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Abstract. This paper presents embedded curves that stem from BLS elliptic
curves, providing general formulas derived from the curve’s seed. The mathematical
groundwork is laid, and advantages of these embeddings are discussed. Additionally,
practical examples are included at the end of the paper.

1 Introduction

A pairing-friendly curve E has a bilinear map e : Gy x Gy — Gr , where G, G, are
distinct prime-order r subgroups of £, and G C F,» of the same order 7. The current
most efficient pairing-friendly elliptic curves are specific elliptic curves named after Barreto,
Lynn, and Scott (BLS) [BLS03].

Nowadays, the main application of pairing in the field of cryptography is typically
related to constructing Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge
(zk-SNARKSs), which are a specific type of cryptographic proof system. They allow one
party to prove to another that a statement is true without revealing any information about
the statement itself. A proof system involves a protocol in which one participant, known as
the prover, endeavors to persuade another participant, known as the verifier, of the validity
of a specific statement. In the context of zero-knowledge proofs, we add the condition that
the proof must not disclose any information beyond the veracity of the statement. While
verification of such proofs is typically rapid, generating such proofs can incur significant
costs. This issue is exacerbated when there is involvement of elliptic curve arithmetic.

To mitigate this challenge in elliptic curve arithmetic, one approach is to select embedded
curves. These are elliptic curves characterized by parameter selection that aligns its base
field with the group order of the pairing curve, creating a correspondence with the modulus
used in the arithmetic field. Embedded curves optimize the arithmetic operations within
the proof of execution. In their work on COCQ [KZM'15], Kosba, Zhao, Miller, Qian,
Chan, Papamanthou and Pass introduced a collection of cryptographic primitives suitable
for efficient verification using a SNARK. They achieved this by creating a novel (embedded)
elliptic curve designed for the efficient execution of the necessary operation in key exchanges,
namely, scalar multiplication.

BLS12-381 [Bow17], introduced by Sean Bowe in 2017 as a pairing-friendly curve, is
presently in the midst of a standardization process led by the IRTF Crypto Forum Research
Group. This curve has gained widespread adoption and is employed for digital signatures
and zero-knowledge proofs in numerous projects within the blockchain ecosystem, including
but not limited to Zcash, Ethereum 2.0, Filecoin, Anoma, Skale, Algorand, Dfinity, Chia,
and various others.

Jubjub [Zca] is an elliptic curve designed over the BLS12-381 scalar field F, by the
Zcash team. In 2021 Masson, Sanso and Zhang presented Bandersnatch [MSZ21]: a fast
elliptic curve built also over the BLS12-381 scalar field. Bandersnatch is equipped with
an efficient endomorphism, allowing a fast scalar multiplication algorithm. As a result,
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this enhancement has led to a 42% increase in the speed of scalar multiplication when
compared to Jubjub. The GLV technique, as outlined in [GLV01], is a widely recognized
approach to speeding up scalar multiplication on specific curves. In essence, it is applicable
to elliptic curves where an efficient endomorphism can be calculated. The GLV method is
particularly useful for curves with a j-invariant of j = 0 (or j = 1728) because it allows for
the computation of a non-trivial automorphism with just a single modular multiplication.
This method can also be adapted to work with other curves, even if the endomorphism is
somewhat more computationally intensive. A survey of elliptic curves for proof systems
can be found in [AHG22].

The motivation for further investigation and the writing of this paper was sparked by
the observation that Bandersnatch is defined over the scalar field FF,. of the BLS curve,
with the seed u = -0xd201000000010000. The author observed that the factorization of
u=—1.216.906349 - 254760293 overlaps significantly with some of the values found in
the row of [MSZ21, Table 2 | (partially presented here as Table 1).

Table 1: BLS12-381 embedded Curves for discriminants —3 > —D > —4.

—D Curve sec. Curve order

-3 65-bit 22 .3.97- 19829809 - 2514214987 - 423384683867248993 - p131
14-bit 264.906349% - p3g
77-bit 7-43-1993 - 2137 - 43558993 - 69032539613749 - p154
41-bit 3-7-13-79-2557 - 33811 - 1645861201 - 75881076241177-
86906511869757553 - g2
13-bit 32112192 - 101772 - 1255272 - 8592672 - 25084092 - 25294032 - pZ¢
118-bit 836509 - pa3e
—4 59-bit 232.5.73.9063492 - 2547602932 - p119
37-bit 22.29 - 233 - 34469 - 1327789373 - 19609848837063073-
159032890827948314857 - pry
37-bit 2-32.112 .13 - 1481 - 101772 - 8592672 - 524378992 - 346160718017 - pr4
57-bit 2-5-192.1709 - 1255272 - 25084092 - 25294032 - p114

QOutline. This paper is organized as follows. In Section 2, we give a mathematical
foundation for understanding the concepts employed in the manuscript. Section 3, the
main focus of the paper, offers a detailed description of the derivation of new formulas.
Section 4 extends the algorithm from the original BLS paper to incorporate the new
formulas. In Subsection 4.1, we will survey existing BLS curves while analyzing our new
method retrospectively. In Subsection 4.2, we will propose a new BLS curve with an
associated embedded curve of prime order, along with an efficient endomorphism. Finally,
we draw conclusions in Section 5.

2 Preliminaries

We present a short background on pairing-friendly elliptic curves and complex multiplication
(CM) method. Consider an elliptic curve denoted as E, defined over the finite field F,.

#E([F,) =n=hr

where 1 is the largest prime divisor of n. For any elliptic curve E defined over F,, with n
points, Hasse’s theorem [Sil92, V.1.1] applies. This theorem asserts that the trace ¢ of the
Frobenius endomorphism on F, linked to p and n through the equation n =g+ 1 —t, is
constrained within the range [t| < 2,/p. Both the curve E and its quadratic twist, denoted
as F?, exhibit an isomorphism over the field Fp2, and their orders over I, are linked to
the trace t, as expressed by the following formulas:

#E[F,) =p+1-t (1)
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#E'(F,) =p+1+t.
Let’s define the embedding degree to be the smallest positive integer k such that

7“|pk -1

The r-torsion subgroup of E is denoted as E[r] = {P € E(F,)|[r]P = O} and has two
subgroups of order r that are used for pairing applications. One can define several bilinear
pairings, one of wich is the Weil pairing defined as:

e: Elr] x E[r] = p, C Fpr

For more formal definitions and details on elliptic curves over finite fields see [Sil92].

In this work, our focus revolves around cryptographic applications grounded in ordinary
elliptic curves, implying that we seek values of ¢ that do not satisfy the condition ¢ #
0 mod p. The endomorphism ring of these curves have a particular structure: End(FE)
is an order of the imaginary quadratic field Q(y/t2 — 4p). From now, we denote —D
to be the discriminant of End(E), and {Id, ¥} a basis of the endomorphism ring. The
fundamental discriminant corresponds to the discriminant of the maximal order containing
End(F). This way, 1 is of degree % or D/4 depending on the value of D modulo 4, and
1 can be defined using polynomials of degree O(D) thanks to the Vélu’s formulas [Vél71].
Thus, the evaluation of ¥ is efficient only for curves of small discriminant. The complex
multiplication (CM) technique is used to identify an elliptic curve characterized by a
specified modulus, p, and a given trace, t. The method is successful when a solution can
be identified for the CM equation with relatively modest values of D, represented by:

DV? = 4p — 12 (2)
It’s important to note that when arbitrary selections of p and t are made while adhering
to the Hasse condition (ensuring that the right-hand side is non-negative), the non-square
component D may become significantly large. Nevertheless, the practicality of the CM
method hinges on obtaining solutions that result in smaller values for D.
When D = 3, there are two cubic twists with p + 1 — %
(£3V+t)
2

points, and two sextic

4p—t2
3

twists with p+ 1 — points, where V = Analogously, when D = 4 there

4p—t2

are two quartic twists with p + 1 & 2V points, where V = I

2.1 Barreto—Lynn—Scott (BLS) curves

BLS curves were introduced in [BLS03] Barreto, Lynn and Scott. These are a collection of
elliptic curves suitable for pairings, specifically chosen with an embedding degree denoted
as k, which is a multiple of 3 but not a multiple of 18. Various well-established families
exist where these curves can be found with values of k such as 9, 12, 24, 27, and 48. The
curves share common characteristics, with a j-invariant of 0 and a discriminant of —D,
which equals -3. Each family is characterized by polynomial parameters ¢(u), r(u), and t(u).
These parameters correspond to distinct aspects of the curve, respectively its characteristic,
the subgroup order linked to the embedding degree k, and the trace. Notably, the subgroup
order is defined by r(u) as ®x(u), where ®(u) is the k-th cyclotomic polynomial. The
trace is straightforwardly expressed as t(u) = u + 1. The order of the curve is calculated
as q(u) + 1 —t(u), and the CM equation can be represented as Dy(u)? = 4q(u) — t(u)?.

3 Embedded curves

In the context of elliptic curve arithmetic, it becomes necessary to perform a modulo
operation using the order of the field over which the curve is defined, denoted as p. This
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presents a clever opportunity: ensuring that the order of the field defining our elliptic
curve perfectly aligns with the modulus used in our zkSNARK arithmetic. In simpler
terms, both fields should share the same p value.

This notion forms the basis for the concept of an embedded curve. An embedded curve
is essentially an elliptic curve where the parameters have been carefully chosen so that
the underlying prime field ), matches the group order of a hosting curve, and hence, it
corresponds to the modulus used in the arithmetic field.

Consequently, when performing elliptic curve operations on an embedded curve, they
essentially reduce to prime field arithmetic, utilizing the native modulo p operations of the
field. In other words, the modulo operations required during elliptic curve computations
become seamless, as the formula for point addition simplifies to a few multiplications and
additions due to the alignment of moduli. This efficiency in embedded curve operations is
what makes them highly effective within the realm of SNARK

This section presents the families of embedded curves for BLS12 and a generalization
for all BLS curves. All parameters and formulas are expressed in the form of polynomials
with respect to the variable wu.

3.1 BLS embedded curves

The approach for creating embedded curves appears relatively simple. This involves
extending the BLS curve generation, as described in [BLS03], adding the extra constraints
needed for embedded curves and solve for the CM discriminant D (and for V') the CM
equation DV? = 4p—t2 and use the CM method to compute the curve equation coefficients.
To distinguish the polynomial parameters of the hosting curve (g(u),r(u) t(u)) from those
of the embedded curve, we will denote the parameters of the latter with the letter “e”
(q(u)esr(u)e s t(u)e).

Given that embedded curves are constructed using the scalar field, and the BLS scalar
field corresponds to the k-th cyclotomic polynomial, denoted as g.(u) = r(u) = ®p(u)
(where k represents the embedded degree), the CM equations take on the following form:

DV? = 4%, (u) — > (3)

No general method is known for solving the Diophantine equations above with a degree
deg(®y,) greater than 4 (see also [BLS03, MNTO01]). We describe how to find algebraic
solution to equation 3 for the special cases D = 3,4.

Case D = 3,k = 12 Let’s focus first on the case D = 3,k = 12 first. Equation 3
becomes

3V?2 = 4®15(u) — t? (4)
then
4(ut —u? +1) -t
3
When attempting to derive generic formulas in terms of the BLS12 curve seed w, it is
easy to prove that the solution ¢ = 2u? — 1 is valid for equation 4 over the integer.
Substitute ¢ = 2u? — 1 into the equation:

VZ=

3V2=4(u* —u? +1) — (2u* — 1)
3V2 =4(ut —u? +1) — (4u* —4u? +1)
3V? =dut —4u? +4 — 4ot +4u® — 1

1for the embedded curve this is the full order
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V=3

Vi=1
So, when ¢t = 2u? — 1, the equation 3V? = 4(u* — u? + 1) — 2 holds true for integer
solutions, with V taking the values of 1 and -1. This proves that ¢ = 2u? — 1 is indeed a
solution for the given equation over the integers. It is trivial to prove that ¢t = 2u? — 1

respects the Hasse-Weil bound. Taking in account equation 1 we can parameterize the
order of the embedded curve in terms of curve seed u:

re(u) = ut — 3u? +3
Now, we are using the quadratic, cubic, and sextic twist formulas in Section 2 to derive
the other solutions: ¢t = —(2u?—1), t = £(u?+1) and t = £(u? —2) and the corresponding
orders (1o(u) = u* + u? + 3, re(u) = u* —2u% + 1, 7o (u) = u* + 3, re(u) = u — 2u? + 4,
re(u) = ut).

Case D = 4,k = 12 Let’s shift our focus to the case where D = 4 and k = 12. Equation
3 then becomes

4V? = 4D 15(u) — 2 (5)
then
4(ut —u? 4+ 1) — ¢
4
Also here it is straightforward to prove that the solution ¢t = 2u? —2 is valid for equation
5 over the integer. We begin by proving that the solution satisfies the Hasse-Weil bound.
Starting with the original inequality:

V2=

2?2 —2<2vVut —u2 +1

(2u? —2)* < (2Vut —u? +1)?
dut — 8u? +4 < 4(ut —u? +1)
dut —8u? 4+ 4 < dut —4u® +4
du* — 8u? +4 < 4u — 4u? +4
—8u? < —4u?
20> 2u2
u? >0

This inequality is true for all integers u because the square of any integer is always
non-negative. So, the original inequality 2u’® — 2 < 2v/u? — u2 + 1 holds for all integer
values of u. To prove that ¢ = 2u? —2 is a solution for the equation 4V? = 4(u*—u?+1) —¢2
over the integers, we can substitute this value for ¢ and see if it holds true. Let’s do that:

4V2 =4(ut —u? 1) -2
4V? = 4(u* —u? +1) — (2u* - 2)?
4V? = 4(ut —u? +1) — (4u” — 8u® +4)
4V2 = du* — 4u® + 4 — 4u* + 8u? — 4
4V? = 4

V2 =2



6 Family of embedded curves for BLS

We have shown that if t = 2u? —2, then the equation 4V? = 4(u* —u?+1) —t? simplifies
to V2 = w2, This equation holds true for integer values of v and V. So, t = 2u? — 2 is
indeed a solution to the given equation over the integers.

Now, we are using the quadratic and quartic twist formulas in Section 2 to derive
the other solutions: ¢t = —(2u? — 2), and t = +(2u) and the corresponding orders
(re(u) = ut = 3u? + 4, ro(u) = ut +u?, re(u) = u* —u? +2u+2, ro(u) = ut —u? — 2u+2).

It is easy to show by induction that the formulas derived above can be generalized for
all 4,7 > 1 for k = 2°3/ as shown in Table 2 (analogous formulas could be derived for the
less common k = 37 case).

Table 2: Parameters of BLS and embedded curves for k = 2137 4,5 > 1,181k

D 3 | 4
k 2737, 4,5 > 1(6, 12,24, 48,96, ...)
t(u) u+1
r(u) = ge(u) uF3 — k6 1
qlu T(U)(;hl)r“ +u
2ur/6 — 1 2ur/6 — 2
—2uk/6 1 —2uk/6 42
k/6 k/12
te(u) ituk/—gi 1 %zuk/12
uk/6 — 2
—uk/6 19
uF/3 — 3uk/6 43 uk/3 — 3uk/6 4
uk/3 k6 41 uk/3 4k /6
re(u) uk/3 _ 2uk/6 41 uk/3 _ uk/ﬁ 4 2uk/12 )
uk/3 43 uk/3 — yk/6 _ouk/12 4 o
uk/S _ zuk/6 44
Y

4 A general method

This section extends the algorithm outlined in [BLS03, Section 3.2] to accommodate the
use of embedded curves. While the core structure of the algorithm remains unchanged, it
incorporates an additional step: incrementing the seed until the generated r(u). value is a
prime number. The generated embedded curve will have a prime order with a discriminant
of D = 3 or D = 4, allowing for the utilization of the non-trivial automorphism in
implementing the GLV technique. Section 4.2 contains examples of this method. Existing
curves like Jubjub and Bandersnatch are commonly represented in the Montgomery or
Edwards form. Historically, the trend was to favor Montgomery and Edwards curves.
However, thanks to recent advances in research, such as the closed-form formulas provided
by [RCB16], we now possess the ability to efficiently and securely work with prime order
curves. This enhanced knowledge has not only allowed us to design more robust interfaces
for these curves, but it has also led to a deep appreciation of the inherent value of prime
order curves, which remain immune to cofactor vulnerabilities. Nevertheless, for those
who still prefer to use Montgomery or Edwards forms, it is possible to accommodate their
choice by modifying the algorithm. One can simply stop when r.(u) takes on the form of
4p or 8p, where p represents a prime number.
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4.1 Existing BLS curves

In this Section we conducted a retrospective analysis of our new method while examining
the landscape of existing BLS curves. The comprehensive analysis and findings can be
succinctly summarized and presented in the form of Table 3. Among the curves we
examined, it appears that two of them (specifically, BLS-440 and BLS-442 as defined
in [BD19]) have the potential to host an appropriate embedded curve. BLS-440 has a
prag-order subgroup of the curve, while BLS-442 has a py47-order subgroup, both with a
cofactor of 4, indicating that these curves can be expressed in Montgomery form.

4.2 An example of the general construction

To demonstrate the feasibility of the method outlined in Section 4, we present a BLS12
curve that incorporates an embedded prime order curve. These curves can be built using
the seed u = -15132376222941635237, This seed yelds:

7 = 52435875175126086317194268734274856590483579016894522447982524027249851530
393

q = 40024095552216554674225471656415571472778415993941077330341178057482976463
14110491974795389318365740812777421285127

Here r is a 255-bit prime, and ¢ is a 381-bit prime. The associated BLS12 curve is
quickly found as E : y? = 2% + 1.

The associated embedded curve, denoted as F, can be represented in the Weierstrass
model using the equation E, : y?> = 23 + 15. This curve is defined over the scalar field
F,. of the host curve and possesses a prime order of 5243587517512608631719426873427
4856590025601396589223746732046134954731438057. It’s crucial to emphasize that the
BLS curve presented here serves the sole purpose of demonstrating feasibility and does
not meet all the criteria that a state-of-the-art pairing curve must adhere to, such as
SNARK-friendliness, having a seed u with a low Hamming weight, and so on.

5 Conclusions

In this paper, we have introduced new formulas, extended existing algorithms, and proposed
a novel BLS curve accompanied by an embedded curve of prime order and an efficient
endomorphism. We have also conducted a comprehensive survey of existing BLS curves
while concurrently performing a retrospective analysis of our new methodology.

The BLS curve presented in Subsection 4.2 includes an embedded curve of prime
order along with an efficient endomorphism. However, it’s important to acknowledge
that the proposed curve may not fully satisfy all the necessary criteria. Therefore, we
encourage readers to utilize the algorithm described in this paper to explore and address
the challenge of enhancing the curve to meet additional criteria. This includes optimizing it
for SNARK-friendliness, achieving a low Hamming weight for the seed u, and implementing
other relevant improvements. This challenge remains an open problem and serves as an
exercise for interested individuals to further investigate.

Acknowledgments. We would like to thank Diego Aranha, Luca De Feo, Youssef El
Housni, Gottfried Herold, Dimitri Koshelev, Simon Masson and Michael Scott for fruitful
discussions.
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Table 3: Security of existing BLS embedded curves

Embedded curve security (Is Prime?)

D 3 4

118-bit (N) 37-bit (N)

41-bit (N) 59-bit (N)
BLS12-381 13-bit (N) 57-bit (N)
[Bow17] 77-bit (N) 37-bit (N)

65-bit (N) -

14-bit (N) -

63-bit (N) 57-bit (N)

40-bit (N) 32-bit (N)
BLS12-377 30-bit (N) 38-bit (N)
[BCGT20] 71-bit (N) 40-bit (N)

65-bit (N) -

32-bit (N) -

65-bit (N) 66-bit (N)

34-bit (N) 58-bit (N)
BLS12-379 14-bit (N) 33-bit (N)
[EHG22] 52 (N) 36-bit (N)

90-bit (N) -

27-bit (N) -

7 (N) 146-bit (N)

61-bit (N) 58-bit (N)
BLS12-440 25-bit (N) 43-bit (N)
[BD19] 95 (N) 36-bit (N)

122-bit (N) -

10-bit (N) -

41-bit (N) 147-bit (N)

? (N) 65-bit (N)
BLS12-442 16-bit (N) 39-bit (N)
[BD19] 119-bit (N) 59-bit (N)

99-bit (N) -

29-bit (N) -

64-bit (N) 88-bit (N)

50-bit (N) 20-bit (N)
BLS12-446 36-bit (N) 67-bit (N)
[GS21] 41-bit (N) 41-bit (N)

57-bit (N) -

20-bit (N) -

136-bit (N) 56-bit (N)

50-bit (N) 49-bit (N)
BLS12-461 36-bit (N) 55-bit (N)
[BD19] ? (N) 31-bit (N)

95-bit (N) -

10-bit (N) -

60-bit (N) 77-bit (N)

57-bit (N) 32-bit (N)
BLS24-315 16-bit (N) 35-bit (N)
[EHG22] 52-bit (N) 28-bit (N)

85-bit (N) -

9-bit (N) -

38-bit (N) 120-bit (N)

34-bit (N) 55-bit (N)
BLS24-317 15-bit (N) 20-bit (N)
[EHG22| 90-bit (N) 61-bit (N)

41-bit (N) -

9-bit (N) -
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