
Approximate Lower Bound Arguments

Pyrros Chaidos1,4, Aggelos Kiayias2,4, Leonid Reyzin3⋆, and Anatoliy
Zinovyev3

1 National & Kapodistrian University of Athens
2 University of Edinburgh

3 Boston University
4 IOG

Abstract. Suppose a prover, in possession of a large body of valuable
evidence, wants to quickly convince a verifier by presenting only a small
portion of the evidence.
We define an Approximate Lower Bound Argument, or ALBA, which al-
lows the prover to do just that: to succinctly prove knowledge of a large
number of elements satisfying a predicate (or, more generally, elements
of a sufficient total weight when a predicate is generalized to a weight
function). The argument is approximate because there is a small gap be-
tween what the prover actually knows and what the verifier is convinced
the prover knows. This gap enables very efficient schemes.
We present noninteractive constructions of ALBA in the random oracle
and uniform reference string models and show that our proof sizes are
nearly optimal. We also show how our constructions can be made partic-
ularly communication-efficient when the evidence is distributed among
multiple provers, which is of practical importance when ALBA is applied
to a decentralized setting.
We demonstrate two very different applications of ALBAs: for large-
scale decentralized signatures and for proving universal composability of
succinct proofs.

1 Introduction

Suppose a prover is in possession of a large body of valuable evidence that
is individually verifiable. The evidence is so voluminous that presenting and
verifying all of it is very expensive. Instead, the prover wants to convince a
verifier by presenting only a small portion of the evidence.

More formally, let R be a predicate. We explore succinct arguments of knowl-
edge where a prover knows a set Sp of values that satisfy R such that |Sp| ≥ np

and wants to convince the verifier that |Sp| > nf where nf is a somewhat smaller
value than np. Given nf < np, the verifier obtains a lower bound approximation
to the actual cardinality of Sp and hence we call this primitive an Approximate
Lower Bound Argument or ALBA.

⋆ Work done while visiting the Blockchain Technology Lab at the University of Edin-
burgh.

This problem has a long history. In 1983, in order to prove that that BPP ⊆
RPNP, Sipser and Gács [Sip83, Section V, Corollary to Theorem 6] showed a
simple two-round interactive protocol for proving a lower bound on the size of the
set S of accepting random strings. Their construction is based on hash collisions:
the verifier chooses some number of universal hash functions h1, . . . , hm [CW79]
and the prover shows s, s′ such that s ̸= s′ and hi(s) = hi(s

′) for some i ∈
{1, . . . ,m}. If S is small (of size less than np), then such hash collisions are
very unlikely to exist, and if S is big (of size greater than nf), then they must
exist by the pigeonhole principle. In 1986, Goldwasser and Sipser [GS86, Section
4.1] used a slightly different approach, based on the existence of inverses rather
than collisions, for proving that public coins suffice for interactive proofs (cf.
Appendix A). To the best of our knowledge, the term “approximate lower bound”
in the context of proof systems appears first in Babai’s work [Bab85, Section 5.2].

The pertinent efficiency consideration in designing ALBAs is primarily the
length of the interaction between prover and verifier, and also the provers’ and
verifier’s computational complexity. As it may be expected, the complexity met-
rics depend on the “gap” np/nf, something that gives rise to the natural question
of what is the smallest possible dependency between proof size and this gap.
Putting this aspect at the forefront, it turns out that the classical techniques for
constructing ALBAs mentioned above are quite suboptimal performance wise.
While this does not affect the classical applications of ALBAs (such as in proving
that any IP language can be decided by an Arthur-Merlin protocol, where the
gap can be a large constant and the prover has exponential time), as we will see
it does become a pressing concern in modern applications of ALBAs.

1.1 Our Setting

The prover and verifier have access to a binary string predicate R and the prover
needs to show some elements of Sp to the verifier so he is convinced that the
prover possesses more than nf elements that pass R. The goal is to find some
property that is unlikely to hold for small sets Sf, likely to hold for large sets
Sp, and can be shown with just a few elements.

Generalization to Weighted Sets. We generalize a predicate R that determines
validity of set elements, and consider instead a function weight that assigns value
to data: it takes a set element and outputs a nonnegative integer indicating the
value of the element. In that context we wish to explore succinct arguments of
knowledge that convince a verifier that the prover knows a set S that satisfies a
lower bound

∑
s∈S weight(s) > nf. When weight is {0, 1}-valued, we are in the

setting of a predicate, and we call this case “unweighted.”
We emphasize that R or weight are used in a black-box way in our protocols.

Thus, our protocols can be used in settings when these functions do not have
a known specification — for example, they may be evaluated by human judges
who weigh evidence or via some complex MPC protocol that uses secret inputs.

Setup and Interaction Models. Our main focus is on building ALBA proto-
cols that are succinct Non-Interactive Random-Oracle Proofs of Knowledge or

2

NIROPK (see Section 2 for the definition). If the prover is successful in con-
vincing the verifier, then the knowledge extractor can obtain a set of size nf

by simply observing the random oracle queries; in other words, the protocol is
straight-line extractable in the nonprogrammable random oracle model.

We also show simple modifications of our protocols that replace random or-
acles with pseudorandom functions (PRFs). By simply publishing the PRF seed
as a shared random string, we obtain a non-interactive proof of knowledge in the
Uniform Random String (URS) model, in which extractor works by reprogram-
ming the URS. Alternatively, we can obtain a two-round public coin proof of
knowledge by having the verifier send the PRF seed (we would then use rewind-
ing for extraction). Protocols in these two models, however, require that the
predicate R is fixed in advance; i.e., before the URS is published or the verifier
sends the first message. Our NIROPK protocols, as presented, also possess this
requirement, but could be modified to gain adaptive security, albeit downgrading
soundness from information-theoretical to computational.

Decentralized Setting. The set Sp may be distributed among many parties. For
instance, in a blockchain setting it could be the case that multiple contributing
peers hold signatures on a block of transactions and they wish to collectively
advance a protocol which approves that block. To capture such settings, we in-
troduce decentralized ALBAs: in such a scheme, the provers diffuse messages via
a peer to peer network, and an aggregator (who may be one of the provers them-
selves) collects the messages and produces the proof. Note that not all provers
may decide to transmit a message. In addition to the complexity considerations
of regular ALBAs, in the decentralized setting we also wish to minimize the
total communication complexity in the prover interaction phase as well as the
computational complexity of the aggregator.

1.2 Our Results

Our goal is to design protocols that give the prover a short, carefully chosen,
sequence of elements from Sp. We show how to do this with near optimal effi-
ciency.

Let λ be the parameter that controls soundness and completeness: the honest
prover (who possesses a set of weight np) will fail with probability 2−λ and the
dishonest prover (who possesses a set of weight at most nf) will succeed with,
say, also probability 2−λ. Let u be the length of the sequence the prover sends.

The unweighted case. We first show an unweighted ALBA in which the prover
sends only

u =
λ+ log λ

log
np

nf

(1)

elements of Sp. Moreover, we show that this number is essentially tight, by
proving that at least

u =
λ

log
np

nf

3

elements of Sp are necessary. (Note that all formulas in this section omit small
additive constants for simplicity; the exact formulas are given in subsequent
sections.)

Such a protocol is relatively easy to build in the random oracle model if one
disregards the running time of the prover: just ask the prover to brute force a
sequence of u elements of Sp on which the random oracle gives a sufficiently
rare output. Calibrate the probability ϵ of this output so that ϵ · nu

f < 2−λ for

soundness, but (1 − ϵ)n
u
p < 2−λ for completeness. A bit of algebra shows that

u = λ+log λ
log p

f
suffices to satisfy both soundness and completeness constraints, so

the proof is short.5 However, in this scheme, the prover has to do an exhaustive
search of 1/ϵ sequences of length u, and thus the running time is exponential.

It follows that the main technical challenge is in finding a scheme that main-
tains the short proof while allowing the prover to find one quickly. In other
words, the prover needs to be able to find a sequence of u elements with some
special rare property (that is likely to occur among np elements but not among
nf elements), without looking through all sequences. We do so in Section 3 by
demonstrating the Telescope construction.

The core idea in the Telescope construction is to find a sequence of values
that itself and also all its prefixes satisfy a suitable condition determined by a
hash function (and modeled as a random oracle). This prefix invariant property
enables the prover to sieve through the possible sequences efficiently expanding
gradually the candidate sequence as in an extending Telescope. We augment this
basic technique further via parallel self composition to match the proof length
of the exhaustive search scheme. The resulting prover time (as measured in the
number of random oracle queries) is dropped from exponential to O(np · λ2).
We then show how to drop further the prover complexity to O(np + λ2) by
prehashing the head of the Telescope and expressing the prefix invariant property
as a hash collision. We also provide a lower bound argument establishing that
the constructions we present are essentially optimal in terms of proof size.

Weights and Decentralized Provers. In the case of weighted sets where each
weight is an integer, the straightforward way to design a weighted scheme is to
give each set element a multiplicity equal to its weight and apply the algorithms
we described above. However, this approach is inefficient since this multiplicity
is exponential in the weight function’s outputs. A way to solve this problem is to
select (with the help of the random oracle) a reasonably-sized subset of the re-
sulting multiset by sampling, for each weighted element, a binomial distribution
in accordance with its weight. Given this precomputation, we can proceed then
with the Telescope construction as above and with only a logarithmic penalty
due to the weights.

Turning our attention to the decentralized setting we present two construc-
tions. In the first one, each party performs a private random-oracle-based coin

5 Let ϵ = 2−λn−u
f to satisfy soundness. Then (1 − ϵ)n

u
p < exp(−2−λn−u

f)n
u
p <

exp(2−λ(np/nf)
u) is needed for completeness, so it suffices to have

exp(2−λ(np/nf)
u) < 2−λ, i.e., 2−λ(np/nf)

u > λ/ log 2, i.e. (np/nf)
u >

2λ+log λ−log log e. Taking logarithm to the base np/nf gives the desired result.

4

flip to decide whether to share her value. The aggregator produces a proof by
concatenating a number of the resulting values equal to a set threshold. In the
second construction, we combine the above idea with the Telescope construction
letting the aggregator do a bit more work; this results in essentially optimal
proof size with total communication complexity O(λ3) or proof size an additive
term

√
λ larger than optimal and total communication complexity O(λ2).

1.3 Applications

Beyond the classical applications of ALBAs in complexity theory described ear-
lier [CW79,Sip83,Bab85,GS86], there are further applications of the primitive in
cryptography.

Weighted Multisignatures and Compact Certificates. In a multisignature scheme,
a signature is accepted if sufficiently many parties have signed the message (de-
pending on the flavor, the signature may reveal with certainty, fully hide, or
reveal partially who the signers are). In consensus protocols and blockchain ap-
plications, schemes that accommodate large numbers of parties have been put to
use in the context of certifying the state of the ledger. In a “proof-of-stake” set-
ting, each party is assigned a weight (corresponding to its stake), and the verifier
needs to be assured that parties with sufficient stake have signed a message.

Most existing approaches to building large-scale multisignatures exploit prop-
erties of particular signatures or algebraic structures. For example, the recent
results of Das et al. and Garg et al. [GJM+23,DCX+23] are based on bilinear
pairings and require a structured setup.

In contrast, our work relies only on random oracles, making it compatible with
any complexity assumption used for the underlying signature scheme, including
ones that are post-quantum secure. Expectedly, the black box nature of our
construction with respect to the underlying signature results in longer proofs
(they can be shortened using succinct proof systems, as we discuss in Section 1.4).

In more detail, in order to apply an ALBA scheme to the problem of multisig-
natures, we treat individual signatures as set elements. The underlying signature
scheme needs to be unique: it should be impossible (or computationally infeasi-
ble) to come up with two different signatures for the same message and public
key. Otherwise, it is easy to come up with a set of sufficient total weight by
producing multiple signatures for just a few keys6. Using an ALBA with decen-
tralized provers is particularly suited to the blockchain setting as signatures will
be collected from all participants.

A closely related approach is compact certificates by Micali et al. [MRV+21]
who also treat the underlying signature scheme as a black box. In more detail,
their construction collects all individual signatures in a Merkle tree, and selects
a subset of signatures to reveal via lottery (that can be instantiated via the
Fiat-Shamir transform [BR93]). Compared to compact certificates, our Telescope

6 The verifier could check that all public keys are distinct, but since the proof contains
just a small subset of the signatures, a malicious prover could try many signatures,
or “grind,” until it finds a proof that satisfies this check.

5

scheme obviates the need for the Merkle tree and hence shaves off a multiplicative
logarithmic factor in the certificate length. It is also not susceptible to grinding
while in compact certificates the adversary can try different signatures to include
in the Merkle tree, and unlike compact certificates that rely inherently on the
random oracle, our scheme can be instantiated in the CRS/URS model. Finally,
our decentralized prover constructions drastically reduce communication. On the
other hand, in compact certificates the lottery can be tied to public keys rather
than signatures and hence can work with an arbitrary signature scheme (not
necessarily unique).

Reducing communication complexity was also the focus of Chaidos and Ki-
ayias in Mithril, a weighted threshold multisignature, [CK21], that also uses
unique signatures and random-oracle based selection. In our terminology, Mithril
applies an decentralized ALBA scheme to unique signatures (possibly followed by
compactification via succinct proof systems, as discussed in Section 1.4). In com-
parison to Mithril, our decentralized prover construction achieves significantly
smaller proof sizes (when comparing with the simple concatenation version of
[CK21]) at the cost of higher communication. In Section 4.1 we present a simple
lottery that is asymptotically similar to Mithril with concatenation proofs, and
offer a comparison in Section 7.

Straight-Line Witness Extraction for SNARKS. Ganesh et al. [GKO+23] ad-
dressed the problem of universal composability [Can00] for witness-succinct
non-interactive arguments of knowledge. Universal composability requires the
ability to extract the witness without rewinding the prover. However, since the
proof is witness-succinct (i.e., shorter than the witness), the extractor must look
elsewhere to obtain the witness. Building on the ideas of Pass [Pas03] and Fis-
chlin [Fis05] Ganesh et al. proposed the following approach: the prover represents
the witness as a polynomial of some degree d, uses a polynomial commitment
to commit to it, and then makes multiple random oracle queries on evaluations
of this polynomial (together with proofs that the evaluations are correct with
respect to the commitment) until it obtains some rare output of the random
oracle (much like a Bitcoin proof of work). The prover repeats this process many
times, and includes in the proof only the queries that result in the rare out-
puts. The verifier can be assured that the prover made more than d queries with
high probability, because otherwise it would not be able to obtain sufficiently
many rare outputs. Thus, the knowledge extractor can reconstruct the witness
via polynomial interpolation by simply observing the prover’s random oracle
queries.

We observe that this approach really involves the prover trying to convince
the verifier that the size of the set of random oracle queries is greater than d.
This approach is just an ALBA protocol, but not a particularly efficient one.
Applying our scheme instead of the one custom-built by Ganesh et al. results
in less work for the prover and shorter proofs. To get a proof of size u ≤ λ, the
protocol of Ganesh et al. requires the prover to compute d · u · 2λ/u polynomial

6

evaluations and decommitment proofs,7whereas our ALBA scheme requires only
d · λ1/u · 2λ/u of those,8 a speed-up by a factor of about u.

1.4 Relation to General-Purpose Witness-Succinct Proofs

In cases where the weight function can be realized by a program, one can
use general-purpose witness-succinct proofs to tackle the construction of ALBA
schemes via utilizing SNARKs [Gro16,GWC19].

These general purpose tools, however, are quite expensive, especially for the
prover. Because they require encoding the weight function as a circuit, their
complexity depends heavily on the complexity of weight . Moreover, they are
inapplicable when weight cannot be specified as a function ahead of time, but is
evaluated by a more complex process — for example, via a secure multi-party
computation protocol or a human judge weighing the strength of the evidence.

On the other hand, these tools can give very short, even constant-size, proofs.
To get the best of both worlds — prover efficiency and constant-size proofs —
one can combine an ALBA proof with a witness-succinct proof of knowledge
of the ALBA proof. This is indeed the approach proposed by Chaidos and Ki-
ayias [CK21]: it first reduces witness size nf to u by using very fast random-
oracle-based techniques, and then has the prover prove u (instead of nf) weight
computations. We can also apply this technique to our constructions, something
that can result in a constant size proof with a computationally efficient prover.
And given that our constructions can work in the CRS/URS model, one can
avoid heuristically instantiating the random oracle inside a circuit.

2 Definitions

Below we present a definition of ALBA inspired by the non-interactive random
oracle proof of knowledge (NIROPK) [BCS16]. To introduce arbitrary weights,
we use a weight oracle W : {0, 1}∗ → N ∪ {0} and denote for a set S, W (S) =∑

s∈S W (s).

Definition 1. (Prove,Verify,Extract) is a (λsec, λrel, np, nf)-NIROPK ALBA scheme
if and only if

– ProveH,W is a probabilistic expected polynomial time random oracle access
program;

– VerifyH,W is a polynomial time program that has access to the random oracle
H and a weight oracle W ;

7 This value follows from the formula λ = r(b− log d) in the “Succinctness” paragraph
of [GKO+23, Section 3.1]. Note that r is u in our notation, and the expected number
of random oracle queries by the prover is r · 2b. Solving the formula for b, we get
2b = d2λ/r.

8 This value is obtained by setting nf = d and solving (1) for np.

7

– ExtractH,W,A is a p.p.t. program that has access to a weight oracle W ; 9

– completeness: for all weight oracles W and all Sp such that W (Sp) ≥ np,

Pr[VerifyH,W (ProveH,W (Sp)) = 1] ≥ 1− 2−λrel ;
– proof of knowledge: consider the following experiment ExtractExp(AH,W ,W):

Sf ← ExtractH,W,A();
output 1 iff W (Sf) > nf;

we require that for all weight oracles W and all probabilistic oracle access
programs AH,W ,

Pr[ExtractExp(A,W) = 1] ≥ Pr
[
VerifyH,W

(
AH,W ()

)
= 1
]
− 2−λsec .

Additionally, we say the extractor ExtractH,W,A is straight-line if it is only
allowed to run AH,W once with the real H and W and only observes the transcript
with its oracles.

The above formulation of ALBAs captures the setting where a prover has
the entire set Sp in its possession. We will also be interested in ALBAs where
the prover is decentralized — by this we refer to a setting where a number of
prover entities, each one possessing an element s ∈ Sp wish to act in coordination
towards convincing the verifier. We now define a decentralized ALBA.

Definition 2. (Prove,Aggregate,Verify,Extract) is a (λsec, λrel, np, nf)-decentralized
NIROPK ALBA scheme if and only if

– ProveH,W is a p.p.t. random oracle access program;
– AggregateH,W is a probabilistic expected polynomial time random oracle ac-

cess program;
– VerifyH,W is a polynomial time program that has access to the random oracle

H and a weight oracle W ;
– ExtractH,W,A is a p.p.t. program that has access to a weight oracle W ; 10

– completeness: consider the following experiment CompExp(Sp,W):

S := ∅;
for s ∈ Sp do

m← ProveH,W ;
if m ̸= ϵ then

S := S ∪ {m};
π ← AggregateH,W (S);
r ← VerifyH,W (π);
return r;

we require that for all weight oracles W and all Sp such that W (Sp) ≥ np,
Pr[CompExp(Sp,W) = 1] ≥ 1− 2−λrel ;

– proof of knowledge: consider the following experiment ExtractExp(AH,W ,W):

9 Here and above we assume W ’s output size is poly(λsec + λrel). We assume Extract
is also polynomial in the number of oracle queries that AH,W makes.

10 Here and above we assume W ’s output size is poly(λsec + λrel). We assume Extract
is also polynomial in the number of oracle queries that AH,W makes.

8

Sf ← ExtractH,W,A();
output 1 iff W (Sf) > nf;

we require that for all weight oracles W and all probabilistic oracle access
programs AH,W ,

Pr[ExtractExp(A,W) = 1] ≥ Pr
[
VerifyH,W

(
AH,W ()

)
= 1
]
− 2−λsec .

Additionally, we say the extractor ExtractH,W,A is straight-line if it is only
allowed to run AH,W once with the real H and W and only observes the transcript
with its oracles.

In this model, we would like to minimize not only the proof size, but also the
amount of communication characterized by the size of S in CompExp. Note that
the above definition can be extended to multiple rounds of communication, but
this is not something we explore in this work - all our decentralized constructions
are “1-round.”

3 Telescope ALBA

In this section we present a sequence of two ALBA schemes. We start with a less
efficient but simpler construction to illustrate the main idea. We then proceed
to optimize the scheme’s efficiency.

For both constructions, we will assume we have three random oracles H0, H1,
and H2 having particular output distributions. We explain how to implement
these out of a single random oracle which outputs binary strings in Section B.
Further, we assume the unweighted case and add weights in Section 5.

3.1 Basic Construction

The main idea is as follows. Let d, u and q be parameters. The prover first
considers all pairs consisting of an integer in [d] and one of the elements of Sp

and selects each of the npd pairs with probability 1/np. In expectation he will
have d pairs selected. Now these pairs are treated as single units and they are
paired with each element of Sp, resulting in triples that are selected again with
probability 1/np. This process is repeated u times ending with, in expectation,
d tuples consisting of one integer in [d] and u set elements. Now, each of the
tuples is selected with probability q and any selected tuple will be a valid proof.

More formally, let W be a weight oracle, let H1 and H2 be random functions
returning 1 with probability 1/np and q respectively, and returning 0 otherwise.
Any sequence t, s1, ..., su such that

– 1 ≤ t ≤ d;
– for all 1 ≤ i ≤ u, H1(t, s1, ..., si) = 1;
– H2(t, s1, ..., su) = 1;
– for all 1 ≤ i ≤ u, W (si) = 1

9

is a valid proof (see Section 3.3 how to implement H1 efficiently). Define the
program Verify accordingly.

Intuitively, this works because the honest prover maintains d tuples in ex-
pectation at each stage, while the malicious prover’s tuples decrease np/nf times
with each stage. To implement Prove, simply run depth first search that tries to
extend the current tuple by one more element.

We now state the main result of this section; it will follow from the proofs
below. Taking Extract, defined as Algorithm 1 later in the section, we have

Theorem 1. Using parameters from corollary 1, (Prove,Verify,Extract) is a
(λsec, λrel, np, nf)-NIROPK with Extract being a straight-line extractor.

We first demonstrate a simple soundness property that ignores the complex-
ities of the NIROPK definition. We define soundness to be the probability that
a valid proof can be constructed using elements Sf with |Sf| = nf. We then show
how to deal with the adversary’s adaptivity and build a straight-line NIROPK
extractor at the end of the section.

Theorem 2. Let

u ≥ λsec + log(qd)

log
np

nf

.

Then soundness is ≤ 2−λsec .

Proof. We analyze soundness, denoted by S, using simple union bound.

S ≤
(

1

np

)u

· q · d · nu
f =

(
nf

np

)u

· qd.

Then

− logS ≥ −
(
u log

nf

np
+ log(qd)

)
= u log

np

nf
− log(qd) ≥ λsec.

We now analyze completeness.

Theorem 3. Let

d ≥ 2uλrel

log e
; q =

2λrel

d log e
.

Then completeness is ≥ 1 − 2−λrel and the probability that there exists a valid

proof with a particular integer t is at least q − (u+ 1) · q
2

2 .

Proof. Completeness can be described using the following recursive formula. For
0 ≤ k ≤ u, let f(k) be the probability that when fixing a prefix of an integer
in [d] and u − k elements t, s1, ..., su−k, there is no suffix of honest player’s
elements that works, meaning there is no su−k+1, ..., su ∈ Sp such that for all
u − k + 1 ≤ i ≤ u, H1(t, s1, ..., si) = 1, and H2(t, s1, ..., su) = 1. Then one can
see that

10

– f(0) = 1− q;
– for 0 ≤ k < u, f(k + 1) =

(
(1− 1

np
) + 1

np
· f(k)

)np
;

– the probability that there does not exist a valid proof with a particular
integer t is f(u);

– the probability that the algorithm fails in the honest case is
(
f(u)

)d
.

This recursive formula can be approximated:

f(k + 1) =

(
1 +

1

np

(
f(k)− 1

))np

≤
(
e

1
np

(f(k)−1)
)np

= ef(k)−1. (2)

It is convenient to look at the negative logarithm of this expression; we will prove

by induction that − ln f(k) ≥ q − k · q
2

2 .
Basic case: − ln f(0) = − ln(1− q) ≥ − ln(e−q) = q.
Inductive step: by equation 2,

− ln f(k + 1) ≥ 1− f(k) = 1− e−
(
q−k· q

2

2

)
≥

1−

(
1−

(
q − k · q

2

2

)
+

(
q − k · q

2

2

)2
2

)
≥(

q − k · q
2

2

)
− q2

2
= q − (k + 1) · q

2

2
.

Hence, − ln f(u) ≥ q− u · q
2

2 and the probability that the honest prover fails

is
(
f(u)

)d ≤ exp
(
−
(
q − u · q

2

2

)
d
)
. Using the values for d and q, one can see

that this is at most 2−λrel . Additionally, the probability that there exists a valid
proof with a particular integer t is

1− f(u) ≥ e−
(
q−u· q

2

2

)
≥

1−

(
1−

(
q − u · q

2

2

)
+

(q − u · q
2

2)
2

2

)
≥ q − (u+ 1) · q

2

2
.

Corollary 1. Let

u ≥ λsec + log λrel + 1− log log e

log
np

nf

; d ≥ 2uλrel

log e
; q =

2λrel

d log e
.

Then soundness is ≤ 2−λsec and completeness is ≥ 1− 2−λrel .

It is worth noting that the constant in d, and thus algorithm’s running time,
can be reduced. We show how to do it in Section C.1. Although the scheme
still remains less efficient than the improved construction in Section 3.2, the
optimizations can potentially be transferred over; we leave that for future work.

We now return to the issue of building a straight-line extractor that satisfies
definition 1. For H = (H1, H2), define

11

Algorithm 1 ExtractH,W,A

function AH,W
1

π ← AH,W ();
v ← VerifyH,W (π);
return π;

run AH,W
1 () and observe its oracles transcript τ ;

Sf := ∅;
for x queried to H1 or H2 in τ do

if W (x) = 1 then
add x to Sf;

return Sf.

Theorem 4. Define parameters as in theorem 2. Then VerifyH,W with ExtractH,W,A

satisfy the proof of knowledge property of definition 1. Additionally, ExtractH,W,A

is straight-line.

Proof. The extractor succeeds whenever A succeeds, unless A succeeds after
querying fewer than nf elements of S, which happens with probability is at most
2−λsec by the following lemma. Thus, the proof of knowledge property follows by
the union bound.

Proof. Let E1 be the event that a valid proof can be made from the first nf (or

fewer) weight-1 elements that AH,W
1 queries to H and let E2 be the event that

AH,W
1 queries strictly more than nf weight-1 elements to H. Then

Pr
[
VerifyH,W

(
AH,W ()

)
= 1
]
= Pr

[
v = 1

]
[≤]

v = 1 implies that τ contains weight-1 elements that can create a valid proof;
then

[≤] Pr
[
AH,W

1 terminates ∧
(
E1 ∨ E2

)]
=

Pr
[(
AH,W

1 terminates ∧ E1

)
∨
(
AH,W

1 terminates ∧ E2

)]
≤

Pr
[
E1 ∨

(
AH,W

1 terminates ∧ E2

)]
≤

Pr[E1] + Pr
[
AH,W

1 terminates ∧ E2

]
≤

Pr[E1] + Pr
[
ExtractExp(A,W) = 1

]
≤

2−λsec + Pr
[
ExtractExp(A,W) = 1

]
where the last step follows from the following lemma.

Lemma 1. Define parameters as in theorem 2 and let E be the event that a
valid proof can be made from the first nf (or less) weight-1 elements that AH,W

1

queries to H. Then Pr[E] ≤ 2−λsec .

12

Proof. Theorem 2 assumes a static set of random oracle queries, while an adap-
tive adversary may change the queries in response to random oracle answers. In
order to be able to apply Theorem 2, we simply need to switch from thinking
about X values as input to H to thinking about indices as inputs. We will define
a new function Q to do so.

Let X1, . . . , XN be the first nf distinct weight-1 elements that are present
in random oracle queries of A. If N < nf, pad the sequence X1, . . . , XN with
dummy elements that are distinct from all queries of A up to nf; the weights
of those dummy elements do not matter. Define Q(1, t, · · ·), and Q(2, t, · · ·) to
be the same as H1 and H2, respectively, but operating on indices rather than
values of the Xs: That is, Q(i, t, v1, ..., vj) = Hi

(
t,Xv1 , ..., Xvj

)
. Note that Q

depends on A, because the mapping from i to Xi is determined by A. Partition
the domain of Q into nf parts, inductively, as follows: part k consists of all index
sequences that contain the index k at least once and do not contain indices above
k.

Let Qk denote Q restricted to the kth part, and observe that Qk is indepen-
dent of Q1, . . . , Qk−1 and is distributed identically to Hi, because it contains a
new random oracle input Xk that is not contained in Q1, . . . , Qk−1.

Let cert be true if and only if there are indices that “form a valid proof”, i.e.,
and only if there exist 1 ≤ t ≤ d and v1, ..., vu ∈ [nf] such that for all 1 ≤ i ≤ u,
Q(1, t, v1, ..., vi) = 1, and Q(2, t, v1, ..., vu) = 1. Pr[E] ≤ Pr[cert], because cert
happens whenever E happens (and may also happen using some of the dummy
values XN+1 . . . , Xnf

). And Pr[cert] ≤ 2−λsec by the same exact argument as in
Theorem 2.

Running time In this section we analyze the algorithm’s running time.

Assume Sp is a set with cardinality np. All tuples (j, s1, ..., si) where 1 ≤ j ≤
d, 1 ≤ i ≤ u and s1, ..., si ∈ Sp can be represented as d trees of height u vertices.
We would like to analyze the number of “accessible” vertices in these trees. Let
the indicator random variable

Aj,s1,...,si =

{
1 if for all 1 ≤ r ≤ i, H1(j, s1, ..., sr) = 1

0 otherwise.

If Aj,s1,...,si = 1 we say the vertex (j, s1, ..., si) is accessible.

Let us first prove that the expected number of accessible vertices in a single
tree at a particular height is 1.

Theorem 5. For any j and 1 ≤ i ≤ u,

E

[∑
s1,...,si∈Sp

Aj,s1,...,si

]
= 1.

13

Proof.

E

[∑
s1,...,si∈Sp

Aj,s1,...,si

]
=

∑
s1,...,si∈Sp

E[Aj,s1,...,si] =

∑
s1,...,si∈Sp

E

[
i∏

j=1

H1(j, s1, ..., sj)

]
=

∑
s1,...,si∈Sp

i∏
j=1

E
[
H1(j, s1, ..., sj)

]
=

∑
s1,...,si∈Sp

i∏
j=1

1

np
=

∑
s1,...,si∈Sp

(
1

np

)i

=

ni
p ·
(

1

np

)i

=

1.

Assuming the algorithm implements DFS, theorem 3 gives a bound on the
expected number of evaluated trees. And by the above theorem, the algorithm
invokes H1 npu times and H2 once in expectation per tree. Thus, the expected
total number of hash evaluations shall be the product of the expected number
of evaluated trees and (npu+ 1). This, however, needs a more careful proof.

Theorem 6. The expected number of hash evaluations is at most

(
q − (u+ 1) · q

2

2

)−1

(npu+ 1)

Proof. Modify the algorithm so that it keeps evaluating trees until a valid
certificate is found without limit on j. Clearly, such an algorithm will have a
larger expected number of hash invocations.

Define N to be the number of evaluated trees, Xj to be the number of hash
invocations in tree j, and let t be the expected number of hash invocations by

14

the modified algorithm. Then

t = E

[
N∑
j=1

Xj

]
=

E

[
N∑
j=1

Xj

∣∣∣∣∣N = 1

]
· Pr[N = 1] + E

[
N∑
j=1

Xj

∣∣∣∣∣N ̸= 1

]
· Pr[N ̸= 1] =

E[X1|N = 1] · Pr[N = 1] + E

[
X1 +

N∑
j=2

Xj

∣∣∣∣∣N ̸= 1

]
· Pr[N ̸= 1] =

E[X1|N = 1] · Pr[N = 1] + E[X1|N ̸= 1] · Pr[N ̸= 1]+

E

[
N∑
j=2

Xj

∣∣∣∣∣N ≥ 2

]
· Pr[N ̸= 1] =

E[X1] + t · Pr[N ̸= 1] ≤
npu+ 1 + t · Pr[N ̸= 1].

Therefore, t · Pr[N = 1] ≤ npu+ 1 and t ≤ npu+1
Pr[N=1] .

By theorem 3,

Pr[N = 1] ≥ q − (u+ 1) · q
2

2

from which the statement of the theorem follows.
Taking parameter values from corollary 1 and letting λ = λsec = λrel, we

thus obtain an expected number of hash evaluations of O(λ2 · np).
We might also wish to have a tighter bound on the running time or on

the number of accessible vertices to argue that an adversary cannot exploit an
imperfect hash function or a PRF by making too many queries. Below we present
a Chernoff style bound on the number of accessible vertices in all d trees

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Aj,s1,...,si .

Note that E[Z] = du.

Theorem 7.

Pr[Z ≥ (1 + δ)du] ≤ exp

(
− δ2

4(1 + δ)
· d
u

)
.

Proof. Let t > 0 and define the sequence {xk} as follows: let x0 = 1 and for
k ≥ 0, let

xk+1 =

(
1

n
xke

t + 1− 1

n

)np

.

15

By lemma 9, E[etZ] = xd
u.

Define the following sequence {yk}: let y0 = 0 and yk+1 = yk + t+ (yk + t)2.
We will prove by induction that if yu ≤ 1 then for all 0 ≤ k ≤ u, xk ≤ eyk .
Basis case: x0 = 1 ≤ 1 = ey0 . Inductive step: xk+1 =

(
1
nxke

t + 1 − 1
n

)
=(

1 + 1
n

(
xke

t − 1
))
≤
(
e

1
n (xke

t−1)
)n

= exp
(
xke

t − 1
)
≤ exp

(
eyk+t − 1

)
. Since

yk+t ≤ yk+t+(yk+t)2 = yk+1 ≤ yu ≤ 1, xk+1 ≤ exp
(
1+yk+t+(yk+t)2−1

)
=

exp(yk+1).
Hence, E[etZ] ≤ eyud.

By Markov’s inequality,

Pr
[
Z ≥ (1 + δ)du

]
= Pr

[
etZ ≥ e(1+δ)tdu

]
≤

eyud

e(1+δ)tdu
= exp

(
− d
(
(1 + δ)tu− yu

))
.

(3)

We now need to find some t and yu that maximize (1 + δ)tu − yu. However,
instead of picking a suitable t and finding a bound for yu in terms of it, we
do the opposite. We first choose an upper bound α for yu and then calculate a
suitable t. We use the observation that yk ≥ yk+1 − y2k+1 − t ≥ yk+1 − y2u − t.
Details follow.

Let α < 1
u and t be such that α− uα2 − ut = 0 (i.e., t = α

u − α2); it can be

seen that t > 0. We will prove by induction that yk ≤ αk
u .

Basis step: y0 = 0 ≤ 0 = α·0
u .

Inductive step: yk+1 = yk+t+(yk+t)2 ≤ αk
u +α

u−α
2+
(

αk
u +α

u−α
2
)2

= α(k+1)
u −

α2 +
(

α(k+1)
u − α2

)2
≤ α(k+1)

u − α2 +
(
α− α2

)2 ≤ α(k+1)
u − α2 + α2 = α(k+1)

u .

Hence, yu ≤ α.

Then (1+ δ)tu− yu ≥ (1+ δ)tu−α = (1+ δ)
(

α
u −α2

)
u−α. Differentiating

with respect to α, we find that this expression is maximized when

α =
δ

2(1 + δ)u
.

It is easily verified that α < 1
u .

Therefore,

(1 + δ)tu− yu ≥

(1 + δ)

(
δ

2(1 + δ)u2
− δ2

4(1 + δ)2u2

)
u− δ

2(1 + δ)u
=

δ

2u
− δ2

4(1 + δ)u
− δ

2(1 + δ)u
=

2δ(1 + δ)− δ2 − 2δ

4(1 + δ)u
=

δ2

4(1 + δ)u
.

16

Hence by equation 3,

Pr
[
Z ≥ (1 + δ)du

]
≤ exp

(
− δ2

4(1 + δ)
· d
u

)
.

Taking parameter values from corollary 1 and letting λ = λsec = λrel, we thus
conclude that the algorithm does O(λ3 ·np) hash evaluations with overwhelming
probability.

3.2 Construction with Prehashing

The basic scheme described above has proving expected time O(λ2 · np) and
verification time O(λ) if we let λ = λsec = λrel. The modification described
in this section has proving expected time O(λ2 + np) and verification time is
unchanged.

The improvement is inspired by bins-and-balls collisions. Whereas in the
previous scheme for every tuple we tried each of np possible extensions, here
we hash tuples to a uniform value in [np] and hash individual set elements to a
uniform value in [np], and consider a valid extension to be such that the tuple
and the extension hash to the same value. More formally, we have a weight
oracle W , random functions H0 and H1 producing a uniformly random value in
[np] and hash function H2 returning 1 with probability q and 0 otherwise, and
consider a tuple (t, s1, ..., su) a valid proof if and only if

– 1 ≤ t ≤ d;
– for all 1 ≤ i ≤ u, H1(t, s1, ..., si−1) = H0(si);
– H2(t, s1, ..., su) = 1;
– for all 1 ≤ i ≤ u, W (si) = 1.

(see Section 3.3 how to implement H1 efficiently). Define the Verify program
accordingly.

As before, we have d valid tuples in expectation at each stage but by pre-
computing H0(·) (balls to bins) we avoid trying all np extensions for a tuple.
The analysis of completeness, however, is more complicated. Before, we assumed
in the recursive formula that failure events for each element extension are all
independent. Here, it is not true: the fact that one extension eventually succeeds
can tell that the balls-to-bins are well distributed. Indeed, if each bin gets ex-
actly one ball, then there will always be a tuple that succeeds except maybe for
the requirement that H2(·) = 1. However, if all balls land in one bin, then the
success probability is smaller. To get rid of this dependency, we can however fix
the balls-to-bins arrangement. Then such events become independent again.

The proof has two parts: the first one says that if the arrangement of the
balls is “nice”, then with high probability the honest player succeeds. The second
part proves that we get a “nice” distribution of balls with high probability. The
“nice” property itself is artificial, but one can notice that if the number of bins
of size s is exactly the expected number of bins of size s if the size of each bin is a
Poisson random variable with mean 1, then the analysis of completeness becomes

17

very similar to that of the previous scheme. By using Poisson approximation, we
can show that the property we care about does hold with high probability.

We need, however, assume that the number of set elements np is large enough
(on the order of λ3). Alternatively, we can generate multiple balls per set element.

We now state the main result of this section; it will follow from the proofs
below. Taking Extract, defined as Algorithm 1 earlier in the section, we have

Theorem 8. Using parameters from corollary 2, (Prove,Verify,Extract) is a
(λsec, λrel, np, nf)-NIROPK with Extract being a straight-line extractor.

We first demonstrate a simple soundness property that ignores the complex-
ities of the NIROPK definition. We define soundness to be the probability that
a valid proof can be constructed using elements Sf with |Sf| = nf. We then show
how to deal with the adversary’s adaptivity and build a straight-line NIROPK
extractor at the end of the section.

Theorem 9. Let

u ≥ λsec + log(qd)

log
np

nf

.

Then soundness is ≤ 2−λsec .

Proof. By union bound, the probability S that a valid proof can be constructed
out of nf elements is at most(

1

np

)u

· q · d · nu
f =

(
nf

np

)u

· qd.

Then

− logS ≥ −
(
u log

nf

np
+ log(qd)

)
= u log

np

nf
− log(qd) ≥ λsec.

Theorem 10. Assume

d ≥ 16u(λrel + log 3)

log e
; q =

2(λrel + log 3)

d log e
;np ≥

d2 log e

9(λrel + log 3)
.

Then completeness is ≥ 1− 2−λrel .

Proof. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, let

E be the event that 1
np

∑n
i=1 e

−qXi ≤ e−q+4q2 and let F be the event that the

honest prover fails. By lemma 10 with λ := λrel+log 3
log e , Pr[F |E] ≤ 1

3 · 2
−λrel . Also

18

by lemma 13,

Pr
[
Ē
]
=

Pr

[
1

np

n∑
i=1

e−qXi > e−q+4q2

]
≤

Pr

[
1

np

n∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤

2e−
9
4npq

2

.

This is at most 2
3 · 2

−λrel if and only if

3 · 2λrel ≤ e
9
4npq

2

⇐⇒
9

4
log e · npq

2 ≥ λrel + log 3⇐⇒

np ≥
4(λrel + log 3)

9 log e · q2
⇐⇒

np ≥
4(λrel + log 3)

9 log e ·
(

2(λrel+log 3)
d log e

)2 ⇐⇒
np ≥

4(λrel + log 3)

9 log e · 4(λrel+log 3)2

d2 log2 e

⇐⇒

np ≥
d2 log e

9(λrel + log e)

which is true by our assumption about np.
Hence, Pr[F] ≤ 2−λrel .

Corollary 2. Assume

u ≥ λsec + log(λrel + log 3) + 1− log log e

log
np

nf

; d ≥ 16u(λrel + log 3)

log e
;

q =
2(λrel + log 3)

d log e
;np ≥

d2 log e

8(λrel + log 3)
.

Then soundness is ≤ 2−λsec and completeness is ≥ 1− 2−λrel .

The last step is showing a straight-line extractor for the improved scheme.
This is done as in Section 3.1. For H = (H0, H1, H2), define ExtractH,W,A simi-
larly to that section. We have the following theorem whose proof is the same as
the proof of theorem 4.

Theorem 11. Define parameters as in theorem 9. Then VerifyH,W with ExtractH,W,A

satisfy the proof of knowledge property of definition 1. Additionally, ExtractH,W,A

is straight-line.

19

It is worth noting that the np ≥ Ω(λ3) requirement can be removed as follows.
One can use Markov’s inequality to show that the event E in theorem 10 happens
with probability e.g. 3

4 to achieve a scheme with completeness 1
2 . Such a scheme

can then be amplified to achieve arbitrary λrel by setting λsec := λsec + log λrel

and having the verifier accept any one of λrel independent proofs. As a result, the
expected running time is no longer Ω(λ3) but O(λ2 +np), but we need to apply
H0 to all elements twice in expectation as opposed to exactly ones. Hence, for
large np it still makes sense to use the algorithm as described in the beginning
of the section.

Running time In this section we analyze the algorithm’s running time. Assume
Sp is a set with cardinality np. As described in section 3.1, all tuples (j, s1, ..., si)
where 1 ≤ j ≤ d, 1 ≤ i ≤ u and s1, ..., si ∈ Sp can be represented as d trees of
height u vertices. We would like to analyze the number of “accessible” vertices
in these trees. Let the indicator random variable

Aj,s1,...,si =

{
1 if for all 1 ≤ r ≤ i, H1(j, s1, ..., sr−1) = H0(si)

0 otherwise.

If Aj,s1,...,si = 1 we say the vertex (j, s1, ..., si) is accessible.
Similarly to section 3.1, one can prove that the expected number of accessible

vertices in a single tree at a particular height is 1. This holds independent of the
value of H0!

Theorem 12. For any j and 1 ≤ i ≤ u,

E

[∑
s1,...,si∈Sp

Aj,s1,...,si

∣∣∣∣∣H0

]
= 1.

We will now analyze the expected running time of the algorithm. The hash
function H0 is invoked exactly np times, so we will only upper bound the ex-
pected number of invocations of H1 and H2.

Theorem 13. The expected number of invocations of H1 and H2 is at most

u+ 1

1− e−q+4uq2
+ 2e−

9
4npq

2

· d(u+ 1).

Proof. Let R be the number of invocations of H1 and H2, let Xi = |{s ∈
Sp : H0(s) = i}| be the number of balls in bin i, define random function f(x) =
1
np

∑np

i=1 x
Xi and let E be the event that f(e−q) ≤ e−q+4q2 . Then

E[R] = E[R|E] · Pr[E] + E[R|¬E] · Pr[¬E][≤]

By the above theorem, evaluating a single tree takes in expectation at most u+1
invocations of H1 and H2. Thus,

[≤]E[R|E] + d(u+ 1) · Pr[¬E][≤]

20

And by lemma 13,

[≤]E[R|E] + 2e−
9
4npq

2

· d(u+ 1).

Let F (t) be the event that there is no valid certificate with integer t. Then
by lemma 11 for all t, Pr[F (t)|H0] = f (u)(1 − q) ≤ f (u)(e−q). By lemma 12,

this is at most e−q ·
(

f(e−q)
e−q

)u
. Then Pr

[
F (t)

∣∣E] ≤ e−q+4uq2 . Then similarly to

theorem 6,

E[R|E] ≤ 1

1− e−q+4uq2
· (u+ 1)

and hence

E[R] ≤ u+ 1

1− e−q+4uq2
+ 2e−

9
4npq

2

· d(u+ 1).

Taking parameter values from corollary 2 and letting λ = λsec = λrel, we
thus get expected number of evaluations of H1 and H2 O(λ2). This is dominated
by np invocations of H0 since np is assumed to be Ω(λ3).

Below we also present a tight bound on the number of accessible vertices in
all d trees

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Aj,s1,...,si .

Note that E[Z] = du.

Theorem 14. Let

λ > 0; λ′ =
λ+ 2

log e
; np ≥

u2λ′

2
;

u! · u− e
1
3u

u3
≥ 72e−

2
3 · 2λ; δ = e

1+
√

18u2λ′
np

(
3uλ′

d
+ 1

)
.

Then

Pr[Z ≥ δdu] ≤ 2−λ.

Proof. Let

0 < α ≤ 1

2u
,

c =
3

α
·

√
2λ′

np
+ 3,

δ = ecuα
(

λ′

dα
+ 1

)
,

21

Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i and let E be the

event that 1
np

∑np

i=1 e
α·Xi ≤ eα+cα2

with Pr[E] > 0. By lemma 14,

Pr[Z ≥ δdu|E] ≤ e−λ′
=

2−λ

4
. (4)

Also define Yi to be Poisson random variables with expectation 1,

Ai =

{
eαYi if Yi ≤ u

0 otherwise

and

Bi =

{
0 if Yi ≤ u

e
Yi
3u otherwise.

Since 1 + α+ cα2 ≤ eα+cα2

,

Pr
[
Ē
]
≤ Pr

[
1

np

np∑
i=1

eα·Xi ≥ 1 + α+ cα2

]
[≤]

By Poisson approximation [MU05, theorem 5.10],

[≤]2 · Pr

[
1

np

np∑
i=1

eα·Yi ≥ 1 + α+ cα2

]
=

2 · Pr

[
1

np

np∑
i=1

(Ai +Bi) ≥ 1 + α+ cα2

]
=

2 · Pr

[
1

np

np∑
i=1

Ai +
1

np

np∑
i=1

Bi ≥ 1 + α+ cα2

]
≤

2 ·

(
Pr

[
1

np

np∑
i=1

Ai ≥ 1 + α+ (c− 1)α2

]
+ Pr

[
1

np

np∑
i=1

Bi ≥ α2

])

By lemma 16,

Pr

[
1

np

np∑
i=1

Ai ≥ 1 + α+ (c− 1)α2

]
≤ e−λ′

=
2−λ

4
.

We would like to choose the value of α that optimizes

δ = ecuα
(

λ′

dα
+ 1

)
.

22

Ignoring the “+1” term, we differentiate ecuα · λ′

dα with respect to α and find
that it is minimized when α = 1

3u . Then δ becomes

e
1+

√
18u2λ′

np

(
3uλ′

d
+ 1

)
.

Finally, by lemma 17,

Pr

[
1

np

np∑
i=1

Bi ≥ α2

]
≤ 2−λ−3

provided

u! · u− e
1
3u

u3
≥ 9e−

2
3 · 2λ+3

which is true by the statement of the theorem.

Hence Pr[Ē] ≤ 2
(

2−λ

4 + 2−λ

8

)
= 3

4 · 2
−λ. Combined with equation 4, we

conclude

Pr[Z ≥ δdu] ≤ 2−λ.

Taking parameter values from corollary 2 and letting λ = λsec = λrel, we thus
conclude that the algorithm evaluatesH1 andH2 O(λ3) times with overwhelming
probability.

3.3 Implementing Random Oracles with Long Inputs

We describe our protocols assuming a random oracle H1 that can accommodate
inputs of any length, which, in particular, implies independence of outputs for
inputs of different lengths. However, to have an accurate accounting for running
times, one has to charge for the cost of running a random oracle in proportion
to the input length. Because the Telescope construction runs H1(j), H1(j, s1),
H1(j, s1, s2), H1(j, s1, s2 . . . , su), the cost of just one u-tuple is quadratic in u. To
reduce this cost to linear (thus saving a factor of u in running time), we will im-
plement H1(j, s1, . . . , si+1) to reuse most of the computation of H1(j, s1, . . . , si).
The most natural way to do so is to slightly modify the Merkle-Damg̊ard con-
struction: use a two-input random oracle f (“compression function”) with a
sufficiently long output and a function g that maps the range of f to the distri-
bution needed by H1 (see Section B for how we implement g). Inductively define
H ′

1(j, s1, . . . , si+1) = f(H ′
1(j, s1, . . . , si), si+1) and let H1(x) = g(H ′

1(x)).
While not indifferentiable from a random oracle (see Coron et al. [CDMP05]

for similar constructions that are), this construction suffices for our soundness
and extractability arguments, because those arguments need independence only
for a single chain (they handle multiple different chains by the union bound).
Neither length extension attacks nor collisions are important. Completeness suf-
fers very slightly by the probability of f -collisions, which can be made negligible
by making the output of f large enough and using the bound on the number of
queries made by the honest prover (theorems 7 and 14).

23

3.4 Optimality of the certificate size

In this section, we show that the number of set elements u included in a proof
is essentially optimal for our constructions. Because our construction works for
a black-box weight function that formally is implemented via an oracle (and in
reality may be implemented by MPC, a human judge, etc.), the verifier must
query the weight function on some values; else the verifier has no knowledge of
whether any values in the prover’s possession have any weight.

Thus, for the sake of proving optimality, we consider only protocols that make
this part of verification explicit. We define an algorithm Read that takes a proof
and returns set elements; these set elements must have been in the prover’s
possession. We bound the proof size in terms of the number of set elements
returned by Read, showing that if it is too small, the protocol cannot be secure.

We emphasize that some nonstandard definition is necessary for the lower
bound, because if the weight function can be specified by a polynomial-size
circuit, then witness-succinct SNARKs can be used to give a proof whose size
is independent of np and nf (though there are likely barriers to extractability
[CGKS22] and the known way to achieve extractability is through an ALBA-
like construction of lower efficiency than ours [GKO+23]). We also note that the
following definition can be used for upper bound results too, as demonstrated in
Section 6 for the CRS model.

Definition 3. (Prove,Read,Verify) is a (λsec, λrel, np, nf)-ALBA scheme if and
only if

– ProveH is a probabilistic expected polynomial time random oracle access pro-
gram;

– VerifyH is polynomial time random oracle access program;
– Read is a polynomial time program;
– completeness: consider the following experiment CompExp(Sp):

π ← ProveH(Sp);

output 1 iff Read(π) ⊆ Sp and VerifyH(π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥
1− 2−λrel .

– soundness: consider the following experiment SoundExp(Sf):

output 1 iff ∃π,Read(π) ⊆ Sf ∧ VerifyH(π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤ 2−λsec ;

We now prove a lower bound for a scheme satisfying this definition.

Theorem 15. Assume λrel ≥ 1, define α = λsec−3
log

np
nf

, assume nf ≥ 3α2, let Sp be

an arbitrary set of size np, and let (Prove,Read,Verify) be a (λsec, λrel, np, nf)-
proof of cardinality scheme. Then

Pr
[∣∣Read(ProveH(Sp))

∣∣ > α
]
≥ 1

4
.

24

Proof. Suppose not and define u = ⌊α⌋. Then Pr
[∣∣Read(ProveH(Sp))

∣∣ ≤
u
]
≥ 3

4 .

Let π ← ProveH(Sp), Sf be a uniformly random subset of Sp of size nf, A be

the event that |Read(π)| ≤ u andB the event that Read(π) ⊆ Sp∧VerifyH(π) = 1.
By the above, Pr[A] ≥ 3

4 , and by completeness, Pr[B] ≥ 1
2 . Then

Pr
[
Read(π) ⊆ Sf ∧ VerifyH(π) = 1

]
≥

Pr
[
Read(π) ⊆ Sf ∧ VerifyH(π) = 1

∣∣A ∧B
]
· Pr

[
A ∧B

]
=

Pr
[
Read(π) ⊆ Sf

∣∣A ∧B
]
· Pr[A ∧B] ≥

Pr
[
Read(π) ⊆ Sf

∣∣A ∧B
]
·
(
Pr[A] + Pr[B]− 1

)
≥

Pr
[
Read(π) ⊆ Sf

∣∣A ∧B
]
·
(
3

4
+

1

2
− 1

)
=

1

4
· Pr

[
Read(π) ⊆ Sf

∣∣A ∧B
]
≥

1

4
· nf

np
· nf − 1

np − 1
× ...× nf − (u− 1)

np − (u− 1)
≥

1

4
·
(
nf − u

np

)u

=

1

4
·
(
nf

np

)u

·
(
nf − u

nf

)u

=

1

4
·
(
nf

np

)u

·
(
1− u

nf

)u

[≥]

Since u
nf
≤ u

3α2 ≤ u
3u2 ≤ 1

2 and 1− x ≥ e−x−x2 ≥ e−
3
2x for 0 ≤ x ≤ 1

2 ,

[≥] 1
4
·
(
nf

np

)u

·
(
e
− 3u

2nf

)u
≥

1

4
·
(
nf

np

)u

· e−
3u2

6u2 >

1

8
·
(
nf

np

)u

.

Therefore, by the averaging argument, there exists a subset S′
f of Sp of size

nf such that

Pr[Read(π) ⊆ S′
f ∧ VerifyH(π) = 1] >

1

8
·
(
nf

np

)u

.

On the other hand, by soundness from Definition 3)

Pr[Read(π) ⊆ S′
f ∧ VerifyH(π) = 1] ≤ Pr[SoundExp(S′

f) = 1] ≤ 2−λsec .

25

Thus,

1

8
·
(
nf

np

)u

< 2−λsec ⇐⇒(
np

nf

)u

> 2λsec−3 ⇐⇒

u log
np

nf
> λsec − 3⇐⇒

u > α ,

which is a contradiction.

4 ALBAs with Decentralized Prover

In the previous section we assume the ALBA prover has all the set elements at
hand. In many applications however, such as threshold signatures, this is not
the case. The set elements may be spread across numerous parties who will then
jointly compute a proof. A trivial solution is to use a centralized protocol, by
designating one of the parties as the lead prover and have all other parties com-
municate their set elements to that party. However, this incurs a communication
cost equal to the size of the set, which we would rather avoid.

In this section we present protocols where the various parties holding set
elements start out by performing computations locally and only conditionally
communicate their elements to a designated prover or aggregator. Whilst our
constructions we present in this section are still unweighted, they can be ex-
panded to integer weights which we present in Section 5.

4.1 Simple Lottery Construction

The simple lottery scheme is parametrized by the expected number of network
participants µ. Let H be a random oracle that outputs 1 with probability p = µ

np

and 0 otherwise. Each set element s is sent out to the network if and only if
H(s) = 1. Now let rs, rc > 1 such that rsrc =

np

nf
and set u = rs · pnf (or

equivalently u =
pnp

rc
). The aggregator needs to collect and concatenate u set

elements and the verifier accepts if it receives u values that each hash to 1.

Lemma 2. Assuming

u ≥ λsec · ln 2
ln rs − 1 + 1

rs

,

soundness of the scheme is ≤ 2−λsec .

Proof. Let Sf = {s1, ..., snf
} be malicious prover’s set and define Xi = H(si).

To violate soundness, the malicious prover needs
∑

Xi ≥ u = rs · pnf, while the
expectation E

∑
Xi = pnf. By Chernoff bound (lemma 5) (with δ = rs − 1),

Pr
[∑

Xi ≥ u
]
≤
(

eδ

(1 + δ)1+δ

)pnf

=

(
ers−1

rrss

)
.

26

This is at most 2−λsec if and only if

pnf(rs − 1− rs ln rs) ≤ −λsec · ln 2⇐⇒
pnf(rs ln rs − rs + 1) ≥ λsec · ln 2⇐⇒

u

(
ln rs − 1 +

1

rs

)
≥ λsec · ln 2⇐⇒

u ≥ λsec · ln 2
ln rs − 1 + 1

rs

which is true by our assumption about u.

Lemma 3. Assuming

u ≥ λrel · ln 2
rc − 1− ln rc

,

completeness of the above decentralized scheme is ≥ 1− 2−λrel .

Proof. Let Sp = {s1, ..., snp
} be honest prover’s set and define Xi = H(si). The

honest prover fails whenever
∑

Xi < u =
pnp

rc
, while the expectation E

∑
Xi =

pnp. By Chernoff bound (lemma 7) (with δ = 1− 1
rc
),

Pr
[∑

Xi < u
]
≤ Pr

[∑
Xi ≤ u

]
≤
(

e−δ

(1− δ)1−δ

)pnp

=

(
e

1
rc

−1

(1
rc
)

1
rc

)pnp

.

This is at most 2−λrel if and only if

pnp

(
1

rc
− 1− 1

rc
· ln 1

rc

)
≤ −λrel · ln 2⇐⇒

pnp

(
1− 1

rc
− 1

rc
· ln rc

)
≥ λrel · ln 2⇐⇒

u(rc − 1− ln rc) ≥ λrel · ln 2⇐⇒

u ≥ λrel · ln 2
rc − 1− ln rc

which is true by our assumption about u.
Thus, to minimize u, we need to minimize

max

{
λsec · ln 2

ln rs − 1 + 1
rs

,
λrel · ln 2

rc − 1− ln rc

}
.

Noting that that the first term is decreasing with respect to rs and the second
term is decreasing with respect to rc, the minimum is achieved when the two
terms are equal. If λsec = λrel = λ, then setting rc =

np

np−nf
· ln np

nf
and rs =

np−nf

nf
· 1
ln

np
nf

gives the smallest u.

27

We note the interesting fact that choosing rs and rc that minimize u also
minimizes µ. Since µ = pnp = urc, we have

µ ≥ max

{
λsec · ln 2

ln rs − 1 + 1
rs

· rc,
λrel · ln 2

rc − 1− ln rc
· rc
}
.

The first term is decreasing with respect to rs since rc is, and it can be seen that
the second term is decreasing with respect to rc. Hence, µ is minimized when
the two terms are equal which is the same as the condition for minimizing u.

4.2 Decentralized Telescope

The next logical step to minimize the size of the proof is to run a smarter ag-
gregator, Telescope. As previously, we have parameter µ and select each element
to be sent to the network with probability µ

np
. After receiving enough elements

selected by the simple lottery, we run the algorithm from section 3.2. It assumes
that the honest number of set elements is large enough, so each element will
produce k sub-elements, for an appropriate k, if necessary.

We employ threshold analysis here: calculate the number of set elements
selected by the simple lottery such that 1) this number is achievable with proba-
bility 1− 1

4 ·2
−λrel and 2) the centralized algorithm will produce a valid certificate

with probability 1− 3
4 · 2

−λrel .

For all 1 ≤ i ≤ np, let Xi be 1 if and only if element si is selected and 0
otherwise. Let X =

∑np

i=1 Xi; then E[X] = µ. Assume ρ ∈ N satisfies Pr[X ≥
ρ] ≥ 1− 2−λrel−2. Reducing the honest-malicious gap from

np

nf
to ρ

µ
np

·nf
=

np

nf
· ρµ

results in increasing the certificate size to

λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf
+ log ρ

µ

(we have λsec+log(λrel+2)+1+log e−log log e instead of λsec+log(λrel+log 3)+
1− log log e in theorem 2 because we instantiate it with λsec := λsec + log e and
λrel := λrel + log 4

3 for technical reasons).

One can think of the gap
ρnp

µnf
as

(1−δ)np

nf
if we set ρ = (1 − δ)µ. Note that

we only decrease np in the
np

nf
gap. nf remains the same since the union-bound

argument for soundness still works, but with some modifications. Particularly, it
requires µ to be on the order of u2. If we wanted to decrease µ even further, we
could improve the proof below or employ a two-sided threshold analysis as well.

Let Lottery : {0, 1}∗ → {0, 1} be an oracle returning 1 with probability
µ
np

and assume H = (H0, H1, H2,Lottery) where H0, H1, H2 are as defined in

Section 3.2. Also let A.ProveH,W , A.VerifyH,W be as in Section 3.2 and define
the following.

28

procedure B.ProveH,W (s)
if W (s) = 1 ∧ Lottery(s) = 1
then

return s;
else

return empty string;

procedure B.AggregateH,W (S)
return A.ProveH,W (S);

procedure B.VerifyH,W (π)
parse π as (t, s1, ..., su);
return 1 iff A.Verify(π) = 1∧
∀i ∈ [u] : Lottery(si) = 1;

We now state the main result of this section which follows from the proofs
below. Taking B.Extract as defined later in the section, we have

Theorem 16. Using parameters from corollary 3, (B.Prove, B.Aggregate, B.Verify, B.Extract)
is a (λsec, λrel, np, nf)-decentralized NIROPK ALBA scheme with B.Extract being
a straight-line extractor.

Theorem 17. Assume

k ≥ d2 log e

9ρ(λrel + 2)

and instantiate the algorithm in section 3.2 with d ≥ 16u(λrel+2)
log e , q := 2(λrel+2)

d log e ,

and np := kρ. Then completeness is ≥ 1− 2−λrel .

Proof. As assumed above, the simple lottery chooses at least ρ set elements with
probability at least 1− 2−λrel−2. Given this event, by theorem 10, the algorithm
outputs a valid certificate with probability at least 1 − 2−λrel−log 4

3 . Therefore,
completeness is ≥ 1− 2−λrel .

We now calculate soundness defined as the probability that a valid proof can
be constructed using elements Sf with |Sf| = nf.

Theorem 18. Assume

µ ≥ npu
2

nf
;

ρnp

µnf
> 1;

u ≥ λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf
+ log ρ

µ

.

Then soundness is ≤ 2−λsec .

Proof. Denote soundness by S. First we upper bound the number of malicious
certificate tuples with exactly l distinct set elements, for all 1 ≤ l ≤ u. To
do that, we first choose l out of u positions for the distinct set elements, then
choose l distinct elements with permutation for the l positions; finally, each of
the elements in the l positions have k possible sub-elements, there are kl choices
for the other (u − l) positions, and there are d choices for the tuple’s integer.
Overall, the number of tuples with exactly l distinct elements is at most

d · C(u, l) · P (nf, l) · kl · (kl)u−l.

29

Then by union bound,

S ≤
u∑

l=1

((
µ

np

)l

·
(

1

kρ

)u

· q · d · C(u, l) · P (nf, l) · kl · (kl)u−l

)
=

(
1

ρ

)u

· qd ·
u∑

l=1

((
µ

np

)l

· C(u, l) · P (nf, l) · lu−l

)
=

(
1

ρ

)u

· qd ·
u∑

l=1

((
µ

np

)l

· u!

l!(u− l)!
· nf!

(nf − l)!
· lu−l

)
≤

(
1

ρ

)u

· qd ·
u∑

l=1

((
µ

np

)l

· uu−l

(u− l)!
· nl

f · uu−l

)
=

(
1

ρ

)u

· qd ·
u∑

l=1

((
µnf

np

)l

· u
2(u−l)

(u− l)!

)
=

(
1

ρ

)u

· qd ·
(
µnf

np

)u

·
u∑

l=1

((
µnf

np

)l−u

· u
2(u−l)

(u− l)!

)
=

(
1

ρ

)u

· qd ·
(
µnf

np

)u

·
u∑

l=1

((
u2np

µnf

)u−l

· 1

(u− l)!

)
≤

By our assumption about µ,(
1

ρ

)u

· qd ·
(
µnf

np

)u

·
u∑

l=1

1

(u− l)!
≤

(
1

ρ

)u

· qd ·
(
µnf

np

)u

·
∞∑
i=0

1

i!
=(

1

ρ

)u

· qd ·
(
µnf

np

)u

· e =(
µnf

ρnp

)u

· 2(λrel + 2)

log e
· e.

Then

− logS ≥ −
(
u log

µnf

ρnp
+ 1 + log(λrel + 2)− log log e+ log e

)
=

u log
ρnp

µnf
− log(λrel + 2)− 1− log e+ log log e ≥

λsec.

Now to show the proof of knowledge property, define ExtractH,W,A similarly
to Section 3.1. We have the following theorem whose proof is similar to that of
theorem 4.

30

Theorem 19. Define parameters as in theorem 18. Then VerifyH,W with ExtractH,W,A

satisfy the proof of knowledge property of definition 2. Additionally, ExtractH,W,A

is straight-line.

For simplicity, below we continue talking about soundness which ultimately
implies the proof of knowledge. Theorem 17 and theorem 18 gives

Corollary 3. Assume

µ ≥ npu
2

nf
;

ρnp

µnf
> 1; k ≥ d2 log e

9ρ(λrel + 2)
;

u ≥ λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf
+ log ρ

µ

and instantiate the algorithm in section 3.2 with u := u, d ≥ 16u(λrel+2)
log e , q :=

2(λrel+2)
d log e , and np := kρ. Then soundness is ≤ 2−λsec and completeness is ≥

1− 2−λrel .

Using this, we can see how big µ needs to be if we increase u log
np

nf
only

by some amount C. To calculate a suitable ρ, we just use Chernoff bound.

Pr[X ≤ (1 − δ)µ] ≤ e−
µδ2

2 . Setting this to 2−λrel−2, we get δ =
√

2(λrel+2)
µ log e . We

now set ρ =
⌈
(1− δ)µ

⌉
.

Corollary 4. Assume

C > 0; u ≥ λsec + log(λrel + 2) + 1 + log e− log log e+ C

log
np

nf

; k ≥ d2 log e

9ρ(λrel + 2)

µ ≥ max

{
8(λrel + 2)

log e
,
npu

2

nf
,
9u2(λrel + 2) log e

2C2

}
;µ >

2(λrel + 2)(
1− nf

np

)2
log e

;

and instantiate the algorithm in section 3.2 just like in corollary 3. Then sound-
ness is ≤ 2−λsec and completeness is ≥ 1− 2−λrel .

Proof. We only need to show that
ρnp

µnf
> 1 and

u ≥ λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf
+ log ρ

µ

to apply corollary 3.

31

The first inequality follows from

(1− δ)µnp

µnf
> 1⇐⇒

(1− δ)np

nf
> 1⇐⇒

1− δ >
nf

np
⇐⇒

δ < 1− nf

np
⇐⇒

δ2 <

(
1− nf

np

)2

⇐⇒

2(λrel + 2)

µ log e
<

(
1− nf

np

)2

⇐⇒

µ >
2(λrel + 2)(
1− nf

np

)2
log e

which is true by our assumption about µ.

Now we will show that

u ≥ λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf
+ log ρ

µ

.

Define λ′ = λsec + log(λrel + 2) + 1 + log e − log log e. Then this inequality is
equivalent to

u ≥ λ′

log
np

nf
+ log ρ

µ

⇐=

λ′

log
np

nf
+ log ρ

µ

≤ λ′ + C

log
np

nf

⇐=

λ′

log
np

nf
+ log(1− δ)

≤ λ′ + C

log
np

nf

[⇐=]

32

Since δ =
√

2(λrel+2)
µ log e ≤

√
2(λrel+2)

8(λrel+2)

log e log e
= 1

2 , we know that 1−δ ≥ e−δ−δ2 ≥ e−
3
2 δ.

Therefore,

[⇐=]
λ′

log
np

nf
+ log e−

3
2 δ
≤ λ′ + C

log
np

nf

⇐⇒

λ′

log
np

nf
− 3

2δ log e
≤ λ′ + C

log
np

nf

⇐⇒

λ′ log
np

nf
≤ (λ′ + C)

(
log

np

nf
− 3

2
δ log e

)
⇐⇒

3

2
δ log e(λ′ + C) ≤ C log

np

nf
⇐⇒

δ ≤
2C log

np

nf

3(λ′ + C) log e
⇐⇒

δ2 ≤
(

2C log
np

nf

3(λ′ + C) log e

)2

⇐⇒

2(λrel + 2)

µ log e
≤
(

2C log
np

nf

3(λ′ + C) log e

)2

⇐⇒

µ ≥ 2(λrel + 2)

log e

(
3(λ′ + C) log e

2C log
np

nf

)2

⇐⇒

µ ≥ 9(λrel + 2) log e

2C2

(
λ′ + C

log
np

nf

)2

⇐=

µ ≥ 9u2(λrel + 2) log e

2C2

which is true by our assumption about µ.

Thus, if we let λ = λsec = λrel and let u only be a constant larger than
optimal, we have µ = O(λ3) as well as the time complexity of the centralized
algorithm also O(λ3). Moreover, µ is proportional to 1

C2 . We note, however,
that setting λrel := 1 and λsec := λsec + log λrel and amplifying the completeness
as mentioned in Section 3.2 lets us reduce the expected communication com-
plexity to O(λ2), but it requires some network engineering to avoid redundant
communication.

We also present a differnt corollary showing what u needs to be when ex-
pressed in terms of µ.

33

Corollary 5. Assume

C > 0;

u ≥

(
1 +

3
√
2 log e ·

√
λrel + 2

√
µ · log np

nf

)
· λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf

;

µ ≥ max

{
8(λrel + 2)

log e
,
18(λrel + 2) log e

log2
np

nf

,
npu

2

nf

}
;µ >

2(λrel + 2)(
1− nf

np

)2
log e

;

k ≥ d2 log e

9ρ(λrel + 2)

and instantiate the algorithm in section 3.2 just like in corollary 3. Then sound-
ness is ≤ 2−λsec and completeness is ≥ 1− 2−λrel .

Proof. The proof of corollary 4 shows that the assumption µ > 2(λrel+2)(
1− nf

np

)2
log e

implies
ρnp

µnf
> 1. Thus, we only need to prove

u ≥ λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf
+ log ρ

µ

to apply corollary 3.

Define λ′ = λsec + log(λrel + 2) + 1 + log e− log log e. This follows from

λsec + log(λrel + 2) + 1 + log e− log log e

log
np

nf
+ log ρ

µ

=

λ′

log
np

nf
+ log ρ

µ

≤

λ′

log
np

nf
+ log(1− δ)

≤

λ′

log
np

nf
− 3

2δ log e
=

λ′

log
np

nf

(
1− 3δ log e

2 log
np
nf

) [≤]

34

It is easy to verify that 1
1−ϵ ≤ 1 + 2ϵ for 0 ≤ ϵ ≤ 1

2 , and since 3δ log e

2 log
np
nf

≤ 1
2 ,

[≤]
(
1 +

3δ log e

log
np

nf

)
· λ′

log
np

nf

=(
1 +

3 log e

log
np

nf

·

√
2(λrel + 2)

µ log e

)
· λ′

log
np

nf

=(
1 +

3
√
2 log e ·

√
λrel + 2

√
µ · log np

nf

)
· λ′

log
np

nf

≤

u.

4.3 Optimality of the certificate size - communication tradeoff

We can attempt to find a lower bound for the tradeoff between the certificate
size u and µ. For this purpose, we use the following definition.

Definition 4. (Prove,Read,Verify) is a (λsec, λrel, np, nf, µ)-lottery based ALBA
scheme if and only if

– ProveH is a probabilistic expected polynomial time random oracle access pro-
gram;

– VerifyH is a p.p.t. random oracle access program;
– Read is a polynomial time program;
– if L is a random binary function such that for all x, Pr[L(x) = 1] = µ

np
and

we define Lottery(S) = {x ∈ S : L(x) = 1}, then
• completeness: consider the following experiment CompExp(Sp):

π ← ProveH(Lottery(Sp));

output 1 iff Read(π) ⊆ Lottery(Sp) and VerifyH(π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥
1− 2−λrel .

• soundness: consider the following experiment SoundExp(Sf):

output 1 iff ∃π,Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤
2−λsec ;

The following theorem presents our lower bound.

Theorem 20. Assume ρ satisfies Pr
[
B(np,

µ
np
) ≤ ρ

]
≥ 2−λrel+1 where B(n, p)

is a binomial random variable with n experiments each with probability of success
p. Also assume

ρnp

µnf
> 1; µ ≥ 3u2np log e

2nf
; nf ≥ ρ,

35

let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a (λsec, λrel, np, nf, µ)-
lottery based ALBA scheme such that

Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ ≤ u
]
= 1.

Then

u >
λsec − 4

log
np

nf
+ log ρ

µ

.

Proof. By completeness, if π ← ProveH(Lottery(Sp)), then

2−λrel ≥

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)]
≥

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
×

Pr
[∣∣Lottery(Sp)

∣∣ ≤ ρ
]
≥

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
· 2−λrel+1.

Therefore,

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
≤ 1

2

and

Pr
[
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
≥ 1

2
.

By the averaging argument, there exists 0 ≤ m ≤ ρ such that

Pr
[
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

∣∣∣∣∣Lottery(Sp)
∣∣ = m

]
≥ 1

2
. (5)

Now for all Sf ⊆ Sp of size nf, define

procedure AL,H
Sf

S ← Lottery(Sf);
if m < |S| then

remove (|S| −m) random elements from S;
else

add (m− |S|) random elements from Sf \ S to S;
π ← ProveH(S);
output π.

36

Let Sf be a uniformly random subset of Sp of size nf and let π ← AL,H
Sf

().
We now lower bound the following:

Pr[Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1] ≥

Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
×

Pr

[∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
[>]

It is proven in [GM14] that for all m ≥ 1 and p > 1
m , Pr[B(m, p) ≥ mp] > 1

4 .
Thus,

[>]
1

4
· Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
≥

1

4
· Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣
Read(π) ⊆ S ∧ VerifyH(π) = 1 ∧

∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
×

×Pr

[
Read(π) ⊆ S ∧ VerifyH(π) = 1

∣∣∣∣∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
[≥]

One can see that in ASf
, independent of

∣∣Lottery(Sf)
∣∣, S is a uniformly random

subset of Sp of size m, and using equation 5,

[≥] 1
8
· Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣
Read(π) ⊆ S ∧ VerifyH(π) = 1 ∧

∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
=

1

8
· Pr

[
Read(π) ⊆ Lottery(Sf)

∣∣∣∣
Read(π) ⊆ S ∧ VerifyH(π) = 1 ∧

∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
[≥]

37

One can also see that Lottery(Sf) is a uniformly random subset of S of size
|Lottery(Sf)|. Then,

[≥] 1
8
·
u−1∏
i=0

⌈
µnf

np

⌉
− i

ρ− i
≥

1

8
·

(µnf

np
− u

ρ

)u

=

1

8
·

(µnf

np

ρ

)u

·

(µnf

np
− u

µnf

np

)u

=

1

8
·

(
µnf

ρnp

)u

·
(
1− unp

µnf

)u

[≥]

Since
unp

µnf
≤ unp

3u2np log e

2nf
·nf

= 2
3u log e ≤

2
3 log e ≤

1
2 and 1− x ≥ e−x−x2 ≥ e−

3
2x for

0 ≤ x ≤ 1
2 ,

[≥] 1
8
·

(
µnf

ρnp

)u

·
(
e
− 3unp

2µnf

)u

≥

1

8
·

(
µnf

ρnp

)u

· exp

(
− 3u2np

2 · 3u
2np log e
2nf

· nf

)
=

1

8
·

(
µnf

ρnp

)u

· exp
(
− 1

log e

)
=

1

16
·

(
µnf

ρnp

)u

.

Hence, by the averaging argument there exists a subset S′
f of Sp of size nf

such that if π′ ← AL,H
S′
f

() then

Pr[Read(π′) ⊆ Lottery(S′
f) ∧ VerifyH(π′) = 1] >

1

16
·

(
µnf

ρnp

)u

.

On the other hand, by soundness from definition 4,

Pr[Read(π′) ⊆ Lottery(S′
f) ∧ VerifyH(π′) = 1] ≤

Pr[SoundExp(S′
f) = 1] ≤ 2−λsec .

38

Therefore,

1

16
·

(
µnf

ρnp

)u

< 2−λsec ⇐⇒(
ρnp

µnf

)u

> 2λsec−4 ⇐⇒

u

(
log

np

nf
+ log

ρ

µ

)
> λsec − 4⇐⇒

u >
λsec − 4

log
np

nf
+ log ρ

µ

.

Using this, we can establish a lower bound similar to the upper bound corol-
lary 4.

Corollary 6. Let C > 0, define

α =
λsec − 4 + C

log
np

nf

;u = ⌊α⌋

and assume

max

{
4

λrel
,

λrel

(1− nf

np
)2
,
3u2np log e

2nf

}
≤ µ ≤ min

{
α2λrel log

2 e

4C2
,
(4e)

λrel

4e10

}
;

nf ≥ 2µ.

Let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a (λsec, λrel, np, nf, µ)-
lottery based ALBA scheme. Then

Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ > α
]
> 0.

Proof. Suppose otherwise, then Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ ≤ u
]
= 1.

Let δ =
√

λrel

4µ and ρ = ⌊(1− δ)µ⌋. By lemma 18,

Pr

[
B

(
np,

µ

np

)
≤ ρ

]
= Pr

[
B

(
np,

µ

np

)
≤ (1− δ)µ

]
≥ 2−λrel+1.

In order to use theorem 20, we need to show that
ρnp

µnf
> 1. First we show

that (1− δ)µ− 1 ≥ (1− 2δ)µ. This is equivalent to

δµ ≥ 1⇐⇒

√
λrel

4µ
· µ ≥ 1⇐⇒

√
λrel · µ

4
≥ 1⇐⇒ µ ≥ 4

λrel

which is true by our assumption. Then

ρnp

µnf
>

(
(1− δ)µ− 1

)
np

µnf
≥ (1− 2δ)µnp

µnf
=

(1− 2δ)np

nf
.

39

This is at least 1 if and only if

1− 2δ ≥ nf

np
⇐⇒

2δ ≤ 1− nf

np
⇐⇒

4δ2 ≤
(
1− nf

np

)2

⇐⇒

λrel

µ
≤
(
1− nf

np

)2

⇐⇒

µ ≥ λrel(
1− nf

np

)2
which is true by our assumption.

By theorem 20, u > λsec−4
log

np
nf

+log ρ
µ

. We need to prove that λsec−4
log

np
nf

+log ρ
µ

≥ α.

Define λ′ = λsec − 4. This is equivalent to

λ′

log
np

nf
+ log ρ

µ

≥ λ′ + C

log
np

nf

⇐=

λ′

log
np

nf
+ log(1− δ)

≥ λ′ + C

log
np

nf

⇐=

λ′

log
np

nf
+ log e−δ

≥ λ′ + C

log
np

nf

⇐⇒

λ′

log
np

nf
− δ log e

≥ λ′ + C

log
np

nf

⇐⇒

λ′ log
np

nf
≥ (λ′ + C)

(
log

np

nf
− δ log e

)
⇐⇒

(λ′ + C)δ log e ≥ C log
np

nf
⇐⇒

δ ≥
C log

np

nf

(λ′ + C) log e
⇐⇒

λrel

4µ
≥

(
C log

np

nf

(λ′ + C) log e

)2

⇐⇒

µ ≤ λrel

4
·

(
(λ′ + C) log e

C log
np

nf

)2

⇐⇒

µ ≤ α2λrel log
2 e

4C2

which is true by our assumption.
Hence u > α and we reach a contradiction.

40

Alternatively, we present a corollary showing a lower bound on the certificate
size as of function of µ. It is comparable to corollary 5.

Corollary 7. Define

α =

(
1 +

√
λrel · log e

2
√
µ log

np

nf

)
· λsec − 4

log
np

nf

;u = ⌊α⌋

and assume

max

{
4

λrel
,

λrel

(1− nf

np
)2
,
3u2np log e

2nf

}
≤ µ ≤

(4e)
λrel

4e10
;

nf ≥ 2µ.

Let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a (λsec, λrel, np, nf, µ)-
lottery based ALBA scheme. Then

Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ > α
]
> 0.

Proof. Suppose otherwise, then Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ ≤ u
]
= 1.

Let δ =
√

λrel

4µ and ρ = ⌊(1− δ)µ⌋. By lemma 18,

Pr

[
B

(
np,

µ

np

)
≤ ρ

]
= Pr

[
B

(
np,

µ

np

)
≤ (1− δ)µ

]
≥ 2−λrel+1.

In order to use theorem 20, we need to show that
ρnp

µnf
> 1. The proof of

corollary 6 shows how the assumption µ ≥ max
{

4
λrel

, λrel

(1− nf
np

)2

}
implies it.

41

By theorem 20,

u >

λsec − 4

log
np

nf
+ log ρ

µ

≥

λsec − 4

log
np

nf
+ log(1− δ)

≥

λsec − 4

log
np

nf
+ log e−δ

=

λsec − 4

log
np

nf
− δ log e

=

λsec − 4

log
np

nf

(
1− δ log e

log
np
nf

) ≥
(
1 +

δ log e

log
np

nf

)
· λsec − 4

log
np

nf

=(
1 +

√
λrel log e

2
√
µ log

np

nf

)
· λsec − 4

log
np

nf

=

α

which is a contradiction.

5 Adding Weights

We will assume, without loss of generality, that the weight function outputs
integers. A naive way to handle weights other than 0 and 1 is to interpret each
set element s as weight(s) elements (s, 1), . . . , (s,weight(s)) and apply schemes
designed for the unweighted case to (s, i) pairs. Unfortunately, this approach
results in an exponential (in integer size) increase in prover runtime.

However, any lottery-based scheme in which the number of lottery winners is
independent of np (or at most polylogarithmic in np) is amenable to a more effi-
cient solution (and the Telescope scheme in Section 3 can be turned into a lottery-
based scheme first using Section 4.2). We simply view (s, 1), . . . , (s,weight(s))
pairs as weight(s) different lottery participants. For efficiency, instead of having
each of them play the lottery individually with probability p, we sample the
number of winners from the binomial distribution Bin(weight(s), p) (similar to
the sortition algorithm used in Algorand [GHM+17]). We do so because it does
not matter which i values win — what matters is only the number of winners.
If the binomial sampling returns k, then (s, 1), . . . , (s, k) are considered winners.
This does not increase the complexity compared to the unweighted lottery-based
scheme, except for binomial sampling rather than lottery applied to each s.

42

6 Replacing the Random Oracle with PRF

In this section we show how to remove the need for the random oracle and
instantiate our scheme in the Common Reference String model (or alternatively,
the Uniform Random String model). We utilize a PRF for the hash function H
with the CRS being a random PRF key (or alternatively, uniformly random bits
sufficient to generate one). We note that although the PRF is only secure against
computationally bounded distinguishers, our ALBA scheme retains information-
theoretical security. Assume (GenKey, F) is a PRF such that for any oracle access
program AO with running time bounded by T ,∣∣∣∣Pr [AH() = 1

]
− Pr

[
AF (GenKey(),·)() = 1

]∣∣∣∣ ≤ εprf(T). (6)

We will assume the unweighted case, but the following can extended to sup-
port weights as well. Combining the improved Telescope construction from Sec-
tion 3.2 with the tight bound on the number of accessible vertices (theorem 14)
and instantiating the scheme with the standard random oracle (Section B), one
can build a Telescope scheme such that for some B ∈ O(λ3),

– the honest prover’s DFS outputs a valid proof after visiting at most B ver-
tices with probability ≥ 1− 2−λ;

– there exists a valid proof containing elements from Sf or the number of
accessible vertices exceeds B with probability ≤ 2−λ.

Implement ProveH(Sp) as the standard DFS that visits at most B vertices and

define VerifyH(π) in a natural way.
We show an ALBA scheme under definition 3 where the random oracle is

replaced with CRS. To save space, the new definition (6) is omitted here, but
can be found in Section C.2. Looking ahead, Section 6.1 shows how to build
a knowledge extractor for it. Construct a Telescope scheme according to that
definition as follows.

procedure R.Prove(crs, Sp)

π ← ProveF (crs,·)(Sp);
return π;

procedure R.Verify((crs, π))

r ← VerifyF (crs,·)(π);
return r;

procedure R.Read(π)
is defined in a natural way;

procedure R.GenCRS
k ← GenKey();
return k;

Theorem 21. R is a (λ′
sec, λ

′
rel, np, nf)-CRS ALBA scheme where λ′

sec = λ′
rel =

− log
(
2−λ + εprf(c ·B)

)
.

Proof. Completeness follows from the fact that Prove’s running time is bounded
by c · B steps and that ProveH(Sp), when instantiated with the random oracle
H, finds a valid proof with probability ≥ 1−2−λ. Acting as a PRF distinguisher,
we conclude that ProveF (GenKey(),·) outputs a valid proof with probability ≥ 1−
2−λ − εprf(c ·B).

43

To prove soundness, we can observe whether a DFS on set Sf finds a valid
proof or does not terminate after visiting B vertices. In the random oracle case,
one or both happen with probability ≤ 2−λ, so in the PRF case it is ≤ 2−λ +
εprf(c · B). But the probability that there exists a valid proof in the PRF case
cannot be larger.

We present the full version of the proof in Section C.2.

6.1 Knowledge Extraction for definition 6 / 3

In this section we show how to generically convert an ALBA scheme under
definition 6 to a proof of knowledge scheme as defined below. We still assume the
unweighted scenario:W : {0, 1}∗ → {0, 1} but the following can be generalized to
add weights. Sometimes it will be convenient to treat W as a set: {s : W (s) = 1}.

Definition 5. (Prove,Verify,Extract,GenCRS) is a (λsec, λrel, np, nf)-CRS proof
of knowledge ALBA scheme if and only if

– Prove is a probabilistic expected polynomial time program;

– VerifyW is a polynomial time program that has access to a weight oracle W ;

– ExtractW is a probabilistic program having access to a weight oracle W ;

– GenCRS is a p.p.t. program;

– completeness: consider the following experiment CompExp(W,Sp):

crs← GenCRS();
π ← Prove(crs, Sp);

r ← VerifyW (crs, π);
return r;

we require that for all weight oracles W and all sets Sp ⊆W with |Sp| ≥ np,
Pr[CompExp(W,Sp) = 1] ≥ 1− 2−λrel ;

– proof of knowledge: consider the following experiment SoundExp(AW ,W):

crs← GenCRS();
π ← AW (crs);
r ← VerifyW (crs, π);
return r;

we require that for all weight oracles W and all probabilistic oracle access
programs AW , if A runs in time T and ϵ = Pr[SoundExp(AW ,W) = 1] −
2−λsec > 0, then Sf ← ExtractW (A) runs in expected time poly

(nfT
ϵ

)
and

Pr
[
Sf ⊆W ∧ |Sf| > nf

]
= 1.

Now let X = (X.Prove, X.Read, X.Verify, X.GenCRS) be a (λsec, λrel, np, nf)-
CRS ALBA scheme (as in definition 6) and define Y = (Y.Prove, Y.Verify, Y.Extract, Y.GenCRS)
as follows.

44

procedure Y.GenCRS
return X.GenCRS();

procedure Y.Prove(crs, Sp)
return X.Prove(crs, Sp);

procedure Y.VerifyW (crs, π)
S := X.Read(π);
return 1 iff S ⊆W ∧
X.Verify(crs, π) = 1;

procedure Y.ExtractW (A)
Sf := ∅;
while |Sf| ≤ nf do

crs← X.GenCRS();
π ← AW (crs);
S := X.Read(π);
Sf := Sf ∪ (S ∩W);

return Sf;

Theorem 22. Y is (λsec, λrel, np, nf)-proof of knowledge ALBA scheme.

Proof. Clearly Y.Prove and Y.Verify are polynomial time. It is also easy to see
that Y satisfies the completeness property. We are left to prove the proof of
knowledge property.

First, notice that Y.Extract can only output a set Sf such that Sf ⊆ W
and |Sf| > nf. Now examine a single loop iteration in Y.Extract. We know that
ϵ = Pr

[
Y.VerifyW (crs, π) = 1

]
− 2−λsec > 0 and Y.VerifyW (crs, π) = 1 implies

that S ⊆W and X.Verify(crs, π) = 1. So,

2−λsec + ϵ = Pr[Y.VerifyW (crs, π) = 1] ≤ Pr[S ⊆W ∧X.Verify(crs, π) = 1].

At the same time, since |Sf| ≤ nf, by the soundness of X (considering the
experiment SoundExp(Sf) from Definition 6), Pr[S ⊆ Sf ∧ X.Verify(crs, π) =
1] ≤ 2−λsec . Therefore,

ϵ = (2−λsec + ϵ)− 2−λsec ≤
Pr[S ⊆W ∧X.Verify(crs, π) = 1]− Pr[S ⊆ Sf ∧X.Verify(crs, π) = 1] ≤
Pr[(S ⊆W ∧X.Verify(crs, π) = 1) ∧ ¬(S ⊆ Sf ∧X.Verify(crs, π) = 1)] =

Pr[S ⊆W ∧ S ̸⊆ Sf ∧X.Verify(crs, π) = 1] ≤
Pr[S ⊆W ∧ S ̸⊆ Sf] ≤
Pr[∃x ∈ (S ∩W) \ Sf].

So, a single iteration of the loop adds at least one new element of W to Sf

with probability at least ϵ. Therefore, in expectation, the loop runs for at most
(nf+1) · 1ϵ iterations. Then it is easy to see that Y.Extract runs in expected time

poly
(
nfT
ϵ

)
.

7 Concrete Parameters

In Figure 1 we compare our constructions with existing ALBA protocols such as
Compact Certificates [MRV+21] and the Goldwasser-Sipser [GS86]scheme. Our
analysis of the simple lottery scheme of section 4.1 is also applicable to Mithril
[CK21] as the combinatorics are very similar. For Compact Certificates we note
that their soundness is computational as opposed to ours which is information-
theoretic for non-adaptive adversaries. In the interest of comparison, we also

45

np/nf 60/40 66/33 80/20

ALBA Protocol Size Comms Size Comms Size Comms

GS [GS86] 82944σ 16384σ 3237σ
C. Cert. [MRV+21] (232) 274σ + 274η 160σ + 160η 80σ + 80η
C. Cert. [MRV+21] (264) 330σ + 330η 192σ + 192η 96σ + 96η
Telescope, no weights (Sect. 3) 232σ 136σ 68σ
Telescope, weights (Sect. 4.2,5) 237σ 139σ 70σ

Simple Lottery (Sect. 4.1) 4328σ 5264σ 1488σ 2062σ 380σ 702σ
Simple Lottery (λrel = 64) 3226σ 3925σ 1128σ 1564σ 298σ 551σ
Dec. Telescope (Sect. 4.2) 262σ 114264σ 151σ 49929σ 74σ 23104σ

Fig. 1. Certificate sizes and expected communication cost, expressed in revealed/sent
set elements (σ) and revealed committed set elements (η). In most applications we
expect η < σ but within the same order of magnitude. The parameters λsec, λrel are
set to 128 unless otherwise indicated.

describe the cases of adversaries issuing 232 and 264 queries. We consider com-
munication costs only where they are meaningful, i.e. in decentralized schemes.
We note that these costs may be significantly lower in the case of weighted sets
where the same element may appear multiple times with different indexes. For
compact certificates, we derive values using the formula from [MRV+21]. For the
simple lottery we use the bounds of Section 4.1, for Goldwasser-Sipser we use
the analysis of Theorem 24 in the appendix, and for Telescope and Decentral-
ized Telescope we use the bounds from Corollaries 2 and 4. For the weighted
Telescope scheme we apply the transformation of Section 5 to the decentralized
lottery and choose to parametrize for the minimum proof size in Corollary 4.

Acknowledgements

This material is based upon work supported in part by a gift from Input Output -
IOG and by DARPA under Agreements No. HR00112020021 and HR00112020023.
Any opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the
United States Government or DARPA.

46

References

Ash90. Robert B Ash. Information theory. 1990.
Bab85. László Babai. Trading group theory for randomness. In 17th ACM STOC,

pages 421–429. ACM Press, May 1985.
BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive or-

acle proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg, Octo-
ber / November 2016.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

Can00. Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology, 13(1):143–202, January 2000.

CDMP05. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damg̊ard revisited: How to construct a hash function. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448.
Springer, Heidelberg, August 2005.

CGKS22. Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno
Siim. Impossibilities in succinct arguments: Black-box extraction and more.
Cryptology ePrint Archive, Report 2022/638, 2022. https://eprint.iacr.
org/2022/638.

CK21. Pyrros Chaidos and Aggelos Kiayias. Mithril: Stake-based threshold mul-
tisignatures. Cryptology ePrint Archive, Report 2021/916, 2021. https:

//eprint.iacr.org/2021/916.
CW79. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J.

Comput. Syst. Sci., 18(2):143–154, 1979.
DCX+23. Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt

Bunz, and Ling Ren. Threshold signatures from inner product argument:
Succinct, weighted, and multi-threshold. Cryptology ePrint Archive, Paper
2023/598, 2023. https://eprint.iacr.org/2023/598.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 152–168. Springer, Heidelberg, August 2005.

GHM+17. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles, pages
51–68, 2017.

GJM+23. Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan
Wang, and Yinuo Zhang. hints: Threshold signatures with silent setup.
Cryptology ePrint Archive, Paper 2023/567, 2023. https://eprint.iacr.
org/2023/567.

GKO+23. Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira
Takahashi, and Daniel Tschudi. Witness-succinct universally-composable
SNARKs. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part II, volume 14005 of LNCS, pages 315–346. Springer, Heidelberg, April
2023.

GM14. Spencer Greenberg and Mehryar Mohri. Tight lower bound on the prob-
ability of a binomial exceeding its expectation. Statistics and Probability
Letters, 86:91–98, 2014.

47

https://eprint.iacr.org/2022/638
https://eprint.iacr.org/2022/638
https://eprint.iacr.org/2021/916
https://eprint.iacr.org/2021/916
https://eprint.iacr.org/2023/598
https://eprint.iacr.org/2023/567
https://eprint.iacr.org/2023/567

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

GS86. Shafi Goldwasser and Michael Sipser. Private coins versus public coins in
interactive proof systems. In 18th ACM STOC, pages 59–68. ACM Press,
May 1986.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:

//eprint.iacr.org/2019/953.

MRV+21. Silvio Micali, Leonid Reyzin, Georgios Vlachos, Riad S. Wahby, and Nick-
olai Zeldovich. Compact certificates of collective knowledge. In 2021 IEEE
Symposium on Security and Privacy, pages 626–641. IEEE Computer Soci-
ety Press, May 2021.

MU05. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

Pas03. Rafael Pass. On deniability in the common reference string and random
oracle model. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 316–337. Springer, Heidelberg, August 2003.

Sip83. Michael Sipser. A complexity theoretic approach to randomness. In 15th
ACM STOC, pages 330–335. ACM Press, April 1983.

A Goldwasser-Sipser Protocol

Consider H a family of pairwise independent hash functions over {0, 1}ℓ.
Let S be the subset of interest with |S| = N . Honest participants have at

least np values. Adversary has at most nf values.

The core step of the GS protocol works like that

– The verifier sends random h ∈ H, y ∈ {0, 1}ℓ to the prover.

– The prover responds with x.

– The verifier accepts provided that x ∈ S and h(x) = y.

Theorem 23. Let γ ∈ (0, 1). For the honest participants, it holds that they can
convince the verifier with probability (1−γ)np2

−ℓ, provided that ℓ ≥ log(np/2γ).
The adversary can convince the verifier with probability at most 2−ℓnf.

Proof. Consider the probability that the prover is capable of finding a suitable
x that convinces the verifier in the above interactive proof.

For an adversarial prover, we have that by the union bound the probability
they convince the verifier is at most nf2

−ℓ.

For the honest participants, the probability they convince the verifier is at
least

48

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

np2
−ℓ −

∑
x,x′

Pr[h(x) = y ∧ h(x′) = y] =

np2
−ℓ −

(
np

2

)
2−2ℓ ≥

np2
−ℓ − (np2

−ℓ)2/2

where in the penultimate inequality we use pairwise independence. The latter
inequality is at least np2

−ℓ(1− γ) due to np2
−ℓ ≤ 2γ.

The GS protocol repeats the core step u times. The verifier in the end accepts
provided that T core steps are valid.

Theorem 24. Suppose we want to achieve error λrel, λsec for completeness and
soundness respectively with the GS protocol. Then it is sufficient to choose u ≥
8max{λsec, λrel}x4(x− 1)−4 for x = np/nf.

Proof. Let γ ∈ (0, 1 − nf/np) and ℓ = log(np/2γ). The expected number of
adversarial successes is µf = 2−ℓnf = 2γ(nf/np)u. Similarly the expected number
of honest party successes is µp = 2−ℓ(1− γ)np = 2γ(1− γ)u. We set a threshold
T = γu(1−γ−nf/np). Let t = γ(1−γ−nf/np)u. Observe that µf+t = T = µp−t.
It follows by the Hoeffding bound that: (1) the probability that the adversarial
parties reach T = µf + t successes is at most exp(−2t2/u), (2) the probability
that the honest parties have T successes or less is exp(−2t2/u).

We require that exp(−2t2/u) ≤ 2−λsec and exp(−2t2/u) ≤ 2−λrel Given that
2t2/u = γ2(1− γ − nf/np)

2u we obtain that it should hold

u ≥ γ−2(1− γ − nf/np)
−2 max{λsec, λrel}/2

We can set now γ = δ(1 − nf/np) for some δ ∈ (0, 1) and we obtain that
u ≥ δ−2(1 − δ)−2x4/(x − 1)4 min{λsec, λrel}/2. The statement of the theorem
follows for δ = 1/2.

B Implementing H0, H1, and H2 with a Binary Random
Oracle

In this section we address howH0,H1, andH2 used in the Telescope construction
(Section 3) are implemented from a single random oracle H that outputs binary
strings. We know how collect enough bits from H, using the standard techniques
for domain separation of inputs to ensure that domains of H corresponding to
inputs of H0, H1, and H2 don’t overlap, and using counters as necessary to
collect more bits if the output of H is short.

H0 and H1 need to output a uniformly distributed integer in [np] (or 1 with
probability 1/[np], which can be handled by outputting a random integer and
checking if it is 0). If np is a power of 2, we are done. Else, set a failure bound

49

εfail, set k = ⌈log2(np/εfail)⌉ , and set d = ⌊2k/np⌋. Use H to produce a k-
bit string, interpret it as an integer i ∈ [0, 2k − 1], fail if i ≥ dnp, and output
i mod np otherwise. (Naturally, only the honest prover and verifier will actually
fail; dishonest parties can do whatever they want.)

H2 needs to output 1 with probability q. We will implement H2 by finding a
rational approximation x/y to q where y is a power of 2 and 0 ≤ q−(x/y) < εfail;
we will get i ∈ [0, y − 1] out of H and output 1 if i < x. This will increase the
probability of output 0 by at most εfail.

The probability of failure for a single oracle query to H0 or H1 is less than
np/2

k ≤ εfail. Conditioned on not failing, the distributions of H0 and H1 are per-
fectly accurate, which is important for our soundness / extractability arguments,
as we have no bound on the number of adversarial queries to its oracles. (An
approximate distribution would not work here.) The value of q simply becomes
slightly lower, by at most εfail. Extractability works the same way as before,
because queries to H0, H1, or H2 are now replaced with queries to H, but the
extractor can read those equally well. The facts that queries can fail and that q
is slightly lower reduce the probability of adversarial success, which marginally
improves the bounds in Theorems 2, 9, and 18 without changing anything else
in the extractability proof.

The only effect is on reliability, which gets reduced by εfail · qro, where qro is
the number of random oracles queries made by the honest prover. Given tight
bounds on the prover running time in Section 3, which are guaranteed with
overwhelming probability, we can bound this loss by setting εfail high enough.

C Additional Material

C.1 Improved completeness for Section 3.1

Theorem 25. Assume 0 ≤ q ≤ 1 and

d ≥ λrel

log e

(
1

q
+

u+ lnu

2

)
Then completeness is ≥ 1 − 2−λrel , and the probability that there exists a valid
proof with a particular integer t is at least(

1

q
+

u+ 1 + lnu

2

)−1

.

Proof. Completeness can be described using the following recursive formula. For
0 ≤ k ≤ u, let f(k) be the probability that when fixing a prefix of an integer in
[d] and u−k elements t, s1, ..., su−k, there is no suffix of honest player’s elements
that works, meaning there is no su−k+1, ..., su such that for all u−k+1 ≤ i ≤ u,
H1(t, s1, ..., si) = 1, and H2(t, s1, ..., su) = 1. Then

– f(0) = 1− q;
– for 0 ≤ k < u, f(k + 1) =

(
(1− 1

np
) + 1

np
· f(k)

)np
;

50

– the probability that the algorithm fails in the honest case is
(
f(u)

)d
.

This recursive formula can be approximated:

f(k + 1) =

(
1 +

1

np
(f(k)− 1)

)np

≤(
e

1
np

(f(k)−1)
)np

=

ef(k)−1.

We are thus interested in the sequence {xi}i≥0, where x0 = f(0) = 1− q and
xk+1 = exk−1. By induction f(k) ≤ xk, because f(i + 1) ≤ ef(i)−1 ≤ exi−1 =
xi+1.

Claim. For k ≥ 1,

− lnxk = 1− xk−1 ≥
(
1

q
+

k + ln(k − 1)

2

)−1

.

Proof. Let zk = − lnxk = 1− xk−1 and note that z1 = q. Then

zk+1 = 1− xk = 1− e−zk ≥ 1−
(
1− zk +

z2k
2

)
= zk −

z2k
2
.

Let t1 = q and tk+1 = tk − t2k/2. By induction, zk ≥ tk, because zi+1 =
zi − z2i /2 ≥ ti − t2i /2 = ti+1.

Let yk = 1
tk
. Then

yk+1 =

(
1

yk
− 1

2y2k

)−1

=
2y2k

2yk − 1
= yk +

1

2
+

1

4yk − 2
,

and, by induction,

yk+1 = y1 +
k

2
+

k∑
i=1

1

4yi − 2
.

Since yi ≥ y1 + (i − 1)/2, we have 4yi − 2 ≥ 4y1 + 2(i − 1) − 2 ≥ 2i because
y1 = 1/q ≥ 1. We thus have

yk+1 ≤
1

q
+

k

2
+

k∑
i=1

1

2i
≤ 1

q
+

k

2
+

1

2

(
1

1
+

1

2
+ · · ·+ 1

k

)
≤ 1

q
+

k + 1 + ln k

2
.

Recalling that − lnxk = zk ≥ tk = (yk)
−1 concludes the proof of the claim.

Therefore, the probability that the honest prover succeeds for a single choice
of integer t is at least 1− xu, which by the above claim is at least(

1

q
+

u+ 1 + lnu

2

)−1

51

which means the expected number of attempts for different integers t is at most
1
q + u+1+lnu

2 .

The probability that the prover fails after d attempts is f(u)d ≤ xd
u =

exp(d lnxu) ≤ exp(−λrel/ log e) = 2−λrel , by the above claim and the defini-
tion of d.

For the smallest running time, choose q = 1. Choosing a smaller q increases
the running time but slightly decreases u, because log(qd) shrinks. Using the
above and theorem 2, we can make the following choice:

Corollary 8. Let

u ≥ λsec + log λrel + 1− log log e

log
np

nf

; d ≥ (u+ lnu)λrel

log e
; q =

2λrel

d log e
.

Then soundness is ≤ 2−λsec and completeness is ≥ 1− 2−λrel .

C.2 Replacing the Random Oracle with PRF

Definition 6. (Prove,Read,Verify,GenCRS) is a (λsec, λrel, np, nf)-CRS ALBA
scheme if and only if

– Prove is a probabilistic expected polynomial time program;
– Verify is polynomial time program;
– Read is a polynomial time program;
– GenCRS is p.p.t. program;
– completeness: consider the following experiment CompExp(Sp):

crs← GenCRS();
π ← Prove(crs, Sp);
output 1 iff Read(π) ⊆ Sp and Verify(crs, π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥
1− 2−λrel .

– soundness: consider the following experiment SoundExp(Sf):

crs← GenCRS();
output 1 iff ∃π,Read(π) ⊆ Sf ∧ Verify(crs, π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤ 2−λsec ;

Theorem 26. Take any set Sp with |Sp| ≥ np. Then the construction R satisfies
Pr[CompExp(Sp) = 1] ≥ 1− 2−λ − εprf(c ·B).

Proof. Define

procedure AO

π ← ProveO(Sp);

r ← VerifyO(π);
return r.

52

By the assumption about our Telescope construction, Pr[AH() = 1] ≥ 1 −
2−λ, and by equation 6,

Pr
[
AF (GenKey(),·)() = 1

]
≥ 1− 2−λ − εprf(c ·B).

But

Pr
[
AF (GenKey(),·)() = 1

]
= Pr[CompExp(Sp) = 1].

Theorem 27. Let Sf be any set with |Sf| ≤ nf. Then the construction R satisfies
Pr[SoundExp(Sf) = 1] ≤ 2−λ + εprf(c ·B).

Proof. Define AO as follows: run the standard Telescope DFS on set Sf; if we
find a proof π that passes VerifyO(π) or the DFS does not terminate after visiting
B vertices, then output 1; otherwise output 0.

By the assumption about our Telescope construction, Pr[AH() = 1] ≤ 2−λ,
and by equation 6,

Pr
[
AF (GenKey(),·)() = 1

]
≤ 2−λ + εprf(c ·B).

But since SoundExp(Sf) = 1 implies AF (GenKey(),·)() = 1,

Pr[SoundExp(Sf) = 1] ≤ Pr
[
AF (GenKey(),·)() = 1

]
.

53

D Additional Lemmas

Lemma 4.

∞∑
i=0

1

i!
= e;

∞∑
i=0

i

i!
= e;

∞∑
i=0

i2

i!
= 2e

Proof. It is known that for any x ∈, ex =
∑∞

i=0
xi

i! . From this, the first equality
follows.

We prove the second equality:

∞∑
i=0

i

i!
=

∞∑
i=1

i

i!
=

∞∑
i=1

1

(i− 1)!
=

∞∑
i=0

1

i!
= e.

We prove the third equality:

∞∑
i=0

i2

i!
=

∞∑
i=1

i2

i!
=

∞∑
i=1

i

(i− 1)!
=

∞∑
i=0

i+ 1

i!
=

∞∑
i=0

i

i!
+

∞∑
i=0

1

i!
= 2e.

D.1 Chernoff Bounds

Below let X1, ..., Xn be independent Bernoulli random variables, define X =
X1 + ...+Xn and µ = E[X].

Lemma 5 (Upper tail). For any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

Lemma 6 (Upper tail, simpler). For any δ ∈ (0, 1],

Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3.

Lemma 7 (Lower tail). For any δ ∈ (0, 1),

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

.

Lemma 8 (Lower tail, simpler). For any δ ∈ (0, 1),

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2.

54

D.2 Lemmas for Section 3.1

Lemma 9. Let t > 0 and define the sequence {xk} as follows: let x0 = 1 and
for k ≥ 0, let

xk+1 =

(
1

n
xke

t + 1− 1

n

)np

.

Then E[etZ] = xd
u.

Proof. For 1 ≤ j ≤ d, 1 ≤ i ≤ u, s1, ..., si ∈ Sp and 1 ≤ k ≤ i, let the indicator
random variable

Ij,s1,...,si,k =

{
1 if for all k ≤ r ≤ i, H1(j, s1, ..., sr) = 1

0 otherwise.

Then

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Ij,s1,...,si,1.

Also for 1 ≤ j ≤ d, 0 ≤ i ≤ u and s1, ..., si ∈ Sp, let

F (j, s1, ..., si) =
∑

i+1≤k≤u,
si+1,...,sk∈Sp

Ij,s1,...,sk,i+1.

Then Z =
∑d

j=1 F (j) and

E[etZ] =

E

[
exp

(
t ·

d∑
j=1

F (j)

)]
=

E

[
d∏

j=1

etF (j)

]
=

d∏
j=1

E
[
etF (j)

]
.

(7)

We will prove by induction that for all 1 ≤ j ≤ d, 0 ≤ k ≤ u and s1, ..., su−k ∈
Sp,

E
[
exp

(
t · F (j, s1, ..., su−k)

)]
= xk.

55

Basis case (k = 0): E
[
exp

(
t · F (j, s1, ..., su)

)]
= E

[
exp

(
t · 0)

)]
= 1 = x0.

Inductive step:

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)]
=

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp

Ij,s1,...,sr,u−k

)]
=

E

[
exp

(
t ·

∑
su−k∈Sp

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)]
=

E

[∏
su−k∈Sp

exp

(
t ·

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)]
.

Define the random variables

Xsu−k
=

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k.

Since Xsu−k
are all independent,

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)]
=

E

[∏
su−k∈Sp

exp
(
t ·Xsu−k

)]
=

∏
su−k∈Sp

E

[
exp

(
t ·Xsu−k

)]
.

(8)

Let Esu−k
be the event that H1(s1, ..., su−k) = 1. Then

E
[
exp

(
t ·Xsu−k

)]
=

E
[
exp

(
t ·Xsu−k

)∣∣∣Esu−k

]
· Pr

[
Esu−k

]
+

E
[
exp

(
t ·Xsu−k

)∣∣∣¬Esu−k

]
· Pr

[
¬Esu−k

]
=

E
[
exp

(
t ·Xsu−k

)∣∣∣Esu−k

]
· 1

np
+ E

[
exp

(
t · 0

)∣∣∣Esu−k

]
·
(
1− 1

np

)
=

1

np
· E
[
exp

(
t ·Xsu−k

)∣∣∣Esu−k

]
+ 1− 1

np
.

(9)

56

Given Esu−k
,

Xsu−k
=∑

u−k≤r≤u,
su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k =

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k + Ij,s1,...,su−k,u−k =

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k+1 + 1 =

F (j, s1, ..., su−k) + 1

Using equation 9,

E
[
exp

(
t ·Xsu−k

)]
=

1

np
· E
[
exp

(
t ·
(
F (j, s1, ..., su−k) + 1

))∣∣∣∣Esu−k

]
+ 1− 1

np
=

1

np
· E
[
exp

(
t · F (j, s1, ..., su−k)

)∣∣∣Esu−k

]
· et + 1− 1

np
=

1

np
· E
[
exp

(
t · F (j, s1, ..., su−k)

)]
· et + 1− 1

np
=

1

np
xke

t + 1− 1

np
.

Combining this with equation 8 we get

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)]
=∏

su−k∈Sp

E

[
exp

(
t ·Xsu−k

)]
=

∏
su−k∈Sp

(
1

np
xke

t + 1− 1

np

)
=

(
xke

t + 1− 1

np

)np

=

xk+1

which concludes the inductive step.

Therefore by equation 7, E[etZ] =
∏d

j=1 E
[
etF (j)

]
=
∏d

j=1 xu = xd
u.

57

D.3 Lemmas for Section 3.2

Lemma 10. Let λ > 0, d ≥ 16uλ, q = 2λ
d , let Xi = |{s ∈ Sp : H0(s) = i}| be

the number of balls in bin i, let E be the event that 1
np

∑n
i=1 e

−qXi ≤ e−q+4q2

and let F be the event that the honest prover fails. Then Pr[F |E] ≤ e−λ.

Proof. Define random function f(x) = 1
np

∑np

i=1 x
Xi . By lemma 11, Pr[F |H0] =(

f (u)(1− q)
)d
. Since f(x) is an increasing function, this is at most

(
f (u)(e−q)

)d
and by lemma 12, it is at most(

e−q ·
(
f(e−q)

e−q

)u
)d

.

Therefore,

Pr[F |E] = E
[
Pr[F |H0, E]

∣∣∣E] = E
[
Pr[F |H0]

∣∣∣E] =
E
[
Pr[F |H0]

∣∣∣f(e−q) ≤ e−q+4q2
]
≤

E

[(
e−q ·

(
f(e−q)

e−q

)u
)d∣∣∣∣∣f(e−q) ≤ e−q+4q2

]
≤

e−(q−4uq2)d.

This is at most e−λ if and only if

(q − 4uq2)d ≥ λ⇐⇒(
2λ

d
− 4u

(
2λ

d

)2
)
d ≥ λ⇐⇒

2− 4u · 4λ
d
≥ 1⇐⇒

1 ≥ 16uλ

d
⇐⇒

d ≥ 16uλ

which is true by our assumption about d.

Lemma 11. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i,
define random function f(x) = 1

np

∑np

i=1 x
Xi and let G(t) be the event that there

is no valid certificate with integer t. Then for all t, Pr[G(t)|H0] = f (u)(1− q).

Proof. Let F (t, s1, ..., sk) be the event that there is no suffix of honest player’s
signatures that works, meaning there is no sk+1, ..., su such that for all k + 1 ≤
i ≤ u, H1(t, s1, ..., si−1) = H0(si) and H2(t, s1, ..., su) = 1. Then

– F (t, s1, ..., su) is true iff H2(t, s1, ..., su) = 0;

58

– for 0 ≤ k < u: F (t, s1, ..., sk) =
∧

sk+1∈Sp

(
(H1(t, s1, ..., sk) ̸= H0(sk+1)) ∨

F (t, s1, ..., sk+1)
)
;

– F =
∧d

i=1 F (i).

We will prove by induction that for all 0 ≤ i ≤ u, Pr[F (t, s1, ..., su−i)|H0] =
f (i)(1−q). The basis case is trivial: Pr[F (t, s1, ..., su)|H0] = Pr[H2(t, s1, ..., su) =
0|H0] = 1− q = f (0)(1− q). Inductive step:

Pr[F (t, s1, ..., su−i−1)|H0] =
np∑
j=1

Pr[F (t, s1, ..., su−i−1)|H0, H1(t, s1, ..., su−i−1) = j]×

Pr[H1(t, s1, ..., su−i−1) = j|H0] =

1

np

np∑
j=1

Pr[F (t, s1, ..., su−i−1)|H0, H1(t, s1, ..., su−i−1) = j] =

1

np

np∑
j=1

Pr[
∧

su−i∈Sp,H0(su−i)=j

F (t, s1, ..., su−i)|H0, H1(t, s1, ..., su−i−1) = j][=]

By the definition of F , F (t, s1, ..., su−i) is independent of H1(t, s1, ..., su−i−1)
even conditioned on H0. Thus,

[=]
1

np

np∑
j=1

Pr[
∧

su−i∈Sp,H0(su−i)=j

F (t, s1, ..., su−i)|H0][=]

When H0 is fixed, events {F (t, s1, ..., su−i) : su−i ∈ Sp, H0(su−i) = j} are
independent since they only depend on the values of H1 and H2 with su−i in
their inputs’ (u− i)-th position. Therefore,

[=]
1

np

np∑
j=1

∏
su−i∈Sp,H0(su−i)=j

Pr[F (t, s1, ..., su−i)|H0] =

1

np

np∑
j=1

∏
su−i∈Sp,H0(su−i)=j

f (i)(1− q) =

1

np

np∑
j=1

(
f (i)(1− q)

)Xj
=

f (i+1)(1− q).

Hence, Pr[G(t)|H0] = Pr[F (t)|H0] = f (u)(1− q).

Lemma 12. n, u ∈ N and define function f(x) = 1
n

∑n
i=1 x

Xi for some coeffi-

cients {Xi} with
∑n

i=1 Xi = n. Then for 0 < z < 1, f (u)(z) ≤ z ·
(

f(z)
z

)u
.

59

Proof. Let 0 < z < 1. Since the function zx is convex, by Jensen’s inequality,
f(z) = 1

n

∑n
i=1 z

Xi ≥ z
1
n

∑n
i=1 Xi = z. So, the sequence z, f(z), f (2)(z), ... is

non-decreasing and is < 1. Also, the function g(x) = f(x)
x is non-increasing since

(
f(x)

x

)′

=

(1
n

∑n
i=1 x

Xi

x

)′

=

(
1

n

n∑
i=1

xXi−1

)′

=

1

n

n∑
i=1

(Xi − 1)xXi−2 =

x−2

n

n∑
i=1

(Xi − 1)xXi =

x−2

n

(∑
i:Xi≥1

(Xi − 1)xXi −
∑

i:Xi=0

1

)
≤

x−2

n

(∑
i:Xi≥1

(Xi − 1)−
∑

i:Xi=0

1

)
=

x−2

n

(∑
i:Xi≥1

Xi −
∑

i:Xi≥1

1−
∑

i:Xi=0

1

)
=

x−2

n
(n− n) = 0.

Hence, for all i ≥ 0, f(i+1)(z)
f(i)(z)

= g
(
f (i)(z)

)
≤ g(z) = f(z)

z , and thus,

f (u)(z) = z ·
u−1∏
i=0

f (i+1)(z)

f (i)(z)
≤ z ·

(
f(z)

z

)u

.

Lemma 13. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i.
Then

Pr

[
1

np

n∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤ 2e−

9
4npq

2

.

Proof. We use Poisson approximation: for 1 ≤ i ≤ np, let Yi be independent
Poisson random variables with mean 1; i.e., for all integers j ≥ 0, Pr[Yi = j] =
1
ej! . Then by [MU05, theorem 5.10],

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤ 2 · Pr

[
1

np

np∑
i=1

e−qYi ≥ 1− q + 4q2

]
. (10)

This arithmetic average can be analyzed using Hoeffding bound, but it doesn’t
give the best result. Instead, we derive a custom moment generating function

60

for the summand. For any t > 0,

E
[
ete

−qYi
]
=

∞∑
i=0

ete
−qi

ei!
=

et−1
∞∑
i=0

et(e
−qi−1)

i!
≤

et−1
∞∑
i=0

1 + t(e−qi − 1) + t2(1−e−qi)2

2

i!
≤

et−1
∞∑
i=0

1 + t(1− qi+ (qi)2

2 − 1) + t2(1−e−qi)2

2

i!
=

et−1
∞∑
i=0

1− tqi+ t (qi)
2

2 + t2(1−e−qi)2

2

i!
[≤]

Since 0 < 1− e−qi ≤ 1− (1− qi) = qi,

[≤]et−1
∞∑
i=0

1− tqi+ t (qi)
2

2 + t2 (qi)2

2

i!
=

et−1

(∞∑
i=0

1

i!
− tq

∞∑
i=0

i

i!
+ (t+ t2)

q2

2

∞∑
i=0

i2

i!

)
[=]

By lemma 4,

[=]et−1

(
e− tqe+ (t+ t2)

q2

2
· 2e
)

=

et
(
1− tq + (t+ t2)q2

)
≤

et · e−tq+(t+t2)q2 =

et(1−q+(1+t)q2).

61

Combining this bound, equation 10 and Markov’s inequality, for any s > 0 we
get

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤

2 · Pr
[
e

s
np

∑np
i=1 e−qYi

≥ es(1−q+4q2)
]
≤

2 ·
E
[
e

s
np

∑np
i=1 e−qYi

]
es(1−q+4q2)

=

2 ·
E
[∏np

i=1 e
s

np
e−qYi

]
es(1−q+4q2)

=

2 ·

∏np

i=1 E
[
e

s
np

e−qYi
]

es(1−q+4q2)
≤

2 ·
∏np

i=1 e
s

np

(
1−q+(1+ s

np
)q2
)

es(1−q+4q2)
=

2 · e
s
(
1−q+(1+ s

np
)q2
)

es(1−q+4q2)
=

2e
−
(
4−1− s

np

)
tq2

.

Setting s = 3
2np, we get

Pr

[
1

np

n∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤ 2e−

9
4npq

2

.

D.4 Lemmas for Section 3.2

Lemma 14. Let λ, α, c > 0,

δ = ecuα
(

λ

dα
+ 1

)
,

Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i and let E be the event

that 1
np

∑np

i=1 e
α·Xi ≤ eα+cα2

with Pr[E] > 0. Then Pr[Z ≥ δdu|E] ≤ e−λ.

Proof. Set

t =
α

ecuα · u
(11)

and define the random sequence {Gk} as follows: let G0 = 1 and for k ≥ 0, let

Gk+1 =
1

np

np∑
i=1

(
Gk · et

)Xi
.

62

By lemma 15, E
[
etZ |H0

]
= Gd

u.
For all 0 ≤ k ≤ u, define yk = kteckα. We will prove by induction that given

event E, for 0 ≤ k ≤ u, Gk ≤ eyk .
Basis case: G0 = 1 ≤ 1 = ey0 .
Inductive step:

Gk+1 =
1

np

np∑
i=1

(
Gk · et

)Xi ≤ 1

np

np∑
i=1

e(yk+t)Xi =

1

np

np∑
i=1

exp
(
(kteckα + t)Xi

)
≤

1

np

np∑
i=1

exp
(
(k + 1)teckαXi

)
[≤].

Since (k + 1)teckα ≤ uteckα ≤ α, the function f(x) = x
(k+1)teckα

α is concave and
by Jensen’s inequality,

[≤]

(
1

np

np∑
i=1

eαXi

) (k+1)teckα

α

≤

(
eα+cα2

) (k+1)teckα

α

=

exp

(
α(1 + cα)

(k + 1)teckα

α

)
=

exp

(
(k + 1)teckα(1 + cα)

)
≤

exp

(
(k + 1)teckαecα

)
=

exp

(
(k + 1)tec(k+1)α

)
=

eyk+1 .

Hence,

E
[
etZ
∣∣E] = E

[
E
[
etZ |H0, E

]∣∣∣E] = E
[
E
[
etZ |H0

]∣∣∣E] = E
[
Gd

u

∣∣∣E] ≤
E
[
(eyu)d

∣∣∣E] = edyu ≤ edα.

By Markov’s inequality,

Pr[Z ≥ δdu|E] = Pr
[
etZ ≥ eδtdu

∣∣E] ≤
E
[
etZ
∣∣E]

eδtdu
≤ edα

eδtdu
= exp

(
− d(δtu− α)

)
.

63

This is at most e−λ if and only if

d(δtu− α) ≥ λ⇐⇒

δtu− α ≥ λ

d
⇐⇒

δ ≥
λ
d + α

tu
[⇐⇒]

Substituting the value of t from equation 11,

[⇐⇒]δ ≥
(
λ

d
+ α

)
ecuα

α
⇐⇒

δ ≥ ecuα
(

λ

dα
+ 1

)
which is true by the statement of the lemma.

Lemma 15. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i,
let t > 0 and define the random sequence {Gk} as follows: let G0 = 1 and for
k ≥ 0, let

Gk+1 =
1

np

np∑
i=1

(
Gk · et

)Xi
.

Then E
[
etZ |H0

]
= Gd

u.

Proof. For 1 ≤ j ≤ d, 1 ≤ i ≤ u, s1, ..., si ∈ Sp and 1 ≤ k ≤ i, let the indicator
random variable

Ij,s1,...,si,k =

{
1 if for all k ≤ r ≤ i, H1(j, s1, ..., sr−1) = H0(sr)

0 otherwise.

Then

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Ij,s1,...,si,1.

Also for 1 ≤ j ≤ d, 0 ≤ i ≤ u and s1, ..., si ∈ Sp, let

F (j, s1, ..., si) =
∑

i+1≤k≤u,
si+1,...,sk∈Sp

Ij,s1,...,sk,i+1.

64

Then Z =
∑d

j=1 F (j) and

E[etZ |H0] =

E

[
exp

(
t ·

d∑
j=1

F (j)

)∣∣∣∣∣H0

]
=

E

[
d∏

j=1

etF (j)

∣∣∣∣∣H0

]
=

d∏
j=1

E
[
etF (j)

∣∣∣H0

]
.

(12)

Now we will prove by induction that for all 1 ≤ j ≤ d, 0 ≤ k ≤ u and
s1, ..., su−k ∈ Sp,

E
[
exp

(
t · F (j, s1, ..., su−k)

)∣∣∣H0

]
= Gk.

Basis case (k = 0): E
[
exp

(
t · F (j, s1, ..., su)

)∣∣∣H0

]
= E

[
exp

(
t · 0)

)∣∣∣H0

]
= 1 =

G0.

65

Inductive step:

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)∣∣∣H0

]
=

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H0

]
=

np∑
b=1

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
×

Pr
[
H1(j, s1, ..., su−k−1) = b

∣∣H0

]
=

1

np

np∑
b=1

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp,
H0(su−k)=b

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[
exp

(
t ·

∑
su−k∈Sp,

H0(su−k)=b

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[∏
su−k∈Sp,

H0(su−k)=b

exp

(
t ·

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[∏
su−k∈Sp,

H0(su−k)=b

exp

(
t ·

(
Ij,s1,...,su−k,u−k +

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

))∣∣∣∣∣
H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[∏
su−k∈Sp,

H0(su−k)=b

exp

(
t ·

(
1 +

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k+1

))∣∣∣∣∣
H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[∏
su−k∈Sp,

H0(su−k)=b

exp
(
t ·
(
1 + F (j, s1, ..., su−k)

))∣∣∣∣∣H0

]
[=]

66

Since with fixed H0, F (j, s1, ..., su−k) for su−k ∈ Sp are all independent,

[=]
1

np

np∑
b=1

∏
su−k∈Sp,

H0(su−k)=b

E

[
exp

(
t ·
(
1 + F (j, s1, ..., su−k)

))∣∣∣∣∣H0

]
=

1

np

np∑
b=1

∏
su−k∈Sp,

H0(su−k)=b

(
et · E

[
exp

(
t · F (j, s1, ..., su−k)

)∣∣∣H0

])
=

1

np

np∑
b=1

∏
su−k∈Sp,

H0(su−k)=b

(
et ·Gk

)
=

1

np

np∑
b=1

(
Gk · et

)Xb

=

Gk+1

which concludes the inductive step.

Therefore by equation 12, E[etZ |H0] =
∏d

j=1 E
[
etF (j)

∣∣∣H0

]
=
∏d

j=1 Gu = Gd
u.

Lemma 16. Let λ > 0, u ∈ N, 0 < α ≤ 1
2u , n ≥

u2λ
2 ,

c =
3

α
·
√

2λ

n
+ 2,

Yi be Poisson random variables with expectation 1 and let

Ai =

{
eαYi if Yi ≤ u

0 otherwise.

Then

Pr

[
1

n

n∑
i=1

Ai ≥ 1 + α+ cα2

]
≤ e−λ.

67

Proof. Let 0 < r ≤ 2
3αu . We calculate the following:

E
[
erAi

]
=

E
[
erAi

∣∣Yi ≤ u
]
· Pr[Yi ≤ u] + E

[
erAi

∣∣Yi > u
]
· Pr[Yi > u] =

E
[
exp

(
reαYi

)∣∣∣Yi ≤ u
]
· Pr[Yi ≤ u] + Pr[Yi > u] =

Pr[Yi ≤ u] ·
u∑

j=0

exp
(
reαj

)
· Pr[Yi = j|Yi ≤ u] + Pr[Yi > u] =

Pr[Yi ≤ u] ·
u∑

j=0

exp
(
reαj

)
· Pr[Yi = j]

Pr[Yi ≤ u]
+ Pr[Yi > u] =

u∑
j=0

exp
(
reαj

)
ej!

+ Pr[Yi > u] =

er−1
u∑

j=0

exp
(
r
(
eαj − 1

))
j!

+ Pr[Yi > u][≤]

The next step uses the fact that when x ≤ 1, ex ≤ 1 + x + x2. First note that
αu ≤ 1

2 by the statement of the lemma. Therefore, r
(
eαj − 1

)
≤ r

(
eαu − 1

)
≤

r(1 + αu+ (αu)2 − 1) = r(αu+ (αu)2) ≤ r · 32αu ≤
2

3αu ·
3
2αu = 1. Thus,

[≤]er−1
u∑

j=0

1 + r
(
eαj − 1

)
+ r2

(
eαj − 1

)2
j!

+ Pr[Yi > u] ≤

er−1
u∑

j=0

1 + r
(
αj + α2j2

)
+ r2

(
αj + α2j2

)2
j!

+ Pr[Yi > u] ≤

er−1
u∑

j=0

1 + r
(
αj + α2j2

)
+ r2

(
3
2αj

)2
j!

+ Pr[Yi > u] =

er−1
u∑

j=0

1 + rαj +
(
r + 9

4r
2
)
α2j2

j!
+ Pr[Yi > u] =

er−1
u∑

j=0

1 + rαj +
(
r + 9

4r
2
)
α2j2

j!
+

∞∑
u+1

1

ej!
≤

er−1
∞∑
j=0

1 + rαj +
(
r + 9

4r
2
)
α2j2

j!
=

er−1

(∞∑
j=0

1

j!
+ rα

∞∑
j=0

j

j!
+

(
r +

9

4
r2

)
α2

∞∑
j=0

j2

j!

)
[=]

68

By lemma 4,

[=]er−1

(
e+ rα · e+

(
r +

9

4
r2
)
α2 · 2e

)
=

er

(
1 + rα+ 2

(
r +

9

4
r2
)
α2

)
≤

ererα+2
(
r+ 9

4 r
2
)
α2

=

er+rα+2
(
r+ 9

4 r
2
)
α2

=

er
(
1+α+2

(
1+ 9

4 r
)
α2
)
.

We are now ready to bound 1
n

∑n
i=1 Ai. Assume s > 0 and s

n ≤
2

3αu . By
Markov’s inequality,

Pr

[
1

n

n∑
i=1

Ai ≥ 1 + α+ cα2

]
=

Pr
[
e

s
n

∑n
i=1 Ai ≥ es(1+α+cα2)

]
≤

E
[
e

s
n

∑n
i=1 Ai

]
es(1+α+cα2)

=

E
[∏n

i=1 e
s
nAi
]

es(1+α+cα2)
=∏n

i=1 E
[
e

s
nAi
]

es(1+α+cα2)
≤∏n

i=1 e
s
n

(
1+α+2

(
1+ 9s

4n

)
α2
)

es(1+α+cα2)
=

es
(
1+α+2

(
1+ 9s

4n

)
α2
)

es(1+α+cα2)
=

exp

(
−
(
c− 2− 9s

2n

)
sα2

)
.

This is at most e−λ if and only if(
c− 2− 9s

2n

)
sα2 ≥ λ⇐⇒ c ≥ λ

sα2
+

9s

2n
+ 2;

thus we set c := λ
sα2 + 9s

2n + 2. Differentiating with respect to s we find that the

minimum is achieved when s =
√
2λn
3α . Then c becomes

3

α
·
√

2λ

n
+ 2.

The requirement that s
n ≤

2
3αu follows from n ≥ u2λ

2 .

69

Lemma 17. Let λ > 0, u, n ∈ N, Yi be Poisson random variables with expecta-
tion 1,

Bi =

{
0 if Yi ≤ u

e
Yi
3u otherwise

and assume

u! · u− e
1
3u

u3
≥ 9e−

2
3 · 2λ.

Then

Pr

[
1

n

n∑
i=1

Bi ≥
1

9u2

]
≤ 2−λ.

Proof. First we bound the following:

E[Bi] =

E[Bi|Yi ≤ u] · Pr[Yi ≤ u] + E[Bi|Yi > u] · Pr[Yi > u] =

E
[
e

Yi
3u

∣∣∣Yi > u
]
· Pr[Yi > u] =

Pr[Yi > u] ·
∞∑

i=u+1

e
j
3u · Pr[Yi = j|Yi > u] =

Pr[Yi > u] ·
∞∑

i=u+1

e
j
3u · Pr[Yi = j]

Pr[Yi > u]
=

∞∑
j=u+1

e
j
3u

ej!
≤

∞∑
j=u

e
j
3u

ej!
≤ e−

2
3

u!

∞∑
j=0

(
e

1
3u

u

)j

=

e−
2
3

u!
· 1

1− exp
(

1
3u

)
u

=
e−

2
3u(

u− e
1
3u

)
u!
.

Then by Markov’s inequality,

Pr

[
1

n

n∑
i=1

Bi ≥
1

9u2

]
≤

E
[
1
n

∑n
i=1 Bi

]
1

9u2

=
9u2

n

n∑
i=1

E[Bi] ≤

9u2 · e−
2
3u(

u− e
1
3u

)
u!

=
9e−

2
3u3(

u− e
1
3u

)
u!
.

This is at most 2−λ if and only if

u! · u− e
1
3u

u3
≥ 9e−

2
3 · 2λ.

70

D.5 Lemmas for Section 4.2

Lemma 18. Assume

µ ≤
(4e)

λrel

4e10
; δ =

√
λrel

4µ
;np ≥ 2µ

and Xi be Bernoulli random variables with probability µ
np

for 1 ≤ i ≤ np. Then

Pr

[
np∑
i=1

Xi ≤ (1− δ)µ

]
≥ 2−λrel+1.

Proof. Let n = np, k = (1− δ)µ, Yi = 1−Xi and p = µ
np

. Then

Pr

[
np∑
i=1

Xi ≤ (1− δ)µ

]
=

Pr

[
n∑

i=1

(1− Yi) ≤ k

]
=

Pr

[
n∑

i=1

Yi ≥ n− k

]
=

n∑
i=⌈n−k⌉

C(n, i) · (1− p)ipn−i[≥]

Define KL divergence D(a ∥ p) = a ln a
p + (1− a) ln 1−a

1−p . By [Ash90], page 115,

[≥] 1√
8n · ⌈n−k⌉

n

(
1− ⌈n−k⌉

n

) · exp
(
− nD

(
⌈n− k⌉

n
∥ 1− p

))
=

1√
8n · ⌈n−k⌉

n

(
1− ⌈n−k⌉

n

) · exp
(
− nD

(
1− ⌈n− k⌉

n
∥ p
))

=

1√
8n · n−⌊k⌋

n

(
1− n−⌊k⌋

n

) · exp
(
− nD

(
1− n− ⌊k⌋

n
∥ p
))

=

1√
8n · ⌊k⌋n

(
1− ⌊k⌋

n

) · exp
(
− nD

(
⌊k⌋
n
∥ p
))
≥

1√
k
· exp

(
− nD

(
⌊k⌋
n
∥ p
))
≥

1√
k
· exp

(
− nD

(
k − 1

n
∥ p
))

.

71

This is at least 2−λrel+1 if and only if

1

2
ln k + nD

(
k − 1

n
∥ p
)
≤ (λrel − 1) ln 2.

1

2
ln k + nD

(
k − 1

n
∥ p
)

=

1

2
ln k + nD

(
(1− δ)p− 1

n
∥ p
)

=

1

2
ln k + n

((
(1− δ)p− 1

n

)
ln

(1− δ)p− 1
n

p
+

(
1− (1− δ)p+

1

n

)
ln

1− (1− δ)p+ 1
n

1− p

)
≤

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1− (1− δ)p+

1

n

)
ln

1− (1− δ)p+ 1
n

1− p

)
=

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1− p+ δp+

1

n

)
ln

(
1 +

δp+ 1
n

1− p

))
≤

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1− p+ δp+

1

n

)
·
δp+ 1

n

1− p

)
=

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1 +

δp+ 1
n

1− p

)
·
(
δp+

1

n

))
=

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1 +

p

1− p
δ +

1

(1− p)n

)
·
(
δp+

1

n

))
[≤]

72

Since p = µ
np
≤ 1

2 ,

[≤] 1
2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1 + δ +

2

n

)
·
(
δp+

1

n

))
=

1

2
ln k + pn

(
(1− δ) · ln(1− δ) +

(
1 + δ +

2

n

)
·
(
δ +

1

pn

))
≤

1

2
ln k + pn

(
(1− δ) · (−δ) +

(
1 + δ +

2

n

)
·
(
δ +

1

pn

))
=

1

2
ln k + µ

(
(1− δ) · (−δ) +

(
1 + δ +

2

n

)
·
(
δ +

1

µ

))
=

1

2
ln k + µ

(
− δ + δ2 + δ +

1

µ
+ δ2 +

δ

µ
+

2δ

n
+

2

µn

)
=

1

2
ln k + µ

(
− δ + δ2 + δ + δ2

)
+ 1 + δ +

2δµ

n
+

2

n
≤

1

2
ln k + 2δ2µ+ 1 + δ +

2δµ

n
+

2

n
≤

1

2
ln k + 2δ2µ+ 1 + 1 + 1 + 2 =

1

2
ln k + 2δ2µ+ 5.

This is at most (λrel−1) ln 2 = λrel−1
log e if and only if 2δ2µ ≤ λrel−1−5 log e

log e − 1
2 lnµ.

We claim 2δ2µ ≤ λrel

2 ≤
λrel−1−5 log e

log e − 1
2 lnµ. The first inequality follows from

the definition of δ. The second follows from

1

2
lnµ ≤

(
ln 2− 1

2

)
λrel − ln 2− 5⇐⇒

lnµ ≤ (2 ln 2− 1)λrel − 2 ln 2− 10⇐⇒

µ ≤ e(2 ln 2−1)λrel

e2 ln 2+10
⇐⇒

µ ≤
(4e)

λrel

4e10

which is true by the assumption about µ.

73

	Approximate Lower Bound Arguments

