
An Efficient Algorithm for Solving the MQ

Problem using Hilbert Series

Kosuke Sakata* Tsuyoshi Takagi*

Abstract

The security of multivariate polynomial cryptography depends on the

computational complexity of solving a multivariate quadratic polynomial

system (MQ problem). One of the fastest algorithms for solving the MQ

problem is F4, which computes a Gröbner basis but requires numerous

calculations of zero reduction that do not affect the output. The Hilbert-

driven algorithm evaluates the number of generators in the Gröbner basis

of degree d using Hilbert series, then it reduces the number of zero re-

duction computations. In this paper, we propose a high-speed algorithm

designed for randomly generated semi-regular MQ problems. Although

the Hilbert-driven algorithm is limited to computing homogeneous ideals,

we demonstrate its applicability to semi-regular non-homogeneous ideals

in this work. Furthermore, when using the Hilbert-driven algorithm to

solve non-homogeneous MQ problems with F4, we demonstrate the effi-

cient achievement of reducing zero reduction for F4. We implemented the

proposed algorithm in C++ and report successful decryption of a new

record m = 21 Type VI equations. This was achieved using an AMD

EPYC 7742 processor and 2TB RAM, and the decryption process was

completed within approximately 9 h.

1 Introduction

Public key cryptography is an indispensable technology for maintaining the secu-

rity of modern information communication systems, and RSA and elliptic curve

cryptography are currently employed. However, with the practical realization of

quantum computers, there is concern regarding the significantly decreased se-

curity of public key cryptography, as Shor’s algorithm [1] may potentially break

current public key encryption schemes in polynomial time. Consequently, re-

search is underway to develop post-quantum cryptographic algorithms capable

of withstanding quantum computers.

*Department of Mathematical Informatics, The University of Tokyo, Japan

1



The National Institute of Standards and Technology (NIST) is currently in

the process of selecting next-generation cryptographic schemes, and evaluating

the infeasibility of breaking these candidates is an important task. Currently,

a selection process for digital signatures is also underway, with multivariate

polynomial cryptography as a major candidate. Multivariate polynomial cryp-

tography relies on the security of the Multivariate Quadratic (MQ) problem.

Gröbner basis computation is a prominent method for computing MQ problems,

and improving Gröbner basis algorithms is closely related to the evaluation of

the computational complexity of MQ problems. Therefore, improving the effi-

ciency of Gröbner basis computation is an extremely important research topic

in computational algebra and cryptography.

There are several algorithms for Gröbner basis computation to solve the

MQ problem, with F4 being particularly well-known[2]. One common issue in

Gröbner basis computation is the excessive calculation of zero reductions, which

do not affect the output, and this problem also persists in F4. The Hilbert-driven

algorithm is recognized as an approach that avoids the calculation of zero re-

ductions [3]. In the Hilbert-driven algorithm, after computing an S-polynomial

of pairs of degree d, the Hilbert function is computed at each step to determine

whether the subsequently calculated S-polynomials of degree d will result in

zero reduction. However, practical implementation requires considerable com-

putational effort due to the frequent computation of Hilbert functions. Further-

more, the Hilbert-driven algorithm only guarantees accuracy for homogeneous

polynomial sequences, making it unsuitable for non-homogeneous polynomial

sequences like the MQ problem.

In this paper, we demonstrate that when the defining field of the polynomial

ring is an infinite field, the Hilbert-driven algorithm can be applied even when

the input is a non-homogeneous polynomial sequence, provided that it is a semi-

regular sequence. This suggests that the zero reduction decision method used

in the Hilbert-driven algorithm can be applied to the MQ problem. Moreover,

this approach is suitable for the non-homogeneous regular sequences defined in

this paper.

Next, assuming the correctness of the Moreno-Soćıas conjecture, we demon-

strate that when the input is a semi-regular sequence, it is possible to compute

the number of elements of each degree in the ouput the Hilbert-driven algo-

rithm without performing Gröbner basis computation. When the input is a

homogeneous sequence, the number of elements of each degree is the number

of the Gröbner basis of each degree. In other words, this eliminates the need

to compute the Hilbert function every time S-polynomials are calculated in the

Hilbert-driven algorithm. Additionally, the algorithm to calculate the number

of bases for each degree is significantly more efficient compared to Gröbner basis

computation. This method is also applicable to the non-homogeneous regular

2



sequences defined in this paper.

Furthermore, we propose an algorithm for efficiently solving the MQ prob-

lem defined over a polynomial ring with a finite field using the aforementioned

approach. If it is possible to select pairs of S-polynomials in a way that avoids

zero reduction, then calculating the number of S-polynomials for each degree is

sufficient, as it equals the number of Gröbner bases. Given a sufficiently large

number of elements in the finite field, we expect that the results obtained from

an infinite field can also be applied to the finite field. Therefore, through com-

putational experiments, we demonstrate the utility of the proposed method for

solving the MQ problem and its reliability in performing Gröbner basis compu-

tations by calculating slightly more S-polynomials than the number of elements

of each degree.

Finally, we applied the proposed algorithm to perform computations for

the Fukuoka MQ Challenge[4], which is a decryption competition for the MQ

problem, using C++. As a result, we report successful decryption, achieved in

approximately 9 h, of a new record problem for Type VI with m = 21 equations

using an AMD EPYC 7742 processor and 2 TB of RAM.

2 Preliminaries

2.1 Notation

In this section, we describe the definitions and symbols used in this paper. Let

Z denote the set of integers, Z≥0 denote the set of non-negative integers, k

denote an arbitrary field, and Fq denote a finite field with q elements. Consider

R = k[x1, . . . , xn] as an n-variable polynomial ring over the coefficient field k

with variables x1, . . . , xn. Elements of R that are composed of the product of

variables with coefficients equal to 1 are referred to as monomials. Monomials

in R take the form xa1
1 · · ·xan

n , where (a1, . . . , an ∈ Z≥0). For any monomials

t and u in R, we use the notation t | u to signify that monomial t divides

monomial u. A monomial ordering , which we denote as <, is fixed in R. It is

generally known that when computing Gröbner bases, using the degree reverse

lexicographic order for monomial ordering allows for efficient calculations. In

this paper, we adopt the degree reverse lexicographic order as the monomial

order.

Let f ∈ R be a polynomial. Among the monomials contained in f , we denote

the monomial with the highest order according to the chosen monomial order

as LM(f) and refer to this as the leading monomial of f . LC(f) represents the

coefficient of the leading monomial of f , and LT(f) is defined as LC(f) ·LM(f),

which we refer to as the leading term of f . The total degree of f is denoted as

deg(f).

3



The ideal generated by the polynomial sequence F = {f1, . . . , fm} is denoted
as 〈F 〉. The set of leading terms of F is denoted as LT(F ). The ideal generated

by the leading terms of F is denoted as 〈LT(F )〉. Let I ⊂ R be an ideal, and let

G be a set of polynomials that generates I. For any f ∈ I, if there exists a g ∈ G

such that LM(g) | LM(f), we refer to G as a Gröbner basis for I. We write f top
i

to denote the sum of the terms in fi with degrees equal to deg(fi). Likewise, we

write f tail
i to denote the sum of the terms in fi with degrees less than deg(fi).

It is important to note that fi = f top
i +f tail

i . We define F top = {f top
1 , . . . , f top

m }.

2.2 Buchberger Algorithm

The algorithm for computing Gröbner bases was proposed by Buchberger in

1965[5], and it is commonly known as the Buchberger algorithm. The S-

polynomial Spoly(f, g) for a pair of polynomials f and g in R is defined as

Spoly(f, g) =
LCM(LT(f),LT(g))

LT(f)
f − LCM(LT(f),LT(g))

LT(g)
g

where LCM represents a function that calculates the least common multiple of

monomials. When we have polynomials f and h in R such that LM(h) | LM(f),

the following calculation is referred to as a reduction:

f − LT(f)

LT(h)
h

Let F = {f1, . . . , fm} ⊂ R be a set of polynomials, and let I be the ideal

generated by F . The Buchberger algorithm is computed with input F through

the following steps:

(B.1) Select a pair generated by elements from F that has not yet been consid-

ered and generate its S-polynomial.

(B.2) Reduce the generated S-polynomial using the elements of F until it cannot

be reduced by F .

(B.3) If the reduced S-polynomial is not zero, include it in F .

(B.4) If there are no more unconsidered pairs of elements in F , stop the algo-

rithm and output F .

When the above algorithm terminates, F is the Gröbner basis for I.

In this paper, we refer to the computation that reduces S-polynomials to zero

as “zero reduction.” Zero reductions are considered unnecessary as they do not

provide additional information about the Gröbner basis. Thus, the algorithm

can be made more efficient by eliminating zero reductions. Several methods

for avoiding zero reductions have been proposed in prior works, such as [6] and

4



[7]. Additionally, we will explain another technique called the Hilbert-driven

algorithm in the following sections.

Theorem 1. [2] Let F be a set of homogeneous polynomials, where I = 〈F 〉,
and Gd be the output of the Buchberger algorithm up to degree d. Then, the

following properties hold:

� Any p ∈ I with deg(p) ≤ d can be reduced to zero by Gd.

� S-polynomials generated by f and g in Gd with deg(LCM(LT(f),LT(g))) ≤
d are reduced to zero by Gd.

A set of Gd with the abovementioned properties is referred to as a d-Gröbner

basis.S

2.3 Hilbert Series

Let k be a field and d ≥ 0 be an integer, and consider Rd as the k-vector

space generated by the monomials of degree d in the polynomial ring R. In this

section, we assume that the ideal I ⊂ R is a homogeneous ideal. For an ideal

I ⊂ R, we define Id as

Id = {f ∈ I | f is a homogeneous polynomial with deg(f) = d} ∪ {0}.

Definition 1. We define the Hilbert function of the quotient ring R/I as fol-

lows:

hR/I : N −→ N
d 7−→ dimk(R/I)d.

Using the function hR/I , we define the Hilbert series HR/I(z) of the quotient

ring R/I as follows:

HR/I(z) =
∑
d≥0

hR/I(d)z
d.

2.4 Hilbert-driven Algorithm

The Hilbert-driven algorithm [3] is an algorithm for finding Gröbner bases that

reduces the number of zero reduction computations. Its input consists of a

set of homogeneous polynomials F and the Hilbert series HR/I(z) of the ideal

generated by these polynomials, denoted by I = 〈F 〉. Using Hilbert series

information, the calculation of unnecessary zero reductions in the algorithm

can be avoided. The relationship between the Hilbert series and Gröbner bases

can be characterized by the following proposition.

5



Theorem 2. [8] Let I be a homogeneous ideal in a polynomial ring R, and

consider a set of polynomials F ⊂ I. For all d ∈ Z≥0, the following holds:

hR/I(d) ≤ hR/⟨LT(F )⟩(d).

Furthermore, the equality holding for all d ∈ Z≥0 is equivalent to the set F

being a Gröbner basis for the ideal I.

To explain the Hilbert-driven algorithm, we use the following definitions:

Definition 2. The degree of the pair generating the S-polynomial Spoly(f, g) is

defined as deg(LCM(LT(f),LT(g))).

The Hilbert-driven algorithm takes a set of homogeneous polynomials F =

{f1, . . . , fm} ⊂ R as input, where ideal I is generated by F . Additionally, the

Hilbert series HR/I(z) =
∑

d≥0 HR/I(d)z
d of the quotient ring R/I is provided

as input. The algorithm transforms the Buchberger algorithm as follows:

When the algorithm stops, F serves as the Gröbner basis of I. The steps of

the algorithm are summarized as follows ’:

(H.1) Choose the smallest d such that hR/I(d) 6= h⟨LT(F )⟩(d).

(H.2) Select a pair whose degree is d generated by elements from F that has not

yet been considered, and generate its S-polynomial.

(H.3) Reduce the generated S-polynomial within F until it cannot be further

reduced by F .

(H.4) If the reduced S-polynomial is not equal to zero, add it to the set F .

(H.5) If HR/I(z) = HR/⟨LT(F )⟩, stop the algorithm and output F .

The key difference from the Buchberger algorithm is in step (H.1). For ev-

ery S-polynomial computed between a pair of a specific degree d, the algorithm

calculates h⟨LT(F )⟩(d) using the current F and compares it with hR/I(d). When

the condition hR/⟨LT(F )⟩(d) = hR/I(d) is met, subsequent S-polynomials of the

same degree d are not computed because they would result in only zero reduc-

tions. This minimizes unnecessary calculations and enhances the efficiency of

the Hilbert-driven algorithm.

The proof that S-polynomials of degree d become zero reductions when the

condition hR/⟨LT(F )⟩(d) = hR/I(d) is met is as follows. Assume that under

this condition, a case exists in which an S-polynomial of degree d do not be-

come a zero reduction. In this case, we denote the reduced S-polynomial as

f and the set of polynomials immediately before the computation of f as F .

Then, at some degree d′ ≤ d, it must hold that hR/I(d
′) = hR/⟨LT(F )⟩(d

′) >

HR/⟨LT(F+f)⟩(d
′). This leads to a contradiction with Theorem 2. In step (H.5),

6



when HR/I(z) = HR/⟨LT(F )⟩ is satisfied, the algorithm terminates. This con-

dition is a consequence of Theorem 2 and indicates that the algorithm has

completed the computation of the Gröbner basis.

2.5 Semi-regular

In this section, let k be an infinite field, and let R be a polynomial ring over k.

It is expected that “randomly” generated homogeneous polynomial sequences

f1, . . . , fm ⊂ R possess the characteristics of a semi-regular sequence.

Definition 3. [9] Let I be a homogeneous ideal in polynomial ring R, and let

f ∈ R be a homogeneous polynomial with deg(f) = d. For any natural number

e > d, if the linear map induced by multiplying by f , (R/I)e−d → (R/I)d, is

full rank, we call f semi-regular on R/I.

Furthermore, for a sequence of homogeneous polynomials f1, . . . , fm ⊂ R, for

all i = 1, . . . ,m, if fi is semi-regular on R/〈f1, . . . , fi−1〉, then we call f1, . . . , fm
a semi-regular sequence.

Definition 4. [9] Let
∑∞

i=0 aiz
i be a series constructed with ai ∈ Z. The ex-

pression [
∑∞

i=1 aiz
i] is defined as a series

∑∞
i=1 biz

i obtained from the following

sequence {bi}i≥0: if aj > 0 for all 0 ≤ j ≤ i, then bi = ai; otherwise, bi = 0.

Using the Hilbert series, semi-regular sequences can be characterized as fol-

lows.

Theorem 3. [9] A sequence of homogeneous polynomials {f1, . . . , fm} with

deg(fi) = di is a semi-regular sequence if and only if the following conditions

are equivalent:

HR/⟨f1,...,fm⟩(z) =

[∏m
i=1(1− zdi)

(1− z)n

]
.

Definition 5. For a semi-regular sequence {f1, . . . , fm} with deg(fi) = di, we

define du, the upper degree, as the largest i for which the coefficients ai ≥ 0 in

the following series:
∞∑
i=0

aiz
i =

∏m
i=1(1− zdi)

(1− z)n

Definition 6. [9] A monomial ideal I ⊂ R is called a weakly reverse lexico-

graphic ideal when it satisfies the following condition: for any minimal generator

m ∈ I, if m′ > m and deg(m′) = deg(m), then m′ ∈ I.

The following conjecture is known as the Moreno-Soćıas conjecture.

Conjecture 1. [10][9] Let F be a semi-regular sequence composed of homoge-

neous polynomials. Let I = 〈F 〉, and consider J = 〈LT(I)〉. Then, J forms a

weakly reverse lexicographic ideal.

7



The definition of a regular sequence in this paper is assumed to be the same

as that in the paper [11].

2.6 F4

F4 is a variant of the Buchberger algorithm, known for its ability to efficiently

compute Gröbner bases[2]. F4 operates by generating multiple S-polynomials

of a given degree d and subsequently generating polynomials to reduce these

S-polynomials. The generated S-polynomials are then collectively reduced.

We outline the general steps of F4 as follows:

(F.1) Select a minimum degree d among the pairs generated by F that have not

yet been computed, and choose all pairs with degrees equal to d.

(F.2) Generate S-polynomials for the selected pairs.

(F.3) Generate all polynomials required to reduce the generated S-polynomials.

(F.4) Reduce the generated S-polynomials by the polynomials generated in (F.3).

(F.5) If the reduced S-polynomials are not zero, include them in F .

The key distinction between F4 and the Buchberger algorithm is in steps (F.1)

and (F.2), where F4 simultaneously selects and generates S-polynomials for

multiple pairs. F4 incorporates a technique introduced to reduce the number

of zero reductions, as described in [6]. However, even with this technique, the

number of zero reductions remains substantial.

3 Non-homogeneous Hilbert-driven Algorithm

In this section, we assume that the coefficient field of the polynomial ring is

infinite. The Hilbert-driven algorithm guarantees accuracy only for the compu-

tation of Gröbner bases of homogeneous ideals. In this section, we demonstrate

that the Hilbert-driven algorithm can be applied until the algorithm stops when

non-homogeneous ideals form a semi-regular sequence.

Theorem 4. Let F be a non-homogeneous semi-regular sequence. Consider Gd

and Gtop
d as the outputs obtained by running the Hilbert-driven algorithm up to

degree d on F and F top, respectively. Then, calculations by the Hilbert-driven

algorithm up to the upper degree du ensure that LT(Gd) = LT(Gtop
d ) for each

degree d.

Proof. Assume that, up to degree d, LT(Gd) = LT(Gtop
d ), with the condition

that LT(gi) = LT(gtopi ) for all i (they are sorted accordingly). Now, we prove

that LT(Gd+1) = LT(Gtop
d+1).

8



First, we prove LT(Gd+1) ⊃ LT(Gtop
d+1). Let g be an element of Gtop

d+1. If the

degree of g is d or less, then according to the assumption LT(Gd) = LT(Gtop
d ),

LT(g) is also contained in LT(Gd+1). Now, we consider the degree of g as d+1.

Note that g is derived by reducing S-polynomials whose pair degrees are up to

d + 1. Let g be g = Σt
ihig

top
i , where (gtopi ∈ Gtop

d , t is a natural number. Now,

we consider g′ = Σt
ihigi = Σt

ihig
top
i + Σt

ihig
tail
i , (gi ∈ Gd). g′ can be generated

by reducing S-polynomials formed by pairs of elements in Gd, where the degree

of each pair is d + 1. Therefore, according to the conditions of Gd+1, we have

LT(g) = LT(g′) ∈ LT(Gd+1). Hence, LT(Gd+1) ⊂ LT(Gtop
d+1).

We next prove LT(Gd+1) ⊂ LT(Gtop
d+1). Consider g as an element of Gd+1.

If g is also an element of Gd, then due to the assumption LT(Gd) = LT(Gtop
d ),

we have LT(g) ∈ LT(Gtop
d ) ⊂ LT(Gtop

d+1). Therefore, consider g ∈ Gd+1 \Gd. In

this case, g is derived by reducing S-polynomials whose pair degrees are up to

d + 1. Assume that the degree of g is less than d + 1. We prove that, in this

case, g = 0.

Let g be g = Σm
i hifi = Σm

i hif
top
i + Σm

i hif
tail
i , where m represents the

number of elements in F . Furthermore, we define the set h
(e)
i i, e ⊂ R such that

hi = Σeh
(e)
i and deg(h

(e)
i fi) = e. As the degree of g is less than d+ 1, we have

Σm
i h

(d+1)
i f top

i = 0. As F top is semi-regular, Σm
i h

(d+1)
i f top

i is a trivial syzygy[11].

Hence, we can express h
(d+1)
i using riji, j ⊂ R such that rij = −rji and rii =

0 as follows: h
(d+1)
i = Σm

j rijf
top
j . Therefore, we can write Σm

i h
(d+1)
i f tail

i =

Σm
i (Σm

j rijf
top
j )f tail

i . Here, focusing on the component of degree d in g, it can be

observed that it is in 〈F top〉. Because Gtop
d serves as a d-Gröbner basis of 〈F top〉,

the components of degree d in g can be reduced to zero by Gtop
d . Considering

LT(Gd) = LT(Gtop
d ), it follows that the components of degree d in g can be

reduced to a certain polynomial whose total degree is smaller than d by Gd. By

repeating this process, we find that g is contained within 〈F top〉, and it can be

reduced by Gtop
d and in turn also by Gd. However, because this does not satisfy

the conditions of Gd+1, we can conclude that g = 0. Let the degree of g be d+1.

We represent g as g = Σt
ihigi, where t is a natural number. When considering

Σt
ihig

top
i , this polynomial has a degree of d+ 1 and is contained within 〈F top〉.

Therefore, by Theorem 1, it is divisible by Gtop
d . Hence, there exists a g′ ∈ Gtop

d

such that LT(g′) divides LT(g). Consequently, LT(Gd+1) ⊂ LT(Gtop
d+1).

Based on the above, we have proved that LT(Gd+1) = LT(Gtop
d+1).

From Theorem 4, it follows that even if the computed sequence of polynomi-

als is non-homogeneous, as long as it is a semi-regular sequence, we can use the

algorithm described in Section 2.4. However, when the algorithm terminates,

the output is not a Gröbner basis. To compute a Gröbner basis, it is necessary

to run another Gröbner basis algorithm after the termination of the algorithm

described in Section 2.4 in order to calculate the uncomputed S-polynomials.

9



Furthermore, the proof of Theorem 4 allows us to establish the following

corollary.

Corollary 1. Let F be a non-homogeneous regular sequence. Consider Gd

and Gtop
d as the outputs obtained by running the Hilbert-driven algorithm up to

degree d on F and F top, respectively. Then, calculations by the Hilbert-driven

algorithm ensure that LT(Gd) = LT(Gtop
d ) for each degree d.

From this corollary, it follows that the Hilbert-driven algorithm is applicable

to regular sequences as well.

4 Proposal of an Algorithm to Calculate the

Number of the Gröbner Basis

In this chapter, assuming the validity of Conjecture 1, we present an algorithm

for computing the number of Gröbner bases at each degree for a semi-regular

homogeneous polynomial sequence.

This algorithm was inspired by the Hilbert-driven algorithm and is based

on the idea of utilizing the Hilbert series. When employing this algorithm, the

need to compute HR/⟨LT(F )⟩(d) at each step of S-polynomial calculation in the

Hilbert-driven algorithm is eliminated, resulting in more efficient computations.

Algorithm 1 is an algorithm to compute the number of Gröbner bases for each

degree d.

Algorithm 1 Calculating the number of Gröbner bases for each degree d

Require: A semi-regular homogeneous sequence, F = {f1, . . . , fm}
Ensure: The number of a Gröbner bases for each degree d, {Nd}0≤d≤du

1: HR/⟨F ⟩(z)←
[∏m

i=1(1−zdi )

(1−z)n

]
, (di = deg(fi))

2: du ← upper degree of {f1, . . . , fm}
3: LTG ← ∅
4: d← 0

5: while d ≤ du do

6: Bd ← {m ∈Md | m /∈ 〈LTG〉}
7: Nd ← #Bd − hR/⟨F ⟩(d)

8: LTG ← LTG ∪ {top Nd elements from Bd in descending order}
9: d← d+ 1

10: end while

11: return {Nd}0≤d≤du

InAlgorithm 1, the input is a semi-regular sequence {f1, . . . , fm} according

10



to Definition 3, and the output is the number of Gröbner bases for each degree

d ≤ du, denoted as {Nd}0≤d≤du
. In line 1, we computeHR/⟨F ⟩(z) using Theorem

3. In line 2, we calculate the upper degree, as defined in Definition 5. Lines 3

and 4 initialize LTG and d. Subsequently, we proceed with the loop from lines

6 to 10 up to degree du. In line 6, we define the set of monomials in R of degree

d as Md and calculate the subset of Md not contained in 〈LTG〉 as Bd. Line

7 computes Nd as the difference between the number of elements in Bd and

coefficient hR/⟨F ⟩(d) from the Hilbert series. In line 8, the top Nd monomials

from Bd are added to the set LTG in descending order according to the term

order. Line 9 updates the degree d for the next iteration.

Here, we explain that {Nd}0≤d≤du
is the number of the Gröbner basis of each

degree d ≤ du. At the beginning of the loop, we assume that LTG = LT(Gtop
d−1)

is satisfied. Then, Bd consists of monomials that are not divisible by LT(Gd−1).

Thus, Bd are candidates for the leading terms of Gröbner basis elements at

degree d. The fact that each element in Bd cannot divide another element in Bd

and the definition of the Hilbert series implies that the number of the Gröbner

basis at degree d is given by #Bd−hR/⟨F ⟩(d). Assuming Conjecture 1 is correct,

we can conclude that the leading terms of the Gröbner basis at degree d come

from the Nd monomials with the largest order in Bd. Therefore, it follows that

LTG = LT(Gd). Consequently, when the algorithm terminates, we conclude

that LTG = LT(G).

Thus far, Algorithm 1 has been described with a focus on homogeneous

semi-regular sequences as inputs. For non-homogeneous semi-regular sequences,

by Theorem 4, it is possible to compute the number of elements in the output

of the algorithm in Section 2.4.

We consider the computational complexity of Algorithm 1. It is known

that the computational complexity of a Gröbner basis calculation is determined

by polynomial reduction, that is, matrix operations[11]. Because the proposed

algorithm does not involve matrix operations and calculates only the divisibility

of monomials, its computational complexity is low. In fact, in our C++ imple-

mentation, the computation time of our proposed algorithm is less than 1% of

that of Gröbner basis calculation.

Furthermore, Algorithm 1 can be extended even when the input is a regular

sequence.

5 Proposal of the Fast Algorithm for the MQ

Problem

In this section, we propose an algorithm to solve the MQ problem over the finite

field Fq quickly.

11



The basic concept of the proposed algorithm is as follows. Because the Buch-

berger algorithm calculates S-polynomials one-by-one, it is possible to check

(H.1) one-by-one, then the Hilbert-driven algorithm in Section 2.4 can be used.

F4 achieves high speed by simultaneously generating and reducing multiple S-

polynomials of a certain degree d at once, as shown in Section 2.6. However,

because all S-polynomials of pairs of degree d are calculated, (H.1) cannot be

included in the algorithm. We now consider applying the idea of the Hilbert-

driven algorithm to F4. As can be seen from Sections 2.2 and 2.6, the algorithm

generates S-polynomials, reduces them, and obtains elements of a Gröbner basis

if they do not result in zero reduction. Hence, it is necessary to compute at least

as many S-polynomials as the number of elements of the Gröbner basis. Con-

versely, if all S-polynomials of selected pairs do not result in zero reduction, the

number of S-polynomials to be calculated is equal to the number of Gröbner ba-

sis elements. The Hilbert-driven algorithm can eliminate zero reductions from

the Hilbert series information, and we propose a method for calculating the

number of elements {Nd}0≤d≤du
in Section 4 (Algorithm 1) based on this

idea.

By setting the number of selected pairs to {Nd}0≤d≤du in (F.1), we can utilize

a method to skip the zero reduction in the Hilbert-driven algorithm. However,

if the selected pairs in (F.1) include a zero reduction, the computation will fail.

Hence, to select pairs with degree d > 4, we propose the following approach:

(#) When selecting pairs of degree d in (F.1), select pairs generated

by polynomials of degree d− 1.

This selection method is experimentally appropriate for the MQ problem. How-

ever, because the MQ problem is defined over a finite field, there is still a

chance of inadvertently selecting zero reductions using this method. Therefore,

the success rate of the algorithm can be improved by increasing the number of

computed S-polynomials slightly beyond the number of {Nd}0≤d≤du
. In the pro-

posed algorithm, as a way to calculate a slightly higher number of S-polynomials

(e ≥ 0), we compute {Nd}0≤d≤du + e elements of S-polynomials.

5.1 Proposed Algorithm

The proposed algorithm performs according to the following (F’.1) to (F’.5).

The input of the algorithm is a polynomial sequence F = {f1, . . . , fm}, which is

a semi-regular sequence for the MQ problem. First, Algorithm 1is employed,

and the output is denoted by {Nd}0≤d≤du
. When the degrees of pairs to be

computed are d = 2, 3, 4, we compute F4 as described in Section 2.6. For

degrees 5 ≤ d ≤ du, we proceed as follows:

(F’.1) Determine the minimum degree d among pairs of elements in F that have

12



not yet been computed. Select Nd + e pairs whose degrees of pairs are

equal to d according to the (#) selection method.

(F’.2) Generate S-polynomials for the selected pairs.

(F’.3) Generate all polynomials that are reducible by the generated S-polynomials.

(F’.4) Reduce the generated S-polynomials by the polynomials generated in (F’.3).

(F’.5) If the reduced S-polynomials are not equal to zero, include them in F .

After completing the calculations for degree du, we perform calculations similar

to those in F4.

The difference from F4 lies in (F’.1), and this modification significantly re-

duces the number of computed S-polynomials. A comparison of the number of

computed S-polynomials is presented in Section 5.3.

5.2 Success Probability of the Proposed Algorithm

In this section, we confirm the effectiveness of the proposed algorithm through

computational experiments. MQ(Fq, n,m) refers to the MQ problem with a field

defined as Fq, n variables, and m polynomials. Table 1 lists the numerical values

representing the success rates of the algorithm in Section 5.1. We conducted

100 trials for each cell. The parameter e was varied from 0 to 3. For e = 0,

the number of computed S-polynomials was set as the output of the algorithm

proposed in Section 4. The experiments used the fields F31 and F11, and random

MQ problems were generated with m = n+1. The value of n was varied from 8

to 14, and the corresponding upper degrees du for each n are listed in the table.

By individually examining each problem, we observe that the success rate of

the algorithm was relatively low when e = 0. This is because, when computing

the selected pairs with the proposed algorithm, some S-polynomials become zero

reductions. Furthermore, the success rate of the proposed algorithm decreased

as the number of variables n increased. As n increases, the upper degree du
also increases, leading to an increased number of degrees to compute. This, in

turn, increases the number of trial attempts for the algorithm’s selected pairs,

which raises the likelihood of failure. When considering the choice of finite

fields, there is a trend in which problems defined over F11 have a lower success

rate than those defined over F31. This difference is attributed to the fact that

the problems considered are defined over finite fields, whereas the theoretical

framework established in previous sections primarily applies to infinite fields.

However, for all the aforementioned problems, it is possible to achieve a

success rate close to 100% with the proposed algorithm by sufficiently increas-

ing the parameter e. As demonstrated in the following section, increasing the

number of computed S-polynomials has a small impact on the computational

13



Table 1: Success probability of the proposed algorithm

n du
e

0 1 2 3

MQ(F11, n, n+ 1)

8 5 92% 100% 100% 100%

9 5 91% 99% 100% 100%

10 6 80% 97% 100% 100%

11 6 85% 97% 100% 100%

12 7 76% 98% 98% 100%

13 7 61% 93% 100% 100%

14 8 59% 97% 99% 100%

MQ(F31, n, n+ 1)

8 5 99% 100% 100% 100%

9 5 98% 100% 100% 100%

10 6 83% 100% 100% 100%

11 6 96% 99% 100% 100%

12 7 87% 100% 100% 100%

13 7 89% 99% 100% 100%

14 8 86% 99% 100% 100%

complexity. Therefore, it has been confirmed that the proposed algorithm can

perform Gröbner basis computations with a significantly high success rate while

reducing the calculation of S-polynomials that result in zero reductions.

5.3 Comparison of the Numbers of Computed S-polynomials

The results of the comparison between F4 and the proposed algorithm for the

number of computed S-polynomials at the highest degree, which is degree du,

are presented in Table 2. The number of S-polynomials computed using F4 is

calculated based on the results of the V2.27-9 implementation in Magma. For

the proposed algorithm, the number of S-polynomials computed is equal to the

number of Gröbner bases of degree du, which corresponds to the output of Al-

gorithm 1 (Ndu
). When considering the value of e, the number of S-polynomials

computed using the proposed algorithm is represented as Ndu
+ e. The ratio is

obtained by dividing the “Number of S-polynomials computed at degree du in

F4” by the “Number of Gröbner bases of degree du.” The proposed algorithm

computes significantly fewer S-polynomials than F4. Because the calculation

of Gröbner bases is dominated by the reduction of S-polynomials in the algo-

rithm, reducing the number of computed S-polynomials significantly decreases

the computational complexity. Moreover, as n increases, the ratio in the ta-

ble consistently increases. Thus, the proposed algorithm demonstrates that

as problems become more difficult, the computational complexity significantly

14



Table 2: Comparison of Numbers of Computed S-Polynomials

The number of S-polynomials

computed at degree du in F4

The number of a Gröbner

basis of degree du (Ndu
)

Ratio

n

8 178 42 4.23

9 259 63 4.11

10 737 132 5.58

11 1059 187 5.66

12 3003 429 7.00

13 4014 572 7.01

14 11804 1430 8.25

decreases compared to F4, allowing for faster computations. Furthermore, to

achieve a success rate close to 100% for the proposed algorithm, increasing the

parameter e is necessary. However, if e is appropriately chosen, the impact of

increased e on the computational complexity is expected to be small.

5.4 New Record in the Fukuoka MQ Challenge

To evaluate the hardness of Multivariate Quadratic (MQ) problems, the Fukuoka

MQ Challenge has been held since 2015[4]. The problems are classified into

Types I to VI, depending on the choice of the finite field Fq, number of vari-

ables n, and number of equations m. In this work, we tackled the Type VI

problem with F31 as the finite field and the relation n ∼ 1.5m. The previous

record for Type VI had n = 30 variables and m = 20 equations. The reported

solving time was approximately 11 days using M4GB[13] on a system with 2×
Intel Xeon CPU E5-2650 v3 and 256 GB of RAM (the number of trials for

the hybrid approach[12] was not disclosed). In our decryption experiment, we

focused on a Type VI problem with n = 31 variables and m = 21 equations.

We implemented the proposed algorithm in C++ and ran it on a machine with

an AMD EPYC 7742 CPU and 2 TB of RAM. To achieve a 100% success rate,

as indicated in Table 1, we chose to compute a slightly larger number of S-

polynomials by setting e = 5. The implementation targeted dense matrices

over F31 and achieved substantial acceleration through parallel computing in

both matrix multiplication and row echelon form. In addition, we attempted to

solve the MQ problem with n = 20 variables and m = 21 equations in a Type

VI instance using a hybrid approach. Due to the memory limitations of the

experimental environment, we executed four simultaneous Gröbner basis com-

putations. Consequently, we successfully obtained the solution for seed 0 in the

15



Type VI MQ Challenge, breaking the previous record in approximately 9 h.

(4, 1, 15, 29, 9, 26, 9, 25, 1, 14, 0, 8, 12, 21, 10, 2, 1, 30,

21, 13, 24, 15, 15, 17, 16, 28, 18, 15, 5, 13, 24) ∈ F31
31

6 Conclusion

In this study, we discuss the difficulty of the MQ problem, which underlies

the security of multivariate polynomial cryptography. We proposed a method

to minimize the number of S-polynomials of degree d to be computed when

solving the MQ problem over finite fields. To achieve this, we provided evi-

dence that the Hilbert-driven algorithm is applicable to both non-homogeneous

semi-regular sequences up to the upper degree and non-homogeneous regular

sequences at all degrees without modifications. Furthermore, we proposed an

algorithm to compute the number of elements of Gröbner bases at each degree

d for both sequence types under the assumption of Moreno-Socias’s conjecture.

Using our proposed algorithm, we successfully decrypted a Type VI problem

with m = 21 equations, achieving a new record in the Fukuoka MQ Challenge

in approximately 8 h using an AMD EPYC 7742 processor and 2 TB of RAM.

Future challenges include developing a selection method for non-zero-reduction

S-polynomials for degrees d = 3, 4 over finite fields, establishing a method to

select non-zero-reduction S-polynomials for general semi-regular problems, theo-

retical complexity evaluations of the MQ problem using our proposed algorithm,

and further updates to Type VI and other Type problems in the MQ Challenge

and others.

Acknowledgement

This research was conducted under a contract of “Research and development on

new generation cryptography for secure wireless communication services” among

“Research and Development for Expansion of RadioWave Resources(JPJ000254)”,

which was supported by the Ministry of Internal Affairs and Communications,

Japan.

References

[1] Peter W. Shor. “Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer”, SIAM Jounal on Computing,

26, issue 5, 1484–1509, 1997.

[2] Faugère J.-C., “A new efficient algorithm for computing Gröbner Bases

(F4)”, Journal of Pure and Applied Algebra, 139, 6–88, 1999.

16



[3] Traverso C., “Hilbert functions and the buchberger algorithm”, Journal of

Symbolic Computation, 22(4), 355-376, 1996.

[4] Yasuda T., Dahan X., Huang Y-J., Takagi T., Sakurai K., “MQ Chal-

lenge: Hardness Evaluation of Solving Multivariate Quadratic Prob-

lems”, NIST Workshop on Cybersecurity in a Post-Quantum World, 2015.

https://www.mqchallenge.org/

[5] Buchberger, B., “Ein Algorithmus zum Auffinden der basiselemente des

Restklassenringes nach einem nulldimensionalen Polynomideal”, PhD the-

sis, Universität Innsbruck, 1965.

[6] Gebauer R., Möller H. M., “On an installation of Buchberger’s algorithm”,

Journal of Symbolic Computation, 6, 275-286, 1988.

[7] Faugère J.-C., “A new efficient algorithm for computing Gröbner bases with-

out reduction to zero (F5)”, In Proceedings of the 2002 International Sym-

posium on Symbolic and Algebraic Computation, 75–83, 2002.

[8] Cox D., Little J., O’Shea D., “Ideals, Varieties, and Algorithms ”, Springer-

Verlag, New York, 1997.

[9] Pardue K., “Generic sequences of polynomials”, Journal of Algebra, 324(4),

579-590, 2010.

[10] Moreno-Soćıas G., “Autour de la fonction de Hilbert-Samuel (escaliers

d’idéaux polynomiaux)”, Thèse, École Polytechnique, 1991.

[11] Bardet M., Faugére J.-C., Salvy B., Yang B-Y., “Asymptotic behaviour of

the degree of regularity of semi-regular polynomial systems”, IN Proceedings

of MEGA, 8th International Symposium on Effective Method in Algebraic

Geometry, 2006.

[12] Bettale L., Faugère J.C., Perret L., “Hybrid approach for solving multi-

variate systems over finite fields”, Journal of Mathematical Cryptology, 3,

issue 3, 177–197, 2009.

[13] Makarim R. H., Stevens M. , “M4GB: An efficient Grb̈ner-basis algorithm”,

In Proceedings of the 2017 International Symposium on Symbolic and Alge-

braic Computation, 293–300, 2017.

[14] Ito T., Shinohara N., Uchiyama S., “An efficient F4-style based algorithm

to solve MQ problems”, in: Proc. of 14th International Workshop on Security

2019, 37–52, 2019.

17



A Improving the Efficiency of Algorithm 1

Here, we describe an efficient computation method for Algorithm 1. Bd is a

set of monomials that cannot be divided by LT(Gtop
d−1); therefore, it is not nec-

essary to calculate all Md. Efficient computation is possible using the following

approach:

M ′
d ← {r ·m | r ∈M1,m ∈ Bd−1}

Bd ← {m ∈M ′
d | m /∈ 〈LTG〉}

where M ′
d is smaller than Md, which relaxes the divisibility checks. In addition,

the elements in Md \M ′
d are included in 〈LTG〉.

B Algorithm 1 for a Regular Sequence

When we compute a regular sequence, it may not have upper degree because

the Hilbert series is a infinte series. In that case, In this case, the following

algorithm is useful.

Algorithm 2 Calculating the number of Gröbner bases for each degree d

Require: A regular homogeneous sequence, F = {f1, . . . , fm}
Ensure: The number of a Gröbner bases for each degree d, {Nd}0≤d≤du

1: HR/⟨F ⟩(z)←
∏m

i=1(1−zdi )

(1−z)n , (di = deg(fi))

2: LTG ← ∅
3: d← 0

4: while HR/I(z) 6= HR/⟨LT(F )⟩ do

5: Bd ← {m ∈Md | m /∈ 〈LTG〉}
6: Nd ← #Bd − hR/⟨F ⟩(d)

7: LTG ← LTG ∪ {top Nd elements from Bd in descending order}
8: d← d+ 1

9: end while

10: return {Nd}0≤d≤du

18


