FaBFT: Flexible Asynchronous BFT Protocol
Using DAG

Yu Song', Yu Long!, Xian Xu?*, and Dawu Gu'*

!Shanghai Jiao Tong University
{sy-121,longyu,dwgu}@sjtu.edu.cn
2FEast China University of Science and Technology
xuxian@ecust.edu.cn

Abstract. The Byzantine Fault Tolerance (BFT) protocol is a long-
standing topic. Recently, a lot of efforts have been made in the research of
asynchronous BFT. However, the existing solutions cannot adapt well to
the flexible network environment, and suffer from problems such as high
communication complexity or long latency. To improve the efficiency of
BFT consensus in flexible networks, we propose FaBFT. FaBFT’s clients
can make their own assumptions about the network conditions, and make
the most of their networks based on different network assumptions. We
also use the BlockDAG structure and an efficient consistent broadcast
protocol to improve the concurrency and reduce the number of steps in
FaBFT. The comparison with other asynchronous BFT protocols shows
that FaBFT has lower complexity and cancels the dependency on the
view change. We prove that FaBFT is an atomic broadcast protocol in
the flexible networks.

Keywords: Byzantine Fault Tolerance Protocol, Asynchronous Net-
work, Flexible Consensus, DAG

1 Introduction

With the increasing popularity of blockchain and distributed applications, the
need for atomic broadcasting protocols that can meet real-world scenarios be-
comes significantly more urgent. To this end, Byzantine fault tolerance (BFT)
and distributed consensus have been studied for more than 40 years. BFT con-
sensus enables a group of parties, who do not trust each other, to reach an
agreement in permissioned environments. Compared to the permissionless con-
sensus, the BFT consensus merits high efficiency and good performance, so it
suits better for applications in mission-critical infrastructures.

Most of the conventional BFT protocols [4,18] utilize some time-bound as-
sumption, either synchronous or partially synchronous, to guarantee the achieve-
ment of the security agreement. Specifically, [14] proposed the concept of flexible
consensus, which allows clients to make different assumptions about the network
condition. In 2021, a flexible BFT protocol, named Ebb-and-Flow protocol [16],
was proposed in the partially synchronous network. Roughly, Ebb-and-Flow uti-
lized two types of ledgers. As one ledger is the prefix of the other, these two

2 Yu Song et al.

ledgers can grow independently with different network assumptions (i.e., either
synchronous or partially synchronous), without violating the requirements of the
secure BFT. Thus, Ebb-and-Flow can flexibly meet the needs of different clients.

Unfortunately, none of these partially synchronous consensus schemes can
maintain their security without the time-bound assumption, and all these solu-
tions lack liveness when the network experiences long delays or fluctuations. For
parties that are not within close distance and do not share stable communica-
tions with each other, these protocols cannot ensure agreement. This leads to
barriers against consensus in asynchronous environments such as WAN.

In 2016, the first practical asynchronous Byzantine fault tolerance (aBFT),
named HoneyBadger BFT [15], was proposed and proven secure without any
time-bound assumptions. HoneyBadger does not suffer from network fluctuation
and has stronger robustness and responsiveness. Subsequently, a series of works
have been proposed [5,11,17,19]. As far as we are concerned, all the existing aBF T
solutions utilize a two-phase mechanism, i.e., the broadcast phase, followed by the
agreement phase. In the broadcast phase, the reliable broadcast (RBC) is used
typically to guarantee that valid blocks can be delivered by honest parties. In the
agreement phase, to bypass the FLP impossibility theorem [7] (i.e., deterministic
consistency cannot be achieved in asynchronous networks), a random procedure
is required, such as the common coin method [2,3]. Both phases require multiple
rounds of communications and complex protocol flows, which make the aBFT
protocol less usable. Thus the aBFT has been viewed as a “theoretical” consensus
[10], and the early studies on aBFT protocols are not yet satisfactory from the
standpoint of realistic applications.

One most critical issue in aBFT lies in the “unbalance” in the two phases,
including both the bandwidth and the time requirements. Roughly, the reliable
broadcast phase requires O(n?) times of communications (n is the number of
the BFT parties), which leads to high communication overhead. Meanwhile, the
agreement phase needs much less bandwidth but a much longer time. Conse-
quently, the different requirements in the two phases result in a big waste of
bandwidth. Most recently, some new methods have been proposed to address
these issues, basically by applying different consensus strategies under different
network conditions. Some of the aBFT schemes, such as [9,13,17], can deal with
the “optimistic case”. When these protocols detect that the real network is stable
or performs better than the “pessimistic case”, they can change the consensus
strategy to make full use of the network and improve the performance of the
consensus. Specifically, BDT [13] utilizes a complex transformer in its pace-sync
process, which can achieve the switch between the optimistic fast lane and the
pessimistic path. Bullshark [17] needs vertexes (blocks) in different networks that
have different voting types and uses two types of leaders, i.e., the steady-state
leaders and the fallback leaders, to commit blocks. The mechanism of dealing
with network switching is highly complex and time-consuming. As such, Bull-
shark achieves weak liveness only [20]. Ditto [9], which derives from its partially
synchronous version named Jolteon [9], uses the asynchronous fallback technique
to handle the asynchronous network and view change phase. However, unlike the

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 3

aforementioned flexible consensus, all these optimistic aBFT solutions maintain
only one ledger instead of two, and thus the clients can not make their choice
based on their own network assumptions. In other words, all these optimistic
aBFT schemes are more suitable to work under the single network assumption.

Concerning the performance, some existing (a) BFT solutions adopt the single
chain structure to form the ledger. For example, in the HoneyBadger BFT pro-
tocol [15] or Dumbo-families protocols [11,10,13], only the block which contains
at least n — f transaction batches from different parties can be committed in a
round. Instead of assembling transactions in blocks to form a single chain, using
the BlockDAG structure to organize the DAG chain can preserve the parties’
concurrent blocks, and fully utilize the bandwidth.

In this work, we extend the idea of flexible consensus to the asynchronous
BFT and adapt the BlockDAG structure to this setting. Inspired by Ebb-and-
Flow [16], our basic idea is to ask the committee parties to maintain two ledgers,
including the safer ledger (for conservative clients) and the faster ledger (for
aggressive clients). The clients can make their own network assumptions: either
the “ optimistic case” or the “pessimistic case”. For the conservative clients who
think the network condition is the pessimistic case, i.e., the asynchronous case,
the safer ledger can be utilized to guarantee a secure consensus. For aggressive
clients who believe that their network conditions are as good as the partially
synchronous case, the faster ledger can be used to speed up the committing of
transactions. In this way, we effectively cancel the time-bound assumption when
dealing with the “pessimistic case”, and optimize the utilization of the network
in the “optimistic case””.

To realize this high-level idea, however, there are some technical challenges.
In particular, in order to guarantee a secure consensus, how can we utilize the
BlockDAG structure and reduce the unbalance between phases for both ledgers?
Moreover, how can we make sure that the safer ledger is the prefix of the faster
ledger?

Our Contributions. To achieve secure BFT consensus in the flexible asyn-
chronous network and answer the foregoing questions, we propose FaBFT, an
asynchronous BFT protocol using DAG to support flexible consensus. To the
best of our knowledge, FaBFT is the first flexible BF'T consensus protocol that
achieves all of the following properties.

— Flexible in an asynchronous network. FaBFT can run in both par-
tially synchronous and asynchronous networks, and the network assumption
is totally made by the clients. Thus the clients can make flexible choices
independently, without sacrificing security.

— DAG-based. FaBFT’s committee parties utilize the BlockDAG structure
to improve the transaction throughput and network utility.

— More efficient protocol. We use the more efficient consistent broadcast
(CBC) to design the broadcast phase, which reduces the rounds and thus
the time latency. In the partially synchronous / asynchronous case, only 6 /
12 steps are required to commit blocks, respectively, completely eliminating
the view change.

4 Yu Song et al.

Table 1. Comparison of related BFT protocols

Protocol Network Steps? Time Communication Message Structure DAG View
otoco Assumption eps Complexity 3 Complexity* Complexity® ructure Based Change
Hotstuff [18] P-Sync. 6 o(1) O(n) O(n) 3-Phase Voting N Y
Ebb-and-Flow [16] |Sync.+P-Sync. N.A. 0(1) O(n?m|) O(n?) Longest-Chain+BFT N Y
HBBFT [15] Asy. AS:Stlg 5 Ollogn) O(n?lm| + An®logn) O(n3) RBC+ABA N N
Speeding-Dumbo [10] Asy. Ezi']t 11% o(1) O(n?m| + Anllogn) O(n?) RBC+MVBA N Y
BDT [13] Opt-Asy. o503, 0(1) O(n?lm|+ APlogn) O(n®) CAST/RBC+ BA+MVBA N N
Best: E(10) ¢ P .
BullShark [17] Opt-Asy. A((;.: E((20)) 5 00) O(n3|m|logn) O(n?) RBC Y N
. Best: 5
Ditto [9] Opt-Asy. Adv,:egE(l().S) o(1) O(n?|m|) 0O(n?) Asy-fallback N Y
This work | P-Sync.+Asy. o0 0Q) O(n2|m]) 0(n?) CBC+GPC Y N

! We use “Sync.” for “Synchronous”, “P-Sync.” for “Partially-Synchronous”, “Asy.” for “Asynchronous”, and “O-Asy. ” for “Optimistic Asynchronous”.
Ebb-and-Flow is flexible in the partially synchronous network, and our FaBFT is flexible in the asynchronous network.

2 We use “Steps” to estimate the approximate time from the block generation to the block commitment. Assume that the message from the sender reaches
the receiver as one step. “Best” means that all parties are honest and the network is stable. “Adv.” means the asynchronous network with 1/3 Byzantine
parties. E(s) means that the expected value of steps is s.

3 Time Complexity: The expected number of rounds of communication before the protocol terminates. n is the number of the BFT parties.

4 Communication Complexity: The expected value of the length of the message generated by the honest node for committing a block. m represents the
average bit length of the block.

5 Message Complexity: The expected value of the total messages that an honest nodes has generated.

The “wave blocks” will be committed together after two or four rounds.

Table 1 compares FaBFT with other related consensus protocols.

2 Preliminaries

2.1 BFT Consensus

BFT consensus is a kind of state machine replication protocol that can tolerate
Byzantine nodes. Specifically, the BFT consensus divides the committee party
nodes into two categories. One is the dishonest Byzantine parties that will de-
viate from the protocol in some way, such as not sending messages or sending
garbage messages. The other is the honest parties, which strictly comply with
the protocol. Traditionally, BF'T protocols work in the permissioned setting.

2.2 BlockDAG Chain and Basic Operations

Instead of the single (i.e., longest) chain rule used in Bitcoin, BlockDAG con-
sensus organizes blockchain into a Direct Acyclic Graph (DAG) which can ben-
efit from all blocks created in parallel by honest parties. Through the DAG
structure, BlockDAG consensus makes good use of the node’s bandwidth and
achieves true concurrency. Since there are multiple paths from the genesis block
to one block, more operations need to be introduced to define BlockDAG. We
use parent(Chain, B) to denote the set of blocks which the block B references di-
rectly, past(Chain, B) to denote the set of all blocks that B references (directly or
indirectly), and tips(Chain) to denote the set of blocks with 0 in-degree, i.e., end

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 5

blocks. Also, we call past(Chain, B) the precursor blocks of B, which are blocks
traversed on all paths from the genesis block to B. We provide a BlockDAG
instance in Figure 1.

Fig.1. An example of a DAG chain. For block J, parent(DAG, J)={E, F},
past(DAG, J) = {Gen, A, B, C, E, F}, and tips(DAG) = {1, J}.

2.3 Other Building Blocks

Here we introduce the consistent broadcast and the global perfect coin protocols
as our building blocks to construct ledgers.

Definition 1 (Consistent Broadcast, CBC). The consistent broadcast pro-
tocol consists of the c-broadcast and the c-deliver phases [1,6]. The sender first
executes c-broadcast with request m and thereby starts the protocol, and all parties
terminate the protocol by executing c-deliver with request m. Consistent broadcast
ensures only that the delivered requests are the same for all receivers. In particu-
lar, when the sender is faulty, it does not guarantee that every party terminates
and delivers a request. A protocol for consistent broadcast satisfies:

— (Validity) If an honest party Py c-broadcasts m, then all honest parties even-
tually c-deliver m.

— (Consistency) If an honest party c-delivers m and another honest party c-
delivers m/, then m = m/'.

— (Integrity) Every honest party c-delivers at most one request from the same
sender. Moreover, if the sender Py is honest, then the request was previously
c-broadcast by P;.

We also use the Global Perfect Coin (GPC) protocol as a blackbox in the con-
struction of the safer ledger for asynchronous networks. The global perfect coin
protocol, also called the common coin protocol [15], typically works as a source
of randomness for asynchronous BFTs. Many previous works [2,3,11,12,17] use
the (f 4+ 1,n)-threshold signature to instantiate the global perfect coin to solve
the Asynchronous Byzantine Agreement (ABA) problem. Specifically, when a
party is invoked in a global perfect coin instance w, this party signs w with his
private key and sends the resulting signature share to all other parties. Once a

6 Yu Song et al.

party receives at least f -+ 1 shares, this party can re-construct the full signature
o on w via the threshold signature’s combination algorithm, and then the hash
value of w is viewed as the randomness to choose the “leader” among all parties.

To describe the required properties of the global perfect coin, we say that
each committee party P; uses the Chooseleaderp, (w) process to get the leader
of the instance w, and X, stands for the random variable that some committee
party is chosen as the leader. A secure global perfect coin protocol satisfies the
following requirements.

Definition 2 (Global Perfect Coin, GPC). A global perfect coins proto-
col running by an n-member committee has the agreement, termination, unpre-
dictability, and fairness properties.

— (Termination) If at least f + 1 parties call the ChooseLeader processes on an
instance w respectively, then each of these process can eventually return a
coin-choosing result. The choosing result is also called as the leader.

— (Agreement) If two honest parties, P; and P;, call ChooseLeader on instance
w and get the returned values X, and X/, respectively, then X, = X/,.

— (Unpredictability) As long as no less than f+1 parties call the ChooseLeader
on instance w, then the returned value is computationally indistinguishable
from the random choosing. Concretely, the probability that anyone can pred-
icate the leader choosing result correctly is 1/n.

— (Fairness) The coin is fairly chosen. Each party shares an equal probability to
be chosen as the leader. That is, for P; and P;, Pr[X,, = B;] = Pr[X,, = Fj].

3 Model and Security Definition

In this section, we provide the security model and definition for FaBFT.

3.1 The Security Model

FaBFT runs in the permissioned setting with an initially fixed number of com-
mittee parties. Each authorized committee party uses a public key as the unique
pseudonym.

Adversary model. Without loss of generality, we consider that the committee
set consists of n parties indexed by 4 € [n], where [n] = {1,...,n} and use f to
denote the maximum number of the Byzantine faulty parties. Without loss of
generality, we assume that n = 3f + 1. That is, no more than 1/3 committee
parties can be corrupted by the adversary A. For the corrupted parties, A learns
all their internal states and takes full control of them, and thus there is no
communication cost within Byzantine faulty parties. In FaBFT, we consider the
static adversary only.

Network model. Network communication is point-to-point. In this network,
adversary A is capable of delaying or reordering any messages between all the

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 7

parties, but it cannot drop or modify the messages broadcast by honest par-
ties. As generally accepted [13,17,16], we define the partially synchronous and
asynchronous networks as below.

Assume that every party has a local clock controlled by A and the time of a
“tick” is at the speed of the actual network 6. Also assume that there is a global
stabilization time (GST), after which all messages can be delivered within time
0. If GST > 0 the network is called to be partially synchronous, and if GST = oo
the network is called to be asynchronous.

3.2 Definition of Security

Since FaBFT focuses on solving the asynchronous Byzantine Atomic Broadcast
(ABC) problem in the flexible network to attain robustness and reduce latency,
we utilize the definition of ABC to provide the security definition of FaBFT [15].

Definition 3 (Atomic Broadcast). In an ABC protocol, there are at most f
Byzantine nodes among the n parties. Each of the parties has a transaction buffer
and randomly selects transactions from its buffer to package a block as the inputs
to this protocol. The ABC protocol will output an ordered transaction ledger. ABC
protocol satisfies the following properties with all but negligible probability:

— (Total-order) If one honest party has outputted a sequence of transactions
<tzg,tT1,...,tx;> and another one has outputted <tx6,tx’1,...,tx;,>, then
te; =tz for i < min(j,j').

— (Agreement) If any honest party outputs a transaction tx, then every honest
party outputs tx.

— (Liveness or Censorship Resilience) If a transaction tx has been inputted to
N — f honest parties, then it is eventually outputted by every honest party.

4 Technical Overview

Current asynchronous consensus cannot meet the requirements of flexible net-
works. Specifically, in order to guarantee the “pessimistic-case” security, clients
are unable to fully utilize their network in reality, especially when their real
network conditions are better than the pessimistic-case scenario, which can lead
to wasted bandwidth and long-term waits. In contrast, FaBFT introduces the
flexible consensus in asynchronous networks, providing more resilient options for
different clients. In addition, FaBFT uses BlockDAG to organize transactions to
improve throughput.

4.1 Flexible Architecture

In FaBFT, each party may be in one of two different network environments. That
is, the client can make different assumptions about the state of the network, i.e.,
partially synchronous or asynchronous. To reach a secure consensus in this envi-
ronment, BFT parties run our FaBF'T protocol to maintain two types of ledgers,

8 Yu Song et al.

{} >Network ¢
TxPool JL

@t:c

W partiat—sync Tasy roundr ' round 41
Jo N I

round r-1 round r round r+1

pr-1 Br pr+l Br+2 B
P, —1y/cBC, ; —1p CBC, —L 3 CBChy—Ll 3 P, —1y! cBc, L=
r+2

Br-1 BI Br+l B BL
P, 23 (BC,_; —23 CBC, —2—p CBCyy —2—>» Py 23/ cBC, [z,

’ Br-1 B grl B2 : B, .
P, =1 CBC,; 1y CBC, _tly CBCry iy P, ;—>» CBC,

Byt B, Bf L Bf"2 B},
Py Slp{cstn] Sy 5 [, > Py p{ae

(1-2)-th commit (r-1)-th commit r-th commit (k-1)-th commit ' r-th commit

P{s chain DAG] ! P{s chain DAG] !

ll !

Laster Lafer

Fig. 2. The FaBFT architecture. FaBFT runs two parallel protocols. 1) The left box
denotes the running of the partially synchronous protocol Mpartiai—sync. The upper is
Mpartial—sync s running process in round r + 1. Each green box denotes one CBC instance
running smoothly, while the red box denotes one CBC instance with some errors. P[s
chain DAG[™" is shown at the bottom. Each solid box denotes a committed block and
each dashed box denotes one block which is not arriving or in P;’s block buffer. Since
P} s CBC in round r fails to arrive in P1, blocks generated in round r + 1 are added to
Py’s block buffer, and then the dashed arrows help P to retrieve Bj, at round r + 1. 2)
The right box denotes the running of the asynchronous protocol Mas,. The blue boxes
denote the GPC processes. In DAG! 1!, each yellow box denotes a leader blocks. Since
By, reaches lately and is elected as the leader in round r + 1, blocks from round r —1 to
r+1 are not committed. When Bj, arriving, By, and past(DAG], By,) can be committed.

faster ledger for partially synchronous networks and safe ledger for asynchronous
networks. In particular, a safer ledger is a prefix to a faster ledger. The client
chooses one of the two ledgers based on the client’s network assumptions.

FaBFT guarantees that both ledgers can meet the security requirements of
the BFT protocol regardless of the real network. In other words, clients can take
advantage of a flexible network environment for better performance. In addition,
by adopting the BlockDAG structure, the throughput of our consensus protocol
depends only on the network speed.

To illustrate the FaBFT protocol at a high level, we assume that there are n
parties, where up to ¢ could be broken by a static adversary A.

Flexible protocol. The FaBFT committee runs two parallel protocols as Figure
2 shows. The left ledger (i.e., the faster ledger Lester) has aggressive partial
synchronous network assumption and runs faster. In this setting, every party’s
clock is consistent with the network speed and almost unanimously. The protocol

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 9

is propelled by “step” and every step consists of time “ticks”. The right one (i.e.,
the safer ledger Lq,fer) has a conservative asynchronous network assumption and
runs slower but safer. Protocol operates at the network flow rate and advances
in sufficient “quantities”. Both Lester and Lgafer are constantly increased in each
round. A two-phase process is required to commit blocks, including the broadcast
phase and the agreement phase. It is worth noting that the two-phase process
under the two ledgers is not the same, and the flexibility of FaBFT relies on the
second phase, where the client chooses a committing strategy based on his own
network assumption.

(1) The broadcast phase. During the broadcast phase, every honest party
generates one block and broadcasts it. It collects votes from other parties for
their blocks to form a broadcast certificate set and also votes for other blocks.
Only the block with a legal certificate may be recorded on DAG.

(2) The agreement phase. In the agreement phase, an honest party will / will
not generate a new block for the Leaster / Lsafer- Roughly,

— The aggressive clients assuming that they are working in the partial syn-
chronization network use the timeout mechanism similarly to their broad-
cast phase. That is, the honest parties create new blocks to guarantee that
enough blocks can be generated in the current round, to ensure that all
blocks in the previous round can be committed safely.

— Conservative clients, who assume themselves in an asynchronous network
environment, use a counting mechanism instead of creating new blocks. They
start a random process only when enough blocks have been collected, to
decide the committed blocks.

BlockDAG structure. Like [8,17], FaBFT adopts the BlockDAG structure.
Specifically, each legal block references at least n — f “parent blocks” generated
in the previous round. This way, once a new block is recorded on one party’s
DAG chain, this party has received not only the certificate of this block but also
all the parent blocks referenced by this block. Therefore, the recording of this
new block implies that the party has agreed on all the referenced blocks. If this
new block is committed, all the referenced ones are committed too. We note
that in FaBFT, there are 2f + 1 (i.e., instead of only 1 as in Figure 1) initial
genesis blocks in the first round, and these genesis blocks appear in the past set
of any valid blocks in FaBFT. If there are only the genesis blocks on the FaBFT
ledgers, then parties only reference them. Otherwise, the parties will reference
all (i.e., no less than n — f) tips of the DAG in their view.

Transaction packaging and block constructing. When receiving transac-
tions from clients, one party puts them into its own buffer pool TransactionPool
and packages the new transactions TX into the blocks. TX’s Merkle tree root,
denoted as MKroot, is recorded in the head of the block. The resulting blocks,
which contain the references to all tips (i.e., end blocks in DAG), are submitted by
the parties to get recorded on the ledger. FaBFT runs in rounds, and each honest
committee generates exactly one block in one round. A block B] submitted by
party P; at the beginning of the r—th round contains the identity information of

10 Yu Song et al.

P;, the round number 7, the transactions TX contained in this block, and the ref-
erences to parent blocks in the previous round Pa Bz_l. We emphasize that only
blocks with certificates can be recorded on the ledger. Specifically, a block’s quali-
fied certificate consists of at least n— f wvotes for this block. Each vote of B} is gen-
erated by one party’s voting in the r-th round. For simplicity, we denote a block
authorized B} generated by P; as B = {MKroot, P;’s identity,r, TX, PaB] '},
and denote the qualified certificate as QC. We also call a block B} with QC as a
“legal block”.

Block checking and voting. When a party receives blocks, it adds them to
its local buffer, checks them, and votes for valid ones. Especially, if one party
finds a received block containing references to some parent blocks which this
party has not received yet, this party starts the “call for help” process for other
parties and retrieves the missing blocks if only they really existed. If all checks
pass, this party waits for blocks’ QCs, and removes a block from the local buffer
to the end of the DAG when the corresponding QC arrives. It worth noting that
in the partially synchronous network, valid missing blocks will be sent in this
step with the QC.

4.2 Two-phase Consensus in Partially Synchronous Networks

In the partially synchronous network, we can assume that there is a uniform
clock. In this environment, the protocol runs round-by-round, and the protocol’s
rounds are driven by a timer. Each round consists of 3 steps, and the timer starts
at the beginning of each step. A block B} created by P; at the beginning of the
r-th round (i.e., the broadcast phase of BY) will be committed at the end of the
(r + 1)-th round (i.e., the agreement phase of B), if B} is correctly formed.
Therefore, it takes 6 steps (or 2 rounds) to commit a block.

Broadcast phase. Generally, the broadcast phase consists of n parallel consis-
tent broadcast (CBC) being run by every party. Each CBC instance consists of 3
steps: (1) Each honest party generates exactly one block at the beginning of the
broadcast phase and broadcasts it among the committee. (2) Other parties check
the received blocks and return the votes if all the checks pass. (3) Once at least
n — f votes for one block have been received, the block’s QC has been formed
and the creator of this block broadcasts QC. At the end of the broadcast phase,
the honest parties add blocks to its DAG chain only if (i) each added block has
a qualified certificate QC, and (ii) all the reference blocks appear in this party’s
DAG view. Otherwise, the blocks are saved in the party’s block buffers. Under
the partially synchronous assumption, at least n — f new blocks will be added
to Laster at the end of this phase.

We use an honest party P, running at round r as an example to illustrate
the CBC phase in Figure 3. Here the block B] together with its QC are received
by other parties at the end of round r. It is worth noting that B} can always be

committed until the end of the (r + 1)-th round.
The agreement phase. The agreement phase works in a way similar to the

broadcast phase. At least n — f new blocks will be added to Lfister at the end
of this phase, and each of the new block references to at least n — f legal blocks
(i.e., with their QCs) in the previous round. Therefore, at the end of this phase,

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 11

HPartia—Sync CBC

roundr round r+1

s RN
\ V\ \

B}’s broadcast phase ' B}’s commit phase

/
\

Fig. 3. Pi’s CBC phase in lMpariai—sync. 1) In round 7, P; broadcasts a block By and
collects unambiguous votes to form QC, then P; broadcasts QC to other parties. Round
r+1is Bf"'l’s broadcast phase and also B7’s commit phase. When other parties receive
Bt"'s QC, Bt" is added to their DAG chain, B] can get committed. 2) The red lines
denote that P; has received a block from some other party, but one of the parent blocks
B;, is not contained in DAGY, then P; calls help from others. At the end of round r+1,
all blocks belonging to round r can be committed.

all blocks before this batch of blocks can be committed. In Figure 3, block BY
is committed when block B{H is recorded on Lester-

4.3 Two-phase consensus in asynchronous network

Unlike the previous partially synchronous networks, asynchronous networks do
not have the assumption of time bounds, and the advancement of each party
depends entirely on the speed of their respective networks. Although the protocol
still operates on a round-by-round basis, iterations of rounds are guaranteed by
a counting mechanism rather than a timeout mechanism.

The broadcast phase. Each honest party advances into a new round via the
CBC process by generating and broadcasting a new block. During each round,
each honest party can generate exactly one block, and thus no less than n — f
blocks will be recorded on DAG. The most crucial difference lying in the CBC
process under the asynchronous network is that there is no timer. Thus, parallel
CBCs belonging to the same round can not start at the meantime. When a new
block is generated, not only more than n — f parent blocks but also all tips(DAG)
blocks with no subsequent references should be referenced. Then broadcasts
the block. After that, honest parties will keep waiting for more than n — f
consistent votings to form and broadcast the QC, instead of utilizing the timeout
mechanism. When an honest party adds at least n — f blocks on the DAG, this
party will not only advance into the agreement phase but also the next CBC
and organize a new block.

The agreement process. When a party admits n — f blocks into its DAG
during the CBC process, it will immediately boost the global perfect coin by

12 Yu Song et al.

broadcasting its random signature share, and f + 1 random share will invoke
GPC. Then a random leader P, can be elected. If the leader’s block B; has been
on DAG and fortunately it is a parent block for more than n — f next-round
blocks, B; block and its history can be committed without ambiguity, which
means more than n — f parties has acknowledged B;’s QC and recorded B; on
DAG. Otherwise, there will be no progress in this round. We can prove that
once the subsequent available leader’s block appears, all these blocks can still be
committed. The fact that this protocol can move forward satisfies the liveness
and is censorship resistance.

5 Detailed Protocol Description

5.1 Block Generation.

At the start of a round, to generate a new block and add it to the BlockDAG,
a party needs to refer to all end blocks (no less than n — f) in its BlockDAG
chain (Here we emphasize that in the asynchronous network, the party needs to
traverse its BlockDAG to reference all end blocks reached lately too). Moreover,
the party needs to select transactions from its local transaction pool. The selected
transactions constitute the body of a block, and the Merkle-tree root of these
transactions is recorded in the head of the block. Then the party signs it to
create a block. After that, the party broadcasts it instantly to others and then
waits to collect enough votes to form a broadcast certificate QC for this block.

Algorithm 1: Generation of P;’s Block B}

Input: tips(DAGgfl), P;’s public key P;, TransactionPool,
CurrentRound = r, NetworkAssumption, PaB! ! = ()
Output: Block B
for B e tips(DAG, ") do
L add HashPointer(B) to PaB} ™"

3 if NetworkAssumption = Asynchronous then
4 | TRAVERSE(DAG] ') and add all end blocks to PaB]

TX < SELECTRANDOMLY (TransactionPool)
TransactionPool < TransactionPool\TX

Bl .MKroot<— MerkleRoot(TX)

B! << MKroot, P;,r, TX,PaB} ' >
BROADCAST (B) and starts the timer

N =

© 0w N o «m

5.2 Block Transmission.

CBC guarantees that a new block can reach every party consistently. As one
of the senders, P; first broadcasts its newly generated block B} to every other
party and collects votes to form QC. More than n — f unanimous votes form a
broadcast QC for B]. This QC proves that most of the parties have received B}
and acknowledged the correctness of it. Then P; also sends the QC to all parties.

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 13

When P; receives the new block B; from F;, it needs to check its validity,
including the transaction correctness and the signature legality. If all checks pass,
P; returns a vote of this block to ;. Meanwhile, P; needs to check if all of the
referenced blocks are in PaB[™! in DAG;. If not, P; needs to call for help from
others. In this case, other honest parties will send the corresponding parents’
block(s) to P;.

Specifically, the received blocks are first included in the receiver’s block buffer.
A block B in P;’s block buffer will be moved out and added to the P;’s DAG
chain only if (1) B} is correct, (2) B]’s QC has arrived, and (3) P; has received
all blocks stated in PaB} .

Algorithm 2: P;’s Block Transmission

Input: B, CurrentRound = r, NetworkAssumption
Output: QC, DAG!
X0 > X"denotes the votes’ signature set recorded in QC
P; as a sender :
upon reveive vote jvalue, signature, info;:
if CHECKVOTEVALID(vote) = TRUE and vote.value = 1 then
L add vote.signature to X7

R W N =

if NetworkAssumption = PartiallySynchronous
A timer = TIMEOUT then

7 if |X7| > n — f then

s L QC « (B}, 2}

9

BROADCAST(QC) and restart timer

[

10 else
11 MESSAGE «+ {TIMEOUT,r}
12 send MESSAGE to the client

13 if NetworkAssumption = Asynchronous then
14 wait until | X7 >n— f
15 QC«+ {B!, 2}

16 | BROADCAST(QC)

17 P; as a receiver:
18 upon receive B :
19 if CHECKVALID(B}) = TRUE then
20 L send vote < 1,0, Hash(B]) > to P;
// check the reference relationship of B]
21 for B € B!.PaB. "' do
22 | if B¢ DAG,”! then
23 L add B to P;’s BlockBuffer and call for B from others
24 break

25 upon receive QC:
26 wait until all PaB] ' € DAG;, add B} to DAG

14 Yu Song et al.

5.3 Optimistic Case Block Confirmation

As Figure 3 shows, when the current CBC,. ends, there are at least n— f blocks on
the honest party P;’s DAG chain DAG], we denote these blocks as B". All blocks
referenced by B” on DAG] have corresponding QC and have passed at least two
voting processes. They can all be committed and recorded on the faster ledger.

Algorithm 3: Optimistic case Block Confirmation

Input: DAG", NetworkAssymption = PartiallySynchronous,
CurrentRound = r, parties P;(i € [n])

Output: Leagier

// The CBC process of round r is running concurrently
1 for i € [n] do
while P; adds a block By to DAG; do

for B € B;.PaB}~! do

| Commir(B)

B W N

if timer=TIMEOUT then

Leaster < INTERPRET(DAG])

restart the timer to advance into round r + 1
break

o N o o

9 return Lester

5.4 Pessimistic Case Block Confirmation

If P; received more than n— f blocks in round r+1, it will broadcast its signature
share and the agreement phase starts. f+1 shares from different parties in round
r will invoke the random common coin GPC. A leader P, will be elected. If there
was leader’s block By in round 7 on the view of DAG; ™" and B if referenced by
more than n— f blocks from r+1, B] and all its casual history (i.e., blocks belong
to past(D/—\Gir*l, BJ)) will be committed legally. Otherwise, if there is progress in
round r, we can prove that the next available leader will also commit to these
blocks.

6 Security Analysis

6.1 Security Theorem

In this section, we prove that FaBFT satisfies all the properties of the atomic
broadcast (ABC), as defined in Definition 3, no matter what the network envi-
ronment is. Besides, we discuss the censorship resistance of FaBFT.

Theorem 1. Assuming n = 3f + 1, FaBFT can meet the total-order, agree-
ment, and liveness properties defined in Definition 3, except for a probability
exponentially small in n.

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 15

Algorithm 4: P;’s Pessimistic Case Block Confirmation

Input: DAG;’H, NetworkAssumption = Asynchronous, CurrentRound =

r+1
Output: Leafer
1cnt=0,S+ 0 > S denotes the set of parties’ signature share

2 if |[{B € DAG,™ A B.round = r + 1}| > (n — f) then
3 L send CurrentRound,signature share s; to GPC, s; is added to S

4 if |S| > f+1 then
5 w < SIGNSIG(s;) for s; €S
6 [+ GPC(w) > P, is the selected leader

// The number of blocks reference to B in round r+1
for B € DAG. "' A B.round = r + 1 A B] € PaB! do
L ent <—cent + 1
if ecnt > n — f then
10 | B« parent(DAG, ", BY)
11 | for B € past(DAG, ™, By) do
12 L if B ¢ B A B has not been committed then

®

©

13 L add B to B > Commit the late blocks

14 CommiT(B)
15 | Lafer < INTERPRET(DAG] ™)

16 else
17 L advance into round r + 2 with Lgfr not increases for round r

Proof. We proof Theorem 1 via the following lemmas. More concretely, FaBFT’s
total-order property follows from Lemma 1 and Lemma 2, the agreement prop-
erty follows from Lemma 3, and the liveness is implied by Lemma 4.

Lemma 1 (Total-order of Legter). Suppose the network is partially synchronous.
For any two honest parties P; and P; in round r, if P; commits all new blocks
generated in DAG, ', then P;’s (r — 1)-th DAG view (i.e., DAG;fl) will be the
same as P;’s, within § time after GST.

Proof. Based on the integrity of CBC and the design of FaBFT, each honest
sender Ps will generate one and only one block B7~! in the (r — 1)-th round
and form the corresponding QC. Thus, all the other honest parties will get B’ ~*
and its QC at the end of the (r — 1)-th round. That is, B/~! € DAG, ' if P;
is honest. In the next round, B7~! will be referenced by both honest parties P;
and Pj, and QC for B} implies the existence of QC for B;ﬁ_l7 and thus B;‘l
is committed by P;. Similarly, P; will commit B?~! before advancing into the
(r 4+ 1)-th round.

16 Yu Song et al.

The dishonest sender P can form a QC in the (r — 1)-th round but only
broadcast it to a subset of the parties. For instance, Py sends QC to P; but not
P; in round 7 — 1. Thus, DAG, ™' and DAG;f_1 are different, since the former
contains Bg,_l while the latter does not. In the next round, P; will reference
B;fl to build the next block, while P; will not. After P; broadcasting B;, P;
will find that it does not have all the referenced blocks of Bj, thus P; cannot
add B to DAG]. Fortunately, based on the validity and consistency of CBC
protocol, every honest party will agree on B] which is generated by the honest
P;. In this way, P; can agree on B;",_l and deliver it eventually.

In conclusion, under the partially synchronous setting, based on the reference
relationship defined by the BlockDAG structure, two consecutive CBC execu-
tions guarantees that no matter what the sender’s action is, every honest party
will agree on the first CBC’s outputs in the second running. Thus, honest par-
ties will have the same DAG view in each round. In other words, in the partially
synchronous network, honest parties always have the same DAG view in each
round.

Lemma 2 (Total order of Lqfe,). Suppose the network is asynchronous. If one
honest party P; commits the leader block B] of round r, then through constant
rounds, for another leader block B[,, of any round v > r committed by any
other honest party P;, there will be a path between B] and B[,l. In fact, every
honest party’s DAG" will converge into the same in round r’ within no more than
constant rounds.

Proof. Since each honest party can only generate one block in one round, blocks
generated by the same honest party in different rounds form a path. After the
CBC phase, all honest parties will c-deliver the same set of blocks through QC.

In round r + 1, after the coin-tossing process, a unique leader P; is selected
for round r. For the good case (i.e., an honest leader is selected, with probability
2/3), the leader block is generated by the honest leader and with no less than
2f + 1 reference paths from round r + 1. Since the honest parties will commit
the same leader and its leader block Bj, all casual history blocks of B] can be
committed together. For the bad case (i.e., a dishonest leader is selected, with
probability 1/3), since less than 2f + 1 reference “votes” can be collected in
round r + 1, this causes B] to be unavailable as a leader block to commit blocks,
and thus there is no progress in round 7.

When a leader’s block Bl’}/ is committed in round 7/, if there is a path between
these blocks B] and B{//, then B and its casual history can still be committed.
From round r to round 7/, suppose that there is no progress in at most D
rounds (D < ' —r), then it happens with the possibility Pr[D] = (1/3)?, which
decreases with D exponentially.

In conclusion, in the asynchronous setting, the honest parties will commit
to the same leader in the same order. Based on the CBC and DAG reference
relationship in FaBFT, before committing the leader block, all casual history
has been already in the DAG. Once an honest party commits a leader B, it

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 17

atomically interprets all of B’s causal history in a deterministic order, which is
identical for all other honest parties.

Lemma 3 (Agreement of Leger and Leafer). In the partially synchronous and
the asynchronous networks, suppose that an honest party P; commits a block B
in round r. Then any other honest party will also commit By.

Proof. From Lemma 1, in the partially synchronous network, honest parties al-
ways share the same DAG view round by round. Thus there will be no conflicting
blocks. So the proof of total order implies the agreement.

In the asynchronous network, when P; commits B in round r, from Lemma
2, we can find that B, is in the casual history of the legal leader block B]. Then
P; will commit B] and B, within a constant number of rounds. Thus honest
parties can make the agreement on the DAG chain.

Lemma 4 (Liveness of Leger and Leafer). Each legal block broadcast by an
honest party P; can eventually be added to the DAG chain of any honest party,
which means that FaBFT guarantee liveness.

Proof. The validity of CBC guarantees the liveness of FaBFT in the partially
synchronous network. Concretely, two consecutive CBCs ensure that FaBFT can
advance into a new round without getting stuck by the timeout mechanism.

In the asynchronous network, based on the termination property of the global
perfect coin, FaBF'T can continuously make progress with all but negligible prob-
ability, which decreases exponentially with D.

Theorem 2. FaBFT is censorship resistance.

Proof. Here we consider the case that the adversary utilizes the hostile network
and holds an honest block for some time for censorship. A legal QC can help this
block be recorded on the DAG by honest parties when it is released. Specifically
one honest party who has received the QC but not the block can ask for others’
help, and this will not increase the communication burden. The next legal leader
will commit this block. Therefore, FaBFT is censorship resistance.

6.2 More Discussion

When the network assumption is inconsistent with the real environment, FaBFT
can still guarantee security. In an optimistic network, clients can make any as-
sumptions. Two consecutive CBCs are sufficient to guarantee the safety and
liveness of honest blocks. As each honest party generates exactly one block in
each round and Theorem 1, the slower Lgyfer is the prefix of Leuster. In particu-
lar, when the clients assume that the network is partially synchronous but the
real network is pessimistic, the faster ledger may stop increasing, and clients can
adopt the safer ledger instead, i.e., Lsaster = Lsafer 0 this case. When the network
is stable and optimistic, honest parties’ DAG views can be synchronized quickly
and will continuously increase Leaster-

18

7

Yu Song et al.

Performance Analysis and Conclusion

As shown in Table 1, FaBFT has the merits of low communication complexity
and message complexity in flexible asynchronous networks, due to the elegant
combination of BlockDAG, CBC, and GPC. Compared with [9], which currently
requires the lowest bandwidth and smallest number of messages in the litera-
ture, FaBFT costs only one more step in the best case and comparably steps in
the asynchronous case, through cancelling the costly asynchronous-fallback and
view change operations. Even better, FaBFT supports BlockDAG and a flexible
network, which makes it more applicable in practice.

References

1.

10.

11.

12.

13.

Byzantine broadcasts and randomized consensus (2009), https://dcl.epfl.ch/
site/education/secure_distributed_computing

Cachin, C., Shoup, V.: Random oracles in constantinople: Practical asynchronous
byzantine agreement using. In: Proceedings of the 19th ACM Symposium on Prin-
ciples of Distributed Computing, no. pp. 1-26 (2000)

Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal re-
silience. Association for Computing Machinery, New York, NY, USA (1993)
Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OsDI. vol. 99,
pp. 173-186 (1999)

Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Narwhal and tusk: a
dag-based mempool and efficient bft consensus. In: Proceedings of the Seventeenth
European Conference on Computer Systems. pp. 34-50 (2022)

Duan, S., Zhang, H., Sui, X., Huang, B., Mu, C., Di, G., Wang, X.: Dashing and
star: Byzantine fault tolerance using weak certificates. Cryptology ePrint Archive
(2022)

Fischer, M.J., Lynch, N.A.) Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374-382 (1985)
Gagol, A., Leéniak, D., Straszak, D., Swietek, M.: Aleph: Efficient atomic broadcast
in asynchronous networks with byzantine nodes. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technologies. pp. 214-228 (2019)
Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon
and ditto: Network-adaptive efficient consensus with asynchronous fallback. In:
Financial Cryptography and Data Security: 26th International Conference, FC
2022, Grenada, May 2-6, 2022, Revised Selected Papers. pp. 296-315. Springer
(2022)

Guo, B., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Speeding dumbo: Pushing
asynchronous bft closer to practice. Cryptology ePrint Archive (2022)

Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: Faster asynchronous bft
protocols. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. pp. 803-818 (2020)

Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is dag. In:
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing.
pp. 165-175 (2021)

Lu, Y., Lu, Z., Tang, Q.: Bolt-dumbo transformer: Asynchronous consensus as fast
as the pipelined bft. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. pp. 2159-2173 (2022)

https://dcl.epfl.ch/site/education/secure_distributed_computing
https://dcl.epfl.ch/site/education/secure_distributed_computing

14.

15.

16.

17.

18.

19.

20.

FaBFT: Flexible Asynchronous BFT Protocol Using DAG 19

Malkhi, D., Nayak, K., Ren, L.: Flexible byzantine fault tolerance. In: Proceedings
of the 2019 ACM SIGSAC conference on computer and communications security.
pp. 1041-1053 (2019)

Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft pro-
tocols. In: Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security. pp. 31-42 (2016)

Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In: 2021 IEEE Symposium on Security and Privacy (SP). pp.
446-465. IEEE (2021)

Spiegelman, A., Giridharan, N., Sonnino, A., Kokoris-Kogias, L.: Bullshark: Dag
bft protocols made practical. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. pp. 2705-2718 (2022)

Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 347-356 (2019)

Zhang, H., Duan, S.: Pace: Fully parallelizable bft from reproposable byzantine
agreement. Cryptology ePrint Archive (2022)

Zhou, Y., Zhang, Z., Zhang, H., Duan, S., Hu, B., Wang, L., Liu, J.: Dory: Asyn-
chronous bft with reduced communication and improved efficiency. Cryptology
ePrint Archive (2022)

	FaBFT: Flexible Asynchronous BFT Protocol Using DAG

