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Abstract—In the ever-evolving landscape of Information Tech-
nologies, private decentralized computing on an honest yet
curious server has emerged as a prominent paradigm. While
numerous schemes exist to safeguard data during computation,
the focus has primarily been on protecting the confidentiality of
the data itself, often overlooking the potential information leakage
arising from the function evaluated by the server. Recognizing
this gap, this article aims to address the issue by presenting and
implementing an innovative solution for ensuring the privacy of
both the data and the program. We introduce a novel approach
that combines the power of Fully Homomorphic Encryption with
the concept of the Turing Machine model, resulting in the first
fully secure practical, non-interactive oblivious Turing Machine.
Our Oblivious Turing Machine construction is based on only
three hypotheses, the hardness of the Ring Learning With Error
problem, the ability to homomorphically evaluate non-linear
functions and the capacity to blindly rotate elements of a data
structure. Only based on those three assumptions, we propose an
implementation of an Oblivious Turing Machine relying on the
TFHE cryptosystem and present some implementation results.

I. INTRODUCTION

While cloud computing offers numerous advantages, con-
cerns around data privacy persist. Despite the fact that some
businesses may be comfortable with their data being processed
in clear by servers in the cloud, most organizations prioritize
data privacy for a variety of reasons : ensuring their client
confidentiality, protecting intellectual property, and preventing
potential competitive disadvantages resulting from data leaks
are just a few examples. As a result, there is a growing
demand for private cloud computing solutions that ensure data
confidentiality even when the server, and potential observers,
are aware of the program applied to the data either because it
is publicly available or proprietary to the server.

However, it is essential to recognize that the server’s knowl-
edge of the program applied to the data can inadvertently
reveal sensitive information about the client. For instance, a
client requesting the application of a cancer detection model to
their data might indicate a strong suspicion of having cancer.
This information can be highly personal and should be treated
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with utmost sensitivity to protect the client’s privacy and well-
being.

A Turing machine is an abstract model of a theoretical
computer that encompasses the capabilities of a general-
purpose computing device. It serves as a fundamental tool in
computer science and is capable of executing any computation
that can be performed by a computer. The strength of a
Turing machine lies in its ability to simulate any algorithm,
making it a versatile and powerful computational model. The
concept of obliviousness applied to machines was introduced
by Pippenger and Fischer [24] back in 1979. According to their
definition, a machine is considered oblivious if an adversary
observing the behaviour of the machine, without seeing the
content of the cells, can conclude nothing about the inputs of
this machine, except from the time required for the machine
to perform the evaluation. At that time, ensuring this property
of obliviousness with Turing machines meant ensuring that
the movements of the head on the tape are the same in
execution time for each input and for each step. But nowadays,
with fully homomorphic encryption (FHE) we can not only
encrypt the contents of the tape, but also the movements of
the head rendering them indistinguishable from one step to
another. This leads to the introduction of the concept of fully
oblivious Turing Machines. Such versions aim to enable the
private delegation of computations to servers in the semi-
honest model while ensuring that no information regarding
the algorithm, its inputs or outputs is leaked to the untrusted
server, or to potential observers. The significance of achiev-
ing fully oblivious computation extends to various domains,
including sensitive data analysis, privacy-preserving machine
learning, and confidential financial computations. By proving
the feasibility of computing without divulging any information
about the algorithm or its inputs and outputs, fully oblivious
computation ensures a higher level of privacy and security
in outsourced computation scenarios. From now on, and to
the end of this article, we will refer to fully oblivious Turing
Machines simply as Oblivious Turing Machines (OTM).

A. Our contribution

To the best of our knowledge, this work presents a signifi-
cant advancement in the field of secure computation by intro-
ducing the first non-interactive fully oblivious Turing machine.
Our scheme enables the computation of any algorithm without
divulging any knowledge about the algorithm, its inputs, or its
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outputs. With this approach, clients can confidently delegate
computation to an honest but curious server, ensuring trust
and privacy. The scheme we propose has the following key
properties :

• Non-interactivity: our scheme only requires one round of
communication between the client and the server.

• Full Obliviousness: both the client’s data and function are
completely concealed from the server. The server only
learns the number of steps of the Turing machine re-
quested by the client, without any additional knowledge.

The elimination of interactivity significantly reduces the
communication cost, minimizing it to the essential elements:
transmitting the function (Turing machine table of rules),
its input (the tape before computation and the initial state),
and receiving the final result (the tape and state after com-
putation). Additionally, the reduced interactivity implies a
lower computational cost for the client, which is particularly
advantageous in cloud computing scenarios where clients
aim to minimize their workload. By leveraging the non-
interactive fully oblivious Turing machine, our scheme not
only provides strong privacy guarantees but also addresses the
practical considerations of communication and computational
efficiency. These advances contribute to the broader landscape
of secure and privacy-preserving cloud computing, enabling
clients to confidently delegate computation while minimizing
both communication and computational overhead.

In the following sections, we delve into the technical
aspects of our scheme, discussing the necessary cryptographic
techniques and protocols. We also present some experimental
results that prove the feasibility our proposed approach.

B. Related Work

In the field of Secure Computing, the majority of techniques
focus on ensuring the confidentiality of the data being pro-
cessed. Some of them also address the need of proving that
computation is correct. However, there are relatively few, if
any, approaches that specifically address confidentiality of the
program being computed.

Pippenger et al [24] show that any Turing machine of n
steps can be made oblivious by performing O(nlog(n)) step
on a two-tape machine. However, this does not imply any
privacy of the inputs or of the machine itself. Komargodski
et al [18] extend this concept with the introduction of the first
Differentially Oblivious Turing Machine, adding differential
privacy to the movements of the heads of the machine.
Following the work from Pippenger et al, Goldreich and Ostro-
vsky introduced Oblivious RAM (ORAM) [13], [23]. ORAM
provides a functionality between a client and a server, allowing
the client to read and modify data in the server’s database
without the server knowing the specific memory access path
chosen by the client. Over the past 15 years, ORAMs have
been extensively researched and can be utilized to create an
Oblivious Turing Machine with high interactivity [20].

Of course, Homomorphic Encryption (HE), whether fully
or somewhat homomorphic, is a notable technique that allows
a client to delegate computation to a server while operating

on encrypted data. The server performs computation on this
encrypted data and produces an encrypted result. HE ensures
that the server never handles clear (unencrypted) data, but it is
aware of the algorithm being executed. However, it is possible
to have a more subtle approach using HE and to make the
algorithm oblivious to the server as we propose to do here.

Functional Encryption (FE) is a powerful technique that
enables computations to be performed on encrypted data
by deriving decryption keys specific to a particular function
within a family of functions. While much of the research in
FE has focused on preserving the privacy of the encrypted
data, recent works have started exploring the privacy of the
function itself. One notable contribution in this field is the
work by Bishop et al. [8], which introduces the first collusion-
resistant and function-private FE scheme specifically designed
for inner product functionality based on standard assumptions.
Another significant advancement is presented by Kim et
al. [17], who propose an enhanced protocol for inner product
encryption based on the decisional linear (DLIN) assumption.
This protocol offers a small master secret key size and efficient
decryption and key generation algorithms. Ananth et al [2]
proposed a scheme to preserve the privacy of a Turing Machine
being computed through the use of Functional Encryption.
However, this scheme does not protect the input tape.

Private Function Evaluation (PFE) is a cryptographic prim-
itive that uses HE to enable the delegated evaluation of a
private function detained by one party on private inputs coming
from some other(s) party(es), on a honest but curious server.
In the case of a malicious server, there is a high detection
probability as the output might fall outside the function’s
range. PFE schemes primarily aim to reduce communication
cost, round complexity, and improve efficiency of the private
computation of a function. Several protocols based on boolean
circuits have been proposed, for example [16], [21], [22],
[7]. For example, the scheme proposed by Biçer et al. [7]
is a two-party private function evaluation scheme for boolean
circuits, designed to provide security in the semi-honest model.
This scheme achieves cost reductions by reusing tokens in
the two-party computation stage, thereby eliminating redun-
dant computations and message exchanges during subsequent
evaluations of the same function. Unlike with the general
delegated computing model we aim for with our Oblivious
Turing Machine, PFE schemes are targeting specific cases
where one party possesses the program and another has, or
several others have, the inputs.

Indistinguishability Obfuscation (iO) takes the program
obliviousness one step further in the sense that it aims to
obfuscate programs in a manner where functionally equivalent
programs become computationally indistinguishable [5]. The
primary objective of iO is to safeguard the internal logic of
a program, rendering it practically impossible for an observer
to discern its functionality. A line of research has focused
on adapting the principles of iO to the Turing Machine
model [19], [12], [1], [4]. However, these works employ
circuits in a way that ties the machine’s encryption to its input
and, at times, the number of steps. In contrast, our construction
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independently encrypts the machine, regardless of its input,
and is applicable for an unbounded number of steps, ensuring
reusability at will. Our scheme offers a novel approach to iO,
as the indistinguishability of our programs relies solely on the
indistinguishability of homomorphic ciphertexts.

Non-Interactive Oblivious Turing Machines were introduced
by Rass [25]. In their work, they provide a scheme that
simulates a Turing Machine under somewhat homomorphic
encryption. However, this proposal operates under homomor-
phic public-key encryption with an equality check (HPKEET).
The equality test outputs the result of the comparison as a
plaintext, which defeats the purpose of homomorphic encryp-
tion : an honest but curious server can easily determine when
two ciphertexts are encryptions of the same plaintext, thus
negating the indistinguishability between ciphertexts. A later
proposal by Rass et al [26] attempts to fix this flaw by using
a trusted hardware environment. An implementation of this
scheme was proposed by Dutra et al [11].

An innovative approach to Non-Interactive Oblivious Turing
Machines has been proposed by Goldwasser et al [14], [15].
They propose schemes that aim to run Turing Machines in
a decentralized manner using Attribute-Based Encryption and
Functional Encryption. This work is the first of its kind to
present an OTM construction without an obvious flaw in
the security and without trusted hardware. Their schemes
rely on a large number of cryptographic components such as
SNARKs, Witness Encryption, Functional Encryption, Signa-
tures and FHE. As a consequence, their schemes are based
on several assumptions such as Learning With Errors (LWE),
Decision Graded Encoding No-Exact-Cover (DGE No-Exact-
Cover) and knowledge of exponent assumption (KEA1). This
abundance of cryptographic components and assumptions is
not desirable as it leads to complex schemes with more risks
of attacks. In the contrary, our scheme only rely on the possi-
bility to homomorphically evaluate non-linear functions, blind
rotations and the RLWE problem hardness. Moreover, their
scheme uses the Pippenger-Fisher transformation from [24]
which increases the number of Turing Machine steps from
n to O(nlog(n)). To the best of our knowledge, there is no
implementation of these proposals.

II. PRELIMINARIES

In this section, we introduce all the notions that will be
necessary for the understanding of our proposed scheme : we
define what we call a Turing Machine (TM) and an Oblivious
Turing Machine, then we present the TFHE homomorphic en-
cryption scheme along some notations and its specific features
we rely on in our construction, and finally by introducing a
new primitive to blindly access matrices.

A. Turing Machines

As stated above, a TM is an abstract, yet complete, comput-
ing model. A TM is composed of some logic table controlling
a state, a tape and a head. The tape is a data structure of infinite
length, consisting of cells that hold symbols from a specific
alphabet. This is where the input data is written and where the

output is generated at the end of the computation. The head is
responsible for reading and writing the cells of the tape one
at a time. It has a specific position that can change by at most
one cell between consecutive time steps, i.e. it can move left,
right or stay at the same position of the tape. At each time
step, the TM executes the following sequence of actions: it
first reads the cell at the current head position, it potentially
overwrites the cell, and possibly moves the head and changes
its state according to its current state, the symbol read and
its table of instructions. The state of a TM is represented by
an integer, indicating which line of the machine’s instructions
the machine should refer to after reading the cell under the
head. There is a special state known as the final state, which
indicates whether or not the evaluation is complete. The table
of instructions is a finite table that encodes the function being
computed. Each line in this table contains instructions for one
time step, based on both the current state and the symbol under
the head. The instructions specify what the head should write,
where it should move, and what the next state will be.

Figure 1. An illustration of a classic Turing Machine (TM) designed to
perform binary multiplication by 2 (with the alphabet being B and the blank
symbol). The red arrow represents the head of the TM. The machine’s
instructions are documented in a table that can be expressed as three matrices:
Iw for writing instructions, Im for moving instructions, and Is for state-
changing instructions. The behavior of the TM will depends on the cell content
under its head and the current state.

In this description, there are several pieces of information
that the client could want to conceal from the server. First,
the client wants to ensure that the server gains no information
about the data being processed, except for an upper bound
on its size, i.e. the length of the tape. To achieve this, the
data needs to be homomorphically encrypted. Second, there
is information related to the implementation of the function.
The function is represented by the table of instructions, which
also needs to be homomorphically encrypted using the same
keys as the data. This allows for direct computation on the
encrypted data. The server only obtains an upper bound on
the size of the function, which is directly related to the size of
the table of instructions. Finally, the most challenging part is
hiding the data associated with the function’s execution from
the server. To ensure that the server gains no information, each
step of the TM needs to be indistinguishable from any other
step. Achieving this indistinguishability relies on the ability
to blindly access the instruction table, which is explained
in section II-C, and which is based on some specific TFHE
features that we present below.
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B. TFHE Scheme

The TFHE scheme, introduced in [9], [10], is a Fully
Homomorphic Encryption (FHE) scheme. Its security is based
on the Learning With Errors (LWE) problem and its variant,
Ring Learning With Errors (RLWE). In TFHE, there are three
types of ciphertexts. We denote as p the message space size.

1) LWE ciphertexts, which represent an encrypted element
from the ring Zp. LWE ciphertexts naturally support
the addition operation between ciphertexts and also
the absorption operation, a multiplication between a
ciphertext and a cleartext.

2) RLWE ciphertexts, on the other hand, are the ring
version of LWE ciphertexts in the sense that they are
an encryption of a polynomial in Rp

1. The advantage
of these ciphertexts over LWE is that they allow several
elements to be processed at the same time. In TFHE,
RLWE ciphertexts also support addition and absorption.

3) RGSW ciphertexts are two-dimensional matrices of
RLWE ciphertexts. These ciphertexts enable an external
product operation. This operation takes as inputs a
RGSW ciphertext and a RLWE ciphertext, and outputs
a RLWE ciphertext holding the product of the messages
encrypted in the inputs.

.
Beside these three types of ciphertexts, we introduce LUT

ciphertexts which are RLWE ciphertexts that include some
redundancy. More formally, while a RLWE ciphertext is an
encryption of µ(X) =

∑N−1
i=0 miX

i a LUT ciphertext is
an encryption of M(X) =

∑p−1
i=0

∑(i+1)∆−1
j=i miX

j where
∆ = N

p . In the following, ciphertexts will be denoted within
brackets, indicating the type of ciphertext used the first time
it is introduced. For example, JmKLWE represents the message
m encrypted as an LWE ciphertext and will be referred to as
JmK beyond the first encounter.

The TFHE cryptosystem includes several useful functions
that are relevant to our construction. We provide here a brief
description of these functions:

• Sample Extraction (SE): (⋆, J⋆KRLWE) −→ J⋆KLWE

This function allows the extraction of a single coefficient
from an RLWE ciphertext. The extracted coefficient is
represented as a LWE ciphertext. The position of the
coefficient is not encrypted and is known to the party
performing the operation.

• Blind Rotation (BR) : (J⋆KRLWE, J⋆KLWE) −→ J⋆KRLWE

This function takes an LWE ciphertext and an RLWE
ciphertext as input. It produces an RLWE ciphertext as
output, where the polynomial under the RLWE input
is privately rotated by the value encrypted in the LWE
ciphertext. The rotation is performed without revealing
any information about the original polynomial.

• Public Functional Key Switch (PFKS) :
(J⋆KLWE, . . . , J⋆KLWE) −→ J⋆KRLWE This feature

1For N a power of 2, we denote by R the quotient ring Z[X]/(XN +1)
and by Rq the same ring modulo q.

introduced in [10] (Alg. 2) enables the compact
representation of multiple LWE ciphertexts into a single
RLWE ciphertext. It takes several LWE ciphertexts as
input and packs them into a RLWE ciphertext.

The first two operations, SE and BR, are part of the boot-
strapping process of TFHE. In a nutshell, bootstrapping allows
the reduction of the noise in a ciphertext, avoiding the message
from being overlapped by it, which would lead to a decryption
error. This is the core and the most expensive operation of
FHE schemes. The specificity of the TFHE scheme is that its
bootstrapping allows to evaluate any discretized function. This
is known in the literature as functional bootstrapping (FB) or
programmable bootstrapping (PBS).

The function evaluated with PBS is discretized into a Look
Up Table (LUT). On a high level, PBS takes as input a LWE
ciphertext JxKLWE and a LUT of a function f encrypted
in a RLWE ciphertext, then it returns a LWE ciphertext
Jf(x)KLWE. Evaluating a function in that way comes with a
cost in precision. This means that when we want to encrypt a
LUT of f in a RLWE ciphertext, we have to add redundancy
to each element of the LUT for noise management purposes.
We will then denote this specific encoding as JfKLUT.

C. Accessing an encrypted matrix blindly

An important element of our construction, which may
be of independent interest, is what we call Blind Matrix
Access (BMA). It is the extension of Blind Array Access
(BAA) introduced in [3] which enables a server to obliviously
access a one-dimensional encrypted array represented as a
RLWE ciphertext. The access consists in performing a PBS
on the array with the input index to be accessed. Regarding
multi-dimensional arrays, instead of having a single RLWE
ciphertext, we have a vector of RLWE ciphertexts. This vector
will allow us to output the column as a vector of LWE
ciphertexts by computing the programmable bootstrap for each
of those RLWE ciphertexts at the encrypted index of the
column. Once this vector is obtained, it is transformed into a
RLWE ciphertext, using the Public Functional Key Switching
from [10]. Finally, we obtain a single RLWE ciphertext and
the problem is reduced to one dimension, so we can use a
simple Blind Array Access to extract the correct coordinate.
The algorithm 1 captures the behavior of BMA.

This algorithm allows obtaining an element from an matrix
M based on its indices i and j. The matrix M is encoded
and encrypted as a vector of LUT, which represents the rows
of M . If the number of rows is less than p, the client must
complete the matrix with p rows to conceal this information,
which can be sensitive depending on the use case. By doing
so, the computational cost of Blind Matrix Access will depend
only on p and will be constant for all matrices. However, if
the number of rows is not sensitive, then not completing the
matrix up to p rows can significantly optimized BMA accesses
as illustrated in 2.
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Algorithm 1 BlindMatrixAccess (BMA)
Input : M = (Jr0KLUT, . . . , Jrp−1KLUT) the matrix to be

accessed, JiKLWE the index’s rows, JjKLWE the index’s
column, bk the bootstrapping key, p the message space

Ensure: JM [i][j]KLWE

function BLINDMATRIXACCESS(M, JiKLWE, JjKLWE)
for s = 0 . . . p− 1 do

JcsKLWE ← BAA(JrsKLUT, JiKLWE, bk) ▷ Alg 3 of
[3]

end for
JcKLUT ← PFKS(Jc0KLWE . . . Jcp−1KLWE) ▷ Alg 2 of

[10]
Jmi,jKLWE ← BAA(JcKLUT, JjKLWE, bk)
return Jmi,jKLWE

end function

Figure 2. The comparison of Blind Matrix Access running times with and
without disclosing the number of rows, using a message space of p = 8.

III. OUR CONSTRUCTION

A. General overview

The execution of the Turing machine involves a sequence of
steps performed one after another. Each step involves reading
the content of the cell under the head, updating the content
of the cell, modifying the position of the head, and updating
the state. In this section, we describe how to perform these
operations obliviously and without interaction with the client.
We first present the representation of the TM components, and
then explain how they work together.

The tape of a TM is conceptually an infinite sequence of
integers, although obviously in practice it is finite. In our
construction, we represent the tape as a LUT encrypted as
a RLWE ciphertexts for several reasons. First, a RLWE
ciphertext encrypts a polynomial from the ring Rq , where
the coefficients can be regarded as the elements on the TM
tape. Second, thanks to TFHE we can perform blind rotations
on RLWE ciphertexts, which allows us to make the position
of the head intrinsic to the tape itself. By blindly rotating
the tape at each step, we can consider that the head remains
stationary while the tape moves underneath it. For instance,

in our scheme, the head is located at the first element of the
LUT. Then to move it to the left, we perform a blind rotation
of the tape by −1 (or more accurately, by 2p− 1, to account
for the negacyclicity inherent in the ring Rq). Conversely, to
move it to the right, we rotate it by 1, and for no movement
at all, we perform a rotation of 0. The direction is determined
by the program instruction table. This approach enables to
always focus on the first element of the LUT for both reading
and writing, while maintaining obliviousness throughout the
process as any element of the tape could be positioned under
the head due to the oblivious execution.

The state of the TM is encrypted as a LWE ciphertext. It
is updated at every step to ensure that any change or lack
of change in the state remains oblivious to the server. The
table of instructions is decomposed into three matrices as
illustrated in Figure 1. The Iw matrix determines what is to be
written on the tape, the Im matrix describes the head (the tape)
moves, and the Is matrix governs state updates. The server
blindly accesses these matrices using Blind Matrix Access. The
three matrices are statically determined by the client before
execution, thus acting like a ROM.

B. Description of a step

First, the server reads the content of the tape by calling Blind
Array Access at index 0 (the index is a trivial encryption of 0).
This operation allows the server to get the element under the
head JcKLWE which will be the column index of the wanted
element in the encrypted matrices JIwK, JImK, JIsK while the
current state JsKLWE will be its row index. Then the server
overwrites the content of the cell under the head with the value
determined by JIw[s]KLWE , which actually encodes the value
to be added to the current cell content to obtain the desired
result. Then, the TM moves the tape to simulate a change in
the head’s position in the direction given by JIm[s]K using a
Blind Rotation operation. Finally it updates its state to Is[s],
this state will be the one used in the next step. Once all the
requested number of steps have been completed, the server
sends the tape and the state to the client. This is described in
Algorithm 2, the main algorithm of our Turing Machine.

Algorithm 3 describes reading the tape content, it extracts
the first element of the tape using Blind Array Access. Writing
the new content of the cell is described in Algorithm 4 : it
gets an LWE ciphertext encrypting the element to be added
to the current content in order to determine the value to be
written at the cell under the head. However, due to the tape
being a LUT encrypted as an RLWE ciphertext, adding it
with the LWE ciphertext requires a conversion of the LWE to
a RLWE ciphertext incorporating the appropriate redundancy
to form a valid LUT ciphertext. This is done using the Private
Functional Key Switching algorithm from [10].

Algorithm 5 updates the tape by blindly rotating it either by
-1, 0, or 1 it through the Blind Rotation algorithm, effectively
changing the position of the head. We track the head’s move-
ments by consistently updating an encrypted counter. This
counter, by the end of Algorithm 2, will be utilized to restore
the head to its first position.
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Figure 3. The operations of the first two steps of the Turing machine.
The initial phase of each step involves blindly reading the cell under
the head, employing the Blind Array Access algorithm outlined
in [3]. Subsequently, the resulting ciphertext, combined with the
current state, is utilized to access the three matrices: Iw, Im, and Is.
These matrices respectively dictate what to write in the cell using
Algorithm 4, where to position the head for the next step using
Algorithm 3, and the new state to be utilized in the subsequent step
using Algorithm 6.

Algorithm 2 Oblivious Turing Machine (OTM)

Input : JT KLUT the tape, JsKLWE the current state, JIK the
instruction table as a tensor such as I = (Iw, Im, Is) and
n the number of steps

Ensure: The tape JT K containing the result of the evaluation
1: function OTM(JT KLUT,JsKLWE,JIK,n)

JℓKLWE ← J0KLWE ▷ Counter to track the head
2: for i = 1 to n do
3: JcKLWE ← Read(JT KLUT)
4: Write(JT KLUT, JcKLWE, JsKLWE, JIK)
5: Move(JT KLUT, JcKLWE, JsKLWE, JIK, JℓKLWE)
6: JsKLWE ← GetNewState(JcKLWE, JsKLWE, JIK)
7: end for
8: JT KLUT ← BR(JT KLUT, JℓKLWE) ▷ Replacing the

head
9: return JT K

10: end function

Algorithm 3 Read

Input : JT KLUT the tape
Ensure: JcKLWE the content of the cell under the head

1: function READ(JT KLUT)
2: JcKLWE ← Sample Extract(JT KLUT, 0)
3: return JcKLWE

4: end function

Algorithm 4 Write in place (Write)

Input : JT KLUT the tape, JcKLWE the cell content, JsKLWE

the current state, JIK the instruction table
Ensure: The tape JT KLUT is updated

1: function WRITE(JT KLUT, JcKLWE, JsKLWE, JIK)
2: JwKLWE ← BMA(JIK, JsKLWE, JcKLWE)
3: JW KLUT ← PFKS(JwKLWE, . . . , JwKLWE) ▷ N

p
entries

4: JT KLUT ← JT KLUT + JW KLUT

5: end function

Algorithm 5 Move in place (Move)

Input : JT KLUT the tape, JcKLWE the cell content, JsKLWE the
current state, JIK the instruction table, JℓKLWE the counter
to track the head movements

Ensure: The tape JT KLUT is moved and the counter JℓKLWE

is updated.
1: function MOVE(JT KLUT, JcKLWE, JsKLWE, JIK, JℓKLWE)
2: JmKLWE ← BMA(JIK, JcKLWE, JsKLWE)
3: JT KLUT ← BR(JT KLUT, JmK) ▷ Alg 4 of [10]
4: JℓKLWE ← JℓKLWE + JmKLWE ▷ Track the head
5: end function

Algorithm 6 GetNewState

Input : JT KLUT the tape, JcKLWE the cell content, JsKLWE the
current state, JIK the instruction table, JℓKLWE the counter
to track the head movements

Ensure: JsKLWE the new state of the Turing Machine
1: function GETNEWSTATE(JT KLUT, JcKLUT, JsKLUT, JIK)
2: JsK← BMA(JIK, JcKLWE, JsKLWE)
3: return JsKLWE

4: end function

Algorithm 6 gets the new state of the Turing Machine for
the next step based on the current state and the content of the
cell under the head.

After executing the specified number of steps, the server
sends back ciphertexts of the tape and the current state to the
client, regardless of whether or not the Turing Machine has
finished its computation. In order to determine if the TM has
reached its final state, the client can decrypt the output. If
the computation is not complete, the client can estimate the
number of steps required to terminate and request the server to
restart a computation for that number of steps. It is important
to note that, from the point of view of the server, this will look
like a fresh new request by the client and there is no way for
it to learn that it is a continuation of the previous run. Unlike
with traditional cloud computing, where a client may pay for
a certain amount of computation time and receive no output if
the algorithm does not terminate, this construction guarantees
that the client receives some intermediary result within the
specified number of steps. These properties provide efficiency
and reliability in the computation process, allowing the client
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Figure 4. An illustration of the complete pipeline for our one-round Oblivious Turing Machine protocol. Initially, the client encrypts the tape containing the
input using LUT ciphertext, encrypts the current state with LWE ciphertext, and represents the instruction matrices as a vector of LUT ciphertext. These
ciphertexts are then transmitted to the server, which executes the number of steps specified by the client. In each step, the three static matrices, as described
in 3, are used to update the state, the tape, and an encrypted counter that tracks the movement of the heads. After completing the steps process, the server
restores the head to its original position by performing a blind rotation of the tape. Subsequently, the server sends back the final tape and the current state to
the client who decrypt them to obtain the result.

to make informed decisions based on the intermediary results
and continue the computation if needed.

IV. RESULTS AND DISCUSSION

We implemented our scheme of a non-interactive fully
oblivious Turing Machine on Rust, using the tfhe-rs li-
brary [27]. Our implementation is publicly available on
Github 2. The most important result is certainly the fact
that this is the first implementation of such an oblivious
TM, while previous work were either non-implemented and
probably non implementable or they were interactive. The
performance results presented in Fig. 5 were obtained on an
Apple MacBookPro with an M1 chip and 16 GB of RAM.
This shows the running time of one step of the TM depending
of the parameters and whether or not we chose to leak the size
of the instruction table. We can remark that when we choose
to not leak this information, the running time is simply the
maximum running time of these parameters when compared
to the non leaky curve. Yet, we believe that disclosing the exact
size of the instruction table is, in most application cases, an
acceptable leakage. It is also worth noting that for applications
with a number of symbols smaller than the number of states,
it is beneficial to transpose the TM matrices.

The results shown in Figure 5 results look similar to those of
Figure 2 as a step running time comes essentially from 3 BMA
and the cost of a BMA is close to the LWE ciphertexts packing
cost implied by PFKS and any optimisation of this scheme

2https://github.com/sofianeazogagh/ObliviousTM

Figure 5. Comparison of OTM step running time with and without revealing
the number of state for various message space sizes (p ∈ 8, 16, 32)

would lead to a significant enhancement of our performances.
The selection of cryptographic parameters directly influences
the tape’s length, the potential symbols, and the possible
states. Consequently, if the chosen cryptographic parameter for
TFHE implies a precision of n bits, these three aforementioned
quantities will be constrained by 2n. Therefore, a user must
evaluate the computational and space complexity of their
program before determining the cryptographic parameters. For
instance, for a given alphabet A that contains l symbol, if
the client aims to evaluate a function f with a domain in
An and a co-domain in Am that involves k states, he should
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parameterize for a precision of max(ln,lm,k).
While our construction provides a solid foundation for

oblivious computation, there are still opportunities for further
research and improvement. One avenue for future work is
to explore optimizations to reduce the computational cost
of the homomorphic operations involved in the construction.
This would enhance the efficiency of the overall system and
enable it to handle larger and more complex computations.
Indeed, several optimization in the use of the machine can be
considered such as using a larger alphabet than binary as it
would reduce the number of steps with larger matrices and
cryptographic parameters as trade off.

The relationship between OTM and iO is also an interesting
field to explore as our OTM scheme guarantees iO but it
might also be possible to construct an OTM from iO. Another
interesting question would be to explore two-tapes Turing
Machines and its consequences on the performance of the
implementation in the oblivious settings. Would the use of
several tape decrease the size of the instruction table enough to
have smaller cryptographic parameters and henceforth enable
better performance ?

V. CONCLUSION

In the domain of privacy-enhancing technologies, several
protocols aim to protect both the program and input from
leaking in delegated, or decentralized, computation. However,
these schemes suffer from several drawbacks : some of them
are specific to certain types of program, some other encrypt
the input and program together, thereby preventing the pro-
gram from evaluating on another input, and most of them
imply interactivity between the client and the server. The
rare schemes that avoid these fallacies are quite complex and
rely on numerous cryptographic primitives and assumptions,
making them impractical, and they remain unimplemented.
For some of them, their security does not even hold. Our
construction of an Oblivious Turing Machine allows for secure
and private general computation without client interaction or
any of these drawbacks. By representing the tape, state, and
instructions as RLWE ciphertexts, we achieve obliviousness in
machine execution, relying solely on the RLWE assumption
and on the TFHE scheme, resulting in a simple and practical
construction, the first of its kind to be implemented.
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