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Abstract. This paper presents a procedure to construct parameterized families
of prime-order endomorphism-equipped elliptic curves that are defined over the
scalar field of pairing-friendly elliptic curve families such as Barreto–Lynn–Scott
(BLS), Barreto–Naehrig (BN) and Kachisa–Schaefer–Scott (KSS), providing general
formulas derived from the curves’ seeds. These so-called “embedded curves” are of
major interest in SNARK applications that prove statements involving elliptic curve
arithmetic i.e. digital signatures. In this paper, the mathematical groundwork is laid,
and advantages of these embeddings are discussed. Additionally, practical examples
are included at the end.
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1 Introduction
A pairing-friendly curve E is an elliptic curve that admits an efficiently computable
bilinear map e : G1 × G2 → GT , where G1,G2 are prime-order r subgroups of E, and
GT ⊂ Fqk of the same order r. Nowadays, one of the main applications of pairings in
the field of cryptography is typically related to constructing Zero-Knowledge Succinct
Non-Interactive Arguments of Knowledge (zk-SNARKs), which are a specific type of
cryptographic proof systems. They allow one party to prove to another that a statement is
true without revealing any information about the statement itself. A proof system involves
a protocol in which one participant, known as the prover, endeavors to persuade another
participant, known as the verifier, of the validity of a specific statement. In the context
of zero-knowledge proofs, one adds the condition that the proof must not disclose any
information beyond the veracity of the statement. While verification of such proofs is
typically rapid, generating such proofs can incur significant costs. In pairing-based (zk)-
SNARKs, the first step is to “arithmetize” the statement to be proved, that is writing the
statement over the scalar field Fr. This issue is exacerbated when the statement involves
elliptic curve arithmetic such as proving a signature verification i.e. ECDSA [Ame05] and
EdDSA [BDL+12] or pre-image knowledge of curve-based hash function i.e. Bowe-Hopwood
Pedersen hash [HBHW]. This is of tremendous interest for zero-knowledge rollups 1 and
privacy-reserving cryptocurrencies (e.g. zcash [HBHW]).

To mitigate this challenge, one approach is to select embedded curves (see definition 1).
These are elliptic curves characterized by parameter selection that aligns its base field
characteristic with the group order of the pairing-friendly curve.
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Definition 1. An embedded curve Ee is an elliptic curve defined over Fr where r is the
subgroup prime-order of a distinct elliptic curve E. If, in addition, Ee admits an fast
non-trivial endomorphism, we call it an endomorphism-equipped embedded curve.

In their work on CØCØ [KZM+15], Kosba, Zhao, Miller, Qian, Chan, Papamanthou
and Pass introduced a collection of cryptographic primitives suitable for efficient verification
using a SNARK . They achieved this by creating an embedded elliptic curve designed
for the efficient execution of the necessary operation in key exchanges, namely, scalar
multiplication (see Fig. 1).

elliptic curve E(Fq)
of prime order r

elliptic curve Ee(Fr)
of some order re

(embedded curve)
given r, search for a curve Ee over Fr

statement
over a field Fr

pairing-based SNARK
e : G1 ×G2 → GT

#Gi = r

arithmetization

Figure 1: Kosba et al. construction [KZM+15]

BLS12-381 [Bow17], introduced by Sean Bowe in 2017 as a pairing-friendly curve, is
presently in the midst of a standardization process led by the IRTF Crypto Forum Research
Group. This curve has gained widespread adoption and is employed for digital signatures
and zero-knowledge proofs in numerous projects within the blockchain ecosystem, including
but not limited to Zcash, Ethereum 2.0, Filecoin, Anoma, Skale, Algorand, Dfinity, Chia,
and various others.

Building on CØCØ, the Zcash team introduced the JubJub curve [Zca] which is an em-
bedded curve over BLS12-381. This curve allowed Zcash to efficiently implement a collision-
resistant variant of Pedersen hash inside a SNARK, the now so-called Bowe-Hopwood
Pedersen hash. In 2021 Masson, Sanso and Zhang presented Bandersnatch [MSZ21]: the
first endomorphism-equipped embedded curve over the BLS12-381. It allowed a fast
scalar multiplication algorithm which has led to a 42% increase in the speed of scalar
multiplication when compared to Jubjub. The GLV technique, as outlined in [GLV01], is
a widely recognized approach to speeding up scalar multiplication on specific curves. In
essence, it is applicable to elliptic curves where an efficient endomorphism can be calculated.
The GLV method is particularly useful for curves with a j-invariant of j = 0 (or j = 1728)
because it allows for the computation of a non-trivial automorphism with just a single
modular multiplication. This method can also be adapted to work with other curves, even
if the endomorphism is somewhat more computationally intensive. An exhaustive search
shows that a similar embedded curve to Bandersnatch is unlikely to be found by luck for
other SNARK curves of interest. For more details about embedded curves and elliptic
curves for proof systems in general can be found in [AHG23].

The motivation behind the writing of this paper was sparked by the observation
that Bandersnatch is defined over the scalar field Fr of the BLS12 curve, with the
seed u = -0xd201000000010000. The first author observed that the factorization of
u = −1·216 · 906349 · 254760293 overlaps significantly with some of the values found in
[MSZ21, Table 2] (partially presented here as Table 1)2. Existing curves like Jubjub and
Bandersnatch are commonly represented in the Montgomery or Edwards form. Historically,

2In the paper, we use subscripts qn to indicate an n-bit number not necessarily prime.
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the trend was to favor Montgomery and Edwards curves. However, thanks to complete
formulas provided by [RCB16] and optimized Weierstrass scalar multiplication SNARK
circuits (e.g. gnark [BPH+23] and Halo2 [zc]), we now possess the ability to efficiently and
securely work with prime order curves out-circuit and in-circuit. This enhanced knowledge
has not only allowed us to design more robust interfaces for these curves, but it has also led
to a deep appreciation of the inherent value of prime order curves, which remain immune
to cofactor vulnerabilities. Hence, a natural question aries:
can we construct families of prime-order endomorphism-equipped embedded curves?

Table 1: BLS12-381 embedded curves for discriminants −3 ≥ −D ≥ −4.

−D security level Curve order re

−3 65-bit 22 · 3 · 97 · 19829809 · 2514214987 · 423384683867248993 · q131
14-bit 264 · 9063494 · q4

28
77-bit 7 · 43 · 1993 · 2137 · 43558993 · 69032539613749 · q154
41-bit 3 · 7 · 13 · 79 · 2557 · 33811 · 1645861201 · 75881076241177·

86906511869757553 · q82
13-bit 32 · 112 · 192 · 101772 · 1255272 · 8592672 · 25084092 · 25294032 · q2

26
118-bit 836509 · q236

−4 59-bit 232 · 5 · 73 · 9063492 · 2547602932 · q119
37-bit 22 · 29 · 233 · 34469 · 1327789373 · 19609848837063073·

159032890827948314857 · q74
37-bit 2 · 32 · 112 · 13 · 1481 · 101772 · 8592672 · 524378992 · 346160718017 · q74
57-bit 2 · 5 · 192 · 1709 · 1255272 · 25084092 · 25294032 · q114

Our contribution. We present parameterized families of fast prime-order endomorphism-
equipped embedded curves on BLS [BLS03], BN [BN06] and KSS [KSS08] families of
pairing-friendly elliptic curves. We derive generic formulas, in terms of the pairing-friendly
curves seeds u and give concrete examples.

Outline. This paper is organized as follows. In Section 2, we give the mathematical
foundations for understanding the concepts employed in the manuscript. In Section 3,
we present relevant families of pairing-friendly elliptic curves on which our embedded
curves will be constructed. Section 4 offers a detailed description of the constructions and
formulas. In Section 5, the main focus of the paper, we apply our algorithm to construct
embedded curves on BLS, BN and KSS pairing-friendly curves. Finally in section 6, we
propose new instantiations of pairing-friendly curves and their endomorphism-equipped
embedded curves. Finally, we draw conclusions in Section 7.

2 Preliminaries
We present a short background on pairing-friendly elliptic curves and complex multiplication
(CM) method [AM93]. Let E be an elliptic curve defined over the finite field Fq. Let its
order be:

#E(Fq) = n = h · r ,
where r is the largest prime divisor of n. For any elliptic curve E defined over Fq with n
points, Hasse’s theorem [Sil92, V.1.1] applies. This theorem asserts that the trace t of the
Frobenius endomorphism on E, linked to q and n through the equation n = q + 1− t, is
constrained within the range |t| ≤ 2√q. Both the curve E and its quadratic twist, denoted
Et, exhibit an isomorphism over the field Fq2 , and their orders over Fq are linked to the
trace t, as expressed by the following formulas:

#E(Fq) = q + 1− t (1)
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#Et(Fq) = q + 1 + t .

Let us define the embedding degree to be the smallest positive integer k such that

r | qk − 1

The r-torsion subgroup of E is denoted E[r] = {P ∈ E(Fq), [r]P = O} and has two
subgroups of order r that are used for pairing applications. One can define several bilinear
pairings, one of which is the Weil pairing defined as:

e : E[r]× E[r]→ µr ⊂ Fqk .

To determine the hierarchy among families sharing the same k, the ρ-value is established
as the ratio between the sizes of q and r (ρ = log q/ log r), measuring the base field size
relative to the size of the prime-order subgroup on the curve. Because r | q + 1− t, we
have then ρ ≥ 1. For more formal definitions and details on elliptic curves over finite fields
see [Sil92].

In this work, our focus revolves around cryptographic applications grounded in ordinary
elliptic curves, implying that we seek values of t that satisfy the condition t 6≡ 0 (mod q).
The endomorphism ring of these curves have a particular structure: End(E) is an order
of the imaginary quadratic field Q(

√
t2 − 4q). From now, we denote −D to be the

discriminant of End(E), and {Id, ψ} a basis of the endomorphism ring. The fundamental
discriminant corresponds to the discriminant of the maximal order containing End(E).
This way, ψ is of degree D+1

4 or D/4 depending on the value of D modulo 4, and ψ
can be defined using polynomials of degree O(D) thanks to the Vélu’s formulas [Vél71].
Thus, the evaluation of ψ is efficient only for curves of small discriminant. The complex
multiplication (CM) technique is used to identify an elliptic curve characterized by a
specified modulus, q, and a given trace, t. The method is successful when a solution can
be identified for the CM equation with relatively modest values of D, represented by:

DV 2 = 4q − t2 (2)
It’s important to note that when arbitrary selections of q and t are made while adhering

to the Hasse condition (ensuring that the right-hand side is non-negative), the non-square
component D may become significantly large. Nevertheless, the practicality of the CM
method hinges on obtaining solutions that result in smaller values for D.

When D = 3, there are two cubic twists with q + 1− (±3V−t)
2 points, and two sextic

twists with q + 1− (±3V +t)
2 points, where V =

√
4q−t2

3 . Analogously, when D = 4 there

are two quartic twists with q + 1± 2V points, where V =
√

4q−t2

4 .

3 Pairing-friendly curves
From a broad perspective, there are two approaches to obtaining (non-supersingular)
pairing-friendly curves [FST10]:

• Generic algorithms that take parameters k and r as inputs and outputs (if it
exists) an elliptic curve defined over a field Fq with an embedding degree k relative
to a subgroup of prime order r over Fq. Among these algorithms, the Cocks–Pinch
method [CP01] stands out as the most flexible.

• Parameterized families that involve specifying a seed u along with polynomials
q(u), t(u) and r(u) that define the curve. This setup ensures the existence of an
elliptic curve E over Fq(u) with a subgroup of order r(u), and exhibits an embedding
degree k with respect to r(u).
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Table 2: Polynomial parameters of BN, BLS12, BLS24, KSS16 and KSS18 families.

Family k D ρ r(u) q(u) t(u)
BN 12 −3 1 36u4 + 36u3 + 18u2 + 6u+ 1 36u4 + 36u3 + 24u2 + 6u+ 1 6u2 + 1

BLS12 12 −3 3/2 u4 − u2 + 1 (u− 1)2r(u)/3 + u u+ 1
BLS24 24 −3 5/4 u8 − u4 + 1 (u− 1)2r(u)/3 + u u+ 1

KSS16 16 −1 5/4 (u8 + 48u4 + 625)/61550 (u10 + 2u9 + 5u8 + 48u6 + 152u5+
240u4 + 625u2 + 2398u+ 3125)/980 (2u5 + 41u+ 35)/35

KSS18 18 −3 4/3 (u6 + 37u3 + 343)/343 (u8 + 5u7 + 7u6 + 37u5 + 188u4+
259u3 + 343u2 + 1763u+ 2401)/21 (u4 + 16u+ 7)/7

In this work, we focus our attention on parameterized families. Each family is charac-
terized by polynomial parameters q(u), r(u), and t(u). These parameters correspond to
distinct aspects of the curve, respectively its characteristic, the subgroup order linked to
the embedding degree k, and the trace. In order to construct such curves is needed to
redefine equation 2 in terms of polynomial and find integers V and u satisfying:

DV 2 = 4q(u)− t(u)2 , (3)

for some fixed positive integer D and polynomials q(u) and t(u).
We are interested in “complete” families of interest in SNARK systems. That is,

families for which equation 3 may be satisfied for any u, and in fact we can write V as
a polynomial in u and the equation gives an equality of polynomials. Example of these
complete families are BLS [BLS03], BN [BN06] and KSS [KSS08].

BLS. Barreto, Lynn and Scott [BLS03] generalized the Cocks–Pinch method by parame-
terizing t, r and q as polynomials. They constructed families by taking the polynomial
r(u) defining the number field K = Q[u]/(r(u)) to be the k-th cyclotomic polynomial
Φk(u), choosing the k-th root of unity to be ξk 7→ u in K (so t(u) = 1 + u), and using
the fact that if 3 | k then

√
−3 ∈ K. Particular choices for k = 12 and k = 24 yield

two families of curves with good security/performance trade-offs, denoted respectively
BLS12 and BLS24. The parameters are given in Table 2. Particular examples of curves
proposed in SNARK contexts are BLS12-381 [Bow17], BLS12-377 [BCG+20], BLS24-315
and BLS24-317 [AHG23].

BN. Barreto and Naehrig presented a family of prime-order pairing-friendly elliptic curves
with k = 12 and D = 3 (cf. Table 2). The construction is based on a result from [GMV07]
and a lucky try in which the right-hand side of the CM equation happens to be a constant
times a perfect square polynomial. However, it was suggested in [FST10, Example 6.8]
that the BN construction can be viewed as a complete family on its own where r(u)
divides Φk(t(u) − 1). Particular examples of curves proposed in SNARK contexts are
BN254 [BCTV14], BN383 [AHG23] and Pluto [Hop21].

KSS. Another strategy to build pairing-friendly constructions is to pick random small
elements and take their minimal polynomials as the subgroup order polynomial r(u). It
is a non-cyclotomic polynomial such that K is isomorphic to the cyclotomic field Q(ξk).
For well chosen embedding degrees k = 16 and k = 18, this yields the KSS16 and KSS18
families with ρ = 5/4 and ρ = 4/3 respectively (cf. Table 2). These families are well
defined (t(u) represents integers, r(u) and q(u) primes) only when u ≡ ±25 mod 70 for
KSS16 and u ≡ 14 mod 42 for KSS18. Particular examples of curves proposed in SNARK
contexts are KSS16-329 and KSS18-345 [AHG23].
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4 Embedded curves
While SNARKs allow proving general-purpose computations, in many applications these
computations revolve around proving some cryptographic operations such as hashings,
encryptions, key exchanges or signatures. Many of these operations use elliptic curves
distincts from the pairing-friendly curve used to instantiate the SNARK. As motivated in
the introduction, an embedded curve is required to express these computations natively. In
other words, the modulo operations required during these computations become seamless,
as the formula for point addition simplifies to a few multiplications and additions due
to the alignment of moduli. This efficiency in embedded curve operations is what makes
them highly effective within the realm of SNARK.

To distinguish the polynomial parameters of the pairing-friendly curve q(u), r(u) and
t(u) from those of the embedded curve, we will denote the parameters of the latter with
the subscript “e” as in q(u)e, r(u)e and t(u)e.

To construct families of embedded curves one needs to construct simultaneously the
pairing-friendly family (BLS, BN and KSS) curve E/Fq(u) of order r(u) and the the
embedded curve family curve Ee/Fr(u). Otherwise, once the seed is fixed for E nothing
guarantees re(u) to be a prime when evaluated in the same seed. This involves adding the
extra constraints needed for the embedded curves and solving the CM equation 3.

4.1 Solving the CM equation
The approach for generating families of endomorphism-equipped curves requires solving
the CM equation DV 2 = 4q − t2, and then using the CM method to compute the curve
equation coefficients. In our case, the CM equation takes on the following form:

DVe(u)2 = 4qe(u)− te(u)2 = 4r(u)− te(u)2 . (4)

There is currently no general method known for solving the Diophantine equations like 4
when the degree of r(u) exceeds 4 (see also [BLS03, MNT01]). However, it is possible to
leverage some of the known structure of r(u) to derive a generic procedure. By construction
of the parameterized families of pairing-friendly elliptic curves, we have r(u) ∈ Z[u] as an
irreducible polynomial, such that K ∼= Q[u]/(r(u)) forms a number field. The success of
our method for solving equation 4 depends heavily on the number field K. For example, if
K is set to be the cyclotomic field Q(ξk) and r(u) to be the k-th cyclotomic polynomial
Φk(u) (as in BLS curves) or derived from it (as in BN and KSS curves), it is a standard
result of the theory of cyclotomic fields that K contains

√
−1 if 4 | k,

√
−2 if 8 | k, and√(

−1
p

)
p for any odd prime p dividing k. More generically, r(u) ∈ Z[u] is an irreducible

polynomial with a positive leading coefficient, such that K forms a number field containing√
−D and the cyclotomic field Q(ξk), as in the cases of Brezing–Weng curves [BW05]. At

this point, we can utilize the fact that r(u) = 0 in K to rewrite equation 4 as:

DVe(u)2 + te(u)2 = 0 (mod r(u)) . (5)

Now, since K contains a square root of −D, there is at least one solution in polynomial
form for equation 5. That is, there exists some polynomial We(u) such that

We(u)2 = −D (mod r(u)) .

At this point we have all the ingredients to generically solve equation 5. To find the te(u)
and Ve(u) polynomials one can use the half-GCD algorithm by performing roughly half
the Euclidean algorithm for computing the greatest common divisor.
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5 Constructions
This section presents the families of embedded curves for BLS (in particular BLS12 and
BLS24), BN, and KSS (in particular KSS16 and KSS18). All parameters and formulas are
expressed in the form of polynomials with respect to the variable u.

First, we need to express
√
−D mod r(u) as a polynomial. From equation 5, we know

that (te/Ve)(u) =
√
−D mod r(u). To recover te(u) and Ve(u), we need to express the

polynomial
√
−D mod r(u) as a rational fraction of two polynomials of degree ≤ deg(r)/2.

This can be done using the half-GCD algorithm. Next, we know from equation 1 that
re(u) = qe(u) + 1− te(u) and from equation 4 that qe(u) = (DVe(u)2 + te(u)2)/4. Hence
the group order of the embedded family is

re(u) = (DVe(u)2 + (te(u)− 2)2)
4 , or simply

re(u) = r(u) + 1− te(u). (6)

Finally, we check that the polynomial re(u) is irreducible to give raise of a prime-order
endomorphism-equipped embedded curves family 3. If not, we test with the available
twists. That is replacing re(u) by the respective twists orders given in the end of the
preliminaries section (see Sec. 2). We focus on the cases where D = 3 whenever they are
available as they give an efficient endomorphism for the GLV technique. But we presents
also other cases to expose the completeness of our approach.

5.1 BLS12
The BLS12 family has an order r(u) = Φ12(u) = u4 − u2 + 1. The quadratic subfields of
r(u) are Q(

√
−1), Q(

√
−3) and Q(

√
3). We try the embedded construction with D = 3

and D = 4 so that
√
−D mod r(u) exists.

Case D = 3. Equation 4 becomes 3Ve(u)2 = 4Φ12(u) − te(u)2. Using SageMath 4,
one is able to express

√
−3 mod r(u) as the polynomial 2u2 − 1 and reconstruct te(u)

and Ve(u) through the half-GCD algorithm as 2u2 − 1 and 1 respectively, which satisfies
te(u)2 + 3Ve(u)2 = 4r(u). Finally, equation 6 gives the family of order re(u) = u4− 3u2 + 3
which is an irreducible polynomial.

Case D = 4. Similarly, equation 4 becomes 4Ve(u)2 = 4Φ12(u)−te(u)2. Using SageMath,
one is able to express

√
−4 mod r(u) as the polynomial 2u3 and reconstruct te(u) and

Ve(u) through the half-GCD algorithm as either 2u and 1−u2 respectively or −2u2 +2 and
−u respectively. Both satisfy the equation te(u)2 + 4Ve(u)2 = 4r(u). Finally, equation 6
sets the order to be re(u) = u4−u2−2u+2 or u4 +u2. The latter polynomial is irreducible
and give raise to a prime-order family.

Case D = 1. Similarly,
√
−1 mod r(u) is the polynomial u3 and we can reconstruct

te(u) = −2u2 + 2 and Ve(u) = −2u which satisfy the equation te(u)2 + 4Ve(u)2 = 4r(u).
Finally, equation 6 sets the order to be re(u) = u4 + u2 which is a reducible polynomial.
Luckily, the quadratic twist gives an irreducible polynomial re(u) = u4 − 3u2 + 4 that give
raise to a prime-order family.

3so that re(u) satisfies the Bunyakovsky conjecture, which states that such a polynomial produces
infinitely many primes for infinitely many integers.

4https://www.sagemath.org/

https://www.sagemath.org/
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5.2 BLS24
The BLS24 family has an order r(u) = Φ24(u) = u8 − u4 + 1 and has many quadratic
subfields of r(u). We give some examples with D = 2, 3, 4 and D = 6.

Cases D = 3 and D = 4. These cases give similar results to the BLS12-based families
with curves of prime orders u8 − 3u4 + 3 when D = 3 and u8 + 1 when D = 4.

Case D = 2. The polynomial
√
−2 mod r(u) is u5 + u3− u and te(u) and Ve(u) can be

either u4 − u2 + 1 and −u3 + u respectively or 2u3 − 2u and u4 − u2 + 1 respectively. The
first choice satisfies te(u)2 + 2Ve(u)2 = re(u) so we multiply te(u) and Ve(u) by 2, which is
a square root in K, so that the right hand of the equation becomes 4re(u). The resulting
polynomial order is re(u) is u8 − 3u4 + 2u2 which is reducible. However, the quadratic
twist gives an irreducible polynomial re(u) = u8 + u4 − 2u2 + 4.

Case D = 6. Following the procedure and considering the curve and its quadratic twist,
we find the following polynomial orders re(u):

• u8 − 3u4 + 6u2,

• u8 − u4 + 2
√

6u3 − 2
√

6u+ 2,

• u8 + u4 − 6u2 + 4,

• u8 − u4 − 2
√

6u3 + 2
√

6u+ 2 .

None of these polynomials is irreducible and hence there is no prime-order embedded
curves for the D = 6 case.

5.3 BLS generalization
So far, we have not looked all the cases because each time we found a prime-order family.
However, it is easy to give the formulas for all the twists orders and it is also easy to
generalize the formulas derived above for all i, j ≥ 1 for k = 2i3j as shown in Table 3. We
focus on the cases D = 3 and D = 4 which give efficient endomorphisms to implement the
GLV technique.

The GLV technique. At different security levels, BLS curves with k = 2i3j , i, j ≥ 1, 18 - k
and D = 3 are usually the most efficient. In SNARK context, BLS12 and BLS24 stand
out particularly. These curves have an efficient endomorphism φ : E → E defined by
(x, y) 7→ (ωx, y) (and O 7→ O) which acts on a point P ∈ E(Fq)[r] as φ(P ) = [λ]P where
λ = uk/6 − 1 and ω an element of order 3 in Fq.

The embedded curves on BLS can have a similar efficient endomorphism for the D = 3
case. We focus on the cases where re(u) is irreducible (given in bold), which are the only
cases that would imply a prime-order embedded families. These families have the following
orders re(u):

• “order 1”: uk/3 − 3uk/6 + 3 ,

• “order 2”: uk/3 + 3 and

• “order 3”: uk/3 − 2uk/6 + 4 .

They also have an efficient endomorphism φe : Ee → Ee defined by (x, y) 7→ (ωex, y)
(and O 7→ O) which acts on a point Q ∈ Ee(Fr)[re] as φe(Q) = [λe]Q where ωe and λe can
be nicely expressed as the following polynomials:
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Table 3: Parameters of BLS and embedded curves for k = 2i3j , i, j ≥ 1, 18 - k. Irreducible
re(u) polynomials are given in bold.

D 3 4
k 2i3j , i, j ≥ 1(6, 12, 24, 48, 96, ...)
t(u) u+ 1
r(u) = qe(u) uk/3 − uk/6 + 1
q(u) r(u)(u− 1)2/3 + u

te(u)

2uk/6 − 1 2uk/6 − 2
−2uk/6 + 1 −2uk/6 + 2
uk/6 + 1 2uk/12

−uk/6 − 1 −2uk/12

uk/6 − 2
−uk/6 + 2

re(u)

uk/3 − 3uk/6 + 3 uk/3 − 3uk/6 + 4
uk/3 + uk/6 + 1 uk/3 + uk/6

uk/3 − 2uk/6 + 1 uk/3 − uk/6 + 2uk/12 + 2
uk/3 + 3 uk/3 − uk/6 − 2uk/12 + 2
uk/3 − 2uk/6 + 4
uk/3

• For “order 1”:

ωe = uk/6 − 1 ,
λe = uk/6 − 2 .

• For “order 2”:

ωe = uk/6 − 1 ,
λe = (uk/6 − 1)/2 .

• For “order 3”:

ωe = uk/6 − 1 ,
λe = uk/6/2− 1 .

5.4 BN
The BN family has an order r(u) = 36u4 + 36u3 + 18u2 + 6u + 1, which is a factor of
36Φ12(6u2) (r(u) divides Φ12(t(u) − 1)). The quadratic subfields of r(u) are Q(

√
−1),

Q(
√
−3) and Q(

√
3). BN curves are known to form a hybrid cycle which is a generalization

of definition 1 in the sense that the pairing-friendly E curve is also an embedded curve of
the Ee. This happens when D = 3 [AHG23, Sec. 5.4]. For completeness, we look at the
case D = 1. This forms an embedded family but not a hybrid cycle family.

Case D = 3. The CM equation of the BN family is t(u)2 + 3V (u)2 = 4q(u) with
t(u) = 6u2 +1, V (u) = 6u2 +4u+1 and q(u) = r(u)+t(u)−1. It is a known result that the
BN family forms a hybrid cycle and that the equation (t(u)−2)2+3V (u)2 = 4r(u) is satisfied.
It turns out immediately that te(u) = t(u)− 2 = 6u2 − 1, Ve(u) = V (u) = 6u2 + 4u+ 1
and re(u) = q(u) = 36u4 + 36u3 + 12u2 + 6u+ 3. E has an efficient endomorphism φ with
λ(u) = 36u3 + 18u2 + 6u+ 1 and ω(u) = 18u3 + 18u2 + 9u+ 1, and Ee has an efficient
endomorphism φe with λe = ω and ωe = λ.
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Case D = 1. Considering the curve, the quadratic twist and quartic twists, there are
eight possible orders re(u):

• 36u4 + 36u3 + 30u2 + 12u+ 2,

• 36u4 + 36u3 + 6u2 + 2,

• 36u4 + 36u3 + 18u2 + 18u+ 6,

• 36u4 + 36u3 + 18u2 − 6u− 2,

• 36u4 + 36u3 + 18u2,

• 36u4 + 36u3 + 18u2 + 12u+ 4,

• 36u4 + 36u3 + 42u2 + 18u+ 2 and

• 36u4 + 36u3 − 6u2 − 6u+ 2 .

All polynomials are irreducible except 36u4 + 36u3 + 18u2. This case D = 1 yields to seven
prime-order families but they are more difficult to construct and less efficient compared to
the straightforward D = 3 case.

5.5 KSS16
This family has an order r(u) = (u8 +48u4 +625)/61250. It is a non-cyclotomic polynomial
such that K is isomorphic to the cyclotomic field Q(ξk). It can be computed as the minimal
polynomial of a randomly chosen element of Q(ξk). The are many quadratic subfields of
r(u) with D = 2, 8,−8, 16 but none gives a prime-order embedded family. We explicit the
case D = 2 as an example but the procedure remains the same for all cases to show the
impossibility result.

Case D = 2. This gives the following families of irreducible polynomial orders re(u):
(u8 + 48u4 − 4900u2 + 61875)/61250 and (u8 + 48u4 + 4900u2 + 61875)/61250. The latter
polynomial does not give integers when u ≡ ±25 mod 70 (which is a requirement for
KSS16 family definition) and the former does not give primes since in this case re(u) ≡ 48
mod 70 which means the order is even.

5.6 KSS18
This family has an order r(u) = (u6 + 37u3 + 343)/343. The only quadratic subfield of
r(u) is Q(

√
−3).

Case D = 3. The polynomial
√
−3 mod r(u) is −2u3 − 37 and the half-GCD gives

te(u) = 2u3 + 37 and Ve(u) = 1 or te(u) = 3/1372 and Ve(u) = (u3 + 37/2)/686. These
polynomials satisfy te(u)2 + 3Ve(u)2 = 7re(u) but 7 is not a square in K. Thus, there is
no embedded family that can be constructed on KSS18.

6 Examples
To demonstrate the feasibility of the method outlined in this paper, we present a new
BLS12 curve, a new BLS24 curve and their prime-order endomorphism-equipped embedded
curve. The new BLS12 and BLS24 curves satisfy the state-of-the-art criteria for efficiency
and security, as per [AHG23], for pairing-based SNARK applications.



Antonio Sanso, Youssef El Housni 11

As explained in Section 4, one needs to construct simultaneously the pairing-friendly
curve and the embedded curve so that the same seed results in r(u), q(u) and re(u) primes.
For already existing pairing-friendly curves (with an already fixed seed) it is unlikely that
re(u) is a prime.

We also give an example of a BN curve and its embedded curve (hybrid cycle) from the
literature, which falls in the family framework that we presented. Unfortunately, KSS16
and KSS18 do not give prime-order families.
Remark 1. We conducted a retrospective analysis of our new method while examining the
landscape of all existing pairing-friendly curves within the SNARK context and none has
a prime-order endomorphism-equipped embedded curve. However, among the curves we
examined, it appears that two of them (specifically, BLS12-440 and BLS12-442 as defined
in [BD17]) have endomorphism-equipped embedded curves but with a composite order.
BLS12-440 has a 292-bit re, while BLS12-442 has a 294-bit re both with a cofactor of 4,
indicating that these curves can be expressed in Montgomery form. The comprehensive
analysis and findings can be succinctly summarized and presented in the form of Table 4
in Appendix A.

A new BLS12-380 and its embedded curve. Both the BLS12 curve and its embedded
curve have D = 3, the seed u = 0xb504f33499580000 and the following parameters:

r = 0x40000000e18820ac7e4ae010935bb29483628260db62ef544865b1c000000001

q = 0xaaaaaaae30cb2d5ddbe0944aad1b96788db962bb21454db5c12fca0d6c205a32

71689e66595fc8a55ac51118872aaab

re = 0x40000000e18820ac7e4ae010935bb2938362825f1852adfcd931154000000003

qe = r .

Here r is a 255-bit prime, q a 380-bit prime and re a 255-bit prime. The curves can be
expressed in the Weierstrass model as

(E/Fq) : y2 = x3 − 3 ,
(Ee/Fr) : y2 = x3 + 11 .

E is efficient for large SNARK circuits because r has a high 2-adicity of 38, i.e. 238 | r−1
which makes Fast Fourier Transforms (FFT) very efficiently implementable over Fr. E
has also a D = 3 endomorphism φ with

λ = u2 − 1 = 0x80000000e18820abb79a4e3fffffffff

ω = u5 − 3u4 + 3u3 − u+ 1 = 0x2d413ccdc5cf9b7c45bf2ad1a0852992a147ae13d27b2c

a95d0a9add9261c06cbcfb0ccb66a80001 .

The embedded curve belongs to the family of order u4 − 3u2 + 3 from Section 5.1 (case
D = 3). It also has a D = 3 endomorphism φe with

λe = u2 − 2 = 0x80000000e18820abb79a4e3ffffffffe

ωe = λ = u2 − 1 .

A new BLS24-315 and its embedded curve. The BLS24 curve has a discriminant D = 3
and its embedded curve has D = 4. The seed u = 0xc5e03c00 both curves with the
following parameters:
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r = 0x209e54cfb3769a02a5b094de5d4faa86d42cb747e87cff8dcb1a3f0000000001

q = 0x67efc38cff28a453d57fe137cf351bea1f46dfcb855b607c0c3d1496948c72e9

781b5409bfabeab

re = 0x209e54cfb3769a02a5b094de5d4faa872f8e089adb8100000000000000000003

qe = r .

Here r is a 254-bit prime, q a 315-bit prime and re a 254-bit prime. The curves can be
expressed in the Weierstrass model as

(E/Fq) : y2 = x3 + 4 ,
(Ee/Fr) : y2 = x3 + 11 .

E is efficient for large SNARK circuits because r has a high 2-adicity of 40. E has also
an efficient endomorphism φ with

λ = u4 − 1 = 0x5b615152f304007234e5c0ffffffffff

ω = u9 − 3u8 + 4u7 − 4u6 + 3u5 − 2u3 + 2u2 − u+ 1 = 0x19366972c4dcfbec26534fd271

efec374522fab7fe5e11aa7f2ec18fd2c206e9d63fc401 .

The embedded curve belongs to the family of order u8 + 3 from Section 5.2 (case
D = 3). It also has an efficient endomorphism φe with

λe = (u4 − 1)/2 = 0x104f2a67d9bb4d0152d84a6f2ea7d543c577acf6e74280391a72e080

00000001

ωe = λ = u4 − 1 .

A BN446 and its embedded curve (Pluto and Eris). As shown in Subsection 5.4, all BN
curves form a hybrid cycle which is a generalization of embedded curves. Hence there is no
need to construct new BN curves. Taking any BN curve from the literature, we are able to
construct embedded curves following our appraoch. Examples include Pluto-Eris [Hop21]

E/Fq : y2 = x3 + 57 is a BN curve of order r, called Pluto;
Ee/Fr : y2 = x3 + 57 is an embedded curve of order re = q, called Eris, with
q = 36u4 + 36u3 + 24u2 + 6u+ 1 and
r = 36u4 + 36u3 + 18u2 + 6u+ 1, for u = −(2110 + 260 + 239 + 235 − 231).

The field size of Pluto is 446 bits to target 128-bit security level and naturally leaves a
larger security margin for Eris. Both curves have the high 2-adicity of 32 for r and are
again equipped the fast endomorphisms φ and φe with:

λ = ωe = 36u3 + 18u2 + 6u+ 1 = -0x9000000000006c000392a0001afee1c9500792ae

3039253e641ba35817a29ffaf50be000032cffffffff

ω = λe = 18u3 + 18u2 + 9u+ 1 = -0x480000000000360001c950000d7ee0e4a803c956d

01c903d720dc8ad8b38dffaf50c100004c37fffffff .
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7 Conclusions
In this paper, we introduced a generic algorithm to construct families of prime-order
endomorphism-equipped embedded curves. To our best knowledge, this led to the first
embedded families. We used our algorithm to construct families over BLS and BN pairing-
friendly curves and gave some impossibility results on constructing such families over
the KSS16 and KSS18 curves. Moreover, to demonstrate the approach, we proposed
new instantiations of BLS12 and BLS24 pairing-friendly curves alongside their prime-
order endomorphism-equipped embedded curves. The new proposed curves meet the
state-of-the-art requirements for efficient elliptic curves for proof systems.

However, the Bandersnatch curve found in the literature (embedded over BLS12-381)
does not fall into any of the families we presented in this work. It has a discriminant D = 8
while the quadratic subfields of r(u) = φ12(u) do not include Q(

√
−8), hence its existence

cannot be explained within our framework. We hope that this work will encourage the
community to further investigate the odd existence of such an embedded curve and, likely,
another embedded family into which it would fall.
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De Feo, Gottfried Herold, Dimitri Koshelev, Simon Masson and Michael Scott for fruitful
discussions.
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A Embedded curves on existing curves

Table 4: Security of embedded curves on existing BLS curves.

Bitlength of the largest prime dividing re

D = 3 D = 4

BLS12-381 [Bow17]
236-bit 74-bit
154-bit
130-bit

BLS12-377 [BCG+20]
126-bit 114-bit
142-bit
130-bit

BLS12-379 [EHG22]
130-bit 132-bit
104
180-bit

BLS12-440 [BD17]
? † 292-bit
190-bit
244-bit

BLS12-442 [BD17]
82-bit 294-bit
238-bit
198-bit

BLS12-446 [GS21]
128-bit 176-bit
82-bit
114-bit

BLS12-461 [BD17]
272-bit * 112-bit
? †
110-bit

BLS24-315 [EHG22]
120-bit 154-bit
104-bit
170-bit

BLS24-317 [EHG22]
76-bit 240-bit
180-bit
82-bit
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