in different
timelines can converge on the same single phase and make a unanimous decision to update their
state.

A new PoW-based permissionless fast SMR protocol. Given that Chain-King Consensus is a one-
shot multi-valued Byzantine agreement protocol terminating in expected constant rounds, next
we show how to build a state machine replication protocol on top of its sequential composition.
The resulting protocol achieves consistency and expected-constant-time liveness for all types of
transactions (including the conflicting ones). This answers a question left open in previous work on
PoW-based fast ledgers [BKT+19, FGKR20], where fast settlement of transactions was offered only
for non-conflicting transactions, thus making our ledger construction the first expected-constant
processing time ledger in the PoW setting. We note that fast processing of conflicting transactions
can be crucial for many applications such as sequencing smart contract operations. We also describe
how it is possible to “bootstrap from genesis”: this essential operation permits new parties to join
the protocol execution as well as facilitate third party observers who wish to connect and parse the
distributed ledger in order to issue transactions or read transaction outputs.

1.2 Related Work

Round complexity of synchronous BA protocols. For “classical” BA protocols with de-
terministic termination, it is known that t + 1 rounds [FL82] are necessary, where t denotes the
upper bound on the number of corrupted parties, and matching upper bounds exist, both in the
information-theoretic and cryptographic settings [LSP82, DS83, GM93].

The linear dependency of the number of rounds on the number of corrupted parties can be
circumvented by introducing randomization. Rabin [Rab83] showed that consensus reduces to
an “oblivious common coin” (OCC)—i.e., a common view of the honest parties of some public
randomness. As a result, randomized protocols with linear corruption resiliency and probabilistic
termination in expected-constant rounds is possible. Later on, Feldman and Micali [FM88] showed
how to construct an OCC “from scratch” and gave the first expected-constant-time Byzantine
agreement protocol, tolerating the optimal number of corrupted parties (less than 1/3 of the total
number of parties), in the information-theoretic setting. In the setting where trusted private setup
(i.e., a PKI) is provided, Katz and Koo [KK06] presented an expected-constant-round BA protocol
with optimal resiliency (less than 1/2 in the cryptographic setting).

We already mentioned that with the advent of blockchains, BA protocols that do not rely
on a fixed set of participants became possible. For PoW-based BA protocols, please refer to
the beginning of this section. Regarding Proof-of-Stake protocols, Algorand [CM19] uses verifiable
random functions (VRFs) to self-elect parties, and agreement and validity are achieved in expected-
constant time.

Regarding BA protocols based on some other assumptions, we note that in an unpublished
manuscript (also mentioned in the introduction) [EFL17], Eckey, Faust and Loss design an expected-
constant-round BA protocol based on PoWs and time-lock puzzles (TLPs). Further, Das et al.
[DEF+22] propose a BA protocol based on the much stronger primitive of verifiable delay functions
(VDFs) that also terminate in expected-constant time.

Many PoWs from one PoW. As mentioned in the introduction, Garay, Kiayias and Leonardos
[GKL15] showed how to use a Nakamoto-style blockchain to solve BA. Achieving the optimal
corruption threshold of less than 1/2 of the participants, however, presented some challenges, which
were resolved by the introduction of a technique called “2×1 PoW,” which is used to compose two
modes of mining, one for blocks and one for inputs. In a nutshell, in 2×1 PoW, a random oracle
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output is checked twice with respect to both its leading zeros and tailing zeros. Sufficient leading
zeros implies the success of mining a block, and that’s the original—i.e., Bitcoin’s—approach to
assess and verify whether a PoW has been produced, while sufficient trailing zeros imply the success
of mining an input. This scheme guarantees that both mining procedures can be safely composed
and the adversary is bound to its original computational power and is not able to favor one PoW
operation over the other.

The 2×1 PoW primitive has found applications in many other scenarios (e.g., [PS17]) and its
generalization—m×1 PoW—makes parallel chains possible and has been used to improve transac-
tion throughput [BKT+19] and for accelerating transaction confirmation [FGKR20]. We note that,
in the case of parallel chains existing m×1 PoW constructions cannot achieve full independence on
all parallel chains. We elaborate on this in Appendix A.

Non-simultaneous termination and sequential composition. A consequence of the round
complexity “acceleration” provided by randomized BA protocols is that their termination is prob-
abilistic and not necessarily simultaneous [DRS90]. This is problematic when this type of BA
protocol is invoked by a higher-level protocol. More specifically, parties would not be able to figure
out when to safely return to the higher-level protocol and start the next execution. One solution
is to run randomized BA protocols for O(polylogκ) rounds where κ is the security parameter. The
running time is still independent of the number of parties, and, with overwhelming probability,
parties would terminate and be able to start the next execution when O(polylogκ) rounds have
elapsed. A more sophisticated sequential composition approach is to employ so-called “Bracha
termination” and “super-round” expansion in order to preserve an expected-constant round com-
plexity (cf. [CCGZ16]). We adapt these techniques to the permissionless setting.

Settlement latency in state machine replication. Most PoW-based SMR protocols achieve
liveness in a time which is a function of the security parameter, hence suffering from long transaction
settlement latency. The “Ledger Combiner” approach [FGKR20] proposes a novel grade assignment
function to build a virtual ledger on top of different parallel ledgers, achieving constant settlement
time but only for non-conflicting transactions. Prism [BKT+19] also gives a PoW-based parallel
chain protocol with expected-constant settlement time, but only for non-conflicting transactions.
Other approaches to fast transaction settlement include Algorand’s [CM19], which being Proof-
of-Stake-based, achieves expected-constant settlement delay for all types of transactions. Finally,
Momose and Ren [MR22] achieve expected-constant confirmation delay, assuming a PKI and VRFs.

2 Model and Preliminaries

Our model of computation follows Canetti’s formulation of “real world” notion of protocol execution
[Can00a, Can00b] for multi-party protocols. Inputs are provided by an environment program Z
to parties that execute the protocol Π. The adversary A is a single entity that takes control of
corrupted parties. A can take control of parties on the fly (i.e., “adaptive”) and is allowed to observe
honest parties’ actions before deciding her reaction (i.e., “rushing”). To specify the “resources”
that may be available to the instances running protocol Π—for example, access to reliable point-to-
point channels or a “diffuse” channel (see below)—we will follow the approach of describing them
as ideal functionalities in the terminology of [Can00b].

Clock, random oracle, diffusion and CRS functionalities. We divide time into discrete
intervals called “rounds.” Parties are always aware of the current round (i.e., synchronous proces-
sors) and this is captured by a global clock GClock [KMTZ13]. By convention, the hash function
H to generate PoWs is modeled as a random oracle FRO. Message dissemination is synchronous
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and it guarantees that all honest messages sent at the current round to be delivered to all honest
parties at the beginning of the next round. This synchronous communication behavior is captured
by FDiffuse and the adversarial power is limited to reorder messages and let honest parties receive
messages originally from A in two adjacent rounds by selectively choosing the receiver in the first
round. Finally, we model a public-state setup by the common reference string (CRS) functional-
ity FD

CRS with some distribution with sufficiently high entropy. A full specification of the above
resources can be found in Appendix B.

Honest majority. We express our honest majority condition in terms of parties’ computational
power, measured in particular by the number of RO queries that they are allowed per round, as
opposed to by the number of parties (which are assumed to have equal computational power—cf.
[GKL15]).

Definition (Honest majority). Let hr, tr denote the number of honest and corrupted random
oracle queries at round r respectively. For all r ∈ N, it holds that hr > tr.

To limit the adversary to make a certain number of queries to FRO, we adopt the “wrapper
functionality” approach (cf. [GMPY11, BMTZ17, GKO+20])W(FRO) that wraps the corresponding
resource, thus enforcing the limited access to it.

Byzantine agreement. We adapt the definition of the consensus problem (aka Byzantine agree-
ment [LSP82]) to our permissionless setting (cf. [GKL15]). Note that here agreement implies
(eventual) termination.

Definition (Byzantine agreement). A protocol Π solves Byzantine Agreement in the syn-
chronous setting provided it satisfies the following two properties:
� Agreement: There is a round after which all honest parties return the same output if queried

by the environment.
� Validity: The output returned by an honest party P equals the input of some party P′ at round

1 that is honest at the round P ’s output is produced.

Blockchain notation. A block with target T ∈ N is a quadruple of the form B = ⟨ctr, r, h, x⟩
where ctr, r ∈ N, h ∈ {0, 1} and x ∈ {0, 1}∗. A blockchain C is a (possibly empty) sequence of
blocks; the rightmost block by convention is denoted by head(C) (note head(ε) = ε). These blocks
are chained in the sense that if Bi+1 = ⟨ctr, r, h, x⟩, then h = H(Bi), where H(·) is cryptographic
hash function with output in {0, 1}κ. We adopt TS(B) to denote the timestamp of B; and, slightly
abusing the notations and omitting the time r, we will use C⌈k to denote the chain from pruning
all blocks B such that TS(B) ≥ r − k. Let C = ⟨C1, C2, . . . , Cm⟩ denote m parallel chains and Cj

the j-th chain Cj in C.

Finally, we introduce some basic string notation, which will be useful when describing our multi-
chain-oriented PoW mechanism. For a κ-bit string s, where κ is the security parameter, we will use
si (i ∈ [m]) to denote the i-th bit of s, [s]i∼m to denote the i-th segment after s is equally divided
into m segments—i.e., [s]i∼m = s[(i−1)∗κ/m]+1, . . . , si∗κ/m. We will write [s]R as the reverse of string

s (i.e., by flipping all its bits), and use [s]Ri∼m to denote the reverse of the i-th segment.

3 Chain-King Consensus

In this section, we present our permissionless expected-constant-time Byzantine agreement protocol,
which we name ChainKingConsensus4. We first sketch the basic protocol approach—parallel chains

4Drawing from the “Phase King” approach to solve classical consensus [BGP89].
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in Section 3.1 and phase-based chain-selection rule in Section 3.2. Then, we describe the main
protocol in Section 3.3. We next show how to adapt the one-shot protocol execution using sequential
composition in order to decide on a series of outputs in Section 3.4.

3.1 Parallel Chains and m×1 Proofs of Work

We introduce a new approach to achieve full independence of mining on parallel chains while
preserving the original simple structure. At a high level, our scheme emulates an ideal setting of m
parallel oracles while bounding the security loss that such parallel mining incurs. More specifically,
the protocol will runm = Θ(polylogκ) parallel chains; note that the number of bits allocated on each
chain will still be super-logarithmic in the security parameter (i.e., κ/Θ(polylogκ) = Ω(polylogκ)),
and hence the protocol will allow an arbitrary number of participants. Later we will show that (i)
poly-logarithmically many parallel chains suffice to achieve the desired convergence; and (ii) poly-
logarithmically many bits (those will be the bits available to each of the parallel random oracle
invocations) will suffice to eliminate bad events with respect to the random oracle.

Our parallel chain structure. We will use m = Θ(log2 κ) parallel chains as the basic building
block for ChainKingConsensus. Importantly, on each chain we will employ the 2×1 PoW tech-
nique [GKL15] to bind the mining process of the chain with input messages (which will be used
to reach consensus; details in Section 3.3). At a high level, this can be viewed as running m ideal
parallel repetitions of a 2×1 PoW blockchain.

We will call the blocks that form the blockchains a chain-block (or block for short) and denote
it by B, and the application data field, which will contain consensus-related values, we will call
an input-block, and denote it by IB. Since the protocol will run an m chain production procedure
and m input-block production procedure, we will make a one-to-one correspondence between the
chain-blocks and input-blocks. More precisely, the input-block produced by the i-th segment of the
RO output will only be valid on the i-th parallel chain. See Figure 1 for an illustration of the RO
output and how successes on the bounded mining procedures are achieved.

000000 · · · 101110 011000 · · · 001011 · · · · · · 000000 · · · 000000 010111 · · · 000000
κ/m κ/m κ/m κ/m

κ

B1 Bm−1 IBm−1 IBm

Figure 1: The mining process on our parallel chain. We assume that the target value is appropriately
set so that at least 6 leading zeroes imply a success of the chain’s block mining and at least 6 tailing
zeroes blocks implies a success of the input mining. The blocks’ superscript denotes on which chain
they will be valid.

We now provide details on the blocks’ structure. Since the mining procedure of chain-blocks
and input-blocks are bound together, they share the same block header ⟨ctr, r, h, st, h′, val⟩, which
is a concatenation of random nonce ctr ∈ N, timestamp r ∈ N, previous hash reference h ∈ {0, 1}κ,
block state st ∈ {0, 1}∗ (Merkle root of content), input freshness h′ ∈ {0, 1}κ, and input message
val ∈ {0, 1}∗. Note that the previous hash h is a string of κ bits, consisting of m segments of
the previous block hash of length κ/m. Block state st is a concatenation of m block states; this
is by convention the Merkle tree root of block content whose details we will omit for now (later
on we will use Blockify to denote the procedure of generating block states). Input freshness h′ is
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a string of κ bits and can be extracted from the (local) chain by procedure ExtractInputFreshness.
We defer the details of this algorithm to Section 3.2 and use it in a black-box way here. The input
value val is the message that is of concern to the consensus protocol. For instance, in the case of
binary consensus, val ∈ {0, 1} and in multi-valued consensus val is a value picked from a larger
input domain. Looking ahead, we note that when performing “slack” reduction and sequential
composition of protocol instances, val may convey additional information (Section 3.4). Moreover,
we remark that for all parallel chains, parties will try to mine the input-block that contains the
same input message, hence, unlike h, st and h′, in this field all values only need to appear once.

We note that as multiple mining procedures are bound together, for a valid block with respect
to a particular chain, those header bits associated with other procedures become “dummy” and will
only be useful when validating whether the block corresponds to a successful PoW. We now provide
details about such dummy information. Regarding a valid chain-block on the i-th chain, only the
nonce ctr, timestamp r, i-th segment of previous hash reference [h]i∼m and i-th segment of block
state [st]i∼m are useful information. All other bits in h and st, along with input freshness reference
h′ and input message val are dummy information and they are merely used in the PoW validation5

On a similar vein, for input-blocks that are valid on the i-th chain, only the nonce ctr, timestamp
r, input message val and i-th segment of fresh randomness [h′]i∼m are useful information; all other
bits in h′, previous hash reference h and block content root st are dummy information.

We are now ready to describe the mining procedure. Given a parallel chain C, block state st
and input val, first, the protocol extracts the previous hash reference by concatenating the i-th
segment of block hash computed from the tip of the i-th chain (recall that each segment is a (κ/m)-
bit string). (When the chain is empty it refers to the corresponding segment in the CRS.) Next,
after calling ExtractInputFreshness on C to obtain the input randomness, the protocol queries the
random oracle and gets output u. Then, it divides u into m segments of equal length and iterates
over those segments. If the original i-th segment is less than T , the protocol successfully mines a
new chain-block on the i-th chain and appends it to C. If the reverse of i-th segment is less than
T , the protocol succeeds in mining an input-block and stores it locally (and will be diffused in the
future). See Algorithm 1 for a full description of the mining procedure.

Algorithm 1 ParallelPoW(C, r, st, val)

1: h← ε
2: for i = 1 to m do
3: if Ci = ε then
4: h← h ∥ 0κ/m
5: else
6: B ← head(Ci) and h← h ∥ [H(B)]i∼m

7: end if
8: end for
9: h′ ← ExtractInputFreshness(C, r) ◁ Call Algorithm 2

10: u← H(ctr, r, h, st, h′, val)
11: IB← ε

▷ Check if PoW succeeds on any chain/input-block.
12: for i = 1 to m do
13: if [u]i∼m < T then C(i) ← C(i) ∥ ⟨ctr, r, h, st, h′, val⟩ ◁ Extend chain

5We note that later on (Section 3.2), after we introduce phase-based parallel chains, initial blocks in each phase
will have to provide a good fresh randomness h′ in order to pass the cross-chain validation check.
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14: if [u]Ri∼m < T then IB← ⟨ctr, r, h, st, h′, val⟩
15: end for
16: ctr ← ctr + 1
17: return C, IB

Basic properties of our parallel chain structure. As a warm-up, we present a preliminary
analysis of our parallel chain structure. The goal is to show that, when appropriately parameterized,
a constant fraction of the parallel chains will have “good” properties.

Our main analytical approach follows that in [GKL14, GKL17], where the focus is on whether
an execution on a single chain is typical—i.e., whether random variables related to the execution
on this single chain stays close to their expected values and bad events with respect to the RO
never happen. In [GKL14] it is proved that any execution of the protocol for a number of rounds
at least polylogarithmic in the security parameter, is typical with overwhelming probability.

Here we apply the above technique to a constant number of rounds and adapt it to our setting
where the mining procedure of chain-blocks and input-blocks are bound together. Importantly,
we are interested in the random variables expressing the total number of rounds that at least
one honest chain-block (resp., input-block) is produced, the total number of rounds that exactly
one honest chain-block is produced, and the total number of adversarial successes on chain-blocks
(resp., input-blocks). For the sake of conciseness, here we provide an informal description of typical
executions and defer all full definitions and proofs to Appendix D.1.

Definition 1 (Typical execution, informal). An execution is typical if for any set of at least
k consecutive rounds, bad events (collisions) on the RO never happen, and the following quantities
stay close to their expected values:

(i) the number of rounds where at least one honest chain-block (resp., input-block) is produced;
(ii) the number of rounds where exactly one honest chain-block is produced;
(iii) the number of adversarial chain-blocks (resp., input-blocks).

Note that since in our case k is a constant, the probability that in a k-round window the
execution is typical is constant due to Chernoff bounds (Theorem 9). Hence, the probability that
an execution running for L = poly(κ) rounds is typical will be negligible. Nonetheless, let us
consider a constant number ρ ∈ N+ of rounds. When the protocol is appropriately parameterized,
the execution running for ρ steps will be typical with constant probability. The intuition here is
that, the number of windows of at least k rounds within the period of ρ rounds is Θ(ρ2). For any
constant β < 1, when the probability that a k-round time window is typical is α, then by choosing
ρ ≤

√
lnβ/ lnα we get the desired convergence probability. Moreover, for the same β, ρ can be

chosen as an arbitrary multiple of k (see Appendix D.1 for details).
Given the full independence of themmining processes, we show that when the number ofm par-

allel chains is sufficiently large, the success probability of a single execution being typical translates
to the fraction of typical executions among the m parallel executions, yielding the following:

Theorem 1. For any β < 1, running m = Θ(log2 κ) parallel chains as described above for a
constant number ρ of rounds, results in at least a β fraction of them being typical with overwhelming
probability in κ.

10



3.2 From Parallel Chains to Phase Oblivious Agreement

Given that running parallel chains from the CRS enjoy good properties only when the lifetime of
the execution is bounded by a constant (Theorem 1), we now show how to combine the parallel
chain structure with a novel phase-based cross-chain reference scheme in order to provide fresh
randomness and extend the protocol running time to any polynomial in terms of the security
parameter. This gives us novel chain validation and selection rules. Moreover, we show that in
each phase, the approach achieves what we call phase oblivious agreement, which serves as an
essential building block in our ChainKingConsensus protocol.

In this section, we assume static participation where parties are always online and their number
is fixed yet unknown to any protocol participant. Later on (Section 4.2), we elaborate on how to
let new joining parties synchronize with other participants.

Protocol phases. We divide the protocol execution time into sequential, non-overlapping phases
of length ρ rounds. Note that ρ is a constant and at round i parties are in the ⌈i/ρ⌉-th phase
(the phase index starts at 1). As we assume synchronous processors, parties are always aware of
the current round and phase numbers (they maintain local variables r and phase to store this
information).

In contrast to the “conventional” longest-chain consensus rule where parties keep extending
chains starting from the genesis block, in our protocol in each phase parties will build parallel

chains separately, which we will denote C(i), and the j-th chain in the i-th phase by C(i)
j . Let C

now denote the sequence of parallel chains in each phase—i.e., C = C(1),C(2), . . . ,C(i). In the first
phase, C(1) points to the CRS, thus the adversary starts the computation simultaneously with the
honest parties. Unfortunately, the CRS is only available at the onset of the execution, and hence,
näıvely, there is no method to prevent the adversary from mining into the future—e.g., when it is
in phase i, he can mine blocks for phase i + 1. If pre-mining is possible for an unbounded time,
then no security guarantees can be achieved in the (i+1)-th phase even if typical execution holds.

One conventional method to solve the pre-mining problem in blockchains (cf. [PS17]) consists
of referring to a stable block with randomness that is unpredictable to the adversary (e.g., an
honest block). Unfortunately, since phases here only last for a constant number of rounds, thus
far there is no approach that would enable parties to explicitly agree on common unpredictable
randomness in constant time (as this would directly imply full agreement on a non-trivial fact,
which is our goal). Without a full agreement on common randomness, the adversary can split the
honest computational power by building a chain with randomness that is acceptable by, say, half
of the honest parties but that will be rejected by the rest. In such way the adversary can then split
the honest computational power and thus completely break the security of the protocol.

To overcome the failure of the conventional common fresh randomness approach, we propose a
new scheme called “cross-chain reference” to secure the execution on parallel chains in the second
and subsequent phases. In short, cross-chain reference asks for all chains in the i-th phase to point
to a large fraction of the chains in the (i− 1)-th phase that are “dense,” a property which we will
elaborate on soon.

As a preparation for securing phase-based parallel chains, we first introduce the structure of a
phase (see Figure 2). A phase, consisting of ρ rounds, is further divided into three non-overlapping
stages. A block is assigned to a specific stage based on its timestamp. The first stage, view
convergence, consists of the first ρview rounds in a phase. It guarantees that at the end of this stage,
on sufficiently many parallel chains, honest parties agree on a common prefix obliviously and they
input some recent randomness so that the adversary cannot pre-compute too many blocks for the
next stage. Then, the second stage, output generation, which consists of ρoutput rounds after the
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view convergence stage, is used to decide the output of this phase. Only input blocks that are
included by chain-blocks in this stage will be considered in the decision making procedure at the
end of this phase (details in Section 3.3). The length ρoutput is chosen sufficiently large so that the
honest input-blocks account for the majority on sufficiently many parallel chains. Finally, the last
stage, reference convergence, consists of the last ρref rounds. This last stage is used to secure the
blocks that will be pointed by the cross-chain reference. Note that ρref is also the upper bound
on adversarial pre-mining—i.e., the adversary cannot start to mine blocks in the next phase ρref
rounds earlier than the honest parties.

view convergence

ρview

output generation

ρoutput

ref. convergence

ρref

Phase i (ρ rounds)

denseChains[i][3]

Figure 2: An illustration of a party P’s local parallel chains Clocal and dense chains denseChains.
In order for initial blocks in phase i+ 1 to be valid, they should point to at least 2 dense chains in
phase i. In this toy example, all blocks point to the first dense chain in Clocal and the third dense
chain in denseChains. Note that the second chain is not dense.

Dense chains. Next, we introduce a new concept called dense chains which asks for the density of
a chain (in terms of the number of blocks with timestamps in a given time period) and can also be
used as a proof of “chain growth” (cf. [GKL14]). Specifically, let τ, s denote the density parameter.
We say a chain C is “dense” (formal definition coming up below) in a time window (i.e., sequence
of rounds) {u, . . . , v} if for any set S of at least s consecutive rounds in {u, . . . , v}, C has at least
τ · |S| blocks with timestamps in S.

When referring to a single chain C in phase-based parallel chains (e.g., the j-th chain in the i-th
phase), we will say that C is dense if for any set S of ρref consecutive rounds in the output generation
and reference convergence stages, there are more than ρref · τ blocks in C reporting timestamps in
S. Formally:

Definition 2 (Dense chains). A chain C is a (τ, s, u, v)-dense chain if for any set S = {p, . . . , q}
of consecutive rounds such that u ≤ p < q ≤ v and |S| > s, there are at least τ · |S| blocks in C with
timestamp in S. A chain C is a dense chain on phase i if it is a (τ, ρref, (i− 1)ρ+ ρview, i · ρ)-dense
chain—i.e., the chain is dense in the last two stages of the i-th phase.

We choose the density parameter τ in such a way that when typical execution property holds
on a single chain, the following two properties are guaranteed: (i) even if the adversary completely
stops producing PoWs, the honest parties by themselves can produce a dense chain; and (ii) in
the i-th phase, the adversary cannot come up with a dense chain before the reference convergence
stage.

With foresight, the purpose of dense chains is to secure the execution of future phases, by asking
parties to provide sufficiently many dense chains as a proof of having invested enough computational
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power before the current phase.

Cross-chain references. Next, we elaborate on the cross-chain reference approach which we use
to “link” neighboring phases (this provides unpredictability so that the adversary can only pre-mine
for a bounded amount of time). At a high level, a cross-chain reference on an initial block in the
j-th chain and i-th phase is a κ-bit string consisting of m pointers to m sufficiently deep blocks
on chains in the (i − 1)-th phase. These deep blocks are picked as the last blocks in the output
generation stage, one on each chain. Their hashes (that is, the j-th segment of a block hash, for
a block on the j-th chain) are concatenated to form the κ-bit string. We assign this reference to
the input freshness h′ (recall our block header structure in Section 3.1) in the initial blocks on each
chain’s i-th phase. For a cross-chain reference to be considered valid, it should point to at least a
large fraction of deep blocks in dense chains in the previous phase6. However, these dense chains
are not necessarily required to match the parties’ own chains of the previous phase, but can be
attached as a proof of validity.

To facilitate the chain validation and selection algorithm, a party P maintains local variables
Clocal to record her own parallel chains and denseChains to bookkeep all valid (single) dense chains
that are not in Clocal. Note that denseChains and Clocal are diffused together. In more detail,
denseChains is a two dimension vector with denseChains[i][j] containing a (possibly empty) set of
(single) dense chains that a party has seen as the j-th chain in i-th phase. Party P also maintains
a local variable chainBuffer which contains all pairs of ⟨C, denseChains⟩ that P receives at the
beginning of the round. Refer to Figure 2 for an illustration of our phase-based parallel chain.

We now formalize the ExtractInputFreshness procedure (see Algorithm 2) which parties use
to extract cross-chain reference and fresh randomness for input-blocks. Specifically, when this
algorithm is called in the view convergence stage of the i-th phase (i > 1), it returns a κ-bit string
which is a concatenation of hashes of the blocks with largest block height whose timestamp is less
than (i − 1)ρ − ρref on each chain. When ExtractInputFreshness is called in the output generation
stage, it returns the concatenation of m hashes of the blocks that are k-rounds before the end of
the view convergence stage in this phase (we will show later that k is the parameter for common
prefix on typical chains). When this algorithm is called at any other time, it returns an all-zero
string.

Algorithm 2 ExtractInputFreshness(C, r)

1: if r ≤ ρview then return 0κ ◁ First phase
2: if r mod ρ > ρ− ρref then return 0κ ◁ Reference convergence stage
3: h′ ← ε, i← ⌈r/ρ⌉
4: if r mod ρ ≤ ρview then ◁ Get cross-chain reference
5: for j from 1 to m do

6: C ← C(i−1)
j and B ← head(C⌈ρref) ◁ Extract chain in previous phase

7: h′ ← h′ ∥ [H(B)]j∼m

8: end for
9: else ◁ Get input freshness for IB

10: r∗ ← (i− 1) · ρ+ ρview − k ◁ k rounds before the end of view convergence.
11: for j from 1 to m do

6We cannot require the cross-chain reference to point to all the dense chains in previous phase for two reasons:
(i) when typical execution fails it can be the case that neither the honest parties nor the adversary produce a dense
chain; and (ii) the adversary can split parties by delivering a private adversarial dense chain to only some of them.
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12: C ← C(i)
j and let B be the block in C with largest block height and TS(B) < r∗

13: h′ ← h′ ∥ [H(B)]j∼m

14: end for
15: end if
16: return h′

Parallel-chain validation algorithm. Recall that in our protocol, we use a m×1 PoW scheme
to mine m parallel chains, and, on each chain, we use 2×1 PoW to bind the mining process of
chain-blocks B and input-blocks IB together; moreover, we divide chains into phases and introduce
cross-chain reference to link neighbouring phases. Our validation rule will consider the validity
of all blocks, chains (in a single phase) and the cross-chain references. Specifically, a parallel
chain C (with its associated denseChains) will be considered valid if the following holds (refer to
Algorithm 8 in Appendix C for a full description):

� Valid single chains. For any C = B1,B2, . . . ,Bn (either a C(i)
j or in denseChains[i][j]), C should

be a valid single chain. More specifically, C is a valid chain if (i) all blocks are the result of
successful PoWs; (ii) all blocks’ state st match their corresponding block content; and (iii) for
all i > 1, Bi refers to the hash of Bi−1. Additionally, for chains in the first phase, B1 should
point to the CRS.

� Valid input blocks. For any input block IB included in C in the i-th phase, IB should pass the
following check: (i) it reports a unique hash among all input-blocks; (ii) the timestamp of IB falls
in the output generation stage; (iii) IB is a successful PoW and contains a valid input message
val; and (iv) IB points to the last block on C with timestamp less than (i− 1)ρ+ ρview − k (i.e.,
good fresh randomness).

� Valid cross-chain reference. In the i-th phase (i > 1), all initial blocks of chains in C(i) and
denseChains[i] report good cross-chain reference. In order for a cross-chain reference to be good,
at least a β > 3/4 fraction of hashes should match the last blocks in the output generation stage
on dense chains in the (i − 1)-th phase, either in C or denseChains. Note that their positions

should also match—i.e., the j-th segment of reference should match a deep block in C(i−1)
j or

denseChains[i− 1][j].

We remark that our chain validation rule is different from that used in both the single chain
validation as well as in all previous parallel-chain constructions due to its novel cross-chain reference
mechanism. Specifically, starting in the second, the initial block on a single chain C does not directly
point to the last block in the previous phase—i.e. its previous state reference h becomes dummy. As
long as C provides a valid cross-chain reference and forms a valid single chain, C will be considered
as valid. We note that since previous state references (the hash pointer) between neighboring
phases are not continuous, the adversary is allowed to keep extending the head of the chains in the
previous phase by keeping mining and inserting blocks. Moreover, as our protocol does not ask for
cross-references to all previous chains, it is also possible that honest parties never hold exactly the
same parallel chain.

We now provide some more intuition on these two new properties. Regarding the adversarial
extension of chains from previous phases, parties will check-point their chains phase-by-phase (see
the chain selection rule below), hence this does not undermine the security of online parties. Re-
garding the possible disagreement on a certain fraction of the parallel chains, we note that this is
unavoidable. Otherwise, if parties were aware that they would achieve a full agreement on a specific
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phase, this would directly imply that they reach consensus (and with simultaneous termination!).
Our goal is to let honest parties share parallel chains such that in each phase, they obliviously agree
on the prefix of a large fraction of the chains.

Parallel-chain selection algorithm. We now introduce the chain selection algorithm. In a
nutshell, this algorithm does not update local parallel chains as a whole; rather, it updates each
single chain in the current phase—i.e., after phase i has passed, Clocal is check-pointed up to phase
i and all chains in the previous phases will never be changed. When parties are in the first phase,
they use the longest chain rule to select each single chain separately. When parties are in the i-th
phase (i > 1), a party P processes the chains stored in chainBuffer as follows:

� Filter invalid chains. For any C ∈ chainBuffer, if C is not a valid chain, P rejects C immediately
and removes it (as well as its associated dense chains) from chainBuffer.

� Update denseChains. For all i′ < i and j ∈ [m], P updates denseChains[i′][j] as follows. If
there is a valid dense chain C as the j-th chain in phase i′ (either in C or denseChains[i′][j] from
another party) that forks from all the chains in denseChains[i′−1][j] for more than ρref rounds,
P adds C to denseChains[i′ − 1][j] (i.e., it bookkeeps new dense chains with new cross-chain
reference pointer blocks).

� Adopt longer chains. P uses the longest chain rule to select chains in the current phase. For any

incoming chain C, if len(C(i)
j ) > len(C) where C is the j-th chain in C(i)

local, then P updates C to

C(i)
j .

See Algorithm 3 for a detailed description of the above rules.

Algorithm 3 UpdateLocalChain(Clocal, chainBuffer)

▷ This algorithm should only be called by fully-synchronized parties.
1: for ⟨C, denseChains⟩ ∈ chainBuffer do
2: if not IsValidChain(C) then Continue ◁ Skip invalid chains

▷ Add new dense chains in previous phases to denseChains

3: for i from 1 to phase− 1 do
4: for j from 1 to m do

5: Parse C = C(i)
j

6: if isDenseChain(C) then
7: if not ∃C′ ∈ denseChains[i][j] and [head(C⌈ρref)]q∼m = [head(C′⌈ρref)]q∼m

then
8: Add C to denseChains[i][j]
9: end if

10: end if
11: for C ∈ denseChains[i][j] do
12: if not ∃C′ ∈ denseChains[i][j] and [head(C⌈ρref)]q∼m = [head(C′⌈ρref)]q∼m

then
13: Add C to denseChains[i][j]
14: end if
15: end for
16: end for
17: end for

▷ Extend chains in current phase using longest chain rule
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18: for j from 1 to m do

19: Parse C = C(phase)
j and C′ as the j-th chain in C(phase)

local

20: if len(C) > len(C′) then Update the j-th chain in C(phase)
local to C

21: end for
22: end for

Phase oblivious agreement. Notice that in each phase, the probability that for a large fraction of
chains their execution is typical (Definition 1) is overwhelming. Further, our phase-based parallel-
chain structure and density-based chain validation and selection rules guarantee that the adversary
can only pre-mine for a bounded amount of time, hence “good” properties—i.e., agreement and
chain quality (high enough fraction of honest blocks) on the input-blocks—hold on a large fraction
of the chains in every phase. Except that as parties are not able to discern on which chains they
have agreement, agreement is achieved obliviously, yielding the following:

Theorem 2 (Phase oblivious agreement). There exist protocol parameterizations such that the
following properties hold. Let β ∈ (3/4, 1) and consider a phase i. Let C,C′ denote the parallel
chains held by two honest parties P,P′ at rounds r, r′ after phase i (i.e., min{r, r′} > iρ), respec-
tively. Then there exists a subset S ⊆ {1, 2, . . . ,m} of size larger than β ·m such that for all j ∈ S,

the following two properties hold on chains C = C(i)
j and C′ = C′(i)

j .

� Agreement: C⌈ρref = C′⌈ρref.
� Honest input-block majority: For all input-blocks included in the output generation stage of
C and C′, more than half of them are produced by honest parties.

Refer to Appendix D.2 for a detailed analysis of the algorithms in this section and the proof of
Theorem 2.

3.3 From Phase Oblivious Agreement to Chain-King Consensus

In this section we explain how our chain-king consensus protocol can be derived from phase-based
parallel chains. We present ChainKingConsensus as a multi-valued consensus protocol with input
domain V, |V | ≥ 2.7 For simplicity we assume inputs are scalars, but the formulation can be easily
adapted to any other type of input.

At a high-level chain-king consensus can be viewed as following the “phase king” approach
(cf. [BG89, BGP89]) with randomized king selection on top of phase-based parallel chains. The
execution is based on the iteration of 3 phases. Parties will only terminate at the end of each
iteration (i.e., the phase with index a multiple of 3). Two thresholds, more than one half of the
number of chains (> m/2) and more than three-quarters (> 3m/4), are of interest. Importantly,
a distinguished chain—the first chain C1—is identified as the king chain. This king chain is hard-
coded in the protocol and will never change during the whole execution.

Similarly to all existing consensus protocols with probabilistic termination, in ChainKingConsensus
parties might terminate at different phases. We measure the quality of non-simultaneous termi-
nation by measuring the maximum number of phases that two honest parties can terminate apart
from each other:

7We remark that our protocol is a multi-valued consensus protocol directly by construction, rather than following
the common approach of first designing a binary consensus protocol and then applying the Turpin-Coan pre-processing
step [TC84].
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Definition 3 (c-slack termination). A protocol Π satisfies c-slack termination if any pair of
honest parties P,P′ are guaranteed to terminate Π within c phases of each other.

Input messages and internal variables. So far we have not yet specified the input messages in
each phase. In (multi-valued) ChainKingConsensus, at the onset of the protocol execution, party P
is activated with an input v ∈ V . P starts to mine input messages (i.e., by setting a variable val

in the RO query—see Section 3.1) which is their current suggestion for the protocol output; P will
terminate based on her local states which we will detail soon.

In addition to variable val ∈ V , P locally manages two Boolean variables lock and decide

which are both initialized to false, and a three-valued variable exit ∈ {∞, 1, 0} which is initialized
to ∞. In more detail:

� Variable val reflects P’s suggestion on the output, and can be modified if in certain phases P
receives sufficiently many different input values.

� Value lock indicates whether P will “listen” to the king-chain (see Algorithm 5 below for details)
in the last phase of an iteration. It is set to true if parties are confident that all honest parties
will set their val to the same value. If lock remains false at the end of an iteration, P will
update her val based on her local view of the king-chain. If P has not decided at the end of an
interation and lock is set to true, it is reset to false for the next iteration.

� Variable decide is used to record whether P decides on her local value val. It is set to true
only when P is confident that all honest parties are going to agree on the value that she holds,
and the adversary is limited to only influencing in which phase parties will terminate. When
decide is set to true, val is fixed and will never change in the future (except with neglibible
probability). Further, it is set to true only in the first and second phase of an iteration and is
checked at the last phase to see if exit needs to be updated.

� Variable exit indicates whether P should stop querying the RO and producing blocks. When
exit = ∞, P has not yet reached the end of the iteration when she decides, hence P keeps
updating the other variables. When exit = 1, P have set decide to true and hence is ready
to output val. However, P is not aware if other honest parties have decided, hence P keeps
producing blocks with val. This will last for one iteration and then exit is set to 0. When
exit = 0, P stops making RO queries and stops the execution of (this instance of the) protocol.

We highlight one significant difference between Chain-King Consensus and classical BA proto-
cols. In the classical setting, parties terminate the protocol once they decide on an output. For
protocols with probabilistic termination, some honest parties might terminate a few rounds after
other honest parties (cf. [DRS90]). Parties who have terminated continue to send the same message
to all honest parties (cf. [FM88, KK06]), and the parties that are behind can stick to the previous
message if they do not receive any new message from those parties that have already terminated.
As it turns out, this strategy essentially relies on the set of participating parties being known, which
does not apply the permissionless setting where parties can neither authenticate with each other nor
know the source of a message. Hence, in order to let parties that are behind safely terminate, we
explicitly distinguish “decide,” which means parties output their local variable val, and “exit,”
which means parties stop (or will stop) the PoW mining process and exit the protocol. We provide
more details on “mining for one more iteration” after we introduce the state update algorithm.

Phase output extraction. The decision made at the end of each phase is based on the input
messages collected in that phase. Since we have m parallel chains, parties will extract a vector of
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size m. For the i-th element in the vector, it is extracted from the median8 of input values that
appear in the input-blocks, collected in the output generation stage (i.e., blocks with timestamps
in (iρ − (ρoutput + ρref), iρ − ρref] in i-th phase). Note that since parties might disagree on some
bounded fraction of the chains, different honest parties will extract different phase output vectors.
Nevertheless, thanks to Theorem 2, two honest output vectors will share a large fraction of common
elements obliviously. (See Algorithm 4 for the full description of this process.)

Algorithm 4 ExtractPhaseVector(C, r, tp)

1: if r < tp · ρ then return ⊥ ◁ Too early to extract target phase.
2: Initialize V⃗ to an empty array
3: for i = 1 to m do
4: Initialize M⃗ to an empty array

5: C ← C(tp)
i

6: for B ∈ C and tp · ρ− (ρoutput + ρref) < TS(B) ≤ tp · ρ− ρref do

7: Extract input message val from B and add val to M⃗
8: end for
9: Sort M⃗ then add med(M⃗) to V⃗

10: end for
11: return V⃗

State update algorithm. At the end of each phase (i.e., when local clocks reach round i · ρ),
parties run Algorithm 5 to decide whether to update their local variables or not. It generally follows
the randomized phase-king algorithm approach [FG03], but introduces a novel king selection rule
and an extra termination iteration.

Algorithm 5 StateUpdate

▷ This algorithm is called once in each phase. It directly interacts with internal variables
val, lock, decide and exit.

1: if r mod ρ ̸= 0 then return ◁ Not the end of a phase
2: if exit = 1 then
3: if phase mod 3 = 0 then exit← 0 ◁ End of “extra mining iteration”
4: return
5: end if
6: V⃗ ← ExtractPhaseVector(Clocal, r, phase)
7: Let val denote the most frequent element in V and c its frequency
8: if phase mod 3 = 1 then ◁ Step 1
9: if c > m/2 then val← val

10: if c > 3m/4 then decide← true, lock← true
11: else if phase mod 3 = 2 then ◁ Step 2
12: if c > m/2 then val← val
13: if c > 3m/4 then lock← true
14: else ◁ Step 3

8We note that selecting the median as output is not the only available solution to extract the phase’s output. For
strong consensus we can extract the plurality (see Remark 1), and for state machine replication we introduce a more
refined way to extract output from the king chain (details in Section 4).
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15: if lock = false then val← V⃗1 ◁ Refer to the king chain
16: if decide = true then exit← 1

▷ Reset lock for the next iteration
17: if decide = false and lock = true then lock← false
18: end if

We now provide a high-level overview and some intuition about the state update algorithm. In
the first phase of an iteration, given phase output vector V⃗ , parties first check if more than m/2
chains report the same value val. If this is the case, they set their val to val. Since more than
m/2 accounts for the majority of the chains, if there exists such value val then it will be unique.
Further, if in their local view, more than 3m/4 of the chains report val, they set both decide and
lock to true and they will decide at the end of iteration. The second phase is almost a repetition
of the first one except that in this phase parties will not set decide to true.

If during the first two phases in an iteration, a party P has never seen more than 3m/4 of the
chains report the same value, P is still “confused” and its internal variable lock remains false at the
end of the last phase. Under such circumstance, P will refer to the king chain and adopt the median
value among the input-messages included—i.e., the first element in phase vector V⃗ . Note that this
is different from previous phase-king style constructions, where with deterministic termination, king
rotates among t+1 fixed parties (where at least one of them is honest) [BG89, BGP89], while with
probabilistic termination, parties first broadcast their val and then run an oblivious leader election
algorithm to try to agree on an honest king with constant probability [KK06]. In contrast, in our
protocol the chain-king is always the first chain. Moreover, even though the adversary knows that
the first chain is the king, he will not be able to focus on it due to the basic nature of parallel
chains. As a result, given that the adversary’s power is “diluted,” parties agree obliviously with
constant probability on the king-chain’s value. When the honest parties get lucky, they will start
the beginning of the next iteration with a unanimous value in val, which guarantees decision; if
they do not, they will start the next iteration with a different val and they can hope for getting
lucky with the next king chain.

Next, we elaborate on the difference between decide and exit as well as their interaction. As
we mentioned earlier, even if parties have decided, they should still participate in the protocol by
keeping making RO queries and diffusing blocks with their output value. This is because due to
non-simultaneous termination, if parties decide in the current iteration stop from participating in
the protocol, then parties that are going to decide in the next iteration would not be able to get
enough information since the honest majority condition might be broken. In the classical setting,
this is easily circumvented by honest parties who do not receive a message from other parties,
reusing their previous message as the current input (cf. [FM88, KK06]). However, in a PoW
setting the above strategy is not feasible. Therefore we distinguish the termination of deciding
output and mining blocks by using two different variables decide and exit. Specifically, for any
party that decides the output in i-th phase, it should first keep mining for an extra iteration (by
setting exit to 1 and no longer update val, lock and decide), and then terminate and set exit
to 0 at the (i + 3)-th phase (recall that an iteration consists of 3 phases).9 After parties set exit
to 0, they output val and exit the protocol.

The ChainKingConsensus protocol. Having presented the various protocol components, we are now

9As we show later on in Section 3.4, this termination gap can be reduced to 1 phase by emulating so-called “Bracha
termination.”
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ready to put things together and state what the protocol achieves. During the protocol execution,
parties keep updating their local parallel chains and mining their output suggestion. At the end
of each phase, they use StateUpdate to update their consensus-related internal variables. Upon
setting their exit variable to 0, parties terminate the protocol and output val.

Protocol ChainKingConsensus

▷ We use Blockify to get the string of m block content roots and omit the details on the
structure of block content.

1: Send (clock-read, sidC) to GClock and get (clock-read, sidC , r)
2: if r = r then return ◁ Wait for next round.
3: r← r, phase← ⌈r/ρ⌉
4: if exit = 0 then
5: Output val ◁ Party has terminated.
6: else
7: Fetch information and denote the incoming chains and input-blocks by
⟨C, denseChains⟩1, . . . , ⟨C, denseChains⟩n and IB1, . . . , IBn′

8: Add ⟨C, denseChains⟩1, . . . , ⟨C, denseChains⟩n to chainBuffer

9: Add IB1, . . . , IBn′ to IBBuffer

10: Clocal ← UpdateLocalChain(Clocal, ⟨C, denseChains⟩1, . . . , ⟨C, denseChains⟩n)
▷ Update internal state

11: Call StateUpdate ◁ Call Algorithm 5
▷ Mine new blocks

12: st← Blockify(Clocal, IBBuffer)
13: Clocal, IB← ParallelPoW(Clocal, r, st, val) ◁ Call Algorithm 1
14: Diffuse Clocal

15: if IB ̸= ε then Diffuse IB
16: end if
17: Send (clock-update, sidC) to GClock

ChainKingConsensus achieves agreement and validity in an expected-constant number of rounds,
and since parties terminate at the end of neighboring phases, it satisfies 3-slack termination (cf.
Definition 3). Further, when parties start the protocol with a unanimous input configuration, then
they decide at the end of the third phase (except with negligible probability). If they do not start
with an unanimous input, then the expected time for decision is 3/(3/4) + 3 = 7 phases.

Theorem 3. There exist protocol parameterizations such that ChainKingConsensus satisfies agree-
ment, validity and 3-slack termination with expected-constant round complexity.

Proof. First, we consider the properties of the StateUpdate algorithm.

Claim 1. There exist protocol parameterizations such that Algorithm 5 satisfies the following prop-
erties.
(a) If at the onset of an iteration, honest parties start unanimously with v, then at the end of the

second phase in that iteration, all honest parties set val = val, lock = true and decide = true.
(b) If an honest party P sets decide = true and val = v in an iteration, then all honest parties

set lock = true and val = v at the end of the second phase in that iteration.
(c) If an honest party P sets lock = true and val = v in an iteration, then all honest parties set

val = v at the end of the second phase in that iteration.
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Proof. Suppose ChainKingConsensus is well parameterized such that in any phase, it achieves phase
oblivious agreement on at least (3m/4 + 1) chains.

Regarding Property (a), since honest parties start unanimously with v, by Theorem 2, they
reach oblivious argreement on at least (3m/4 + 1) chains and the majority of the input-blocks are
honest hence report the same v. I.e., for any honest party P, at least (3m/4 + 1) elements in her
phase vector V⃗ are v. Hence P remains val as v and set both lock, decide as true at the end of
the first phase. Similarly, for the second phase P sees at least (3m/4 + 1) elements in her phase
vector V⃗ are v so val remains unchanged.

For Property (b), if there exists an honest party P setting decide to true in the first phase,
then in P’s local view at least (3m/4 + 1) chains output the same value v. Theorem 2 implies that
parties will disagree on at most m/4 chains, hence in all other honest parties’ local view they see
at least (m/2) chains outputting v. I.e., all honest parties set their val to v at the end of the first
phase. In the second phase, since all parties hold the same value, they see that at least (3m/4+ 1)
elements in their phase vector V⃗ are v. Therefore, all honest parties set lock to true and val to v
at the end of the second phase.

Then we consider Property (c). Since there exists an honest party P setting lock to true and
val to v, similar to the arguments in Property (b) we learn that all honest parties will set their
val to v at the end of that phase. Note that if this is the first phase, then in the second phase they
start unanimously so parties will not update their val.

Validity directly follows Property (a).
Regarding agreement, when parties start with different values at the on set of an iteration,

either some parties set decide to true and val to v or none of them update decide. In the first
case, Property (b) implies that all of them set lock = true and val = v so none of the honest party
update their value based on the king chain. Hence they start unanimously in the next iteration and
since parties that have decided will continue to produce PoWs for one more iteration, all honest
parties will set decide to true and val to v in the next iteration. In the second case, note that
either some parties have set their lock to true or none of the honest parties has updated lock.
If there exists at least one honest party who set her lock to true and val to v, then based on
Property (c) all honest parties hold val = v. Then, in the third phase, if the execution on king
chain is typical, val remains as v for all honest parties and they start unanimously in the next
iteration which guarantees agreement in the next iteration. Otherwise (also the same for none of
the honest parties has updated lock), parties start the next iteration with different values and the
same argument applies.

The argument for agreement directly implies that honest parties can terminate at most 3 phases
apart from each other. We now show that round complexity of ChainKingConsensus is expected-
constant. Lemma 10 implies that the protocol parameterization guarantees that the execution on
the king chain is typical with probability at least 3/4. I.e., if none of the honest parties decide in
an iteration, the probability that all parties start unanimously in the next iteration is at least 3/4.
Hence, the number of iterations that parties will all terminate follows the geometric distribution
and the expected number of phases is 3/(3/4) + 3 = 7.

Remark 1. ChainKingConsensus also achieves “strong validity” (i.e., that the output equals the
input of at least one honest party) if (i) we change the phase output extraction (Algorithm 4) from
selecting the median of input-messages to the input-message with the highest plurality; and (ii) the
adversarial computational power is bounded by t < (1 − δ)n/(|V | − 1). (This matches the lower
bound in [FG03].)
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Remark 2. We note that PoW-based Crusader Agreement [Dol82] (where parties either output
the same value v or ⊥, and if they start unanimously they output that value) can be achieved in
constant time. Specifically, parties run ChainKingConsensus and terminate at the end of first phase.
If a party P sets her decide variable to true, P outputs val; otherwise she outputs ⊥.

3.4 Fast Sequential Composition

The chain-king consensus protocol presented in Section 3.3 is one-shot—i.e., parties start at the
same time and terminate at (possibly) different phases. This non-simultaneous termination turns
out to be problematic when ChainKingConsensus is invoked by a high-level protocol, such as MPC
or SMR, and where parties need to decide on a series of outputs repeatedly. Given the non-
simultaneous termination situation, after the first invocation, parties would not be able to return
to the calling high-level protocol synchronously, and in subsequent invocations, ChainKingConsensus
does not by itself provide any security guarantees if parties start at different phases10. Ideally, when
the same protocol is invoked multiple times, the round complexity should be preserved—i.e., for ℓ
sequential invocations, the total running time should be expected O(ℓ) rounds.

In the classical distributed computing and cryptographic protocols literature, this is studied
as the sequential composition of BA protocols, with positive results: By using so-called “Bracha
termination” [Bra84] and super-round expansion [CCGZ16], a BA protocol with probabilistic ter-
mination can asymptotically preserve the same round complexity while continuously deciding on a
series of outputs.

In this section we show how to achieve fast sequential composition of multiple instances of
ChainKingConsensus by first emulating the Bracha termination strategy on parallel chains, thus
enabling parties to terminate in two neighboring phases; then, for later invocations, we introduce a
novel “super-phase expansion” protocol that guarantees security under non-simultaneous start while
preserving the expected-constant round complexity. Note that, our “super-phase expansion” works
for any slack of constant number of rounds, hence Bracha termination is in fact not necessary.
Nonetheless, we will first go through this strategy since it helps to achieve a more concise and
(practically) efficient result.

Bracha termination. In our one-shot Chain-King Consensus protocol, honest parties might
terminate at the end of different but adjacent iterations. We now show how to reduce this slack
from one iteration (i.e., 3 phases) to one phase. The high-level idea follows Bracha’s original
suggestion [Bra84], but we adapt it to the PoW setting.

We first describe this approach in the classical setting (information-theoretic and assuming
n ≥ 3t+1). In Bracha’s suggestion, as soon as a party decides on an output v or upon receiving at
least t+ 1 messages (decide, v) for the same value v, it sends (decide, v) to all parties. Then, upon
receiving n− t messages (decide, v) for the same value v, a party outputs v and terminates.

We now elaborate on our early termination strategy which tries to emulate Bracha’s suggestion
on parallel chains. Recall that in ChainKingConsensus the input-block content is its producer’s
output suggestion val. Here we extend it two types of messages: either output suggestion val, or

decide suggestion (decide, val). We say a chain C(i)
j decides on val if more than half of the input-

blocks included in the output generation stage report (decide, val) for the same val. Note that
when a chain does not decide on any val, the output extraction algorithm treats all (decide, val)
messages the same as val.

Thus, protocol ChainKingConsensus is modified with the following additional steps:

10We note that ChainKingConsensus can tolerate adversarial pre-mining for up to ρref ≪ ρ rounds, details see
analysis in Appendix D.2.

22



� When P’s internal variable decide is false, P includes only val in her input-blocks; when decide

is true, P mines (decide, val).
� At the end of any phase, upon observing more than m/2 chains decide on val, P sets her val to

val and decide to true.
� At the end of any phase, upon observing more than 3m/4 chains decide on val, P sets her val

to val and exit to 1.
� After setting exit to 1 in the previous step, P continues to mine (decide, val) for one more

phase and then set exit to 0.
We present the new state update mechanism in Algorithm 6.

Algorithm 6 StateUpdateWithCloseTermination

▷ This algorithm is called once in each phase. It directly interacts with internal variables
val, lock, decide and exit.

1: if r mod ρ ̸= 0 then return ◁ Not the end of a phase
2: if exit = 1 then exit← 0 and return ◁ End of “extra mining phase”
3: V⃗ ← ExtractPhaseVector(Clocal, r, phase)
4: Let m denote the most frequent element in V and c its frequency
5: if m = (decide, val) then ◁ Check decide for close termination
6: if c > m/2 then val← val, decide← true
7: if c > 3m/4 then val← val, decide← true, exit = 1
8: end if
9: if decide = true then return ◁ Stop updating val and lock if party decides

10: if phase mod 3 = 1 then ◁ Step 1
11: if c > m/2 then val← val
12: if c > 3m/4 then decide← true
13: else if phase mod 3 = 2 then ◁ Step 2
14: if c > m/2 then val← val
15: if c > 3m/4 then lock← true
16: else ◁ Step 3
17: if lock = false then val← V⃗1 ◁ Refer to the chain king (first chain)
18: if lock = true then lock← false
19: end if

Theorem 4. There exist protocol parameterizations such that ChainKingConsensus modified with
Algorithm 6 satisfies agreement, validity and 1-slack termination with expected-constant round com-
plexity.

Proof. Let i be the first phase such that there is at least one honest party P set her decide to true
and val to v by observing more than m/2 chains reporting (decide, v). We show that there is at
least one honest party P′ set her decide to true and val to v at a phase i′ < i. Suppose there is no
such party P′, then no honest party mine (decide, v) before the end of phase i. I.e., the adversary
mines majority of the input-blocks on more than m/2 chains, which contradicts the fact that phase
oblivious agreement is achieved on phase i (Theorem 2) where at most m/4 chains can report a
majority of corrupted input-blocks. Combining this with Claim 1 and Theorem 3 we learn that our
new protocol with Bracha-style termination, if all parties eventually terminate, achieves agreement
and validity.

Next we argue that parties will terminate in neighbour phases using expected constant number
phases. Let i be the first phase such that there is at least one honest party P set her exit to 1.

23



We show that all honest parties set exit to 1 either in phase i or i + 1. Suppose — towards a
contradiction — there is another party P′ set her exit to 1 at some round i′ > i+ 1 (or, never set
exit to 1). I.e., P′ saw less than 3m/4 chains outputting (decide, v) in phase i + 1. Consider P,
since P sets exit to 1, she saw more than 3m/4 chains outputting (decide, v) in phase i. Theorem 2
implies that all honest parties would see at least (m/2+ 1) chains outputting (decide, v) in phase i
— i.e., they set decide to true and val to v and start to mine (decide, v). Thus at the beginning
of phase i + 1 all honest parties mine (decide, v). By Theorem 2 they will succeed on at least
(3m/4 + 1) chains and report majority of the input-blocks with (decide, v). This contradicts the
assumption that P′ saw no more than 3m/4 chains outputting (decide, v) in phase i + 1. I.e., the
new protocol achieves 1-slack termination.

Finally, consider round complexity. Note that without the Bracha-style termination strategy,
all honest parties will set their decide to true in expected-constant time which is the same as
ChainKingConsensus. Upon all honest parties set decide to true, they will saw at least (3m/4 + 1)
chains outputting (decide, v) and then set exit to 1. I.e., in the worst case, this new protocol termi-
nates in one more phase than the number of phases that ChainKingConsensus needs to let all parties
decide — which is in expected-constant time. Hence the round complexity of ChainKingConsensus
with Bratch-style termination strategy is also expected-constant.

Slack-tolerant sequential composition of ChainKingConsensus. Now we present how sequential
composition works in the permissionless setting. We remark that this is not a straightforward
emulation of the super-round expansion technique in the classical literature as in our setting, the
adversary effectively has more power in “swinging” the decision of honest parties. We elaborate on
the difference between classical round expansion and our novel “super-phase expansion.”

In order to perform sequential composition, our protocol should be appropriately adjusted so
that we have better quality of phase-oblivious agreement. Recall that Theorem 2 holds for any
constant β < 1. While in one-shot ChainKingConsensus we have protocol parameterizations such
that at least three quarters of the chains will reach phase-oblivious agreement, it is possible to
achieve that an arbitrary (constant) fraction of chains reach oblivious agreement. One consequence
is that we will get a slow-down on the length of a phase in terms of number of rounds; the asymptotic
result (i.e., expected-constant number of rounds), however, is preserved.

Furthermore, consider any n ∈ N+ consecutive phases in an execution of the protocol. If β
fraction of the chains have reached oblivious agreement in one phase, then at least [1 − n(1 − β)]
fraction of chains reach oblivious agreement over all n phases. By appropriately choosing n and
β, we get the following property: In any n consecutive phases at least three-quarters of the chains
achieve phase-oblivious agreement over all phases. For example, when β = 95% and n = 3, for any
3 consecutive phases, honest parties obliviously agree on at least three quarters of the chains. As
a result, we have the following corollary to Theorem 2:

Corollary 5 (Multi-phase oblivious agreement). There exist protocol parameterizations such
that the following properties hold. Consider n ∈ N+ consecutive phases i, i+1, . . . , i+n− 1, i ≥ 1.
Let C,C′ denote the parallel chains held by two honest parties P,P′ at round r, r′, respectively, after
the (i+n−1)-th phase (i.e., min{r, r′} > (i+n−1)ρ). Then there exists a subset S ⊆ {1, 2, . . . ,m}
of size |S| > 3m/4 such that for any j ∈ S and any k ∈ {i, i + 1, . . . , i + n}, the following two

properties hold on chains C = C(k)
j and C′ = C′(k)

j :

� Agreement. C⌈ρref = C′⌈ρref.
� Honest input-block majority. For all input blocks included in the output generation stage of
C and C′, more than half of them are produced by honest parties.
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Proof. Fix n phases {i, i+ 1, . . . , i+ n− 1}. Suppose the protocol is appropriately parameterized
such that phase oblivious agreement is achieved on more than β = 1− 1/(4n)+ ϵ fraction of chains
in each phase. Let A denote the (bad) event on two chains C and C′ such that either C⌈ρref ̸= C′⌈ρref
or more than half of the input blocks in C are produced by the adversary.

Suppose towards a contradiction, there exist a subset S ⊆ {1, 2, . . . ,m} of size at least m/4 (i.e.,

1/4 fraction) such that ∃k ∈ {i, i+ 1, . . . , i+ n− 1}, j ∈ S and C = C(k)
j and C′ = C′(k)

j , A happens
on C and C′. Then, due to Pigeonhole principle, there exists k∗ ∈ {i, i+ 1, . . . , i+ n− 1} such that

for a subset S′ ⊆ {1, 2, . . . ,m} of size at least (1/4)/n ≥ 1/(4n) and C = C(k∗)
j and C′ = C′(k∗)

j , A
happens on C and C′. However, since β = 1 − 1/(4n) + ϵ according to Theorem 2, in each phase
the fraction of chains such that oblivious agreement fails is bounded by 1/(4n), which contradicts
the number of failing repetitions in the k-th phase.

Regarding input messages, we also require that parties attach messages indicating the index of
invocations and the index and steps of iterations in their input messages. That is, a valid input
message in sequential composition would be of the form “This is the i-th invocation, j-th iteration
and k-th phase, and my output suggestion is val.” We omit the details of encoding such messages.
Moreover, in some “dummy” phases, parties are allowed to send dummy suggestion ⊥ that contains
no information.

Given that parties can terminate and start within two neighboring phases, our super-phase
expansion (which will be adopted in the second and subsequent invocations) replaces the original
(aligned) phase to four (possibly unaligned) phases “input-input-input-dummy.” I.e., parties report
their suggested output during the first three phases in their local view, and leave the last phase
dummy. See Figure 3 for an illustration of an aligned super-phase and an unaligned one.

P1

Super-Phase i

Super-Phase i Output

P2

Super-Phase i

Super-Phase i Output

P1

Super-Phase i

Super-Phase i Output

P2

Super-Phase i

Super-Phase i Output

(a) aligned super phases (b) 1-slack super phases

Figure 3: Illustration of the super-phase expansion and how parties extract the super-phase output.
represents the phase where a party mines input messages with her output suggestion, and

is the dummy phase. The i-th super phase is represented by ; and the associated phases to
extract output are depicted with .

The decision process works as follows. When a party P reaches the end of a super-phase (in her
local view), she decides an output (a vector of size m) for this super-phase based on the output of
five previous (normal) phases (i.e., starting from one normal phase before the current super-phase
(see the illustration of “Super-Phase Output” in Figure 3). For each chain, P does the following.
Recall that parties are allowed to report ⊥. When there is a (normal) phase such that more than
half of the input-blocks report ⊥, then we say this phase reports ⊥. Otherwise, pick the median
value of all non-⊥ values (after sorting) as the output of this phase. The decisions are as follows:

� When there are more than two phases that output non-⊥ values, output the value in the second
phase.
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� When there is one phase outputting a value val, output val for this super-phase.

Next, we provide some intuition on why adding a dummy phase at the end of a super-phase is
necessary. When honest parties do not start unanimously with the same value, the adversary can
join forces with those late honest parties in their last phase so that the view of honest parties are
not consistent (because the parties that terminate early should make a decision when other honest
parties have not yet finished their current super phase). With dummy rounds, all honest parties
share a consistent view under multi-phase oblivious agreement, hence guaranteeing agreement and
validity.

Moreover, keeping including the output suggestion for 3 consecutive normal phases is also
necessary. For a concrete example, suppose the underlying one-shot consensus protocol achieves
1-slack termination, and the honest computational power accounts for 60% of the total (i.e., the
adversary owns 40%) and honest parties are equally divided into two subsets, starting from two
neighbouring phases. In other words, we have parties starting and terminate early (resp., late) that
accounts for 30% of computational power. Then, if parties include their output suggestion for only
two phases, the adversary can refrain from mining in the first normal phase of the early parties,
and join forces with the late parties in their second normal phase but inject a non-honest input.
In such a case, even if parties start unanimously with v the output of this chain under multi-phase
oblivious agreement will not be v (as 40% is greater than 30%), thus violating the validity property
of consensus. With 3 consecutive mining normal phases, at least two of them will overlap, an
adopting an output in the second non-⊥ phase will be safe.

The super-phase expansion can be easily adapted from a 1-slack non-simultaneous start to c-
slack, for any constant c. We briefly describe the most näıve treatment. For c-slack termination, a
super-phase consists of (3c + 1) rounds where parties keep mining their suggested output for this
super-phase in the first (2c+ 1) normal phases, and sending ⊥ in the last c phases (i.e., c dummy
phases in total). To extract the output of a chain, (4c + 1) rounds are considered. Similar to the
treatment in 1-slack termination, when there are more than (c + 1) phases outputting a non-⊥
value, take the output from the (c + 1)-th phase; otherwise, output the value in the last phase.
At a high level, with c-slack termination parties will share at least (c + 1) overlapping phases (or
any phase, as this implies some bad event happened so we do not expect an agreement). Under
multi-phase oblivious agreement, the adversary can join forces with early honest parties for at most
c phases. Hence, taking output from the (c+1)-th phase will result in a value from the overlapping
normal phases where all honest parties mine their suggested values.

By adopting the 1-slack termination technique and super-phase expansion, we get the following
theorem for sequential composition of ℓ invocations of ChainKingConsensus.

Theorem 6. There exist protocol parameterizations such that the sequential composition of ℓ in-
vocations of ChainKingConsensus satisfies agreement and validity on each invocation, and the round
complexity is expected O(ℓ).

Proof. Note that Theorem 4 implies that parties terminate at adjacent phases in the first invocation,
we prove this theorem by induction.

Suppose that the i-th protocol invocation achieves agreement, validity and 1-slack termination
in expected-constant time, we show these properties still holds in the (i+ 1)-th invocation.

To argue for the protocol invocations using super-phase expansion, based on Claim 1, we con-
sider the following two properties. First, when parties start unanimously with val, they saw more
than 3m/4 chains report val. Second, when parties refer to the king chain, with constant proba-
bility their view is consistent, and the majority of the input-blocks in king chain are produced by
honest parties.
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To prove the first property, suppose our protocol is well parameterized such that multi-phase
oblivious agreement is achieved for any six consecutive phases i, i+1, . . . , i+5 due to Corollary 5.
Consider the j-th chain where typical execution holds for all six phases. We consider parties start
in two neighbour normal phases i+ 1 and i+ 2. Since phase oblivious agreement holds in phase i
and i + 5, the adversary cannot let the j-th chain output a valid value in this super phase. Since
all honest parties will join force in phase i + 2, i + 3, by adopting the output in the second phase
(which outputs a valid value) in their local view, either all honest parties adopt the output of phase
i + 2 or all honest parties adopt the output of phase i + 3. Since this holds on more than 3m/4
chains, when parties start unanimously with val they saw more than 3m/4 chains outputting val;
and when there is an honest party saw more than 3m/4 chains outputting val, all honest parties
saw more than m/2 chains outputting val.

Regarding the second property, note that the probability that phase oblivious agreement holds
on king chain for six consecutive rounds is more than 3/4. Using a similar argument we show that
with constant probability, every honest party shares a consistent view of the king chain and the
majority of input-blocks are produced by honest parties.

4 Application: Fast State Machine Replication

We now show how to adapt the sequential composition approach in Section 3.4 to implement a
state machine replication (SMR) protocol. Our resulting protocol achieves both Consistency and
expected-constant-time Liveness for all types of transactions (including conflicting ones). Namely,
for any transaction tx, when tx is diffused to all honest participants (miners), it takes in expectation
a constant number of rounds to get settled into the immutable final ledger.

We first give our definition of SMR, and elaborate on why fast SMR protocol cannot be di-
rectly derived from the sequential composition of multi-valued Chain-King Consensus. Then, in
Section 4.1 we propose a new method that introduces randomness to the output of the king chain
and helps circumvent the above problem while preserving expected-constant settlement time for all
types of transactions. Finally, in Section 4.2 we show how a third party observer, joining in the
middle of the protocol, can catch up with honest parties and learn the state of the ledger.

SMR background. State machine replication (SMR) is the problem of distributing the operation
of a state machine across a set of replicas so that the operation of the machine is resilient to
failure of a subset of the replicas. This concept was originally described in [Lam78], and later
further elaborated on by Schneider [Sch90] where a high-level description of SMR was provided.
Blockchain protocols, and in particular Bitcoin’s [Nak08] have renewed interest in SMR definitions
and constructions, as they can be seen as a way to realize SMR in a setting where there is no
predetermined set of replicas. This has been studied and formalized in a series of works (e.g.,
[GKL14, PSs17, GK20]).

We now give a concise definition of SMR. A number of n servers, a subset H of which is assumed
to be non-faulty, maintain a log of transactions, denoted Log. The log of each server also timestamps
each transaction. The notation Logi[t] denotes the log of the server Pi up to time t. Furthermore, it
is assumed that each server has a buffer for incoming transactions, denoted by Ii[t], that are valid
with respect to its view (invalid transactions are dropped). Finally, and for simplicity, assume that
all well-formed transactions are admissible in the log. In SMR, the following two conditions must
be satisfied:

� Consistency: ∀Pi,Pj ∈ H (where not necessarily i ̸= j) and t, t′ it holds that Logi[t] ⪯ Logj [t
′]

or Logj [t
′] ⪯ Logi[t].
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� Liveness: There is a parameter u ∈ N for which the following holds: (∀Pi ∈ H : tx ∈ Ii[t]) =⇒
tx ∈ Logi[t+ u].

Typically, the Liveness parameter u is a pre-defined value according to the protocol parameter-
ization. It is natural to extend the notion and allow u to be a random variable with a distribution
that depends on the specific parameterization. I.e., given a transaction tx appearing in all honest
buffers at time t, the probability that it is included in all honest logs at time t+ u shares the same
distribution with u. In our protocol, we achieve u with a geometric distribution, hence the time
for tx to get installed in the immutable ledger is expected-constant.

Note that there are more properties of interest for SMR, such as observability, which is the
requirement that a third party observer be capable of interpreting correctly the current state of the
ledger by inspecting the logs of the servers.

4.1 From Sequential Composition to State Machine Replication

An SMR protocol accepts a batch of transactions as input. While we omit here the details on the
particular form of the transactions, we note that the input domain is of exponential size. Thus,
“strong validity” (i.e., the requirement that output is at least one honest input) is impossible even
if the adversary only controls a tiny fraction of the computational power (cf. Remark 1). Also note
that a unanimous start would rarely happen given that the adversary can collude with clients and
send different or conflicting transactions to different parties. Therefore, if we follow the method
from Section 3.3—e.g., to apply the median or plurality rule—to select the output on the king
chain, as long as the adversary carefully selects the set of transactions, he can always make his
input batch be selected as the output. By carefully constructing such transaction batches, the
adversary will be able to indefinitely delay the confirmation of any honest transaction tx, even if
tx has been provided to all honest participants.

Proof-of-Work as a lottery. We now present a new construction that helps preventing the
adversarial control described above when parties do not start unanimously. In a nutshell, when a
party P is still “confused” at the end of an iteration (i.e., her internal variable lock remains false),
P adopts the output of the king chain as her new input, which is the (valid) input-block reported
in the first chain, with the smallest block hash. When the honest parties obliviously agree on the
king chain (which happens with constant probability), they will refer to the same block. Notice
that honest parties make more RO queries than the corrupted parties. The following lemma shows
that with probability (roughly) one half, the input-block with smallest block hash is produced by
an honest party.

Lemma 7. Let h = poly(κ) and t = poly(κ) denote the number of random oracle queries made
by honest and corrupted parties, respectively. Under honest majority assumption (h > t), the
probability that the smallest RO output is from an honest query is 1/2− negl(κ).

Proof. SupposeX1, X2, . . . , Xh are h i.i.d. uniform random variables and letX = min{X1, X2, . . . , Xh}
and X ′ = min{X1, X2, . . . , Xt} where t < h. Similarly, suppose Y1, Y2, . . . , Yt are t i.i.d. uniform
random variables and let Y = min{Y1, Y2, . . . , Yt}. Let s = κ/m = ω(log κ) denote the length of
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RO output with respect to a single chain. We have Pr[X < Y ] ≥ Pr[X ′ < Y ].

Pr[X < Y ] =

2s−1∑
i=0

(Pr[X ≤ i]−Pr[X ≤ (i− 1)]) ·Pr[Y > i]

<
2s−1∑
i=0

([
1− (Pr[X1 > i])t

]
−
[
1− (Pr[Xi > i− 1])t

])
·Pr[Y > i]

=
2s−1∑
i=0

Pr[X ′ = i] ·Pr[Y > i] = Pr[X ′ < Y ].

Since X ′ and Y are two i.i.d. random variables, we have Pr[X ′ < Y ] = Pr[X ′ > Y ]. Recall
that t = poly(κ), let C denote the event that a collision happens with 2t RO queries. We have
Pr[C] ≤ (2t)22−s = exp(−Ω(polylogκ + ln t)) = negl(κ) — i.e., a collision happens with negligible
probability. Notice that X ′ = Y implies a collision, we have Pr[X ′ = Y ] < Pr[C]. Hence
Pr[X < Y ] > Pr[X ′ < Y ] = Pr[X ′ > Y ] = 1/2− negl(κ).

Fast state machine replication. We are now ready describe our SMR protocol. At a high
level, it can be viewed as the sequential composition of Chain-King Consensus, equipped with a
new phase output extraction algorithm, described as follows. When parties are extracting output
in the first and second phase of an iteration, for each chain they will output v if the majority of
input-blocks is v; otherwise they will output ⊥ (in this way, the adversary cannot let parties decide
on a batch of transactions that is not an honest input in the first two stages). When they are in
the third phase (i.e., that’s when the “confused” parties listen to the king chain) they will output
the input-block with the smallest hash value.

Theorem 8. There exist protocol parameterizations such that the sequential composition of Chain-
King Consensus with the minimum-PoW king selection rule satisfies Consistency and expected-
constant Liveness.

Proof. Consistency is straightforward. For each invocation of chain-king consensus, the output is
a batch of transactions. After linearization, these transactions are appended to the ledger and are
considered as settled. These transactions will be at the same position in the ledger of all honest
parties in the same or neighbouring phases.

Regarding Liveness, suppose a transaction tx is diffused to all honest parties at the onset of
an invocation of chain-king consensus. In the first and second phase in an iteration, the adversary
cannot let parties decide on a set of transactions that does not include tx, as tx is in all honest
input and the adversary cannot produce the majority of the blocks in more than m/2 chains. With
constant probability, every party shares a consistent view of the king chain and they will then
decide. Further, with constant probability the input-block with smallest hash in the king chain is
produced by an honest party, which includes tx. When the honest parties are unlucky to lose the
race of producing smallest hash, tx remains in the pending transaction pool of all honest parties
and is included in the input for the next invocation of chain-king consensus. Given that each
invocation has expected-constant round complexity, and the probability that tx is in the output is
roughly 1/2, we learn that the time for tx to get settled in the ledger is also expected-constant.

4.2 Bootstrapping from the Genesis Block

In this section, we focus on the observability property of our SMR protocol. Recall that in Sec-
tion 3.2, we stated that a full agreement on all parallel chains in the previous phase is impossible,
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and parties that join at a specific phase cannot learn the previous execution by “tracing back” using
cross-chain reference. Thus, it becomes challenging or even impossible for a passive observer to join
the protocol in the middle of the execution. To solve this, in this section we slightly modify our
Chain-King Consensus protocol and design a bootstrapping algorithm for fresh parties to synchro-
nize state with all honest parties. Note that the design of a bootstrapping procedure to let fresh
parties join is also an essential building block for protocols that support dynamic participation.

When a fresh party Pnew joins, Pnew has no knowledge about the protocol execution except for
the CRS and global time (recall that we assume synchronous processors). To become synchronized
and learn the ledger state, Pnew needs to bootstrap by passively listening to the protocol. We
highlight that, in order for Pnew to synchronize with other honest parties (i.e., achieving phase
oblivious agreement), Pnew needs to run a bootstrapping procedure which lasts for a constant
number of rounds (precisely ρ rounds).

In order to let fresh parties join the protocol, we modify our Chain-King Consensus protocol as
follows. In the i-th phase (i > 1), concatenated with the consensus-related input message, parties
also include the fresh randomness extracted from their local chains in the (i − 1)-th phase. More
specifically, they extract the hash of the last block in the output generation stage on each chain
in the (i− 1)-th phase of Clocal, assemble them as a κ-bit string and append it to the input-block
content. For chains where a typical execution holds, honest parties adopt the same block hash.
Next, in i-th phase, a Crusader Agreement is run on the block hash of each chain in the (i− 1)-th
phase (recall from Remark 2 that a single phase suffices to serve as a Crusader Agreement protocol).
I.e., for the j-th chain with a typical execution, parties agree on a unique block hash that is the

same as their local C(i−1)
j , and for other chains, all parties either output the same hash or ⊥.

Thus, when a fresh party Pnew joins the protocol, she first passively listens to the protocol for ρ
rounds so that she observes the end of a phase, say phase i. Our chain selection rule (Algorithm 3)
guarantees that Pnew has parallel chains in phase i that obliviously agree with other honest parties
on more than 3m/4 chains (recall Theorem 2). Now, Pnew can “trace back” all the chains where
typical execution holds by using the fresh randomness included in the current phase; and iterate
them phase-by-phase. Specifically, when Pnew is at the end of phase i, she runs Algorithm 7 to
extract the hashes of dense chains in the previous phase and use them to form her local chain

C(i−1)
local . For instance, consider the j-th chain in the (i − 1)-th phase. If on more than 3m/4

chains in phase i, a majority of the input blocks report fresh randomness that matches a chain

C ∈ denseChains[i− 1][j], then Pnew will select C and add it as the j-th chain in C(i−1)
local . If no such

chain exists, Pnew will randomly pick a chain or just leave it empty.

Algorithm 7 JoiningProcedure

1: for i = 1 to ρ do
2: Fetch information and dentoe the incoming chains and input-blocks by
⟨C, denseChains⟩1, . . . , ⟨C, denseChains⟩n and IB1, . . . , IBn′

3: Add ⟨C, denseChains⟩1, . . . , ⟨C, denseChains⟩n to chainBuffer

4: Add IB1, . . . , IBn′ to IBBuffer

5: Clocal ← UpdateLocalChain(Clocal, ⟨C, denseChains⟩1, . . . , ⟨C, denseChains⟩n)
6: if r mod ρ = 1 then ◁ Retrieve all previous phase
7: for i from phase− 1 to 1 do
8: for j = 1 to m do

9: C ← C(i+1)
j
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10: Initialize h⃗ to an empty array
11: for q = 1 to m do
12: Initialize M⃗ to an empty array
13: for B ∈ C and tp · ρ− (ρoutput + ρref) < TS(B) ≤ tp · ρ− ρref do
14: Parse chain pointer to last phase as h′

15: Append [h′]q∼m to M⃗
16: end for
17: Sort M⃗ then append med(M⃗) to h⃗
18: end for
19: Let h denote the most frequent element in h⃗ and c its frequency
20: if c > 3m/4 and ∃C ∈ denseChains[i][j] such that [head(C⌈ρref)]j∼m = h

then
21: Add C as the j-th chain in C(i)

local
22: else
23: Choose a chain C ∈ denseChains[i][j] randomly as the j-th chain in

C(i)
local (or if no dense chain, select one from incoming C(i)

j randomly)
24: end if
25: end for
26: end for
27: end if
28: end for
29: Call StateUpdate on each phase to build the ledger
30: Set synchronized with all honest parties

Note that the security of both Chain-King Consensus and Crusader Agreement only rely on the
consistent view of chains where typical execution holds; hence, at the end of the joining procedure,
Pnew achieves phase oblivious agreement with all honest parties. As a result, Pnew can reconstruct
the entire execution and update her internal state to build the whole ledger.
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A Related Work (Cont’d)

In the näıve generalization from 2×1 PoW to m×1 PoW, in order to achieve independence among
parallel mining procedures, the random oracle output is split into m non-overlapping segments and
each segment is assigned to a unique procedure. We remark that in the case of parallel chains,
the number of chains becomes the security parameter, and hence m should be chosen sufficiently
large to provide security guarantees. In all existing parallel-chain schemes [BKT+19, FGKR20], a
number m = Θ(κ) of parallel chains is adopted.

Notice that since the output of random oracle is a string of length κ, it is infeasible to directly
run m = Θ(κ) chains in parallel, for two reasons. On one hand, with m = Θ(κ) repetitions, only a
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constant number of bits can be allocated to each chain thus upper-bounding the total number of
participating parties; on the other hand, a constant number of bits implies a constant output space
for the random oracle, where collisions can be found if the execution runs for L = poly(κ) steps.

To solve this, in [FGKR20] a new scheme for m×1 PoW is proposed by partitioning the output
string into two segments of κ/2 bits. The first segment indicates whether this query is successful;
and the second segment decides on which chain this PoW message is valid. I.e., one query can
succeed on at most one chain (while in the ideal scheme success on multiple chains is possible).
This scheme achieves parallel chain sub-independence, and the statistical distance from the ideal
parallel random oracles is bounded by the square of the success probability of a single random
oracle query. Finally, the m×1 scheme presented in [BKT+19] checks if the numeric value of the
random oracle output is within a specific range and hence decide on which chain it succeeds. As
such, this scheme can only succeed in producing blocks on one chain and therefore does not provide
full independence.

B Models and Preliminaries (Cont’d)

Clock functionality. We adopt GClock (cf. [KMTZ13]) to model synchronous processors. In a
nutshell, GClock internally maintains a round variable τ which is only updatable when all parties
send it the clock-update command. Whenever a party P is activated, P sends a clock-read
message to check the current round. When round proceeds, P executes the protocol and send
clock-update after it completes all computations; if not, P does nothing and wait for the next
activation. By interacting with GClock, parties are aware that they proceed in synchronized rounds.

Functionality GClock

The functionality manages the set P of registered identities, i.e., parties P = (pid, sid). It
also manages the set F of functionalities (together with their session identifier). Initially,
P ← ∅ and F ← ∅.
For each session sid the clock maintains a variable τsid. For each identity P = (pid, sid) ∈ P
it manages variable dP. For each pair (F , sid) ∈ F it manages variable d(F , sid) (all integer
variables are initially 0).

Synchronization:
� Upon receiving (clock-update, sidC) from some party P ∈ P set dP ← 1; execute

Round-Update and forward (clock-update, sidC ,P) to A.
� Upon receiving (clock-update, sidC) from some functionality F in a session sid such

that (F , sid) ∈ F set d(F , sid) ← 1, execute Round-Update and return (clock-update,
sidC ,F) to this instance of F .

� Upon receiving (clock-read, sidC) from any participant (including the environment on
behalf of a party, the adversary, or any ideal—shared or local—functionality) return
(clock-read, sidC , τsid) to the requestor (where sid is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F , sid) = 1 for all F ∈ F and dP = 1
for all honest parties P = (·, sid) ∈ P, then set τsid ← τsid + 1 and reset d(F , sid) ← 0 and
dP ← 0 for all parties P = (·, sid) ∈ P.

Random oracle functionality. By convention, we model the hash function used to generate
PoW as a random oracle; this is captured by the functionality FRO. FRO internally maintains an
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updatable table H with output length the same as security parameter κ. Upon receiving a query
(eval, sid, x), if no pair of the form (x, ·) is in H, a value y is chosen uniformly at random from
{0, 1}κ and returned to the party (FRO also updates H(x) = y). If H(x) ̸= ⊥ (i.e., x has been
queried before), the corresponding y is returned.

Functionality FRO

The functionality is parameterized by the security parameter κ. It maintains a dynamically
updatable function table H where H[x] = ⊥ denotes the fact that no pair of the form (x, ·)
is in H. Initially, H = ∅.
� Upon receiving (eval, sid, x) from some party P ∈ P (or from A on behalf of a corrupted

P), do the following:
1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ and set H[x]← y.
2. Return (eval, sid, x,H[x]) to the requestor.

Note that with regards to bounding access to real-world resources, functionality FRO as defined
fails to limit the adversary on making a certain number of queries per round. Hence, we adopt
a functionality wrapper [BMTZ17, GKO+20] W(FRO) that wraps the corresponding resource to
capture such restrictions.

Functionality W(FRO)

The wrapper functionality is parameterized by a set of parties P, and an upper bound t which
restricts the F-evaluations of all corrupted party per round. The functionality manages the
variable τ (positive integer or ⊥) and the current set of corrupted miners P ′. It also manages
variable tA. Initially, τ = ⊥.
General: The wrapper stops the interaction with the adversary as soon as the adversary
tries to exceed its budget of t queries per nominal round.

Relaying inputs to the random oracle:
� Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P ′, if τ = ⊥,

forward the request to FRO and return to A whatever FRO returns. Otherwise, first
execute Round Reset. Then, set tA ← tA + 1 and only if tA ≤ tτ forward the request to
FRO and return to A whatever FRO returns.

� Upon receiving (Retrieved) from FD
CRS, set τ = 1.

� Any other request from any participant or the adversary is simply relayed to the underlying
functionality without any further action and the output is given to the destination specified
by the hybrid functionality.

Corruption Handling: Upon receiving (corrupt, sid,P) from the adversary, set P ′ ← P ′∪P.
Procedure Round-Reset: Send (clock-read, sidC) to GClock and receive (clock-read,
sidC , τ

′) from GClock. If |τ − τ ′| > 0, then set tA ← 0 for the adversary and set τ ← τ ′.

Diffusion functionality. We model the synchronous communication by FDiffuse [BMTZ17]. Note
that we present F∆

Diffuse which is parameterized by the network delay ∆, and the synchronous
variant can be easily derived by setting ∆ = 1.
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Functionality F∆
Diffuse

The functionality is parameterized with a set possible senders and receivers P. Any newly
registered (resp. deregistered) party is added to (resp. deleted from) P.

� Honest sender diffusion. Upon receiving (diffuse, sid,m) from some P ∈ P, where
P = {P1, . . . ,Pn} denotes the current party set, do: (i) choose n new unique message-
IDs mid1, . . . ,midn; (ii) initialize 2n new variables Dmid1 , D

MAX
mid1

, . . . , Dmidn , D
MAX
midn

to

1; (iii) set M⃗ ← M⃗ ∥ (m,mid1, Dmid1 ,P1) ∥ . . . ∥ (m,midn, Dmidn ,Pn); and (iv) send
(diffuse, sid,m,P, (P1,mid1), . . . , (Pn,midn)) to the adversary.

� Adversarial sender diffusion. Upon receiving (diffuse, sid, (mi1 ,Pi1), . . . , (miℓ ,Piℓ))
from the adversary, where {P1, . . . ,Piℓ} ⊆ P, do: (i) choose ℓ new unique message-IDs
mid1ℓ , . . . ,midiℓ ; (ii) initialize 2ℓ new variables Dmidi1

, DMAX
midi1

, . . . , Dmidiℓ
, DMAX

midiℓ
to 1;

(iii) set M⃗ ← M⃗ ∥ (mi1 ,midi1 , Dmidi1
,Pi1) ∥ . . . ∥ (miℓ ,midiℓ , Dmidiℓ

,Piℓ); and (iv) send
(diffuse, sid,m,P, (mi1 ,Pi1 ,midi1), . . . , (miℓ ,Piℓ ,midiℓ)) to the adversary.

� Honest party fetching. Upon receiving (fetch, sid) from P ∈ P (or from A on behalf
of P if P is corrupted): For all tuples (m,mid, Dmid,P) ∈ M⃗ , set Dmid ← Dmid − 1.
Let M⃗P

0 denote the subvector M⃗ including all tuples of the form (m,mid, Dmid,P) with
Dmid = 0 (in the same order as they appear in M⃗). Then, delete all entries in M⃗P

0 from
M⃗ and send M⃗P

0 to P.
� Adding adversarial delays. Upon receiving (delays, sid, (Tmidi1

,midi1), . . . , (Tmidiℓ
,

midiℓ)) from the adversary do the following for each pair (Tmidij
,midij ): if DMAX

midij
+

Tmidij
≤ ∆ and midij is a message-ID registered in the current M⃗ , set Dmidij

← Dmidij
+

Tmidij
and set DMAX

midij
← DMAX

midij
+ Tmidij

; otherwise, ignore this pair.

� Adversarially reordering messages. Upon receiving (swap, sid,mid,mid′) from the
adversary, if mid and mid′ are message-IDs registered in the current M⃗ , then swap the
triples (m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in M⃗ . Return (swap, sid) to the adversary.

Common reference string functionality. We model a public setup by the CRS functionality
FD
CRS. This functionality is parameterized with some distribution D with sufficiently high entropy.

Upon receiving (Retrieve, sid) from any party for the first time, FD
CRS generates a string d← D

as the common reference string.

Functionality FD
CRS

When activated for the first time on input (Retrieve, sid), choose a value d← D, and send
(Retrieve, d) back to the activated party; also send (Retrieved, sid) to W(FRO). In each
other activation return the value d to the activated party.

C Algorithms Omitted in the Main Body

Chain validation check. The following functions help us simplify the validation process. First,
we adopt ValidContent to validate the block content. When the input is IB and ValidContent extracts
its associated block content and returns true only when the block content is a valid type of input
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in our consensus protocol; when the input is B, ValidContent returns true only when the associated
block content contains only block headers of input-blocks and other types of valid transactions (we
omit the details as it is irrelevant to our consensus protocol).

Next, we use ValidBlockT to verify if a (chain-)block is a successful PoW on the i-th chain (that
is, the nonce ctr is valid and the block hash — i-th segment of the RO output is less than target
T ).

ValidBlockT (⟨ctr, r, h, st, h′, val⟩, i) = [H(⟨ctr, r, h, st, h′, val⟩)]i∼m < T ∧ ctr < 232

Similarly, we use use ValidInputBlockT to verify if an input-block is a successful PoW on the i-th
chain by checking the reverse of the string segment.

Let isDenseChain denote the a predicate that returns true iff. a chain C is a dense chain. Slightly
abusing the notations, when ExtractInputFreshness is called with a single chain C we let this denote
the fresh randomness for input-blocks extracted from this chain (note that this can be computed
without parallel chains).

Algorithm 8 IsValidChain(C, denseChains, r)

▷ This algorithm has five internal Boolean variables goodHash, goodNonce, goodTime,
goodContent and goodRef, all initialized as true.

1: for i from 1 to phase do
2: for j from 1 to m do

3: Call isValidChain(C, denseChains, r, i, j,C(i)
j )

4: for C ∈ denseChains[i][j] do
5: Call isValidChain(C, denseChains, r, i, j, C)
6: if not isDenseChain(C) then goodRef ← false
7: end for
8: end for
9: end for

10: return goodHash ∧ goodNonce ∧ goodTime ∧ goodContent ∧ goodRef

11: procedure isValidChain(C, denseChains, r, phase, chain, C)
12: r∗ ← min{r, phase · ρ}
13: for k from len(C) to 1 do
14: Parse Ck as B = ⟨ctr, r, h, st, h′, val⟩
15: if k > 1 then
16: Parse Ck−1 as B∗
17: if [h]chain∼m ̸= [H(B∗)]chain∼m then goodHash← false
18: else if phase = 1 then
19: if h ̸= 0κ then goodHash← false
20: end if
21: if not ValidBlockT (B, j) then goodNonce← false
22: if not (phase− 1)ρ < TS(B) < r∗ then goodTime← false
23: if not ValidContent(B) then goodContent← false
24: Run IsValidInputBlocks(B, C, phase, chain)
25: r∗ ← TS(B)
26: if phase > 1 then ◁ Check cross-chain reference
27: denseCnt← 0
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28: for q from 1 to m do

29: Parse C = C(phase−1)
chain

30: if [head(C⌈ρref)]q∼m = [h′]q∼m and isDenseChain(C) then
31: denseCnt← denseCnt+ 1
32: end if
33: if ∃C′ ∈ denseChains[phase][chain] and[head(C′⌈ρref)]q∼m = [h′]q∼m then
34: denseCnt← denseCnt+ 1
35: end if
36: end for
37: if denseCnt < β ·m then goodRef ← false
38: end if
39: end for
40: end procedure

41: procedure IsValidInputBlocks(B, C, phase, chain)
42: for each IB = ⟨ctr, r, aux, h′, val⟩ ∈ B do
43: if ∃IB′ ∈ B′ ∈ C and [H(IB′)]Rchain∼m = [H(IB)]Rchain∼m then
44: goodHash← false
45: end if
46: if not ValidInputBlockT (IB, chain) then goodNonce← false
47: if not (phase− 1)ρ < r < TS(B) then goodTime← false
48: if not ValidContent(IB) then goodContent← false
49: h∗ = ExtractInputFreshness(C)
50: if [h′]chain∼m ̸= [h∗]chain∼m then goodRef ← false
51: end for
52: end procedure

D Proofs Omitted in the Main Body

The following mathmatical facts are of interest.

Theorem 9 (Chernoff bounds). Suppose {Xi : i ∈ [n]} are mutually independent Boolean
random variables, with Pr[Xi = 1] = p, for all i ∈ [n]. Let X =

∑n
i=1Xi and µ = pn. Then, for

any δ ∈ (0, 1], it holds that

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.

Also, for all t > 0,
Pr[X ≥ µ+ t] ≤ e−2t2n.

We summarize all protocol parameters and their explanation in Table 2 in Appendix E.1.

D.1 Typical Execution on Parallel Chains

In this section we present a formal analysis of the security of parallel chains by using the typical
execution analytical framework from [GKL14, GKL17].
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Notations and preliminaries. We write h as the number of honest RO queries and t as the
number of corrupted RO queries. To illustrate the honest advantage against the adversary, we
adopt an additional parameter δ ∈ (0, 1] such that t ≤ (1− δ)h. In order for our protocol to work,
the following conditions should be satisfied.

3f + 3ϵ < δ ≤ 1. (C1)

For the purpose of estimating the number of blocks acquired by honest parties during a sequence
of rounds, we define the following random variables X,X ′, Y, Z, Z ′ with respect to round r. First,
if in round r at least one honest party successfully solves a PoW with respect to chain-block, then
Xr = 1 (we call r a successful round); otherwise Xr = 0. If in round r at least one honest party
successfully solves a PoW with respect to input-block, then X ′

r = 1; otherwise X ′
r = 0. If in

round r exactly one honest party solves a PoW w.r.t. chain-block, then Yr = 1 (we call r a unique
successful round); otherwise Yr = 0. Regarding the adversary, let Zr (Z ′

r resp.) denote the total
number of successful PoWs with respect o chain-blocks (input-blocks resp.) that the adversary gets
at round r. Note that Zr (Z ′

r resp.) can be viewed as the sum of Bernoulli random variable Zrij

(Z ′
rij reps.) denote the i-th query of the j-th corrupted party in round r. For a set of rounds S,

let X(S) =
∑

r∈S Xr and similarly define X ′(S), Y (S), Z(S) and Z ′(S).
The following mathematical facts with respect to Xr, X

′
r, Yr, Zr, Z

′
r, derived from the q-bounded

model [GKL14] to one query per party per round, can be useful in later proofs.

(1− f)ph < f =E[Xr] = E[X ′
r] = 1− (1− p)h < ph,

E[Yr] ≥ ph(1− p)h−1 > ph[1− ph] ≥ f(1− f),

E[Zr] = E[Z ′
r] = pt =

t

h
ph <

t

h

f

1− f
< (1 +

δ

2
) · f · t

h
.

Typical executions. We formally define typical executions. An execution is typical if for any set
S of at least k consecutive rounds, it holds that (i) for all random variables X(S), X ′(S), Y (S), Z(S)
and Z ′(S), the deviation from their expected value is bounded by a concentration quality parameter
ϵ; and (ii) no bad events with respect to random oracle (collisions) happen during these rounds.

Regarding bad events with respect to random oracle (cf. [GKL14]), an insertion occurs when,
given a chain C with two consecutive blocks B and B′, a block B∗ created after B′ is such that
B,B∗,B′ form three consecutive blocks of a valid chain; a copy occurs if the same block exists in
two different positions; a prediction occurs when a block extends one which was computed at a
later round.

Definition 4 (Typical execution). An execution is (ϵ, k)-typical, for ϵ ∈ (0, 1) and constant
integer k if, for any set S of at least k consecutive rounds, the following hold.
(a) (1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)] and (1− ϵ)E[X ′(S)] < X ′(S) < (1 + ϵ)E[X ′(S)]
(b) (1− ϵ)E[Y (S)] < Y (S).
(c) Z(S) < E[Z(S)] + ϵE[X(S)] and Z ′(S) < E[Z ′(S)] + ϵE[X ′(S)].
(d) No insertions, no copies, and no predictions occurred.

With typical executions and random variables defined above, we prove the following lemma.

Lemma 10. For any β < 1, there exist protocol parameterizations such that an execution running
for a constant number ρ of rounds is typical with probability at least β.

Proof. Regarding Property (a), (b) and (c), consider any k consecutive rounds. Let badX denote
the event that either X(S) ≥ (1 + ϵ)E[X(S)] or X(S) ≤ (1− ϵ)E[X(S)]; let badY denote the event
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that Y (S) ≤ (1 − ϵ)E[Y (S)]; and let badZ denote the event that Z(S) ≥ E[Z(S)] + ϵE[X(S)].
Following the Chernoff Bounds (Theorem 9), we have

Pr[badX] = Pr[badX′] ≤ exp(−ϵfk/3) + exp(−ϵfk/2),
Pr[badY] ≤ exp(−ϵfk/2),

Pr[badZ] = Pr[badZ′] ≤ exp(−2ϵ2f2k3).

The probability that neither one of them happens is lower-bounded by

Pr
[
¬badX ∧ ¬badX′ ∧ ¬badY ∧ ¬badZ ∧ ¬badZ′] ≥ 1− 7 exp

(
− ϵfk/3

)
.

Notice that k 7→ 1 − 7 exp(−ϵfk/3) is increasing in (0,+∞), and limk→∞ 1 − 7 exp(−ϵfk/3) = 1,
for any β′ < 1 there exists k such that Pr[¬badX ∧ ¬badX′ ∧ ¬badY ∧ ¬badZ ∧ ¬badZ′] ≥ β′.

We then consider the execution running for ρ rounds. Without loss of generality, assume
ρ = c · k for a constant c ∈ N+. The number of set of at least k consecutive rounds in ρ is
(1/2)(ck− k+2)(ck− k+1) < c2k2. Hence, the probability that an execution running for ρ = c · k
steps and Property (a)(b)(c) holds on any set of k consecutive rounds is lower-bounded by

[1− 7 exp(−ϵfk/3)]c2k2 ≥ 1− 7c2k2 exp(−ϵfk/3) = 1− 7 exp(−ϵfk/3 + 2 ln c+ 2 ln k).

Notice that there exists constant c such that k 7→ 1− 7 exp(−ϵfk/3+2 ln c+2 ln k) is increasing in
(c,+∞) and limk→∞ 1− 7 exp(−ϵfk/3 + 2 ln c+ 2 ln k) = 1, for any β < 1 there exists k such that
the probability that an execution running for ρ = c · k steps and Property (a)(b)(c) holds on any
set of k consecutive rounds is at least β.

Regarding Property (d), the RO queries made by all parties in ρ rounds is Q = (h+ t) ·ρ. Recall
our m×1 PoW construction in Section 3.1, we consider RO output of length polylogκ. A collision
happens with probability Q2/2polylogκ = exp(−Ω(polylogκ + log ρ) which is negligible. (Note that
Property (d) actually holds on an execution of L = poly(κ) steps.)

Recall that we run m = Θ(log2 κ) chains in parallel using m×1 PoW, and all parallel executions
are mutually independent of each other, we show that the above probability on a single execution
translates to the fraction of typical executions among m parallel ones.

Theorem 1. For any β < 1, running m = Θ(log2 κ) parallel chains as described above for a
constant number ρ of rounds, results in at least a β fraction of them being typical with overwhelming
probability in κ.

Proof. Fix β < 1. We define random variable Qi(i ∈ [m]) as follows. If the i-th execution among m
parallel repetitions, running for a constant number of ρ steps is typical, Qi = 1; otherwise Qi = 0.
Also let Q =

∑
Qi. From Lemma 10 we learn that there exists protocol parameterizations such

that ∀i ∈ [m],Pr[Qi = 1] = (1+2ϵ)β. Hence E[Q] = (1+2ϵ)βm. Since our m×1 PoW construction
achieves full independence over all parallel chains, we have

Pr[Q ≤ βm] < Pr[Q ≤ (1− ϵ)(1 + 2ϵ)βm] = Pr[Q ≤ (1− ϵ)E[Q]] ≤ exp(−ϵ2(1 + 2ϵ)βm).

The first inequality holds because ϵ < 1/2, and the last one is due to the Chernoff bounds. Sincem =
Θ(log2 κ), this probability is negligible in terms of κ. I.e., there exist protocol parameterizations
such that, with overwhelming probability, at least β fraction of the executions are typical.
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D.2 Analysis of Phase Oblivious Agreement

In a typical execution, the random variables satisfy the following properties.

Lemma 11 (cf. [GKL14]). The following hold for any set S of at least k consecutive rounds in
a typical execution. Note that the relations on X(S) (Z(S) resp.) also applies on X ′(S) (Z ′(S)
resp.).
(a) (1− ϵ)f |S| < X(S) < (1 + ϵ)f |S| and (1− δ/3)f |S| < Y (S).
(b) Z(S) < (1− 2δ/3)f |S|.
(c) Z(S) < (1− δ/2)X(S) and Z(S) < Y (S).

To achieve phase oblivious agreement, certain conditions on the length of phases and stages
should be satisfied which we summarize as follows.

ρref ≥
8k

δ
; ρview ≥ (

3

δ
− 2)ρref + (

3

δ
− 1)k and ρoutput ≥

12

δ
(ρview + k) (C2)

Also, we require that the density parameter τ is set such that it is roughly the same as block
generation rate f .

τ = (1− ϵ)(1− 2k

ρref
)f. (C3)

We now consider two lemmas — Lemma 12 and Lemma 13 in the first phase where parties start
simultaneously with CRS. Notice that neither lemma can be applied unconditionally in the second
and later phases, as in these phases the adversary can pre-mine for a bounded amount of time. We
will treat them carefully in the proof of Theorem 2.

First, Lemma 12 considers two basic blockchain properties — common prefix and existential
chain quality. A detailed proof can be found in [GKL14].

Lemma 12. The following two properties hold in a typical execution.
� Common prefix. Let C1, C2 denote two chains held by two honest parties P1,P2 respectively at

round r. It holds that C⌈k1 = C⌈k2
� Existential chain quality. For any set S of k consecutive rounds, there is at least one block B ∈ C

such that the timestamp of B is in S and B is produced by an honest party.

Proof(sketch). To show common prefix, we consider a contradiction. Suppose C⌈k1 ̸= C
⌈k
2 , and let B

be the last honest block on the common part of C1 and C2 and r∗ its timestamp. Let S = {r∗, . . . , r}.
Since C⌈k1 ̸= C

⌈k
2 we have Z(S) > Y (S) (by pairing every unique successful round with an adversarial

block) which contradicts Lemma 11(c).
Regarding existential chain quality, since the adversary cannot create a fork more than k rounds

it implies he cannot revert all honest blocks in a consecutive k rounds.

Next, since chain selection rule asks for cross-chain reference that links to sufficiently many
dense chains, we show that when the execution is typical in the first phase, honest parties can
prepare a dense chain by themselves.

Lemma 13. In a typical execution, all honest parties hold a dense chain at the end of the first
phase.

Proof. Let C denote a chain held by an honest party P at the end of i-th phase. Consider a set
S = {u, . . . , v} consecutive rounds where |S| > ρref. By Lemma 12, there exists at least one honest
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block B with timestamp r ∈ [u, u+k) and at least one honest block B′ with timestamp r′ ∈ (v−k, v].
Let S′ = {r, r + 1, . . . , r′}. We learn that the number of blocks in S is lower-bounded as follows.

X(S′) ≥ (1− ϵ)f |S′| ≥ (1− ϵ)(1− 2k

ρref
)f |S| ≥ τ |S|.

The first inequality follows Lemma 11(a); the second is because |S′| ≥ |S|−2k = (1−(2k/|S|))|S| ≥
(1− (2k/ρref))|S|; and the last one follows Condition (C3).

The following lemma proves an upper-bound on pre-mining in phase i + 1, given that phase i
achieves phase oblivious agreement.

Lemma 14. If parties achieves phase oblivious agreement in phase i, the adversary cannot mine
valid blocks in phase i+ 1 before round i · ρ− ρref − k.

Proof. Without loss of generality, for the sake of a contradiction, suppose the i-th phase is the
earliest phase such that parties mine valid blocks in the (i+1)-th phase before round i ·ρ−ρref−k.
I.e., they prepare at least (3m/4 + 1) dense chains before this round. We consider three types of
adversarial strategies.

First, the adversary stick to the typical chains in phase i and start to mine blocks in phase
i + 1 after he learns sufficiently many block hashes on dense chains. Consider an arbitrary chain
in phase i such that typical execution holds. Lemma 12 implies that there is an honest block with
timestamp r in (i ·ρ−ρref−k, i ·ρ−ρref] which is produce at round r. If the adversary starts earlier
than i · ρ− ρref − k, it implies a prediction which contradicts the execution being typical.

Second, the adversary stick to the typical chains for a while and at some point r > (i−1)ρ+ρview
he creates a fork from the honest chain. In order for this fork to be dense, the adversary should
prepare at least τ · (i ·ρ− r) blocks on his own in rounds S = {r, r+1, . . . , i ·ρ−ρref−k}. However,
we get the following contradiction.

Z(S) < (1− 2δ

3
)f |S| < (1− 2k

ρref
)(1− ϵ)f |S| < τ · |S + ρref + k|.

The first inequality comes from Lemma 11(b); the second one follows Condition (C1) and the
inequality between k and ρref in Condition (C2); and the last one is achieved by substituting the
density parameter τ .

Third, the adversary builds a chain on his own as soon as he learns the fresh randomness in
phase i− 1 and for all blocks in this private chain he insert fake timestamps in the last two stages.
I.e., he needs to prepare τ · (ρoutput + ρref) blocks on his own in ρ+ k rounds. We get the following
contradiction.

Z(ρ+ k) < (1− 2δ

3
)f |ρ+ k| < (1− 2k

ρref
)(1− ϵ)(1− δ

12
)f |ρ+ k| < τ · |ρoutput + ρref|.

The first inequality comes from Lemma 11(b); the second one follows Condition (C1) and the
inequality between k and ρref in Condition (C2); and the last one is achieved by substituting the
density parameter τ and the inequality between ρview and ρoutput in Condition (C2).

We now restate and formally prove Theorem 2 in Section 3.2.

Theorem 2 (Phase oblivious agreement). There exist protocol parameterizations such that the
following properties hold. Let β ∈ (3/4, 1) and consider a phase i. Let C,C′ denote the parallel
chains held by two honest parties P,P′ at rounds r, r′ after phase i (i.e., min{r, r′} > iρ), respec-
tively. Then there exists a subset S ⊆ {1, 2, . . . ,m} of size larger than β ·m such that for all j ∈ S,

the following two properties hold on chains C = C(i)
j and C′ = C′(i)

j .
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� Agreement: C⌈ρref = C′⌈ρref.
� Honest input-block majority: For all input-blocks included in the output generation stage of
C and C′, more than half of them are produced by honest parties.

Proof. We prove by induction.
Consider the first phase. Theorem 1 shows that typical execution holds on at least β fraction

of the chains. Consider the j-th execution on j-th chain where typical execution holds. At the
end of round ρ, let C and C′ be chains held by two honest parties respectively. By common prefix
(Lemma 12) it holds that C⌈k = C′⌈k hence C⌈ρref = C′⌈ρref .

Moreover, existential chain quality (Lemma 12) implies that there is at least one honest block
with timestamp in (ρview − k, ρview], and there is at least one honest block with timestamp in
(ρview − 2k, ρview − k]. Thus, for the last block in the view convergence phase it is produced in at
round r∗ > ρview−2k where r∗ is the earliest time that the adversary can produce valid input-blocks
on chain j. Similarly there is at least one honest block with timestamp in (ρview+ρoutput−k, ρview+
ρoutput]. We learn that the honest parties can collect input-blocks mined in a set H of consecutive
rounds of length at least ρoutput − k; and the adversary can collect input-blocks mined in a set of
consecutive rounds of length no more than |H|+3k (where 2k rounds comes from pre-mining and k
rounds comes from post-mining). We learn that the majority of input-blocks included in the output
generation stage of the first phase are produced by honest parties from the following inequality.

Z ′(|H|+ 3k) < (1− 2δ

3
)f(|H|+ 3k) ≤ (1− 2δ

3
)(1 +

2δ/3− ϵ

1− 2δ/3
)f |H| < (1− ϵ)f |H| < X ′(H)

The first inequality is from Lemma 11(b); the next one is by the inequality between ρview and k in
Condition C2; and the last inequality is by Lemma 11(a).

We also note that all honest parties hold at least (3m/4 + 1) dense chains by Lemma 13.
Now, suppose the i-th phase satisfies phase oblivious agreement, we show that this also holds

for the (i+ 1)-th phase.
First, assume the execution on j-th chain is typical and let C denote a chain held by an honest

party after the view convergence phase in phase i + 1. We show that the adversarial advantage
from pre-mining can only revert all honest blocks up to time iρ + ρview − k. Let S = {iρ − ρref −
k, iρ + ρview − k} and S′ = {iρ, iρ + ρview − k}. If the adversary reverts all honest blocks before
round iρ+ ρview − k, we have Z(S) ≥ Y (S′). We get the following contradiction.

Z(S) < (1− 2δ

3
)f |S| ≤ (1− 2δ

3
)(1 +

1

3/δ − 2
)f |S′| < (1− δ

3
)f |S′| < Y (S′).

The first inequality is from Lemma 11(b); the next one is by the inequality between ρview and ρref
in Condition C2; and the last inequality is again by Lemma 11(a).

Since the adversarial pre-mining can revert all honest blocks up to time iρ+ ρview− k, we learn
that there must exist one honest block B in C with timestamp r ∈ (iρ + ρview − 2k, iρ + ρview − k]
and at least one honest block B′ with timestamp r′ ∈ (iρ + ρview − k, iρ + ρview]. Note that if the
adversary choose not to revert an honest block at an earlier time before iρ + ρview − k, since the
unpredictability of honest blocks he will lose all advantage. And the existence of B and B′ can
be argued by existential chain quality. Following a similar argument we conclude agreement and
honest input-block majority in phase i+ 1.
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Variable Description

κ Security parameter; length of the random oracle output.

m The number of parallel chains (m = Θ(log2 κ)).

ρ

The length of a phase in number of rounds, it consists of 3 differ-
ent stages: (i) view convergence of length ρview rounds; (ii) output
generation of length ρoutput rounds; and (iii) reference convergence
of length ρref rounds.

τ
The density parameter that asks for at least τ · ρref blocks in any
consecutive rounds of length at least ρref in the output generation
and reference convergence stage.

T The target to successful solve a PoW.

hr Number of RO queries made by honest parties at round r.

tr Number of RO queries made by corrupted parties at round r.

δ Advantage of honest parties (t ≤ (1− δ)h).

f
Block generation rate; the probability at least one honest party suc-
ceeds in finding a PoW in a round.

ϵ
Quality of concentration of random variables in typical executions,
cf. Definition 4.

Table 2: Main parameters of ChainKingConsensus.

E Glossary

E.1 Main Parameters of ChainKingConsensus

E.2 Main State Variables of ChainKingConsensus Participants

Variable Description

r Party P’s local time.

phase Party P’s local phase.

Clocal Party P’s local parallel chain.

denseChains Party P’s local recorded dense chains.

chainBuffer
The buffer that stores all incoming new parallel-chains and their
associated dense chains.

IBBuffer The buffer that stores all incoming new input-blocks.

val Party P’s suggestion for protocol output.

lock Whether P should adopt the output from chain-king.

decide Whether P has decided to output val.

exit

Whether P should stop mining. exit = ∞ if P have not yet
decided; exit = 1 implies that P will terminate mining in the
next iteration and P stops mining when exit = 0.

Table 3: Main state variables in ChainKingConsensus.
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