
Security Bounds for Proof-Carrying Data
from Straightline Extractors

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Ziyi Guan
ziyi.guan@epfl.ch

EPFL

Shahar Samocha
shahars@starkware.co

StarkWare

Eylon Yogev
eylon.yogev@biu.ac.il

Bar-Ilan University

October 24, 2023

Abstract

Proof-carrying data (PCD) is a powerful cryptographic primitive that allows mutually distrustful
parties to perform distributed computation in an efficiently verifiable manner. Applications of PCD have
sparked keen interest within the applied community and industry.

Known constructions of PCD are obtained by recursively-composing SNARKs or related primitives.
Unfortunately, these constructions do not come with security analyses that yield useful concrete security
bounds, leaving practitioners in the dark about how to securely instantiate PCD constructions.

In this work we study the concrete security of recursive composition, with the goal of enabling
practitioners to set efficient parameters for certain PCD constructions of practical interest. Our main
result is that PCD obtained from SNARKs with straightline knowledge soundness has essentially the
same security as the underlying SNARK. In this setting, recursive composition incurs no security loss.

We describe how straightline knowledge soundness is achieved by SNARKs in several oracle models,
including SNARKs that are deployed in practice. Crucially, SNARKs in these settings can be relativized,
allowing us to construct PCD without instantiating the SNARK’s oracle explicitly. This results in a highly
efficient security analysis of PCD that makes black-box use of the SNARK’s oracle.

As a notable application, our work offers an idealized model that provides useful, albeit heuristic,
guidance for setting the security parameters of recursive STARKs currently used in blockchain systems.

Keywords: proof-carrying data; succinct non-interactive arguments; relativization; concrete security

1



Contents

1 Introduction 3
1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Techniques 7
2.1 Concrete security of PCD from relativized SNARKs . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Application: improved concrete security for black-box PCD constructions . . . . . . . . . . 10
2.3 Application: a paradigm to set security for hash-based PCD . . . . . . . . . . . . . . . . . . 11
2.4 Example: a real-world compliance predicate with unbounded size and depth . . . . . . . . . 14
2.5 Technical extension: a more general analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Preliminaries 18
3.1 Non-interactive arguments in oracle models . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Proof-carrying data in oracle models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 From relativized ARG to PCD: construction 21

5 From relativized ARG to PCD: security reduction 23
5.1 Knowledge soundness error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Extraction time bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Relativized non-interactive arguments with straightline extraction 32
6.1 The arithmetized random oracle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 The signed random oracle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 The random oracle model (and any other oracle model) . . . . . . . . . . . . . . . . . . . . 32

7 Technical extension: probabilistic extractors with oracle access 35
7.1 Probabilistic oracle extractor for PCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Knowledge soundness error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 Extraction query bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4 Extraction time bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Acknowledgments 42

References 42

2



1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that allows mutually distrustful
parties to perform distributed computation in an efficiently verifiable manner. PCD generalizes the notion
of incrementally-verifiable computation (IVC) [Val08], and has found applications in enforcing language
semantics [CTV13], verifiable MapReduce computations [CTV15], image authentication [NT16; BD22],
verifiable registries [TFZBT22], blockchains [Mina; BMRS20; CCDW20; KB23], and more.

Known PCD constructions (and practical IVC constructions) are obtained via recursive proof composition,
a framework for building PCD from simpler primitives such as SNARKs [BCCT13; BCTV14; COS20] or
accumulation schemes [BGH19; BCMS20; BDFG21; BCLMS21; KST22; KS22; BC23]. Constructions
differ, but the high-level idea is similar: to prove the correctness of t computation steps given a correctness
proof for t− 1 steps, one proves that “step t is correct and there is a valid proof for the first t− 1 steps”.

There are several practically efficient constructions of PCD, which has sparked keen industry interest
and led to real-world deployments [ML20; SW22; PL22; P23]. However, the concrete cost of the security
reduction from PCD to the underlying primitive is not well understood: there are no comprehensive guidelines
for securely instantiating PCD constructions. In fact, an initial motivation for this work was the desire to
understand the concrete security of recursive STARKs [SW22] used in blockchain systems.

The prevailing practice is setting parameters so that the underlying SNARK or accumulation scheme
achieves the desired security level, and then assuming that the resulting PCD construction inherits the same
security level. But this fails to account for the potential security loss in the security reduction from PCD to
the primitive(s) underlying its construction.

This state of affairs leads us to ask a basic question:

What is the concrete security cost of recursive proof composition?

Known security analyses. The security analysis of most PCD constructions works only for a constant
number of recursions ([BCCT13; BCTV14; BGH19; COS20; BCMS20; BDFG21; BCLMS21; KST22;
KS22; BC23]). Informally, this is because the security reduction recursively invokes an underlying knowledge
extractor that, at each invocation, incurs a polynomial blow up in time/size relative to the prior invocation.
Moreover, in many settings, this blow up is unknown because it originates from an underlying knowledge
assumption (e.g., a knowledge-of-exponent assumption). Overall this state of affairs implies that one is unable
to set security parameters, and that the security loss is exponential in the recursion depth. This is considerably
worse than “the security of PCD is approximately that of the underlying primitive” (the prevailing practice).
What about oracle models? The aforementioned inefficiencies of knowledge extraction generally do not
arise for SNARKs (or accumulation schemes) constructed in oracle models. This is because the knowledge
extractor is explicit (it is constructed rather than assumed), and deduces a witness merely by analyzing the
prover’s queries to the oracle and their answers; this does not require any access to the prover itself, and
avoids rerunning the prover multiple times (which incurs significant time or error overheads). Unfortunately,
PCD constructions typically make a non-black-box use of the underlying SNARK or accumulation scheme,1

which requires instantiating the oracle (a heuristic step), and so the security reduction cannot take advantage
of the efficient knowledge extraction previously available in the oracle model. Instead, the security reduction
assumes some (non-black-box) knowledge extractor for the heuristically derived scheme.
Hope: black-box constructions of PCD. There are few works that, remarkably, construct PCD in oracle
models without instantiating the oracle (that is, while making a black-box use of the oracle) [CT10; CCS22;

1The statement that “there exists a valid proof” refers to the verifier of the underlying SNARK or accumulation scheme. As such,
the resulting PCD scheme makes non-black-box use of the verifier for the underlying scheme.

3



CCGOS23]. The key step is obtaining a relativized SNARK, a SNARK in an oracle model that can prove
computations that themselves involve calls to the oracle. Then recursive proof composition can be used to
directly obtain PCD in the same oracle model, via a security analysis that involves an explicit extractor.

1.1 Our results

In this paper we show that PCD constructions obtained from SNARKs with straightline knowledge soundness
have essentially the same security as the underlying SNARK. Namely, in this setting recursive composition
has essentially no security loss, and, in particular, is secure for any number of recursions. Afterwards, we
explain how this setting arises in several constructions of interest, including in deployed systems. Our work
can thus be used as a guide to set security parameters in practice for these PCD constructions.2

PCD from straightline extraction. Suppose that we are given a relativized SNARK in a certain oracle
model. The canonical construction of PCD from a SNARK in the standard model [BCCT13] straightforwardly
extends to the relativized case. Indeed, the SNARK prover can prove the correctness of oracle computations,
and in particular can prove the correctness of the SNARK verifier (which queries the oracle).

We show that if the relativized SNARK has a straightline extractor then the resulting PCD scheme has
a straightline extractor with the same error as the underlying SNARK, without paying for the number of
recursion steps. This is tight as the PCD scheme cannot be more secure than the underlying SNARK.

Theorem 1 (informal). Let ARG be a relativized non-interactive argument in an oracle model, and let PCD
be the PCD scheme obtained from ARG via the canonical construction (adapted to the relativized setting).

Suppose that ARG has a straightline extractor with knowledge soundness error κARG(λ, q), where λ ∈ N
is the security parameter and q ∈ N is the query bound on the adversary (maximum number of queries by the
adversary to the oracle). Then PCD has a straightline extractor with knowledge soundness error

κPCD(λ, q, N) ≤ κARG(λ, q) .

Above N is a bound on the size of the PCD distributed computation (i.e., the number of recursive verifications).

The above theorem is the first result to show security of PCD for any distributed computation regardless of
size or depth. All prior security analyses of PCD work only for distributed computations with constant depth
(in the standard model) or with polynomial size (in oracle models).3 This enables, for example, establishing
security for notable classes of distributed computations in practice; we give an example in Section 2.4.

1.1.1 Application: black-box PCD constructions

Several works [CT10; CCS22; CCGOS23] construct PCD in oracle models, with black-box security reductions
to falsifiable cryptographic assumptions.4 While [CCS22] constructs a rewinding knowledge extractor (and
leaves open the question of constructing a straightline knowledge extractor), [CT10] and [CCGOS23]
construct straightline knowledge extractors in their respective oracle models. These latter works roughly
achieve the following: they construct a relativized SNARK with a certain (straightline) knowledge soundness
error κARG and then show that the resulting PCD scheme has (straightline) knowledge soundness error
(roughly) κPCD(λ, q, N) ≤ N · κARG(λ, q).

2There are other PCD constructions of practical interest that do not fit our setting (e.g., those based on knowledge-of-exponent
assumptions). Achieving security reductions that yield useful concrete security bounds for these remains an open problem.

3In particular, prior security analyses require knowing the largest possible depth/size of any distributed computation that could
have led to the current output. Our security analysis works even if no such bounds exist.

4Such reductions are unlikely to exist in the standard model [GW11], as PCD can be used to construct a SNARK [BCCT13].

4



Our Theorem 1 offers a significant improvement: the (tight) error bound κPCD(λ, q, N) ≤ κARG(λ, q) for
[CT10] and [CCGOS23], which has no dependence on the distributed computation size N .

Moreover, with our improvement, suitably setting κARG once suffices for all distributed computations
(which may have arbitrarily large size), whereas with the prior results one would have to set κARG depending
on the prespecified bound N on the size of the distributed computation.

In fact, there are natural settings where there does not exist any prespecified bound N on the size of
a valid distributed computation (see Section 2.4). In these cases any upper bound of the PCD knowledge
soundness error κPCD(λ, q, N) that grows with N (such as those from prior work) does not provide any
security guarantees. However, our improvement yields (tight) security guarantees even in these cases.

1.1.2 Application: hash-based PCD

Hash-based SNARKs have found widespread deployment in practice. Security parameters of such SNARKs
are set according to the random oracle methodology [BR93]: first, model the hash function as a random
function (even though it is not), which results in a SNARK in the ROM that “idealizes” the given hash-based
SNARK; second, establish concrete security bounds in the ROM; finally, set security parameters of the
hash-based SNARK according to the analysis for the SNARK in the ROM.

Therefore, the random oracle methodology applied to the hash-based SNARK is tantamount to a conjec-
ture: attacks against the hash-based SNARK are no more effective than attacks against the corresponding
SNARK in the ROM (hence it is safe to set security parameters of the former according to the latter). Such
conjectures are generally believed to hold for “natural” cryptographic primitives that use hash functions.5

In certain applications, the hash-based SNARK is recursively composed, leading to hash-based PCD
constructions used in practice. Unfortunately, prior work offers no analyses indicating what is the (even
heuristic) level of concrete security achieved by these hash-based PCD constructions.

Challenges. Once the SNARK in the ROM is heuristically instantiated as a hash-based SNARK, we lose
the explicit knowledge extractor constructed in the ROM. Hence, to analyze the resulting hash-based PCD
construction, prior work postulates the existence of a non-black-box knowledge extractor for the hash-based
SNARK in the standard model. But such a knowledge extractor is weak (it leads to a PCD knowledge
extractor whose time/size has an exponential dependence on the recursion depth), and also rules out any hope
for concrete security because we know nothing of the postulated knowledge extractor.

Alternatively, we would simply apply the random oracle methodology: idealize the hash-based PCD
construction as a PCD in the ROM, then set security parameters of the hash-based PCD according to a
concrete security analysis of the corresponding PCD in the ROM. However, this is problematic because it
would require the underlying SNARK in the ROM to be relativized,6 but known SNARKs in the ROM are
not relativized (and relativized SNARKs in the ROM are not believed to exist).

Our proposal. Practitioners do need some guidance on the concrete security cost of PCD obtained from
hash-based SNARKs. We propose a method, based on Theorem 1, to set security parameters in this case.
Specifically, we can idealize the hash-based PCD construction in a less straightforward way, resulting in
a PCD construction in the ROM that, albeit not succinct, is covered by Theorem 1 and can be reasonably
conjectured to capture the security of the original hash-based PCD construction.

Briefly, the hash-based PCD construction makes a specific non-black-box use of the underlying hash
function: it uses the underlying hash-based SNARK to prove correct execution of computations that involve

5The random oracle methodology is widely used across cryptography to set the security parameters of primitives that rely on
cryptographic hash functions (and possibly other cryptographic building blocks).

6The SNARK prover would have to attest to computations involving the random oracle (namely, its own SNARK verifier).

5



the hash function itself. In the idealization, we can model this as a non-succinct SNARK in the ROM where
query-answer pairs to the random oracle of the proved computation are simply included in the argument
string as claims to be checked directly by the verifier (which has access to the oracle). This relativized
“non-succinct NARK” in the ROM directly leads to a (non-succinct) PCD construction in the ROM, whose
concrete security follows from Theorem 1. This latter PCD construction in the ROM closely models the
original hash-based PCD construction, and, in analogy to the random oracle methodology, we conjecture
that attacks against the hash-based PCD construction are no more effective than attacks against the idealized
(non-succinct) PCD construction in the ROM sketched above.

These steps are summarized in Figure 1. Overall, our Theorem 1 provides guidance for practitioners: in
the above heuristic sense (inspired by the random oracle methodology), the concrete security of hash-based
PCD constructions equals that of the underlying idealized SNARK in the ROM, matching widespread
practices for recursive proof composition (and thus providing some justification for these practices).

See Section 2.3 for more discussion and Section 2.4 for an example of a real-world application.

6



2 Techniques

We overview the main ideas underlying our results. In Section 2.1 we discuss our tight security bounds
for PCD constructed from relativized SNARKs with straightline extractors. In Section 2.2 we discuss two
relativized SNARKs in different oracle models from prior works. In Section 2.3 we discuss relativized “non-
succinct NARKs” in the random oracle model, and implications to real-world constructions. In Section 2.4
we discuss a real-world example compliance predicate that did not have security guarantees prior to our work.

2.1 Concrete security of PCD from relativized SNARKs

We elaborate on Theorem 1 and outline the main ideas of its proof. The technical details that make these
discussions precise are provided in Sections 4 and 5.

Review: PCD. Proof-carrying data (PCD) is a cryptographic primitive that enables untrusted provers to
efficiently demonstrate the correctness of a distributed computation. A distributed computation T is viewed
as a directed acyclic graph in which each vertex is labeled with local data and each edge is labeled with a
message; the computation output is the message on the lexicographically-first edge into a sink. Correctness is
determined by a given compliance predicate ϕ: T is ϕ-compliant if, for every vertex in T, ϕ outputs 1 when
given as input the vertex’s output message, local data, and input messages. The transcript size and transcript
depth of ϕ are the largest size and largest depth of any ϕ-compliant distributed computation T.7 A PCD
scheme is a tuple PCD = (P,V) for proving/verifying ϕ-compliance of distributed computations, as follows.

• The PCD prover P receives an output message z, local data wloc, and input messages (zi)i together with
PCD proofs ( i)i (each proof attests to the ϕ-compliance of the corresponding message), and produces a
PCD proof for the ϕ-compliance of z.

• The PCD verifier V receives a message z and PCD proof , and outputs a decision bit.

The PCD scheme is complete if proofs for compliant messages are accepted by the PCD verifier. The PCD
scheme is knowledge sound if every malicious PCD prover producing a message and proof accepted by the
PCD verifier “knows” a compliant distributed computation whose output is that message, up to some error.
This error is bounded by a knowledge soundness error function κPCD(λ, q, N), which depends on the security
parameter λ, number of queries q by the adversary to the oracle, largest size N of any ϕ-compliant distributed
computation, and other parameters that we omit here for simplicity. Our Theorem 1 establishes a tight bound
on the knowledge soundness error κPCD(λ, q, N) of PCD schemes obtained from non-interactive arguments
with straightline knowledge soundness. See Section 3.2 for a formal definition of PCD schemes.

Limitations of PCD from SNARKs in the standard model. A PCD scheme in the standard model can
be constructed from any SNARK (with adaptive security) in the standard model [BCCT13]. Informally, the
PCD prover uses the SNARK prover to produce a short proof attesting that the compliance predicate accepts
the output message and input messages and that input messages carry valid SNARK proofs; the PCD verifier
uses the SNARK verifier to check the proof accompanying a message.

However, the security analysis works only for compliance predicates with constant transcript depth.
This is because SNARKs in the standard model satisfy a modest notion of adaptive knowledge soundness:
non-black-box knowledge soundness. Informally, for every SNARK adversary there exists a knowledge
extractor, whose size is polynomially-related to the adversary size, such that whenever the SNARK adversary
convinces the SNARK verifier, the knowledge extractor outputs a valid witness (up to some error). If the
polynomial blowup from adversary to extractor is n 7→ nc then the security reduction for a PCD prover of

7In particular, the transcript size and transcript depth may or may not be bounded for a particular compliance predicate ϕ.

7



size n would yield a PCD extractor of size (roughly) ncd , where d is the transcript depth of the compliance
predicate.8 This size blowup is huge in concrete terms, and asymptotically this requires d to be constant.

PCD from relativized SNARKs. In what we call the “relativized” setting, we consider SNARKs that are
constructed in an idealized model where the SNARK can prove/verify computations involving the same
oracle. In other words, all (honest and malicious) parties have access to an oracle sampled according to a
certain distribution, and, in particular, the SNARK prover and SNARK verifier may query the oracle; crucially,
the SNARK is required to work even for relations that are defined relative to the same oracle. See Section 3.1
for a formal definition of non-interactive arguments in oracle models.

The aforementioned canonical PCD construction in the standard model extends naturally to the relativized
setting. Indeed, in the recursive step of the construction, the PCD prover produces a SNARK proof attesting
the computation of the SNARK verifier, which in turn involves oracle calls. A relativized SNARK prover
possesses the capability to generate such a proof. Furthermore, the security analysis of the relativized PCD
construction can be carried over but presents the same blowup encountered in the standard model.

Enabler: straightline extraction. In the relativized setting, we have the additional benefit of a stronger
knowledge soundness property: many SNARKs in oracle models have a (universal) straightline extractor, a
notion that is uniquely defined within an oracle model and lacks an equivalent counterpart in the standard
model. A straightline extractor does not get access to the malicious SNARK prover; instead, it produces a
witness by examining the following: the instance and argument string output by the malicious SNARK prover,
the sequence of queries to the oracle performed by the malicious SNARK prover, and the corresponding query
answers. (We refer to the list of query-answer pairs as the query-answer trace tr of the SNARK prover.)

Definition 2.1 (informal). ARG = (P,V) for a relation R has straightline knowledge soundness error
κARG if there exists a polynomial-time deterministic extractor E such that, for every security parameter λ ∈ N
and q-query prover P̃ ,

Pr

 (x,w) ̸∈ R
∧Vf (x, π) = 1

∣∣∣∣∣∣
f ← U(λ)

(x, π)
tr←− P̃f

w← E(x, π, tr)

 ≤ κARG(λ, q) .

The running time of the straightline extractor E does not depend on the running time of the malicious
SNARK prover, but only on the number of query-answer pairs in the SNARK prover’s trace tr (as well as the
instance x and SNARK proof π). Straightline extractors are common in oracle models, and as we explain
shortly they will enable us to avoid the blowup in the PCD extractor size discussed above.

We begin by sketching a PCD straightline extractor E that is naturally obtained from the given SNARK
straightline extractor E , by recursively extracting prior messages (and SNARK proofs), one vertex at a time.
The straightline extractor E receives as input the compliance predicate ϕ, the message zout and proof out

output by the malicious PCD prover, and the query-answer trace tr of the malicious PCD prover; E aims to
output a ϕ-compliant PCD transcript T whose output is zout.

E(ϕ, zout, out, tr):
1. Initialize a PCD transcript T as an empty graph.
2. Add vertices v0 and v1 to T, and add the edge (v1, v0) with label (zout, out).
3. Initialize an extraction queue L with v1.
4. While the extraction queue L is not empty:

8The dependence is on transcript depth rather than transcript size because the security reduction simultaneously extracts from all
proofs at the same transcript depth.

8



(a) Pop the first vertex v from the queue L.
(b) Extract v by running the SNARK knowledge extractor E((ϕ, z), , tr), where (z, ) is the label of

the unique outgoing edge of v, and obtain a corresponding witness w.
(c) Parse w to obtain local data wloc and input messages and proofs ((zi, i))i for v.
(d) Label v by wloc.
(e) For each message-proof pair (zi, i): add a new child vertex of v, label the new edge with (zi, i),

and add the new vertex to the extraction queue L.
5. Output the PCD transcript T.

For the rest of this section, let λ be the security parameter, q an upper bound on the number of oracle queries
made by the malicious PCD prover P̃, and N an upper bound on the size of any ϕ-compliant transcript. (It
can be that N =∞ if no such bound exists.)
Security analysis inspired by prior work. Security analyses of PCD in prior works based on straightline
extractors [CT10; CCGOS23] bound the knowledge error (roughly) as κPCD(λ, q, N) ≤ N · κARG(λ, q).
Intuitively, each recursion “pays” the SNARK knowledge soundness error of κARG(λ, q). In more detail, the
i-th extraction is achieved by invoking the SNARK knowledge extractor for a corresponding i-th SNARK
prover P̃f

i , as informally defined below.

• P̃f
1 :

1. Run the PCD adversary (ϕ, zout, out)
tr←− P̃f .

2. Parse out as πout.
3. Output (zout, πout).

• P̃f
i :

1. Run the previous argument adversary (z, π)
tr←− P̃f

i−1.
2. Run the argument extractor on (z, π, tr) to obtain the witness w. Output (z′, π′) from w that is

associated with the unique outgoing edge of the next vertex.

Note that in the construction of P̃i, the second step (Item 2) is vaguely described: What is the “next vertex”?
Here, we refer to the next vertex being extracted by E. Hence, this informal construction is actually incorrect
(despite it being very intuitive) or not sufficiently rigorous at best: to output the message and proof associated
with the i-th vertex, P̃i should run P̃p where p is the parent node of vertex i in the PCD transcript extracted
by E instead of running P̃i−1. This issue is also one of the reasons that prior analysis deals with the depth of
the PCD transcript instead of size (they construct their extractors to extract depth-by-depth). We provide a
rigorous analysis avoiding this issue in Sections 5 and 7.

Nevertheless, using a union bound, the success probability of the PCD adversary can be upper bounded by
the sum the success probabilities of all these argument adversaries (one per vertex in the transcript) yielding
the aforementioned bound κPCD(λ, q, N) ≤ N · κARG(λ, q).

This bound (obtained via straightline knowledge extraction) is a significant improvement over the
exponential blow-up incurred when only relying on non-black-box knowledge extraction, and as discussed, is
achieved by prior work on PCD in oracle models [CT10; CCGOS23]. However, the multiplicative factor of
N impacts concrete security, and, in fact, is unacceptable when N is unbounded (N =∞). Indeed, natural
compliance predicates are deployed in the real world for which N is unbounded (see Section 2.4).
Our security analysis. We improve the security analysis of our PCD from straightline knowledge extraction,
obtaining a tight bound: we avoid paying for the factor of N , bounding the PCD knowledge soundness error
as κPCD(λ, q, N) ≤ κARG(λ, q). Intuitively, we force the SNARK adversary to pinpoint the problematic vertex
(if any) in a PCD distributed computation transcript T by running the PCD adversary P̃ once.

9



In particular, our SNARK adversary follows the construction of the PCD knowledge extractor E: If the
PCD transcript T extracted by E is not compliant with the predicate ϕ, there has to be at least one problematic
vertex in T. Therefore, our P̃ reconstructs T and search for this problematic vertex along the way.

P̃f :
1. Run the PCD adversary P̃f to obtain its output (ϕ, zout, out), and its query-answer trace tr.
2. Initialize a PCD transcript T as an empty graph.
3. Add vertices v0 and v1 to T, and add the edge (v1, v0) with label (zout, out).
4. Initialize an extraction queue L with v1.
5. While L is not empty:

(a) Pop the first vertex v from the queue L.
(b) Extract v by running the SNARK knowledge extractor E((ϕ, z), , tr), where (z, ) is the label of

the unique outgoing edge of v, and obtain a corresponding witness w.
(c) Parse w to obtain local data wloc and input messages and proofs ((zi, i))i for v.
(d) For each message-proof pair (zi, i): add a new child vertex of v, label the new edge with (zi, i),

and add the new vertex to the extraction queue L.
(e) If at least one of following is true, output (z, ):

i. ϕ(z, wloc, (zi)i) ̸= 1 (i.e., v is not ϕ-compliant).
ii. There exists i such that Vf (zi, i) ̸= 1 (i.e., the SNARK verifier rejects (zi, i)).

6. If no output so far, output an arbitrary message-proof tuple.

The malicious SNARK prover P̃ above is essentially following the PCD extractor E, with additional checks
in Item 5e. If the PCD transcript T is not ϕ-compliant, there must be at least one vertex v in T such that the
incoming messages of v do not correctly lead to the outgoing message of v, but the SNARK verifier does not
catch this error. In other words, computation at vertex v successfully fools the SNARK verifier. The label
corresponding to the outgoing edge of the first such v (in the order E extracts) is output by P̃ .

The number of queries made by P̃ as constructed above equals to the number of queries made by P̃
plus the additional queries by the SNARK verifier V in Item 5(e)ii. P̃ invokes V at most N times, which is
unbounded when N is unbounded. We avoid this cost by using a weaker check than Item 5(e)ii that does not
query the oracle (see details in Section 5). We conclude κPCD(λ, q, N) ≤ κARG(λ, q) as desired.

Preprocessing & cryptographic assumptions. For wider applicability of our results, in the technical
sections, we work in a more general setting. First, we consider SNARKs (and PCD) in the preprocessing
model, which means that an additional algorithm known as the indexer may do an offline computation on
the “offline” part of the instance, producing a corresponding proving key and verification key to be used for
proving and verifying proofs. Second, we additionally keep track of the size of adversaries through security
analyses, to ensure that our security reductions not only work in the “pure” random oracle model (which is
information theoretic) but also work in the presence of cryptographic hardness assumptions.

2.2 Application: improved concrete security for black-box PCD constructions

We discuss two oracle models introduced in prior work where one can construct relativized SNARKs with
straightline knowledge soundness. Our Theorem 1 implies tight concrete security bounds for PCD schemes
obtained in these oracle models, offering a significant improvement over previously-known bounds. In
particular, prior bounds do not provide any security when N =∞ whereas our bound does not depend on N .

Arithmetized random oracle. [CCGOS23] constructs PCD in the arithmetized random oracle model
(AROM), which is an idealization of capabilities associated to the arithmetization of a hash function. In this

10



model, all parties have access to a random oracle, which as usual can be viewed as the idealization of some
concrete hash function h; in addition, all parties have access to an associated arithmetization oracle, which
can be viewed as an idealization of a low-degree polynomial ph that “encodes” the circuit of h.

Briefly, [CCGOS23] shows that queries to the AROM can be “accumulated”, and they show how this
implies that any SNARK in the ROM can be transformed into a relativized SNARK in the AROM; moreover,
the relativized SNARK has a straightline extractor if the given SNARK has a straightline extractor. In turn,
this implies a construction of PCD in the AROM (that makes a black-box use of the AROM).

The analysis in [CCGOS23] implies an error bound for PCD that is (roughly) κPCD(λ, q, N) ≤ N ·
κARG(λ, q) where κARG is the (straightline) knowledge soundness error of the underlying relativized SNARK
in the AROM. Our Theorem 1 improves this bound to κPCD(λ, q, N) ≤ κARG(λ, q).

Signed random oracle. [CT10] constructs PCD in an oracle model that combines the random oracle model
and a signature scheme, which here we refer to as signed random oracle model (SROM). All parties have
access to an oracle that, on a new input x, samples a random answer y, generates a signature σ on (x, y)
under a secret signing key embedded in the oracle, and outputs (y, σ); repeated inputs have the same answers.

Intuitively, this model facilitates a PCD construction because the SNARK verifier does not need to query
the oracle: to check that the oracle answers x with (y, σ), one can verify that σ is a valid signature on the
message (x, y) using the oracle’s public key; there is no need to query the oracle at x.

More generally, any SNARK in the ROM (with straightline extraction) directly implies a relativized
SNARK in the SROM (with straightline extraction), up to an error that depends on the security of the signature
scheme. To prove an oracle computation, invoke the prover of the SNARK in the ROM on the computation
where all oracle calls are replaced with sub-computations that verify signatures on the relevant messages; to
verify the corresponding SNARK proof, invoke the verifier of the SNARK in the ROM.

The aforementioned relativized SNARK implies a corresponding PCD construction in the SROM (which
is essentially the one studied in [CT10] but reinterpreted from the relativization lens). The analysis in [CT10]
implies an error bound that is (roughly) κPCD(λ, q, N) ≤ N · κARG(λ, q) where κARG is the (straightline)
knowledge soundness error of the underlying relativized SNARK in the SROM. Our Theorem 1 improves
this bound to κPCD(λ, q, N) ≤ κARG(λ, q).

Remark 2.2. [CCS22] constructs PCD in the low-degree random oracle model (LDROM), where all parties
have access to a random low-degree extension of a random oracle. Specifically they construct a relativized
SNARK in the LDROM, and from there obtain PCD in the LDROM. However, the relativized SNARK
in [CCS22] is only shown to have a rewinding extractor, and because of this they show security of the
PCD construction only for compliance predicates with constant transcript depth. Constructing a straightline
extractor for the relativized SNARK in the LDROM in [CCS22] (or, indeed, any relativized SNARK in the
LDROM) remains an open problem, which precludes our Theorem 1 from applying to the LDROM setting.

2.3 Application: a paradigm to set security for hash-based PCD

Evidence indicates that relativized SNARKs in the ROM and PCD in the ROM do not exist [CL20; HN23].
Nevertheless, it is still possible to achieve a weak form of relativized SNARKs in the ROM, which implies a
corresponding weak form of PCD in the ROM (using no assumptions or heuristics) for which our Theorem 1
gives concrete security bounds. This weak form of PCD in the ROM can be (heuristically) viewed as an
idealization of an important class of (succinct) hash-based PCD constructions used in practice, which enables
us to obtain useful guidance on the concrete security of these hash-based PCD constructions.

“Weak” relativized SNARKs in the ROM. One can construct relativized SNARKs in the ROM for relations
decidable via computations that perform few queries to the random oracle. The construction below remains

11



secure regardless of the number of queries. However, if the number of queries to the oracle is large, then the
resulting argument system is a relativized “non-succinct NARK” rather than a relativized SNARK.

Suppose we have a non-relativized SNARK in the ROM [Mic00; BCS16; CY21a; CY21b] with proof size
ℓ. Consider an oracle relation RU whose decision involves q queries to the random oracle. We can construct
a SNARK in the ROM for RU with proof size ℓ+O(q · λ), where λ is the output size of the random oracle.
We modify the circuit that checks whether a given instance-witness pair is in the relativized relation: remove
each oracle gate and instead read a corresponding query-answer pair from an augmented instance (which now
additionally stores the list of all query-answer pairs for the computation). The new circuit is proved using the
given non-relativized SNARK in the ROM; and the resulting SNARK proof of size ℓ is then accompanied by
the list of query-answer pairs, which increases its size to ℓ+O(q · λ). The new SNARK verifier checks the
SNARK proof and checks that the list of query-answer pairs is consistent with the random oracle.

Say that the non-relativized SNARK (P1,V1) is for the circuit satisfiability relation RCSAT. We construct
a (weak) relativized SNARK (P2,V2) for the oracle relation Rf

CSAT := {(C,x,w) : Cf (x,w) = 1}.

• Pf
2 (C,x,w):

1. Run Cf (x,w) to obtain its query-answer trace trC .
2. Construct the new (non-oracle) circuit C ′ that, on input ((x, trC),w), computes C(x,w) by answering

C’s queries to f with the query-answer pairs in trC .
3. Run the SNARK prover for RCSAT: π ← Pf

1 (C
′, (x, trC),w).

4. Output (π, trC).

• Vf2 (C,x, (π, trC)):
1. Construct the new (non-oracle) circuit C ′ from C like P2 does.
2. Check that Vf1 (C ′, (x, trC), π) = 1.
3. Check that trC is consistent with f (by directly querying f for each query in trC).

The security of the SNARK for Rf
CSAT follows from the security of the SNARK for RCSAT. Specifically, the

transformation preserves straightline extraction: if the SNARK for RCSAT has a straightline extractor (with a
knowledge error),9 then so does the SNARK for Rf

CSAT constructed above (with the same knowledge error).

“Weak” PCD in the ROM. The above weak relativized SNARK (P2,V2) in the ROM directly leads
to a weak PCD scheme (P,V) in the ROM. The PCD construction invokes the SNARK for relations that
involve the SNARK verifier, which makes a small number of queries to the random oracle. Hence the
above relativized SNARK can be used to recursively prove the correctness of the SNARK verifier. Our
Theorem 1 provides a tight bound on the knowledge soundness error of the resulting PCD scheme, thanks to
the straightline knowledge soundness of the SNARK. However, with each recursive step, proof size increases,
leading to a PCD construction that is not succinct, aligning with the limitations of PCD in the ROM.

The silver lining. There is a silver lining between the impossibility of PCD in the ROM and the afore-
mentioned non-succinct construction of PCD in the ROM, which can guide security bounds in practice.
Specifically, the non-succinct construction of PCD in the ROM described above can be viewed as an
idealization of succinct hash-based constructions of PCD in practice, as we now explain.

The random oracle methodology tells us that the (non-relativized) SNARK (P1,V1) in the ROM can
be viewed as an idealization of a hash-based SNARK (P̂1, V̂1) in the standard model, namely, the scheme
(P1,V1) where the random oracle is instantiated via a concrete hash function. Crucially, in a similar (though
formally distinct) way, we can view (P2,V2) as an idealization of (P̂1, V̂1) when used to prove computations

9Achieving straightline extraction in the ROM is straightforward; see prior work [Mic00; BCS16; CY21a; CY21b].

12



that involve calls to the concrete hash function. Indeed, (P2,V2) equals (P1,V1) up to the fact that calls to
the random oracle are included as explicit input-output claims in the output argument string.

Next, let (P̂, V̂) be the hash-based PCD scheme in the standard model that is obtained by recursively
composing the hash-based SNARK (P̂1, V̂1). The PCD scheme (P̂, V̂) is the real-world hash-based construc-
tion whose concrete security we wish to understand. The key point in this discussion is that we can view the
weak PCD scheme (P,V) in the ROM mentioned above as an idealization of (P̂, V̂). This is because:
• in the standard model, (P̂, V̂) is obtained via recursive composition of (P̂1, V̂1);
• in the ROM, (P,V) is obtained via recursive composition of (P2,V2);
• (P2,V2) is an idealization of (P̂1, V̂1) when used for computations involving calls to the hash function.

In sum, we propose to set the security parameters of (P̂, V̂) according to the security parameters of (P,V),
whose tight security we establish. This is tantamount to conjecturing that attacks against (P̂, V̂) are no more
effective than attacks against (P,V). More precisely, either an attack against (P̂, V̂) reduces to an attack
against (P,V) (inheriting its security), or an attack (usefully) exploits the instantiation (and non-black-box
use of) the concrete hash function, which remains an open problem.

The above reasoning is summarized in Figure 1 (and compared to prior approaches). This approach
avoids the need to replace the random oracle with a hash function in the middle of the construction and its
analysis; instead, all heuristics are deferred to the very end. (Deferring all heuristics to the very end has
several advantages, articulated in [CCS22]; indeed, other works achieving PCD in oracle models [CT10;
CCGOS23] also benefit from the ability to defer any heuristics till the end.)

Random Oracle Model Standard Model

Prior Approach

SNARK SNARK

straightline 
extractor

postulate 
non-black-box 

extractor
PCD

expensive 
security 
analysis

Our Approach

SNARK

straightline 
extractor

relativized 
NARK

straightline 
extractor

non-succinct 
PCD

Theorem 1

tight 
security 
analysis

idealize

idealize

APPROACHES TO ANALYZE HASH-BASED PCD

Figure 1: The grey box “PCD” on the right represents the hash-based PCD construction used in practice whose
concrete security we wish to understand. Top: Prior work provides an expensive security analysis based on a
hash-based SNARK, whose security is heuristically set by equating it to a corresponding idealized SNARK in the
ROM (i.e., via the random oracle methodology). Bottom: We directly idealize the hash-based PCD construction,
equating its security to a corresponding (non-succinct) PCD in the ROM whose tight security we establish.

Instantiating the SNARK. The aforementioned PCD construction in the ROM is based on a given SNARK
in the ROM. There are several SNARKs in the ROM (with unconditional security) [Mic00; BCS16; CY21a;
CY21b]. These constructions follow a common paradigm: they compile a probabilistic proof (a PCP or
an IOP) into a SNARK by using a vector commitment scheme in the ROM and other ROM techniques. If

13



the underlying probabilistic proof has a straightline extractor then the resulting SNARK has one as well;
fortunately, the vast majority of relevant probabilistic proofs have a straightline extractor.

For example, the SNARK in the ROM in [BBHR19] (known as STARK) is widely deployed in practice
(along with various optimizations), including with recursion [SW22]. It is based on an IOP that is far more
practical than any known PCP (and admits a straightline extractor). By our Theorem 1, the resulting PCD
from the relativized version of the IOP-based SNARK has knowledge soundness error

κPCD(λ, q, N) ≤ κARG(λ, q) ≤ q · κIOP +
4q2

2λ
,

where κIOP is the (straightline) knowledge soundness error of the IOP.
Our bound provides a guideline on how the security parameters for PCD based on this SNARK should be

set. (This was one of our initial motivations to study concrete security bounds for PCD in the ROM.)

Remark 2.3 (compatibility with zero knowledge). Recursively composing a zero-knowledge SNARK (that
can prove correctness of its own verifier) yields zero-knowledge PCD. Concrete bounds on the zero-knowledge
error of the PCD construction (in terms of the zero-knowledge error of the underlying SNARK) are known,
including for the hash-based constructions of interest to us [COS20]. (Analyzing zero knowledge is “easy”
because only the last recursion matters.)

Our proposal for a heuristic security analysis of the knowledge soundness error of hash-based PCD
constructions is compatible with zero knowledge, in the following sense. Observe that if the (non-relativized)
SNARK (P1,V1) is zero knowledge, the transformation from (P1,V1) to the relativized NARK (P2,V2) does
not necessarily maintain zero knowledge (due to the inclusion of query-answer pairs in the argument string).
However, this is not a problem because our goal is to establish security bounds on the knowledge soundness
error: the (non-succinct) PCD construction (P,V) obtained from (P2,V2) remains an idealization of the
hash-based PCD construction (P̂, V̂) that is obtained via recursive composition of (P̂1, V̂1) (the hash-based
instantiation of (P1,V1) that heuristically remains zero knowledge). Hence, our proposal, in particular, also
works as a heuristic guide for parameters of hash-based PCD constructions that are zero knowledge.

2.4 Example: a real-world compliance predicate with unbounded size and depth

We describe a compliance predicate with unbounded transcript size and depth that is an illustrative sim-
plification of a compliance predicate deployed in a real-world application. Prior security analyses of PCD
constructions do not provide any security guarantees for such predicates; in contrast, the tight security
analysis from our Theorem 1, when combined with the discussion in Section 2.3, offers useful guidance to
practitioners for how to set security parameters in this case. We elaborate on this below.

Motivation: recursive STARKs. Computation in the Ethereum smart contract system is expensive:
informally, each computation step is re-executed by every node in the network, and so the system charges
users for each computation step that they want to execute (e.g., by calling a smart contract). A class of
architectures known as layer 2 proof-based rollups [E23] moves computation off-chain, in the sense that
users send their computation requests to an aggregator who then periodically produces a SNARK proof about
batches of user computations; the Ethereum smart contract system then verifies the SNARK proof and makes
a state transition reflecting all the computations in the batch. The SNARK’s succinctness property ensures
that checking a SNARK proof is exponentially cheaper than checking the computation it attests to. These
savings in on-chain computation are the motivation behind layer 2 proof-based rollups.

Producing SNARK proofs for large batches is expensive, but efficiency can be improved if the SNARK
proof is itself produced via a PCD distributed computation that involves separately proving and aggregating

14



small sub-computations, following a “proof tree” approach common in PCD applications [Val08; BCCT13].
This approach is taken by several systems, including one produced by StarkWare [GPR21; SW22].

Informally, a smart contract on Ethereum [SW21] is a “PCD verifier” that enables the recursive proof
composition of “STARK proofs” according to a compliance predicate described below. (A STARK is a
certain type of SNARK obtained from a SNARK in the ROM via the random oracle methodology.) The users
submit computation requests by providing a piece of code to run and an input for it, which are the local data
in the distributed computation. Messages, on the other hand, are hashes of outputs of computations.

In that system, security in the recursive composition of the STARK is assumed to equal the security of a
standalone (non-recursive) use of the STARK (i.e., no security loss is accounted for in the security reduction
from PCD to the STARK). Is this assumption (at least heuristically) justified?

The compliance predicate. As mentioned in Section 2.1, a compliance predicate receives as input, for a
given vertex v in the graph (of the distributed computation), an output message z, some local data wloc, and
(in the recursive case) a list of input messages (zi)i. Let h : {0, 1}∗ → {0, 1}λ be a collision-resistant hash
function, M be a universal Turing machine (on input a program P and an input x, M outputs P (x)), and
T ∈ N be a maximum time bound. Below we describe a compliance predicate ϕh,M,T : {0, 1}∗ → {0, 1}.

• Formats:
– Local data wloc is a tuple (P, x), where P is a program and x is an input.
– A message z is a pair (y, t), where y is a claimed output (or hash value) and t is a time bound.

• Base case: v is a source vertex.
ϕh,M,T (z, wloc,⊥):
1. Parse z as (y, t).
2. Parse wloc as (P, x).
3. Check that t ≤ T , M(P, x) = y, and M(P, x) runs in t steps.

• Recursive case: v is an internal node.
ϕh,M,T (z, wloc, (zi)i):
1. Parse z as (y, t).
2. Check that t = 0 and wloc = ⊥.
3. For each i, parse zi as (yi, ti) and check that ti ≤ T .
4. Check that h((yi)i) = y.

The base case in ϕh,M,T represents user computation requests, and the recursive case represents aggrega-
tion. In practice, h is set to a concrete hash function (e.g., blake2s in [SW21]), M is set to a specific universal
machine (e.g., a machine that executes Cairo instructions [GPR21]), and T to some large upper bound.

Moreover, ϕh,M,T does not impose any bound on the depth (or size) of a compliant PCD distributed
computation: given λ, T ∈ N, ϕh,M,T allows a chain of computations of any length, independent of λ and T ,
to be aggregated together. In particular, given a batch of base cases, it is possible to combine them in any
arbitrary way by hashing the outputs of their computations for an unbounded number of times.

In sum, no finite setting of the upper bound N would support this compliance predicate.

Sketch of the application. We outline how the aggregator uses a PCD scheme PCD = (P,V) relative to
the compliance predicate ϕh,M,T . Consider two computation requests (P1, x1, t1) and (P2, x2, t2), where Pi

is a program, xi is an input, and ti is a time bound. The aggregator uses the PCD prover P to generate proofs
π1, π2 attesting to the ϕh,M,T -compliance of (y1, t1), (y2, t2) respectively, where y1 := P (x1), y2 := P (x2).
Then, using these messages and proofs, the aggregator again uses the PCD P to create a proof attesting
to the ϕh,M,T -compliance of (y, 0), where y := h((y1, y2)). More generally, the aggregator can generate a
single compliance proof for a batch of computation requests ((Pi, xi, ti))i as follows.

15



1. Compute the proofs for each user request (base case): For each i:
• yi := M(Pi, xi).
• i ← P(ϕh,M,T , (yi, ti), (Pi, xi),⊥)

2. Compute the proofs for the second layer: For each neighboring pair (i, j) of the computation requests:
• i,j ← P(ϕh,M,T , (h(yi, yj), 0), ((yi, ti), (yj , tj)), ( i, j)).

3. Keep aggregating proofs until there is only one node remaining. Output the last proof out.

The above procedure always aggregates two proofs. In practice, users may submit computation requests
in a streaming fashion. Hence, the above process can be generalized to handle streaming requests by greedily
aggregating the requests submitted together (more than 2 requests can be handled at once). The resulting
PCD transcript is not necessarily a binary tree.

This procedure is useful in multiple scenarios. One of them is when one or multiple users submit a
series of computation requests: it is possible to construct one SNARK proof for all the computations so that
the Ethereum smart contract can verify this proof and update the states all together. More specifically, the
aggregator divides all requests into smaller batches, and compliance predicate ϕh,M,T is able to handle each
batch in parallel and combine them together into one proof even when the computations are not the same.

Prior work vs. our result in this application. Prior security analyses of PCD constructions (both from
non-black-box extractors and from straightline extractors as in [CT10; CCGOS23]) establish upper bounds
on the PCD knowledge soundness error that depend on the transcript size and/or depth. Hence no security
guarantees are provided for the compliance predicate ϕh,M,T deployed in [SW21] described above. Moreover,
even if ϕh,M,T were modified to impose some prespecified large transcript size/depth, the security loss
depending on these parameters would have to be accounted for, which would cause a corresponding (and
possibly large!) increase in the security parameters used in that system. (In other words, the underlying
STARK would have to be much more secure to account for this loss.)

In contrast, our Theorem 1 establishes a tight upper bound on the PCD knowledge soundness error, which
does not depend on either transcript size or depth; this applies to the compliance predicate ϕh,M,T . In turn,
since the underlying recursive STARKs are a (heuristic) PCD construction obtained from SNARKs in the
ROM, our discussion in Section 2.3, provides useful guidance for practitioners. Specifically, that discussion
suggests the security achieved by a non-recursive one-shot STARK proof is inherited by the corresponding
PCD scheme without any loss. This provides (at least heuristic) justification for the current settings of
parameters in that system.

2.5 Technical extension: a more general analysis

The notion of straightline extraction for SNARKs that we used so far imposes two requirements on the
knowledge extractor E (see Definition 2.1): (i) E is deterministic; and (ii) E does not query the oracle. These
requirements are fulfilled by straightline extractors for known relativized SNARKs (see Sections 2.2 and 2.3).
Under these requirements Theorem 1 yields the upper bound κPCD(λ, q, N) ≤ κARG(λ, q).

In this paper, we additionally ask: how does the upper bound on κPCD change if we consider a notion of
straightline extraction that relaxes either of these requirements?

Towards this end, we additionally give a more general security analysis that upper bounds the PCD
knowledge soundness error κPCD without assuming either of the requirements. While this analysis results
in slightly larger bounds, the bounds we obtain are essentially tight in their own settings and significantly
improve over the bounds resulting from the analysis for non-black-box extractors. We note, though, that this
more general analysis is purely for mathematical interest since, at the time of writing, we are not aware of
relativized SNARKs with straightline extractors that are probabilistic or make queries to the oracle.

16



Below, we elaborate on how we handle each relaxation individually; in the technical sections, we handle
both relaxations simultaneously (in which case the different types of upper bounds combine in a single upper
bound for both). Fix the security parameter λ. The error κARG primarily depends on the number of queries
made by the adversary, which is the focus of the reasoning below. (The error κARG depends also on other
values; we refer the reader to Section 7 for all technical details.)

• Probabilistic extractors. The basic analysis described in Section 2.1 that leads to the upper bound
κPCD(λ, q, N) ≤ N · κARG(λ, q) can be adapted to hold for probabilistic extractors. For each invocation
of the SNARK extractor E , we consider a corresponding malicious argument prover P̃ that outputs the
message-proof pair associated with the unique outgoing edge of the vertex being extracted by E . The
extraction error for each malicious argument prover is upper bounded by κARG(λ, q) (as the argument
prover P̃ runs the q-query PCD prover P̃ to obtain the output of the PCD transcript and then does some
post-processing). Finally, the PCD knowledge soundness error follows from a union bound.

This bound is essentially tight. The knowledge soundness error of E may come either from the choice
of oracle or from E’s randomness. The latter case is something that, intuitively, must be paid N times,
once per extraction; and it might be that, say, half the knowledge soundness error is due to E’s randomness.
(Each invocation of E has an independent error from other invocations of E , so the errors accumulate.)

More generally, we could consider a definition of straightline knowledge soundness for the SNARK that
separates a global error κARG due to the oracle and a local error ϵ due to E’s randomness. In this case, the
upper bound would be κARG(λ, q) +N · ϵ.

• Extractors with oracle queries. Suppose that the SNARK extractor E makes q′ queries to the oracle. In
the PCD extractor E, we need to account for a query-answer trace that grows with each invocation of the
SNARK extractor E . Indeed, as per the definition of straightline knowledge soundness of the SNARK,
each invocation of the SNARK extractor E takes in the query-answer trace of the corresponding malicious
SNARK prover, which in the security reduction is an algorithm that runs the malicious PCD prover plus
prior executions of E (each of which contributes new queries).

A basic analysis here would establish a soundness error of roughly κPCD(λ, q, N) ≤
∑N

i=1 κARG(λ, q+i ·q′).
Indeed, after i extractions, the query-answer trace for the execution of the i-th argument adversary, which
initially has length at most q due to the malicious PCD prover, increases by at most i · q′. A union bound
over all vertices gives the aforementioned bound.

A more careful analysis establishes a (tight) bound of roughly κPCD(λ, q, N) ≤
∑N

i=1 κARG(λ, q + di ·
q′), where di is the depth of the i-th extracted vertex in the extracted PCD transcript T (which can be
exponentially smaller than size). Indeed, note that an extracted PCD transcript T is a tree. When using the
SNARK extractor E for a vertex v, the query-answer trace that “matters” for v only needs to include (the
basic query-answer trace of the malicious PCD prover and) the queries and answers made by extractions on
the path from v to the root. Therefore, by giving each E only the query-answer traces it needs, the number
of queries made by argument adversaries depends only on the depth of the PCD transcript.

17



3 Preliminaries

Definition 3.1. An indexed relation R is a set of tuples (i,x,w) where i is the index, x the instance, and
w the witness. The corresponding indexed language L(R) is the set of pairs (i,x) for which there exists a
witness w such that (i,x,w) ∈ R.

Definition 3.2. For a distribution over oracles U , an oracle indexed relation RU is a set of indexed relations
{Rf : f ∈ U}.
Definition 3.3. The query-answer trace of an algorithm A with oracle access to f ∈ U(λ) is a list tr of
query-answer pairs that includes the queries made by A along with the corresponding answers by the oracle.
We write z

tr←− Af to mean that A, given oracle f , outputs z and has query-answer trace tr.

3.1 Non-interactive arguments in oracle models

We provide notation and definitions for (preprocessing) non-interactive arguments as used in this paper. We
do not describe the soundness property, as we always use a knowledge soundness property.

Definition 3.4. A (preprocessing) non-interactive argument relative to an oracle distribution U for an
oracle indexed relation RU is a tuple of algorithms ARG = (G, I,P,V) that works as follows.

• G(1λ)→ pp: On input a security parameter λ (in unary), the generator G samples public parameters pp.

• If (pp, i)→ (ipk, ivk): On input the public parameters pp and an index i for the relation Rf , the indexer
I deterministically computes index-specific proving and verification keys (ipk, ivk).

• Pf (ipk,x,w) → π: On input an index-specific proving key ipk, an instance x, and a corresponding
witness w, the prover P computes an argument string π that attests to the claim that (i,x,w) ∈ Rf .

• Vf (ivk,x, π)→ b: On input an index-specific verification key ivk, and an instance x, and a corresponding
argument string π, the verifier V outputs a decision a bit b.

Definition 3.5 (Perfect completeness). For every security parameter λ ∈ N and adversary A,

Pr


(i,x,w) ∈ Rf

⇓
Vf (ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
f ← U(λ)

pp← G(1λ)
(i,x,w)← Af (pp)

(ipk, ivk)← If (pp, i)
π ← Pf (ipk,x,w)

 = 1 .

Definition 3.6 (Straightline knowledge soundness). ARG has (straightline) knowledge soundness error
κARG with extraction time tARG if there exists a deterministic extractor E such that, for every security
parameter λ ∈ N, auxiliary input distribution D, query bound qP̃ ∈ N, size bound sP̃ ∈ N, qP̃-query sP̃-size
deterministic circuit P̃ , index size bound n ∈ N, and instance size bound k ∈ N,

Pr


|i| ≤ n
∧ |x| ≤ k

∧ (i,x,w) ̸∈ Rf

∧Vf (ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
pp← G(1λ)
ai← D(pp)

(i,x, π)
tr←− P̃f (pp, ai)

(ipk, ivk)← If (pp, i)
w← E(pp, i,x, π, tr)


≤ κARG(λ, qP̃ , sP̃ , n, k) ,

and E runs in time tARG(λ, qP̃ , sP̃ , n, k).

18



Remark 3.7. The auxiliary input distribution D can be the uniform random distribution. In that case the
auxiliary input ai is a uniform random string, which enables the argument adversary P̃ to be randomized. In
other words, P̃ is deterministic relative to the auxiliary input ai.

3.2 Proof-carrying data in oracle models

We provide notation and definitions for (preprocessing) proof-carrying data as used in this paper. This
requires first introducing definitions for PCD transcripts and compliance.

Definition 3.8. A (PCD) transcript T is a directed acyclic graph where each vertex u ∈ V (T) is labeled by
local data w

(u)
loc and each edge e ∈ E(T) is labeled by a message z(e) ̸= ⊥. The output of a transcript T,

denoted out(T), is the message z(e) where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 3.9. A compliance predicate ϕ (with M input messages of size l) is an oracle boolean circuit
that receives as input 1 output message of size at most l, some local data, and M input messages of size at
most l, and outputs a decision bit. In particular, ϕ outputs 0 if more than M + 1 messages are given or any
of the input messages are longer than l bits. We use |ϕ| to denote the size of the circuit ϕ and qnum(ϕ) to
denote the the number of queries by ϕ to the oracle function.

Definition 3.10. Let U be an oracle distribution and let Φ be a class of compliance predicates. Consider
f ∈ U and ϕ ∈ Φ. Given a transcript T, a vertex u ∈ V (T) is (ϕ, f)-compliant if the following holds for
every outgoing edge e = (u, v) ∈ E(T) from u:
• (base case) if u has no incoming edges, ϕf (z(e), w

(u)
loc , (⊥)) = 1;

• (recursive case) if u has incoming edges e1, . . . , eM , ϕf (z(e), w
(u)
loc , (z

(e1), . . . , z(eM ))) = 1.
The transcript T is (ϕ, f)-compliant if E(T) ̸= ∅ and every vertex u ∈ V (T) is (ϕ, f)-compliant.

Definition 3.11. We define the depth, size, and arity of a PCD transcript T.
• The depth depth(T) is the number of vertices of the longest path in T.
• The size size(T) is the number of non-sink vertices in T.
• The arity arity(T) is the maximum number of incoming edges of any vertex in T.

Definition 3.12. We define the transcript depth, transcript size, and transcript arity of a compliance predicate
ϕ. Let U be an oracle distribution.
• The transcript depth is

tdepth(ϕ) := max
f∈U

T is (ϕ,f)-compliant

depth(T) ;

• The transcript size is
tsize(ϕ) := max

f∈U
T is (ϕ,f)-compliant

size(T) ;

• The transcript arity is
tarity(ϕ) := max

f∈U
T is (ϕ,f)-compliant

arity(T) .

Definition 3.13. A compliance predicate ϕ is (Φ, N,D,M,S,Q)-compatible if: ϕ ∈ Φ; tsize(ϕ) ≤ N ;
tdepth(ϕ) ≤ D; tarity(ϕ) ≤M ; |ϕ| ≤ S; and qnum(ϕ) ≤ Q.

Definition 3.14. A proof-carrying data scheme (PCD scheme) for a class of compliance predicates Φ
relative to an oracle distribution U is a tuple of algorithms PCD = (G, I,P,V) that works as follows.

19



• G(1λ) → pp: On input a security parameter λ (in unary), the generator G samples public parameters
pp.

• If (pp, ϕ)→ (ipk, ivk): On input the public parameters pp and the compliance predicate ϕ, the indexer
I deterministically computes proving and verification keys (ipk, ivk).

• Pf (ipk, z, wloc, ((zi, i))i∈[M ])→ : On input the proving key ipk, a message z, a local data wloc, and
a list of incoming messages and proofs ((zi, i))i∈[M ], the prover P outputs a new proof for the outgoing
message z.

• Vf (ivk, z, ) → b: On input the verification key ivk, a message z, and a corresponding proof , the
verifier V computes a decision bit b.

Definition 3.15 (Perfect completeness). For every security parameter λ ∈ N and adversary A,

Pr


 ϕ ∈ Φ
∧
(
(∧Mi=1zi = ⊥) ∨ (∧Mi=1Vf (ivk, zi, i) = 1)

)
∧ϕf (z, wloc, (z1, . . . , zM )) = 1


⇓

Vf (ivk, z, ) = 1

∣∣∣∣∣∣∣∣∣∣
f ← U(λ)

pp← G(1λ)
(ϕ, z, wloc, ((zi, i))

M
i=1)← Af (pp)

(ipk, ivk)← If (pp, ϕ)
← Pf (ipk, z, wloc, ((zi, i))

M
i=1)

 = 1 .

Definition 3.16 (Straightline knowledge soundness). PCD has (straightline) knowledge soundness error
κPCD with extraction time tPCD if there exists a deterministic extractor E such that, for every security
parameter λ ∈ N, auxiliary input distribution D, indexer query bound qI ∈ N, indexer size bound sI,
adversary query bound qP̃ ∈ N, adversary size bound sP̃ ∈ N, qP̃-query sP̃-size deterministic circuit P̃,
predicate size bound N ∈ N, predicate depth bound D ∈ N, predicate circuit size bound S ∈ N, predicate
query number bound Q ∈ N, number of input edges bound M ∈ N, and message size bound l ∈ N,

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (T is not (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
pp← G(1λ)
ai← D(pp)

(ϕ, zout, out)
tr←− P̃f (pp, ai)

(ipk, ivk)← If (pp, ϕ)
T← E(pp, ivk, ϕ, zout, out, tr)


≤ κPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l) ,

and E runs in time tPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l).

20



4 From relativized ARG to PCD: construction

We describe how to construct a PCD scheme from a relativized non-interactive argument (Construction 4.2),
and after that we describe how to construct a straightline PCD extractor from an underlying straightline
non-interactive argument extractor (Construction 4.3 ).

These constructions are straightforward adaptations to the relativized case of prior constructions in the
literature ([CT10; BCCT13; BCTV14; COS20]). Our main contribution is the security analysis of the PCD
scheme (via this straightline PCD extractor), which we postpone to Section 5.

Let U be an oracle distribution. The definition below is a circuit used to realize the recursive composition.

Construction 4.1. Fix λ ∈ N. Let f ∈ U(λ). Let V(λ,n,k) be the circuit corresponding to the ARG verifier V
with security parameter λ, checking indices of sizes at most n and instances of size at most k.

[C
(λ,M,n,k)
V,ϕ ]f ((ivk, zout), (wloc, z⃗in, π⃗in)):

1. Check that ϕf (zout, wloc, z⃗in) = 1.
2. If there exists i such that (z⃗in[i], π⃗in[i]) ̸= ⊥: check that [V(λ,n,k)]f (ivk, (ivk, z⃗in[i]), π⃗in[i]) = 1 for

every i ∈ [M ].

Construction 4.2 (PCD from ARG). Let ARG = (I,P,V) be a non-interactive argument for the oracle
indexed relation RU

CSAT. We construct a PCD scheme PCD = (G, I,P,V) as follows.

• G(1λ):

1. Sample public parameters pp← G(1λ).
2. Output pp := pp.

• If (pp, ϕ):
1. Parse pp as pp.
2. Construct the oracle recursion circuit C := C

(λ,M,n,k)
V,ϕ .

3. Compute the index key pair (ipk, ivk)← If (pp, C).
4. Output (ipk, ivk) := ((ipk, ivk), ivk).

• Pf (ipk, zout, (wloc, z⃗in, ⃗ in)):

1. Parse the proving key ipk as (ipk, ivk).
2. πout ← Pf (ipk, (ivk, zout), (wloc, z⃗in, π⃗in)).
3. Output πout.

• Vf (ivk, zout, out):

1. Parse the verification key ivk as ivk.
2. Parse the PCD proof out as an argument proof πout.
3. Check that Vf (ivk, (ivk, zout), πout) = 1.

Construction 4.3 (Knowledge extractor for PCD). Let E be a straightline knowledge extractor for ARG. We
construct a straightline knowledge extractor E for PCD as follows.

E(pp, ivk, ϕ, zout, out, tr):
1. Parse pp as pp.
2. Parse out as πout.

21



3. Parse ivk as ivk.
4. Initialize graph T = (V,E) where V = {v0, v1} and E = {(v1, v0)}.
5. Label the edge (v1, v0) by (zout, πout).
6. Initialize the extraction queue L := (v1).
7. Set i := C

(λ,M,n,k)
V,ϕ .

8. While L is non-empty:
(a) Let v be the first vertex in L, remove the first vertex v from L.
(b) Let z(e) and π(e) be the message and proof in the label of the unique outgoing edge e from v.
(c) Let (iv,xv, πv) := (i, (ivk, z(e)), π(e)).
(d) Run the argument extractor wv ← E(pp, iv,xv, πv, tr).

(e) Parse wv as (w(v)
loc , z⃗

(v)
in , ⃗

(v)

in ).
(f) Label v in T by w

(v)
loc .

(g) For every j such that z⃗(v)in [j] ̸= ⊥:
i. Add a new vertex v′ to V , and an edge (v′, v) in E.

ii. Parse ⃗
(v)

in [j] as π(v′,v).
iii. Add the label (z⃗(v)in [j], π(v′,v)) to the edge (v′, v) in T.
iv. Add v′ to L.

9. Output the augmented transcript T.

22



5 From relativized ARG to PCD: security reduction

In Section 4, we described how to construct a PCD scheme from a relativized non-interactive argument,
and how to construct a straightline PCD extractor from an underlying straightline non-interactive argument
extractor. In this section, we give our security analysis of the PCD scheme, via this straightline PCD extractor.

Let U be an oracle distribution. Suppose that ARG = (G, I,P,V) is a non-interactive argument for the
oracle CSAT relation RU

CSAT with straightline knowledge soundness error κARG(λ, qP̃ , sP̃ , n, k) and extraction
time tARG(λ, qP̃ , sP̃ , n, k). Recall that λ ∈ N denotes the security parameter, S ∈ N the bound on the size
of predicate circuit, M ∈ N the bound on the arity of the PCD transcript, and l the bound on the size of all
messages. We define an index size bound n and instance size bound k:
• n := nsize (λ, S,M, l), where nsize (·) is defined in Lemma 5.13; and
• k := |ivk|+ l.

Definition 5.1. The function psize is recursively defined as follows:
• psize(1) := sP̃ + sI + n+ k,
• psize(i) := psize(i− 1) + tARG(λ, qP̃ + qI, psize(i− 1), n, k) for i > 1.

Theorem 5.2. The PCD scheme PCD = (G, I,P,V) constructed from ARG using Construction 4.2 has
straightline knowledge soundness error κPCD = κPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l) and extraction time
tPCD = tPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l) such that

κPCD ≤ κARG(λ, qP̃ , sP̃ , n, k) ,

tPCD ≤ N · poly(D, logM, l, arglen(n, k)) +
N∑
i=1

tARG(λ, qP̃ + qI, psize(i), n, k) ,

where
• qP̃ := qP̃ + qI +N ·Q;
• sP̃ := sP̃ + sI +N · S +N · vsize(λ, n, k) + tPCD, where vsize(λ, n, k) is the size of the argument verifier
V when invoked with security parameter λ, index of size n, and instance of size k.

• arglen(λ, n, k) is the size of the argument proof π outputted by the argument prover when invoked with
security parameter λ, index of size n, and instance of size k.

We analyze the knowledge soundness error in Section 5.1 and the extraction time in Section 5.2.

5.1 Knowledge soundness error

The analysis below is stated for non-interactive arguments with split verification (Definition 5.3), a property
that holds essentially without loss of generality (Remark 5.4).

Definition 5.3. ARG = (G, I,P,V) has split verification if the argument string contains a list of query-
answer pairs tr that the verifier V during verification. More precisely, V can be written as follows:

Vf (ivk,x, π):
1. Check that VerifyProof(ivk,x, π) = 1.
2. Check that VerifyTracef (π) = 1.

The above subroutines are defined as follows:
• VerifyProof(ivk,x, π): Parse π as (π′, tr) and check that Vtr(ivk,x, π′) = 1. (Output 0 if V makes a query
q that is not contained in tr.

23



• VerifyTracef (π): Parse π as (π′, tr), and check that, for every (q, a) ∈ tr, f(q) = a.

Remark 5.4. Any non-interactive argument system can be modified to satisfy Definition 5.3, by augmenting
the argument string with the list of query-answer pairs to be made by the argument verifier. In particular, the
examples in Section 6 can have split verifiers. We assume split verification throughout this proof.

Let P̃ be a qP̃-query PCD prover. Our goal is to upper bound the following expression:

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (T is not (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
pp← G(1λ)
ai← D(pp)

(ϕ, zout, out)
tr←− P̃f (pp, ai)

(ipk, ivk)← If (pp, ϕ)
T← E(pp, ivk, ϕ, zout, out, tr)


. (1)

As explained in Section 2.1, we construct an argument prover P̃ .

P̃f (pp, ai):
1. Set pp := pp.

2. Run (ϕ, zout, out)
trP̃←− P̃f (pp, ai).

3. Run (ipk, ivk)
trI←− If (ϕ).

4. Set tr := trP̃ ∥ trI.
5. Parse the PCD proof out as an argument string πout.
6. Parse the PCD verification key ivk as an argument verification key ivk.
7. Initialize a graph T = (V,E) where V = {v0, v1} and E = {(v1, v0)}.
8. Label the edge (v1, v0) by (zout, πout).
9. Initialize the extraction queue as L := (v1).

10. Set i := C
(λ,M,n,k)
V,ϕ .

11. While the extraction queue L is non-empty:
(a) Let v be the first vertex in L, remove the first vertex v from L.
(b) Let z(e) and π(e) be the message and proof in the label of the unique outgoing edge e from v.
(c) Let (iv,xv, πv) := (i, (ivk, z(e)), π(e)).
(d) Run the argument extractor wv ← E(pp, iv,xv, πv, tr).

(e) Parse wv as (w(v)
loc , z⃗

(v)
in , ⃗

(v)

in ).
(f) Label the vertex v in T by w

(v)
loc .

(g) For every j such that z⃗(v)in [j] ̸= ⊥:
i. Add a new vertex v′ to V , and an edge (v′, v) in E.

ii. Parse ⃗
(v)

in [j] as π(v′,v).
iii. Add the label (z⃗(v)in [j], π(v′,v)) to the edge (v′, v) in T.
iv. Add the vertex v′ to the extraction queue L.

(h) Let (v1, . . . , vM ) be the child-vertices just added for v (maybe there are less than M child-vertices
of v in T, but the exact number does not matter as long as it is upper-bounded by M ).

(i) Let e be the outgoing edge of v, check if at least one of the followings is true:
i. ϕf (z(e), w

(v)
loc , (z

(v1,v), . . . , z(vM ,v))) ̸= 1.
ii. There exists i ∈ [M ] such that VerifyProof(ivk, (ivk, z(vi,v)), π(vi,v)) ̸= 1, where VerifyProof

is as defined in Definition 5.3.

24



If the check passes, then output (i, (ivk, z(e)), π(e)).
12. Output (i, (ivk, z(e)), π(e)) where e is the topologically first edge in E. (This is a default output.)

Consider an example execution of the above prover. Suppose the PCD extractor E produces a transcript with
depth 3 and 7 vertices as shown in Fig. 2, the red numbering on the edges indicate the extraction order of
the vertices. Suppose that v2,1 in Fig. 2 is the first problematic vertex (in the extraction order by E). The
malicious prover P̃ defined above would output the labels corresponding to v2,1, as shown in Fig. 3. Notice
that P̃ does not call the argument extractor E on vertices after v2,1.

#%,# #%,!

##

#!

#&,# #&,% #&,&

1 2

3 4 5

Figure 2: An example transcript extracted by E with
the extraction order.

#%,# #%,!

##

#!

#&,# #&,% #&,&

1 2

(&, (, ))

Figure 3: The behavior of the malicious prover P̃
for the transcript in Fig. 5.

The argument prover P̃ queries f when P̃, I, and (each time it runs) ϕ. Hence the query complexity of P̃
can be upper bounded as follows:

qP̃ ≤ qP̃ + qI +N ·Q .

Similarly, the size of P̃ can be upper bounded as follows:

sP̃ ≤ sP̃ + sI +N · S +N · vsize(λ, n, |ivk|+ l) + tPCD .

For the rest of the discussion, we consider the following experiment:

Experiment 1. 

f ← U(λ)
pp← G(1λ)
pp := pp

ai← D(pp)
(ϕ, zout, out)

trP̃←− P̃f (pp, ai)
(ipk, ivk)← If (ϕ)

T← E(pp, ivk, ϕ, zout, out, trP̃)

(i,x, π)
trP̃←−− P̃f (pp, ai)

(ivk, ipk)← I(pp, i)
w← E(pp, i,x, π, trP̃)


.

25



To bound the probability in Eq. (1), we note that the condition out(T) = zout always holds by Construc-
tion 4.3, so we focus on the probability that T is not (ϕ, f)-compliant. Intuitively, our goal is to reduce the
probability of T being not (ϕ, f)-compliant to the probability that the argument prover P̃ constructed above
successfully outputs an argument string that fools the argument verifier.

Towards this, we use a notion called strong (ϕ, f)-compliance, which requires all vertices to be (ϕ, f)-
compliant and also every index-instance-proof tuple associated with an edge to be accepted by the argument
verifier. If a transcript T is strongly (ϕ, f)-compliant then, in particular, it is (ϕ, f)-compliant.

Definition 5.5. A transcript T = (V,E) is strongly (ϕ, f)-compliant if the following holds:
• For every vertex u ∈ V , u is (ϕ, f)-compliant.
• For every edge e ∈ E, Vf (ivk, (ivk, z(e)), π(e)) = 1.

Remark 5.6. The transcript T output by the PCD extractor E in Construction 4.3 is a tree, so every vertex
v ∈ V (T) has a unique outgoing edge. Definitions 3.10 and 5.5 can be simplified accordingly for the purpose
of this discussion.

If the transcript T in Experiment 1 is not (ϕ, f)-compliant, then it must be the case that T is not strongly
(ϕ, f)-compliant, which implies that there exists v ∈ V (T) such that at least one of the following is true:

1. ϕf (z(e), w
(v)
loc , (z

(v1,v), . . . , z(vM ,v))) ̸= 1,
2. Vf (ivk, (ivk, z(vi,v)), π(vi,v)) ̸= 1 for some i ∈ [M ],

where e = (v, v′) is the unique outgoing edge of v and v1, . . . , vM are child-vertices of v. Hence, by
definition of C(λ,M,n,k)

V,ϕ (Construction 4.1), (iv,xv,wv) := (C
(λ,M,n,k)
V,ϕ , (ivk, z(e)), π(e)) ̸∈ Rf

CSAT.
Let v be the first such vertex (in the order that E extracts). Let i be the iteration in which E extracts

v. Since E is deterministic, we know that P̃ also extracts v in the i-th iteration, and the corresponding
index-instance-proof tuple (iv,xv, πv) := (i, (ivk, z(e)), π(e)) for e = (v, v′) is the same as the one in E.
Hence, (iv,xv,wv) ̸∈ RCSAT by the argument above. Moreover, since v is the first such vertex, we can
deduce that Vf (i, (ivk, z(e)), π(e)) = 1. If (iv,xv, πv) is the tuple output by P̃ , then from Definition 3.6,

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (T is not (ϕ, f)-compliant ∨ out(T) ̸= zout)

 ≤ Pr


|i| ≤ n
∧ |x| ≤ k

∧ (i,x,w) ̸∈ R
∧Vf (ivk,x, π) = 1


≤ κARG(λ, qP̃ , sP̃ , n, k) ,

where n := nsize (λ, S,M, l) (nsize (·) is the circuit size defined in Lemma 5.13) and k := |ivk|+ l.
We are left to show that P̃ outputs (iv,xv, πv). We proceed in two steps.

• Fix any j < i. We argue that P̃ does not output at iteration j. Let vj be the vertex extracted at iteration j,
and let (ij ,xj , πj ,wj) be the corresponding index, instance, proof, and witness of vj . Let ej be the unique
outgoing edge of vj , and let vj,1, . . . , vj,M be the child-vertices of vj . Since we assume that v is the first
vertex that “breaks” the strong compliance of T, it must be the case that

– ϕf (z(ej), w
(ej)
loc , (z(vj,1,vj), . . . , z(vj,M ,vj))) = 1; and

– Vf (ivk, (ivk, z(vj,k,vj)), π(vj,k,vj)) = 1 for all k ∈ [M ].

26



Thus, for all k ∈ [M ] we know that VerifyProof(ivk, (ivk, z(vj,k,vj)), π(vj,k,vj)) = 1, which follows since
Vf (ivk, (ivk, z(vj,k,vj)), π(vj,k,vj)) = 1. Therefore, the checks in Item 11i cannot pass, and P̃ does not
output at iteration j.

• We argue that P̃ outputs (iv,xv, πv) at iteration i. Recall that v is the first vertex that “breaks” the strong
compliance of T. Therefore, according to Definition 5.5, we distinguish between following two cases:

– ϕf (z(e), w
(v)
loc , (z

(v1,v), . . . , z(vM ,v))) ̸= 1: In this case, the first check in Item 11i passes, and P̃ outputs
(iv,xv, πv) as desired.

– Vf (ivk, (ivk, z(vk,v)), π(vk,v)) ̸= 1 for some k ∈ [M ]: We have either VerifyProof(ivk, (ivk, z(vi,v)), π(vi,v)) ̸=
1, which makes the second check in Item 11i pass as desired; or VerifyTracef (π(vk,v)) ̸= 1, which
cannot happen if the PCD verifier V accepts (ivk, zout, out).

5.2 Extraction time bound

We prove the upper bound on extraction time claimed in Theorem 5.2. First in Lemma 5.10 we prove a
tighter upper bound and then in Corollary 5.15 explain how to deduce the (larger and simpler) upper bound in
Theorem 5.2. Finally, in Lemma 5.16 we simplify the expression in Lemma 5.10 by resolving the maximum
via an explicit solution (which, e.g., enables a script to efficiently compute the upper bound).

Definition 5.7. T (N,D,M) is the set of all M -ary trees T with size at most N and depth at most D such that
the root vertex v0 of T has a single child-vertex v1.

Definition 5.8. The function depth receives as input a tree T and vertex v and outputs the depth d of v in T.

Definition 5.9. The function parent takes as input a tree T ∈ T (N,D,M) and vertex v, and outputs an integer
i such that the i-th vertex in depth d − 1 is the parent-vertex of v. (The i-th vertex in depth d − 1 is with
respect to the complete M -ary tree of depth D. In other words, vertices are labeled as if there are Md

vertices in depth d regardless of the structure of T.)

Lemma 5.10. The extractor E in Construction 4.3 runs in time tPCD = tPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l)
such that

tPCD ≤ N ·poly(D, logM, l, arglen(n, k))+ max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, qP̃+qI, psize(depth(T, v)), n, k) .

Proof. For every depth d and i-th vertex at depth d, we construct an argument prover P̃d,i for the invocation
of the argument extractor E for the i-th vertex in depth d. (We consider v1 to be the 0-th vertex in depth 1.)

Construction 5.11. The argument prover P̃1,0 corresponds to the first invocation of E in E.

P̃f
1,0(pp, ai):

1. Set pp := pp.
2. Run (ϕ, zout, out)← P̃f (pp, ai).
3. Run (ipk, ivk)← If (pp, ϕ).
4. Parse ivk as ivk.
5. Parse out as πout.
6. Set i := C

(λ,M,n,k)
V,ϕ .

7. Output (i, (ivk, zout), πout).

27



Construction 5.12. The (recursively defined) argument prover P̃d,i corresponds to the invocation of E for
the i-th vertex in depth d for d > 1 and 0 ≤ i < Md−1 in E.

P̃f
d,i(pp, ai):

1. Let (parent,pos) := (⌊i/M⌋, i mod M).
2. Run (i,x, π)

tr←− P̃f
d−1,parent(pp, ai).

3. If (i,x, π) = ⊥, halt and output ⊥.
4. Run the argument extractor w← E(pp, i,x, π, tr).
5. Parse w as (wloc, z⃗in, ⃗ in).
6. Parse x as (ivk, z).
7. If z⃗in[pos] = ⊥, output ⊥.
8. Otherwise, output (i, (ivk, z⃗in[pos]), ⃗ in[pos]).

The running time of E can be upper bounded in terms of the running time of E and extra processing time
for the outputs of E . Specifically, for every d and i, let qd,i be the number of queries made by P̃d,i, sd,i be
the size of P̃d,i, nd,i and kd,i be the sizes of the index and instance output by P̃d,i. The running time of the
argument extractor E when invoked for the i-th vertex v in depth d is, by definition, at most

tARG(λ, qd,i, sd,i, nd,i, kd,i) .

Therefore, considering all possible trees T (N,D,M) for the PCD transcript T, the cost of running the argument
extractor E across all its invocations in E is at most

max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, qd,i, sd,i, nd,i, kd,i) .

Additionally, during the execution of E, for every vertex in the transcript, the extractor E reads the
input messages and attaches the augmented label to the vertex, which takes at most poly(l, arglen(nd,i, kd,i))
bit operations, where arglen(nd,i, kd,i) is the length of the argument proof in the label of the vertex. Also,
the basic pop and push operations for a queue take at most O(D · logM) steps. Since there are at most
tsize(ϕ) ≤ N extracted vertices, the overhead is at most N · poly(D, logM, l, arglen(nd,i, kd,i)).

In conclusion, E runs in time

N · poly(D, logM, l, arglen(nd,i, kd,i)) + max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, qd,i, sd,i, nd,i, kd,i) . (2)

We are left to upper bound qd,i, sd,i, nd,i, kd,i.

Index size and instance size. Every P̃d,i outputs an instance of the form x = (ivk, z), so kd,i ≤ k =

|ivk(λ, n)|+ l. Every P̃d,i outputs the index i = C
(λ,M,n,k)
V,ϕ (the recursive circuit), whose size is at most

csize (λ, S,M, l, n) := S +O(M · l) +M · vsize(λ, n, |ivk(λ, n)|+ l) .

Above:

• S is an upper bound on the predicate circuit size |ϕ|;
• O(M · l) bounds the cost of going over all incoming messages;
• vsize(λ, n, k) is the size of V(λ,n,k).

The below lemma gives a bound on the above expression, showing that nd,i ≤ n = nsize (λ, S,M, l).

28



Lemma 5.13 ([COS20, Lemma 11.8]). Suppose that for every security parameter λ ∈ N and every message
size l ∈ N, the ratio of verifier circuit size to index size vsize(λ,n,|ivk(λ,n)|+l)

n is monotonically decreasing in n.
Then there exists a size function nsize (λ, S,M, l) such that

∀λ, S,M, l ∈ N, csize (λ, S,M, l, nsize (λ, S,M, l)) ≤ nsize (λ, S,M, l) .

Query bound on the argument adversary. The malicious PCD prover P̃ makes qP̃ queries to the oracle,
and the PCD indexer I makes qI queries to the oracle. Therefore, the argument prover P̃1,0 makes qP̃ + qI

queries to the oracle; in fact, every argument prover P̃d,i makes qP̃ + qI queries to the oracle.

Size bound on the argument adversary. The size of P̃1,0 is dominated by the size of P̃, the size of I,
and the size of the output, which is at most sP̃ + sI + n + k. Let psize(d, i) denote the size of P̃d,i. By
Construction 5.12, the following recurrence holds:

• psize(1, 0) = sP̃ + sI + n+ k,
• psize(d, i) = psize(d − 1, ⌊i/M⌋) + tARG(λ, qP̃ + qI, psize(d − 1, ⌊i/M⌋), n, k) + n + k for d > 1 and
0 ≤ i < Md−1.

We can simplify the recurrence. We argue, by induction on d, that psize(d, i) = psize(d, j) for every i and j.
• Base case (d = 1). There is a single vertex v1 at depth 1. The claim is vacuously true.
• Inductive step. Assume the claim for all depths smaller than d. If ⌊i/M⌋ = ⌊j/M⌋ (i.e., i and j have

the same parent) then the claim holds by definition of psize. So suppose that ⌊i/M⌋ ̸= ⌊j/M⌋. By the
inductive hypothesis, psize(d−1, ⌊i/M⌋) = psize(d−1, ⌊j/M⌋), and again deduce the claim by definition
of psize.

Therefore, we can simplify the recurrence as follows (which matches the function in Definition 5.1):

• psize(1) = sP̃ + sI + n+ k,
• psize(d) = psize(d− 1) + tARG(λ, qP̃ + qI, psize(d− 1), n, k) + n+ k for d > 1 and 0 ≤ i < Md−1.

Finally, combining the above computations with Eq. (2), we conclude that

tPCD ≤ N ·poly(D, logM, l, arglen(n, k))+ max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, qP̃+qI, psize(depth(T, v)), n, k) .

Remark 5.14. In the proof above, we construct
∑D

i=0M
i argument provers (Construction 5.11 and Construc-

tion 5.12). However, the number of vertices in a PCD transcript is at most N , which can be much smaller than∑D
i=0M

i. Why do we define argument provers that we do not use? The reason is that the structure of the
transcript extracted by E is unknown before the end of the extraction. Hence, we have to consider all possible
configurations of the PCD transcript. As an example, consider a compliance predicate whose transcript depth
is 3. The above definition induces 7 malicious argument provers as shown in Fig. 4. Suppose that the PCD
extractor E extracts a transcript as described in Fig. 5: there are only four vertices (v3,2, v2,1, v1, v0) in the
transcript. The malicious argument provers corresponding to the dashed (nonexistent) vertices output ⊥
according to the construction (see Fig. 6).

Corollary 5.15 (From depth to size). The upper bound on extraction time in Lemma 5.10 can be relaxed to
the following:

tPCD ≤ N · poly(D, logM, l, arglen(n, k)) +
N∑
i=1

tARG(λ, qP̃ + qI, psize(i), n, k) .

29



!"!,#$

!"%,#$ !"%,!$

!"&,#$ !"&,!$ !"&,%$ !"&,&$

Figure 4: The malicious provers constructed as in Construction 5.11 and Construction 5.12 when transcript depth
is at most 3.

#%,# #%,!

##

#!

#&,# #&,! #&,% #&,&

Figure 5: An example transcript extracted by E with
4 vertices. The vertices circled with red dashed lines
are illustrations of missing vertices.

!"!,#$

!"%,#$ !"%,!$

!"&,#$ !"&,!$ !"&,%$ !"&,&$

⊥

⊥ ⊥ ⊥

Figure 6: The behavior of the malicious provers for
the transcript in Fig. 5. The provers circled with red
dashed lines output ⊥.

Proof. Lemma 5.10 upper bounds extraction time by relying on the depth of each vertex in the transcript.
Here, we provide an upper bound by relying on the breath-first-search (BFS) numbering of each vertex (the
BFS numbering of the vertex is the number of vertices before itself in the BFS ordering of the transcript).
Roughly this corresponds to keeping track of transcript size rather than transcript depth.

Let T be an arbitrary transcript in T (N,D,M). Let v be an arbitrary vertex in V (T). Let i be the BFS
number of v. Observe that i ≥ depth(T, v) by definition of BFS and depth of a vertex. Therefore

psize(i) ≥ psize(depth(T, vi)) .

Since tARG is a non-decreasing function in the size of the argument adversary P̃ , we conclude that

tPCD ≤ N · poly(D, logM, l, arglen(n, k)) + max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, qP̃ + qI, psize(depth(T, v)), n, k)

≤ N · poly(D, logM, l, arglen(n, k)) +
N∑
i=1

tARG(λ, qP̃ + qI, psize(i), n, k) .

30



Lemma 5.16 (Maximum PCD transcript). There exists a algorithm that takes N,D,M ∈ N as input, runs in
time poly(N,D,M), and outputs a tree T∗ in T (N,D,M) that maximizes the expression below:

max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, qP̃ + qI, psize(depth(T, v)), n, k) .

Proof. We show that the maximum value over the set of all transcripts T (N,D,M) for tPCD (which appears in
Lemma 5.10) has a clear resolution: the transcript T∗ output by the algorithm GetMaxTree below.

Define TD,M to be the complete M -ary tree of depth D. Let v1 be the root of TD,M , add v0 to V (TD,M )
and (v1, v0) to E(TD,M ). We construct GetMaxTree as follows:

GetMaxTree(N,D,M):
1. Abort if N >

∑d
i=0M

i.
2. Initialize T∗ as an empty graph.
3. While size(T∗) < N :

(a) Let v be the next vertex (in the depth-first-search order) in V (TD,M ) that is not in V (T ∗).
(b) Add v and its unique outgoing edge to V (T ∗) and E(T ∗), respectively.

4. Output T ∗.

The above algorithm clearly runs in time poly(N,D,M).
Now we show that the tree T ∗ output by GetMaxTree(N,D,M) attains the maximum. Let T be an

arbitrary tree in T (N,D,M). Sort V (T∗) = {v∗0, . . . , v∗N} and V (T) = {v0, . . . , vN} with respect to the depth
of the vertices in non-increasing order. Note that depth-first-search always gives the deepest possible tree. In
other words, for every i ∈ [N ], depth(T∗, v∗i ) ≥ depth(T, vi). Since tARG is a non-decreasing function in the
size of the argument adversary P̃ , T∗ maximizes the target expression.

31



6 Relativized non-interactive arguments with straightline extraction

We describe three examples of relativized non-interactive arguments with straightline extraction in different
oracle models: the arithmetized random oracle model [CCGOS23]; the signed random oracle model [CT10];
and a weak construction in any oracle model (which includes the random oracle model). For concreteness,
we state results for the oracle CSAT relation.

Definition 6.1 (CSAT relation). The relation RCSAT is defined as

RCSAT := {(C,x,w) : C(x,w) = 1} .

Definition 6.2 (CSAT oracle relation). For any λ ∈ N, and any f ∈ U(λ), the relation Rf
CSAT is defined as

Rf
CSAT := {(C,x,w) : Cf (x,w) = 1} .

6.1 The arithmetized random oracle model

In [CCGOS23], the authors construct a relativized SNARK with straightline extraction in the arithmetized
random oracle model (AROM). Briefly, they show that any SNARK in the ROM can be transformed into a
relativized SNARK in the AROM, while preserving straightline extraction; then applying this transformation
to Micali’s SNARK [Mic00] yields the desired relativized SNARK.

Theorem 6.3 ([CCGOS23]). Let U be the distribution over functions corresponding to the arithmetized
random oracle model. Assume the existence of collision-resistant hash functions in the standard model. Then
there exists a (succinct) non-interactive argument relative to the oracle distribution U for the relation RU

CSAT

with (straightline) knowledge soundness error κARG(λ, qP̃ , sP̃ , n, k) that is negligible (if the input parameters
are polynomially bounded in the security parameter λ).

6.2 The signed random oracle model

In [CT10], the authors introduce the notion of PCD, and construct PCDs in the signed random oracle model
(SROM). Implicit in their construction is a relativized SNARK in the SROM with straightline extraction,
directly obtained by modifying Micali’s SNARK where all oracle calls are replaced with sub-computations
that verify signatures on the relevant messages.

Theorem 6.4 ([CT10]). Let U be the distribution over functions corresponding to the signed random
oracle model (realized with a secure signature scheme). There exists a (succinct) non-interactive argument
relative to the oracle distribution U for the relation RU

CSAT with (straightline) knowledge soundness error
κARG(λ, qP̃ , sP̃ , n, k) that is negligible (if the input parameters are polynomially bounded in the security
parameter λ).

6.3 The random oracle model (and any other oracle model)

For any given oracle distribution, we describe how to transform any non-interactive argument into a relativized
non-interactive argument at the expense of succinctness. The transformation preserves straightline extraction.

Theorem 6.5. Let U be an oracle distribution. Let ARG1 = (G1, I1,P1,V1) be a non-interactive ar-
gument for RCSAT with straightline knowledge soundness error κARG(λ, qP̃ , sP̃ , n, k) and extraction time

32



tARG(λ, qP̃ , sP̃ , n, k). Then ARG2 = (G2, I2,P2,V2) in Construction 6.8 is a non-interactive argument for
RU

CSAT with straightline knowledge soundness error κ′ARG and extraction time t′ARG such that

κ′ARG(λ, qP̃ , sP̃ , n, k) ≤ κARG(λ, qP̃ , sP̃ +O(n+ qC), O(n+ qC), k + qC) ,

t′ARG(λ, qP̃ , sP̃ , n, k) ≤ tARG(λ, qP̃ , sP̃ +O(n+ qC), O(n+ qC), k + qC) +O(n+ qC) ,

where qC is the number of queries made by the oracle circuit whose satisfiability is proved.

The construction of ARG2 from ARG1 is in Construction 6.8 below. Before that, we define a subroutine
for checking the correctness of query-answer traces (Definition 6.6) and how to modify a circuit to replace
oracle gates with lookups into an augmented instance (Definition 6.7).

Definition 6.6. Fix an oracle f ∈ U(λ). The algorithm TraceCheck, given oracle access to f and given
as input a query-answer trace tr (Definition 3.3), checks that tr is consistent with f : parse tr as a list of
query-answer pairs ((qi, ai))i and, for every i, check that f(qi) = ai.

Definition 6.7. Let C be an oracle circuit where oracle gates are for functions in U(λ) that receives as input
an instance x and witness w, and outputs a decision bit. The circuit C ′ takes in input an augmented instance
(x, tr) and witness w, and outputs a decision bit.

C ′((x, tr),w): Run C(x,w), answering each oracle query q with tr(q). (Abort and output 0 if tr does not
contain the query q.) Output the output of C(x,w).

Note that Cf (x,w) = 1 if and only if C ′((x, tr),w) outputs 1 and tr is such that TraceCheckf (tr) = 1.

Construction 6.8. Let ARG1 = (G1, I1,P1,V1) be a non-interactive argument system for RCSAT. We
construct a non-interactive argument system ARG2 = (G2, I2,P2,V2) for RU

CSAT.

• G2(1λ): Sample public parameters pp← G1(1λ).

• If2 (pp, i):
1. Parse the index i as an oracle circuit C.
2. Construct the (non-oracle) circuit C ′ from C as in Definition 6.7.
3. Obtain the proving and verification key for the new circuit C ′: (ipk′, ivk′)← If1 (pp, C ′).
4. Output (ipk, ivk) := ((ipk′, C), ivk′).

• Pf
2 (ipk,x,w):

1. Parse the proving key ipk as (ipk′, C).
2. Get the query-answer trace of the original circuit C given the instance and the witness: (·) tr←− Cf (x,w).
3. Compute the argument string π′ ← Pf

1 (ipk
′, (x, tr),w).

4. Output (π′, tr).

• Vf2 (ivk,x, π) :
1. Parse π as (π′, tr).
2. Check that TraceCheckf (tr) = 1.
3. Check that Vf1 (ivk, (x, tr), π′) = 1.

33



Perfect completeness of ARG2 follows from perfect completeness of ARG1: if (C,x,w) ∈ Rf
CSAT then

(C ′, (x, tr),w) ∈ RCSAT where tr is the query-answer trace of Cf (x,w); hence TraceCheck accepts tr and
P1 produces an argument string that is accepted by V1. We are left to argue knowledge soundness.

Knowledge soundness. Let P̃2 be a qP̃-query sP̃-size adversary against ARG2. We construct an adversary
P̃1 against ARG1.

P̃f
1 (pp, ai) :

1. Run (C,x, (π, tr))← P̃f
2 (pp, ai).

2. Construct C ′ as in Definition 6.7.
3. Output (C ′, (x, tr), π).

The number of queries made by P̃1 is the same as that made by P̃2, which is qP̃ . The size of P̃1 is at most
sP̃ +O(n+ qC) (where qC is the query complexity of C), since constructing C ′ takes time O(n+ qC).

Let E1 be the (universal) straightline extractor for ARG1. We construct a (universal) straightline extractor
E2 for ARG2.

E2(pp, C,x, (π, trC), tr):
1. Construct the oracle circuit C ′ from C according to Definition 6.7.
2. Compute w← E1(pp, C ′, (x, trC), π, tr).
3. Output w.

Therefore,

Pr


|C| ≤ n
∧ |x| ≤ k

∧ (C,x,w) ̸∈ Rf

∧Vf2 (ivk,x, (π, trC)) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
pp← G2(1λ)
ai← D(pp)

(C,x, (π, trC))
tr←− P̃f

2 (pp, ai)

(ipk, ivk)← If2 (pp, C)
w← E2(pp, C,x, (π, trC), tr)



≤ Pr


|C ′| ≤ n′

∧ |(x, trC)| ≤ k′

∧ (C ′, (x, trC),w) ̸∈ R

∧Vf1 (ivk
′, (x, trC), π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
pp← G1(1λ)
ai← D(pp)

(C ′, (x, trC), π)
tr←− P̃f

1 (pp, ai)

(ipk′, ivk′)← If1 (pp, C ′)
w← E1(pp, C ′, (x, trC), π, tr)


≤ κARG(λ, qP̃ , sP̃ +O(n+ qC), n

′, k′) ,

where n′ := |C ′| = O(n + qC) and k′ := |x| + |trC | ≤ k + qC . The first inequality follows from
the construction of V2, and the second inequality follows from the knowledge soundness error of ARG1

(Definition 3.6), which depends on the security parameter λ, the number of queries qP̃ made by the adversary
P̃1, the size sP̃ +O(n+ qC) of P̃1, the new index size n′, and the new instance size k′.

Finally, the running time of E2 is the sum of the running time of E1, which is upper-bounded by
tARG(λ, qP̃ , sP̃ + O(n + qC), n

′ = O(n + qC), k
′ = k + qC) according to Definition 3.6, and the time to

construct C ′ from C, which can be upper-bounded by O(n+ qC).

34



7 Technical extension: probabilistic extractors with oracle access

We have discussed the security of PCD obtained from relativized non-interactive arguments with straightline
extraction: in Section 5 we provide the security analysis for the PCD construction in Section 4. The notion of
straightline extraction considered in that analysis involves knowledge extractors that are deterministic and do
not have query access to the oracle. While known constructions of relativized non-interactive arguments
satisfy these constraints (see Section 6), in this section we provide, as an interesting technical extension,
a security analysis for a relaxed notion of straightline extraction, which considers straightline knowledge
extractors that are probabilistic and have oracle access.

Definition 7.1. ARG has probabilistic (straightline) knowledge soundness error κARG = κARG(λ, qP̃ , sP̃ , n, k)
with extraction time tARG = tARG(λ, qP̃ , sP̃ , n, k) and extraction query bound qARG = qARG(λ, qP̃ , sP̃ , n, k)
if Definition 3.6 holds with a probabilistic extractor E that has query access to the oracle function and makes
at most qARG queries. Similarly, PCD has probabilistic (straightline) knowledge soundness error κPCD =
κPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l) with extraction time tPCD = tPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l)
and extraction query bound qPCD = qPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l) if Definition 3.16 holds with a
probabilistic extractor E that has query access to the oracle function and makes at most qPCD queries.

Remark 7.2. There is a simple, but inefficient, reduction from probabilistic extraction to deterministic
extraction: run the extractor for every possible choice of randomness for the probabilistic extractor. The
knowledge soundness error is preserved after the reduction, but the running time of the extractor (and its
query complexity) increases with a multiplicative factor of all possible randomness.

We extend our results in Section 5 to the setting of Definition 7.1.

Definition 7.3. We refine the function psize (Definition 5.1) to account for the probabilistic oracle extractors.
In addition, we define pquery that we use to bound the number of queries made by argument adversaries.
• pquery(1) := qP̃ + qI,
• psize(1) := sP̃ + sI + n+ k,
• pquery(d) := pquery(d− 1) + qARG(λ, pquery(d− 1), psize(d− 1), n, k) for d > 1,
• psize(d) := psize(d− 1) + tARG(λ, pquery(d− 1), psize(d− 1), n, k) + n+ k for d > 1.

Theorem 7.4 (Generalization of Theorem 5.2). Let U be an oracle distribution. Suppose that ARG =
(G, I,P,V) is a non-interactive argument for oracle CSAT relation RU

CSAT with probabilistic oracle
straightline knowledge soundness error κARG(λ, qP̃ , sP̃ , n, k), extraction time tARG(λ, qP̃ , sP̃ , n, k), and ex-
tractor query bound qARG(λ, qP̃ , sP̃ , n, k).

Then we can construct a PCD scheme PCD = (G, I,P,V) from ARG with straightline knowledge sound-
ness error κPCD = κPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l), extraction time tPCD = tPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l),
and extractor query bound qPCD = qPCD(λ, qI, sI, qP̃, sP̃, N,D, S,Q,M, l) such that

κPCD ≤ max
T∈T (N,D,M)

∑
v∈T\{v0}

κARG(λ, pquery(depth(T, v)), psize(depth(T, v)), n, k) ,

qPCD ≤ max
T∈T (N,D,M)

∑
v∈T\{v0}

qARG(λ, pquery(depth(T, v)), psize(depth(T, v)), n, k) ,

tPCD ≤ N · poly(D, logM, l, arglen(n, k))

+ max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, pquery(depth(T, v)), psize(depth(T, v)), n, k) ,

where

35



• n := nsize (λ, S,M, l), where nsize (·) is defined in Lemma 5.13; and
• k := |ivk|+ l.
• qP̃ := qP̃ + qI +N ·Q+ qPCD.
• sP̃ := sP̃ + sI +N · S +N · vsize(λ, n, k) + tPCD, where vsize(λ, n, k) is the size of the argument verifier
V when invoked with security parameter λ, index of size n, and instance of size k.

• arglen(λ, n, k) is the size of the argument proof π outputted by the argument prover when invoked with
security parameter λ, index of size n, and instance of size k.

Remark 7.5. We can use the same analysis as in Corollary 5.15 and Lemma 5.16 to interpret Theorem 7.4.

In the rest of this section we discuss the proof of Theorem 7.4.

7.1 Probabilistic oracle extractor for PCD

We first construct the knowledge extractor for the PCD constructed in Construction 4.2. Note that we need a
different extractor from the one in Construction 4.3 because now the extractor for the underlying argument has
oracle access to the oracle function. In particular, we separately consider an extraction queue for each vertex
in the transcript since the query-answer traces induced by the argument extractor E need to be considered
(see Fig. 7 and Fig. 8 for a concrete example of how E defined below works).

Construction 7.6. The knowledge extractor for the PCD scheme works as follows.

Ef (pp, ivk, ϕ, zout, out, tr):
1. Parse pp as pp.
2. Parse out as πout.
3. Parse ivk as ivk.
4. Initialize graph T = (V,E) where V = {v0, v1} and E = {(v1, v0)}.
5. Label the edge (v1, v0) by (zout, πout).
6. Initialize the extraction queue for v0 as Lv0 := (v1).
7. Set trv0 := tr.
8. Initialize the queue of extraction queues F with (trv0 ,Lv0) as the first element.
9. Set i := C

(λ,M,n,k)
V,ϕ .

10. While F is non-empty:
(a) Let (tr,L) be the first tuple in F , remove the first tuple (tr,L) from F .
(b) While L is non-empty:

i. Let v be the first vertex in L, remove the first vertex v from L.
ii. Let z(e) and π(e) be the message and proof in the label of the unique outgoing edge e from v.

iii. Let (iv,xv, πv) := (i, (ivk, z(e)), π(e)).
iv. Run the argument extractor wv

trE←−− Ef (pp, iv,xv, πv, tr).

v. Parse wv as (w(v)
loc , z⃗

(v)
in , ⃗

(v)

in ).
vi. Label v in T by w

(v)
loc .

vii. Initialize Lv to be an empty queue.
viii. For every j such that z⃗(v)in [j] ̸= ⊥:

A. Add a new vertex v′ to V , and an edge (v′, v) in E.

B. Parse ⃗
(v)

in [j] as π(v′,v).
C. Add the label (z⃗(v)in [j], π(v′,v)) to the edge (v′, v) in T.

36



D. Add v′ to Lv.
ix. Add (tr ∥ trE ,Lv) to F .

11. Output the augmented transcript T.

#%,# #%,!

##

#!

#&,# #&,% #&,&

Figure 7: An example PCD transcript extracted by
E.

+%,# +%,!

+#

+!

+&,# +&,% +&,&

tr# ≔ tr

tr! ≔ tr# ∥ tr'!

tr%,# ≔ tr! ∥ tr'",$ tr%,! tr%,! ≔ tr! ∥ tr'",!

tr!

Figure 8: The extraction order of E for the PCD
transcript in Fig. 7 with corresponding query-answer
traces.

7.2 Knowledge soundness error

Our goal is to upper bound the following expression

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (T is not (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
pp← G(1λ)
ai← D(pp)

(ϕ, zout, out)
tr←− P̃f (pp, ai)

(ipk, ivk)← If (pp, ϕ)
T← Ef (pp, ivk, ϕ, zout, out, tr)


. (3)

Recall that in Section 5.1, the malicious argument prover P̃ is defined following the structure of the PCD
extractor in Construction 4.3. Therefore, we can similarly define a malicious argument prover P̃ following
Construction 7.6 if the argument extractor E is deterministic but with oracle access. The same bound and the
same analysis for the deterministic knowledge soundness error generalize to this setting directly.

We consider the set of malicious argument provers defined in a similar way as in Section 5.2 (the only
difference is when invoking E , it has oracle access to f ):

• P̃f
1,0(pp, ai):

1. Set pp := pp.
2. Run (ϕ, zout, out)← P̃f (pp, ai).
3. Run (ipk, ivk)← If (pp, ϕ).
4. Parse ivk as ivk.
5. Parse out as πout.

37



6. Set i := C
(λ,M,n,k)
V,ϕ .

7. Output (i, (ivk, zout), πout).

• P̃f
d,i(pp, ai):

1. Let (parent,pos) := (⌊i/M⌋, i mod M).
2. Run (i,x, π)

tr←− P̃f
d−1,parent(pp, ai).

3. If (i,x, π) = ⊥, output ⊥.
4. Otherwise, run the argument extractor w← Ef (pp, i,x, π, tr).
5. Parse w as (wloc, z⃗in, ⃗ in).
6. Parse x as (ivk, z).
7. If z⃗in[pos] = ⊥, output ⊥.
8. Otherwise, output (i, (ivk, z⃗in[pos]), ⃗ in[pos]).

For every d and i, let qd,i be the number of queries made by P̃d,i and sd,i be the size of P̃d,i.
For the rest of this section, we consider the following experiment:

Experiment 2. 

f ← U(λ)
pp← G(1λ)
ai← D(pp)

(ϕ, zout, out)
tr←− P̃f (pp, ai)

(ipk, ivk)← If (pp, ϕ)
T← Ef (pp, ivk, ϕ, zout, out, tr)


.

Let Ti be the partial transcript produced by E at the end of the i-th iteration. We say that Ti is consistent
with a complete transcript T if Ti is the same as the subtree of T induced by the first i-vertices (in the
breadth-first-search order, which is the order that E extracts) of T. Similar to the argument in Section 5.1, we
define a stronger notion of compliance to connect non-compliant transcript with falsely accepting argument
verifier.

Definition 7.7. A partial transcript Ti = (Vi, Ei) is partially (ϕ, f)-compliant if the following holds:
• For every non-source vertex u ∈ V :

– Let (v1, . . . , vM ) be the child-vertices of u.
– For every outgoing edge e of u, ϕf (z(e), w

(u)
loc , (z

(v1,u), . . . , z(vM ,u))) = 1.
• For every edge e ∈ E, Vf (ivk, (ivk, z(e)), π(e)) = 1.

Note that we only require compliance for non-source vertices above because the source vertices for partial
transcripts cannot be checked: they may have child-vertices that are not extracted yet.

From the law of total probability, we have

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (T is not (ϕ, f)-compliant ∨ out(T) ̸= zout)



=
∑

T′∈T (N,D,M)

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (T is not (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣ T = T′

Pr
[
T = T′]

38



≤ max
T′∈T (N,D,M)

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (T is not (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣ T = T′

 .

Observe that out(T) = zout always, we focus on the event that T being not (ϕ, f)-compliant, which implies
that either
• TN is not partially (ϕ, f)-compliant for TN consistent with T; or
• there exists a source vertex v in TN that is not (ϕ, f)-compliant.
Thus, the following claim gives an upper bound of Eq. (3).

Claim 7.8. Fix some T′ ∈ T (N,D,M) where v1 ∈ T′ is written as v1,0. We have,

Pr



ϕ is (Φ, N,D,M,S,Q)-compatible
∧ |zout| ≤ l

∧Vf (ivk, zout, out) = 1

∧

 TN is not partially (ϕ, f)-compliant
∨∃ source vertex v ∈ V (TN ) : v is not (ϕ, f)-compliant

∨ out(T) ̸= zout



∣∣∣∣∣∣∣∣∣∣∣∣
TN is consistent with T′


≤

∑
vd,i∈T′\{v0}

κARG(λ, qd,i, sd,i, n, k) .

We can conclude that

κPCD ≤ max
T∈T (N,D,M)

∑
vd,i∈T\{v0}

κARG(λ, qd,i, sd,i, n, k) ,

where n := nsize (λ, S,M, l) (nsize (·) is the circuit size defined in Lemma 5.13) and k := |ivk|+ l.
To get the knowledge soundness stated in Theorem 7.4, we are left to compute qd,i and sd,i.

Argument adversary query and size bound. We know that P̃ makes qP̃ queries to the oracle, and I makes
qI queries to the oracle. Therefore, P̃1,0 makes qP̃ + qI queries to f . Moreover, the size of P̃1,0 is dominated
by the size of P̃, the size of I, and the size of the output, which is at most sP̃ + sI + n+ k.

We use a similar analysis to bound the number of queries made by P̃d,i. Let pquery(d, i) denote the
number of queries made by P̃d,i. According to the construction, the following recurrence holds:

• pquery(1, 0) := qP̃ + qI,
• psize(1, 0) := sP̃ + sI + n+ k,
• pquery(d, i) := pquery(d − 1, ⌊i/M⌋) + qARG(λ, pquery(d − 1, ⌊i/M⌋), psize(d − 1, ⌊i/M⌋), n, k) for
d > 1,

• psize(d, i) := psize(d − 1, ⌊i/M⌋) + tARG(λ, pquery(d − 1, ⌊i/M⌋), psize(d− 1, ⌊i/M⌋), n, k) + n + k
for d > 1.

As in Section 5.2, we can simplify the above equations as follows:

• pquery(1) := qP̃ + qI,
• psize(1) := sP̃ + sI + n+ k,
• pquery(d) := pquery(d− 1) + qARG(λ, pquery(d− 1), psize(d− 1), n, k) for d > 1,
• psize(d) := psize(d− 1) + tARG(λ, pquery(d− 1), psize(d− 1), n, k) + n+ k for d > 1.

39



Hence, qd,i = pquery(d) and sd,i = psize(d) and we have the following bound:

κPCD ≤ max
T∈T (N,D,M)

∑
v∈T\{v0}

κARG(λ, pquery(depth(T, v)), psize(depth(T, v)), n, k) .

Proof of Claim 7.8. We first show by induction that for every T′ ∈ T (N,D,M) and i ∈ [N ],

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (Ti is not partially (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣ Ti is consistent with T′


≤

∑
v∈Ti\{v0}

v is not a source vertex

κARG(λ, pquery(depth(Ti, v)), psize(depth(Ti, v)), n, k) .

(4)

• (Base case, i = 0.) According to Construction 7.6, T0 is a tree where V (T0) = {v0, v1} and E(T0) =
{(v1, v0)}. Hence, T0 is partially (ϕ, f)-compliant vacuously. Moreover, the edge (v1, v0) is labeled
by (zout, out), which implies that out(T0) = zout. Thus, the probability that T0 is not partially (ϕ, f)-
compliant or out(T0) ̸= zout is 0, and Eq. (4) is true for i = 0.

• (Inductive step.) We assume that Eq. (4) holds for all values smaller than i. Assume that Ti is consistent
with T. We again have that out(T0) = zout, so we only need to focus on the probability that Ti is
not partially (ϕ, f)-compliant. Note that if Ti is not partially (ϕ, f)-compliant, then either Ti−1 is not
partially (ϕ, f)-compliant, or Ti−1 is partially (ϕ, f)-compliant but Ti is not. Therefore, we know that the
probability expression in Eq. (4) can be upper-bounded by the sum of

Pr


ϕ is (Φ, N,D,M,S,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧ (Ti−1 is not partially (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣ Ti is consistent with T′

 (5)

and

Pr


ϕ is (Φ, N, S,D,M,Q)-compatible

∧ |zout| ≤ l
∧Vf (ivk, zout, out) = 1

∧Ti−1 is partially (ϕ, f)-compliant
∧ (Ti is not partially (ϕ, f)-compliant ∨ out(T) ̸= zout)

∣∣∣∣∣∣∣∣∣∣
Ti is consistent with T′

 . (6)

For the first case, let vi−1 be the (i−1)-th vertex (in the breadth-first-search order) in T. From the inductive
hypothesis, we can upper-bound Eq. (5) by∑

v∈Ti−1\{v0}
v is not a source vertex

κARG(λ, pquery(depth(Ti−1, vi−1)), psize(depth(Ti−1, vi−1)), n,x) .

We now discuss the second case. Let v be the i-th vertex (in the breadth-first-search order) in T. By Con-
struction 7.6, v is the vertex extracted by E in the i-th iteration. Let (d, k) := (depth(T, v), parent(T, v)).
By definition of depth, we know that P̃d,k is an argument adversary that outputs the index-instance-proof

40



tuple (iv,xv, πv) that corresponds to vertex v. Let e be the unique outgoing edge of v, let v1, . . . , vM be
the child-vertices of v in Ti (maybe there are less than M child-vertices of v in Ti, but the exact number
would not affect the analysis as long as it is upper-bounded by M ). According to Definition 7.7, if Ti−1 is
partially (ϕ, f)-compliant but Ti is not, then at least one of the following is true:

– ϕf (z(e), w
(v)
loc , (z

(vℓ,v))ℓ∈[M ]) = 0;

– Vf (ivk, (ivk, z(vℓ,v)), π(vℓ,v)) = 0 for some ℓ ∈ [M ].

Let wv be the witness outputted by E when extracting v. By Construction 4.1, we know that (iv,xv,wv) ̸∈
Rf

CSAT. On the other hand, since Ti−1 is partially (ϕ, f)-compliant, we know that Vf (ivk,xv, πv) = 1.
Therefore, Ti−1 being partially (ϕ, f)-compliant but Ti being not partially (ϕ, f)-compliant implies that
(iv,xv,wv) ̸∈ Rf

CSAT and Vf (ivk,xv, πi) = 1. We then can conclude that Eq. (6) can be upper-bounded
by

Pr


|iv| ≤ n
∧ |xv| ≤ k

∧ (iv,xv,wv) ̸∈ R
∧Vf (ivk,xv, πv) = 1

∣∣∣∣∣∣∣∣∣
pp := pp

(iv,xv, πv)
tr←− P̃f

d,k(pp, ai)

(ipk, ivk)← If (pp, iv)
wv ← Ef (pp, iv,xv, πv, tr)

 .

From Definition 7.1, the above expression is upper-bounded by

κARG(λ, pquery(d), psize(d), n, k) .

Therefore, by union bound, Eq. (4) holds for i.

Applying the same (inductive) analysis to the source vertices in TN concludes Claim 7.8.

7.3 Extraction query bound

From Construction 7.6, the only place that E makes query to f is when invoking E in Item 10(b)iv. Fix
T ∈ T (N,D,M). Let v be an arbitrary vertex in T. According to Definition 7.1, the number of queries made
by E when extracting v is

qARG(λ, pquery(depth(T, v)), psize(depth(T, v)), n, k) .

Therefore, we can conclude that the total number of queries made by E is

max
T∈T (N,D,M)

∑
v∈T\{v0}

qARG(λ, pquery(depth(T, v)), psize(depth(T, v)), n, k) .

7.4 Extraction time bound

The extraction time can be analyzed in the same way as in Section 5.2:

tPCD ≤ N · poly(D, logM, l, arglen(nd,i, kd,i)) +O(D · logM)) + max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, qd,i, sd,i, nd,i, kd,i)

≤ N · poly(D, logM, l, arglen(n, k))

+ max
T∈T (N,D,M)

∑
v∈T\{v0}

tARG(λ, pquery(depth(T, v)), psize(depth(T, v)), n, k) .

41



Acknowledgments

We thank Sarah Bordage for valuable discussions in early stages of this work. We thank Giacomo Fenzi,
Christian Knabenhans, and Giorgio Seguini for valuable feedback and comments on earlier drafts of this
paper. Ziyi Guan is partially supported by the Ethereum Foundation. Eylon Yogev is supported by an Alon
Young Faculty Fellowship, by the Israel Science Foundation (Grant No. 2302/22), and by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office.

References
[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowledge with No

Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology Conference. CRYPTO ’19.
2019, pp. 733–764.

[BC23] Benedikt Bünz and Binyi Chen. ProtoStar: Generic Efficient Accumulation/Folding for Special Sound
Protocols. Cryptology ePrint Archive, Paper 2023/620. 2023.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive Composition and Boot-
strapping for SNARKs and Proof-Carrying Data”. In: Proceedings of the 45th ACM Symposium on the
Theory of Computing. STOC ’13. 2013, pp. 111–120.

[BCLMS21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. “Proof-
Carrying Data Without Succinct Arguments”. In: Proceedings of the 41st Annual International Cryptol-
ogy Conference. CRYPTO ’21. 2021, pp. 681–710.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. “Proof-Carrying Data from
Accumulation Schemes”. In: Proceedings of the 18th Theory of Cryptography Conference. TCC ’20.
2020, pp. 1–18.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Proceedings
of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero Knowledge via
Cycles of Elliptic Curves”. In: Proceedings of the 34th Annual International Cryptology Conference.
CRYPTO ’14. Extended version at http://eprint.iacr.org/2014/595. 2014, pp. 276–294.

[BD22] O(1) Labs. Using ZK Proofs to Fight Disinformation. https://medium.com/@boneh/using-
zk-proofs-to-fight-disinformation-17e7d57fe52f. 2022.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. “Halo Infinite: Proof-Carrying Data from
Additive Polynomial Commitments”. In: Proceedings of the 41st Annual International Cryptology
Conference. CRYPTO ’21. 2021, pp. 649–680.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composition without a Trusted
Setup. Cryptology ePrint Archive, Report 2019/1021. 2019.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized Cryptocurrency
at Scale. IACR Cryptology ePrint Archive, Report 2020/352. 2020.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols”. In: Proceedings of the 1st ACM Conference on Computer and Communications Security.
CCS ’93. 1993, pp. 62–73.

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and Nicholas P. Ward. Reducing Participation
Costs via Incremental Verification for Ledger Systems. Cryptology ePrint Archive, Report 2020/1522.
2020.

42

http://eprint.iacr.org/2014/595
https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f
https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f


[CCGOS23] Megan Chen, Alessandro Chiesa, Tom Gur, Jack O’Connor, and Nicholas Spooner. “Proof-Carrying
Data From Arithmetized Random Oracles”. In: Proceedings of the 42nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’23. 2023, pp. 379–404.

[CCS22] Megan Chen, Alessandro Chiesa, and Nicholas Spooner. “On Succinct Non-interactive Arguments in
Relativized Worlds”. In: Proceedings of the 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques. EUROCRYPT ’22. 2022.

[CL20] Alessandro Chiesa and Siqi Liu. “On the Impossibility of Probabilistic Proofs in Relativized Worlds”.
In: Proceedings of the 11th Innovations in Theoretical Computer Science Conference. ITCS ’20. 2020.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-Quantum and Transparent Recursive
Proofs from Holography”. In: Proceedings of the 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 769–793.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Arguments from Signature
Cards”. In: Proceedings of the 1st Symposium on Innovations in Computer Science. ICS ’10. 2010,
pp. 310–331.

[CTV13] Stephen Chong, Eran Tromer, and Jeffrey A. Vaughan. Enforcing Language Semantics Using Proof-
Carrying Data. Cryptology ePrint Archive, Report 2013/513. 2013.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster Computing in Zero Knowledge”. In:
Proceedings of the 34th Annual International Conference on Theory and Application of Cryptographic
Techniques. EUROCRYPT ’15. 2015, pp. 371–403.

[CY21a] Alessandro Chiesa and Eylon Yogev. “Subquadratic SNARGs in the Random Oracle Model”. In:
Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21. 2021, pp. 711–741.

[CY21b] Alessandro Chiesa and Eylon Yogev. “Tight Security Bounds for Micali’s SNARGs”. In: Proceedings
of the 19th Theory of Cryptography Conference. TCC ’21. 2021, pp. 401–434.

[E23] Ethereum. Zero-Knowledge Rollups. https://ethereum.org/en/developers/docs/
scaling/zk-rollups/. 2023.

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo: a Turing-complete STARK-friendly CPU
architecture. IACR Cryptology ePrint Archive, Report 2021/1063. 2021.

[GW11] Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive Arguments From All Falsifiable
Assumptions”. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing. STOC ’11.
2011, pp. 99–108.

[HN23] Mathias Hall-Andersen and Jesper Buus Nielsen. “On Valiant’s Conjecture: Impossibility of Incremen-
tally Verifiable Computation from Random Oracles”. In: Proceedings of the 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’23. 2023.

[KB23] Assimakis Kattis and Joseph Bonneau. “Proof of Necessary Work: Succinct State Verification with
Fairness Guarantees”. In: Proceedings of the 27th Financial Cryptography and Data Security. FC ’23.
2023.

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal machine executions without
universal circuits. Cryptology ePrint Archive, Paper 2022/1758. 2022.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes”. In: Proceedings of the 42nd Annual International Cryptology Conference.
CRYPTO ’22. 2022, pp. 359–388.

[ML20] Matter Labs. zkSync v1.1 “Reddit Edition”: Recursion. https://blog.matter-labs.io/
zksync-v1-1-reddit-edition-recursion-up-to-3-000-tps-subscriptions-
and-more-fea668b5b0ff. 2020.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000). Prelimi-
nary version appeared in FOCS ’94., pp. 1253–1298.

43

https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://blog.matter-labs.io/zksync-v1-1-reddit-edition-recursion-up-to-3-000-tps-subscriptions-and-more-fea668b5b0ff
https://blog.matter-labs.io/zksync-v1-1-reddit-edition-recursion-up-to-3-000-tps-subscriptions-and-more-fea668b5b0ff
https://blog.matter-labs.io/zksync-v1-1-reddit-edition-recursion-up-to-3-000-tps-subscriptions-and-more-fea668b5b0ff


[Mina] O(1) Labs. Mina Cryptocurrency. https://minaprotocol.com/. 2017.

[NT16] Assa Naveh and Eran Tromer. “PhotoProof: Cryptographic Image Authentication for Any Set of
Permissible Transformations”. In: Proceedings of the 37th IEEE Symposium on Security and Privacy.
S&P ’16. 2016, pp. 255–271.

[P23] Polygon. The Go Fast Machine: Adding Recursion to Polygon zkEVM. https : / / polygon .
technology/blog/the-go-fast-machine-adding-recursion-to-polygon-
zkevm. 2023.

[PL22] Polymer Labs. A Tutorial on Writing proofs with Plonky2. https://polymerlabs.medium.
com/a-tutorial-on-writing-zk-proofs-with-plonky2-part-i-be5812f6b798.
2022.

[SW21] StarkWare Industries. Starkware: SHARP Verifier. https://etherscan.io/address/0x47312450b3ac8b5b8e247a6bb6d523e7605bdb60.
2021.

[SW22] StarkWare Industries. Recursive STARKs. https://medium.com/@starkware/recursive-
starks-78f8dd401025. 2022.

[TFZBT22] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and Stefano Tessaro. “VeRSA: Verifiable
Registries with Efficient Client Audits from RSA Authenticated Dictionaries”. In: Proceedings of the
29th ACM Conference on Computer and Communications Security. CCS ’22. 2022, pp. 2793–2807.

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Ef-
ficiency”. In: Proceedings of the 5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1–
18.

44

https://minaprotocol.com/
https://polygon.technology/blog/the-go-fast-machine-adding-recursion-to-polygon-zkevm
https://polygon.technology/blog/the-go-fast-machine-adding-recursion-to-polygon-zkevm
https://polygon.technology/blog/the-go-fast-machine-adding-recursion-to-polygon-zkevm
https://polymerlabs.medium.com/a-tutorial-on-writing-zk-proofs-with-plonky2-part-i-be5812f6b798
https://polymerlabs.medium.com/a-tutorial-on-writing-zk-proofs-with-plonky2-part-i-be5812f6b798
https://etherscan.io/address/0x47312450b3ac8b5b8e247a6bb6d523e7605bdb60
https://medium.com/@starkware/recursive-starks-78f8dd401025
https://medium.com/@starkware/recursive-starks-78f8dd401025

	Abstract
	Contents
	1 Introduction
	1.1 Our results

	2 Techniques
	2.1 Concrete security of PCD from relativized SNARKs
	2.2 Application: improved concrete security for black-box PCD constructions
	2.3 Application: a paradigm to set security for hash-based PCD
	2.4 Example: a real-world compliance predicate with unbounded size and depth
	2.5 Technical extension: a more general analysis

	3 Preliminaries
	3.1 Non-interactive arguments in oracle models
	3.2 Proof-carrying data in oracle models

	4 From relativized ARG to PCD: construction
	5 From relativized ARG to PCD: security reduction
	5.1 Knowledge soundness error
	5.2 Extraction time bound

	6 Relativized non-interactive arguments with straightline extraction
	6.1 The arithmetized random oracle model
	6.2 The signed random oracle model
	6.3 The random oracle model (and any other oracle model)

	7 Technical extension: probabilistic extractors with oracle access
	7.1 Probabilistic oracle extractor for PCD
	7.2 Knowledge soundness error
	7.3 Extraction query bound
	7.4 Extraction time bound

	Acknowledgments
	References

