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Fully homomorphic encryption is a promising solution for privacy-pre-
serving computation, especially involving sensitive data. For BFV, BGV,
and CKKS, three state-of-the-art encryption schemes, the most costly
homomorphic primitive is the so-called key switching. While a decent
amount of research has been devoted to optimize other aspects of these
schemes, key switching has gone largely untouched. One exception has
been a recent work by Kim et al. at CRYPTO 2023 [26] introducing a
new double-decomposition technique for state-of-the-art key switching.
While their contributions are interesting, the authors have a skewed per-
spective on the complexity of key switching which results in a flawed
parameter analysis and incorrect conclusions about the effectiveness of
their approach. In this work, we correct their analysis with a new per-
spective on key switching and provide the new asymptotic boundO(ω`).
More generally, we take a holistic look at key switching and parameter
selection. We revisit an idea by Gentry, Halevi, and Smart [19] improv-
ing key switching performance by up to 63 % and explore novel possibili-
ties for parameter optimization. We also reduce the number of multipli-
cations in key switching using new constant folding techinques, which
speed up execution times by up to 11.6 %. Overall, we provide an in-depth
analysis of key switching, guidelines for optimal parameter selection,
and novel ideas which speed up execution times significantly.
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Introduction
Section 1

Cryptography originally had one goal in mind: encrypting messages and
ensuring the confidentiality of the encrypted data. Since then, it passed
many generations and branched out to a wide variety of other applica-
ble areas. One such application was first envisioned in the late 1970s
under the name privacy homomorphism, a hopeful possibility of arbi-
trary computations on encrypted data [29]. It is a rather simple idea:
A user encrypts (sensitive) data and sends it to a powerful server, the
server manipulates the ciphertext to compute on the encrypted data, and
then the user decrypts the ciphertext recovering the result. As simple
as the idea sounds, realizing it proved to be a tough challenge for many
years. Some constructions supported multiplications on encrypted num-
bers, but no additions. Others supported unlimited additions, but only
onemultiplication or many additions, but only a fewmultiplications. For
arbitrary computations, however, any number of additions and multipli-
cations was needed.

In 2009, Gentry introduced a novel idea, bootstrapping, and gave
birth to the first ever encryption scheme for privacy homomorphism [17].
Over the years, many more and more efficient schemes have been con-
ceived. Today, they are known as fully homomorphic encryption (FHE)
schemes and, at their heart, are still rooted in Gentry’s ingenious idea of
bootstrapping. Conceptually, a ciphertext in any modern FHE scheme
has an associated error which grows for each addition or multiplication.
Once this error reaches a certain threshold, no further operations are pos-
sible without destroying the encrypted numbers. Gentry noticed that,
given an encryption of the secret key, we can bootstrap the ciphertext
and essentially refresh the associated error. By interleaving operations
and bootstrappings appropriately, a server can perform any amount of
additions and multiplications on the underlying numbers.

Today’s state-of-the-art schemes fall into two groups: Boolean-based
schemes encrypt single bits or small bit groups, andword-based schemes
encrypt large vectors of numbers. While the former enjoys relatively fast
bootstrapping and high computational flexibility, the latter suffers from
much slower bootstrapping and less flexibility. For highly parallelizable
arithmetic, however, word-based schemes outshine their Boolean-based
companions. Consider vector arithmetic: In word-based schemes, ho-
momorphic addition andmultiplicationmap to the component-wise addi-
tion and multiplication of the encrypted vectors of numbers. In Boolean-
based schemes, each bit of a vector element would require its own ci-
phertext and a vast number of homomorphic operations for a vector ad-
dition or multiplication. Word-based schemes also support a third prim-
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itive, somewhat increasing their computational flexibility: rotations of
the encrypted vector. Using rotations, we can map unencrypted algo-
rithms to the homomorphic realm even if vector elements at different
positions need to interact with each other. An example is homomorphic
matrixmultiplicationwhich requires only two ciphertexts forword-based
schemes, one for each matrix operand [23]. In Boolean-based schemes,
we would need a seperate ciphertext for every single bit of every matrix
element and many homomorphic operations.

Our work focuses on the word-based schemes BFV [6, 15], BGV [7],
and CKKS [11]. They are also known as BGV-like due to their similar
structure and base their security on the Learning with Errors over Rings
(RLWE) assumption. For a ciphertext modulus q and a degreeN, the ring
Rq = Zq[X]/

(
XN + 1

)
serves as the mathematical foundation of a cipher-

text polynomial c(s) with coefficients ci ∈ Rq. For decryption, we evalu-
ate a ciphertext polynomial in the secret key s and recover the messagem
with an additional error te for a known constant t:

c(s) = c0 + c1s = m + te.

Obviously, we only publish the coefficients of a ciphertext polynomial
and keep the secret key our secret. Homomorphic addition and multipli-
cation straightforwardly map to polynomial addition and multiplication
of ciphertexts. Addition adds themessages as c(s)+c′(s) = m+m′+teadd
and multiplication multiplies them as c(s) · c′(s) = mm′ + temul. But, as
straightforward as it may seem, two issues arise.

Especially for a multiplication, the error grows fast. To accomodate
it, we require a large ciphertextmodulus q sized several hundred bits and,
as a consequence, require a large degreeN to keep us secure in the RLWE
setting. The large parameters result in expensive computations and sub-
par performance. To speed up computations, implementations employ
two strategies: First, they decomposes the ciphertext modulus into ` co-
prime qi with q =

∏
qi enabling computations on the smaller moduli qi;

this is known as residue number system (RNS). Second, they use the for-
ward and inverse number theoretic transform (NTT) for multiplication in
Rq. Although these two strategies ease the computational burden, they
do not lift it and large parameters continue to be a major problem for per-
formance.

The second issue is about the output ciphertext and how we decrypt
it. The sum (c+c′)(s) = (c0+c′0)+(c1+c′1)s only requires s for decryption.
The product

(c · c′)(s) = (c0c′0) + (c0c′1 + c1c′0)s + (c1c′1)s
2

on the other hand suddenly requires s2 for decryption and further multi-
plications would worsen our problem exponentially. BGV-like schemes
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avoid this ciphertext expansion with an internal housekeeping operation
called key switching. Key switching transforms

(c1c′1)s
2 7→ c̃0 + c̃1s + tẽ,

holding the same information at the cost of an additional small error ẽ.
The modified homomorphic multiplication without ciphertext expansion
outputs

(c · c′)(s) = (c0c′0 + c̃0) + (c0c′1 + c1c′0 + c̃1)s + tẽ

and only requires s for decryption. We also switch keys after our third
primitive operation, namely rotations. To rotate an encrypted vector, we
apply a permutation π on the ciphertext as π(c(s)) = π(c0) + π(c1)π(s).
As with a multiplication, we transform π(c1)π(s) to c̃0 + c̃1s at the cost
of an added error. We control this error with two additional parameters:
the key switching modulus P and the decomposition number ω.

1.1 Related Work

Although there exists a relatively large body of work exploring efficient
parameter selection for the security level λ, polynomial degree N, and
the ciphertext modulus q [2, 12, 1, 13, 28], the same cannot be said for
the key switching parameters P and ω. This is even more surprising if
we take into account that key switching is the most expensive primi-
tive in BGV-like scheme. It is responsible for roughly 40% of execu-
tion time during bootstrapping and 11× slower compared to an expan-
sionless ciphertext multiplication, the most expensive arithmetic opera-
tion1. Despite its significant impact on performance, related work on key
switching is sparsely populated. In the extended version of their work,
Kim, Polyakov, andZucca [25] explore the current state-of-the-art on key
switching. They describe two different methods, the BV method [8] and
theGHS [18]method and their RNS variants. While they analyse compu-
tational and memory complexity, they only talk about correct parameter
selection for key switching parameters and do not extend their analysis
to optimal selection. In another work, Han and Ki [21] shortly discuss
trade-offs for P on a high-level, but fail to provide a more detailed analy-
sis such as asymptotic complexity or amethod for selecting key switching
parameters optimally.

At CRYPTO 2023, Kim et al. at [26] propose an extension to the cur-
rent state-of-the-art with a double-decomposition technique. Although
their contributions are interesting, the authors fail to properly analyse
asymptotic complexity and optimal parameter selection for the current

1 We generated these numbers using our benchmarking setup using the open-
source libraries OpenFHE and fhelib (see also Section 5).
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state-of-the-art on key switching. Due to this insufficient analysis, they
draw incorrect conclusions in the process and overestimate how signifi-
cant their technique is for implementations.

1.2 Contributions

In this work, we take an in-depth look at key switching and make the
following contributions:

We analyze parameter selection for the key switching pa-
rameters P and ω and, taking a new perspective, show how
to choose these parameters optimally for current state-of-
the-art on key switching. Our new perspective introduces
the newasymptotic complexityO(ω`) on the number ofNTT
operations, correcting previous analysis by Kim et al. [26].

We explore possibilities to reduce the parameters ω and `.
For the former, we dispel the myth that increasing the de-
gree N always degrades performance and propose a new ap-
proach using two secret keys to improve performance. For
the latter, we revisit an idea by Gentry, Halevi, and Smart
[19] which we integrate into key switching to speed up key
switching by up to 63%.

We correct the analysis by Kim et al. published at CRYPTO
2023 [26] and fully explore the parameter space for their
double-decomposition technique. We implement their ap-
proach using state-of-the-art techniques and show its prac-
tical insignificance for BGV-like schemes.

We highlight new opportunities for constant folding in key
switching, reducing the total number of constant multipli-
cations and speeding up key switching by up to 11.6%.

We introduce the necessary background to our work in Section 2. In
Section 3 and Section 4, we describe our theoretical contributions for
single- and double-decomposition key switching. In Section 5, we evalu-
ate our theoretical contributions with a state-of-the-art implementation.
Finally, we discuss additional aspects of our work in Section 6 and con-
clude our work in Section 7.

Preliminaries
Section 2

The following provides the necessary background to our work. We start
by defining notation used throughout the remainder of this work. Then,
we introduce a shared context for the BGV-like schemes BFV, BGV, and
CKKS and follow with short definitions for scheme-specific operations.
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Table 1: Frequently used notation in the remainder of this work. Some-
times, additional variations are used to distinguish between different in-
stances, for example q and q′ for two distinct ciphertext moduli or s and
s′ for two distinct secret keys.

λ security level
N polynomial degree
p plaintext modulus
t error scaling factor
q1,` ciphertext modulus
` number of ciphertext primes
P1,k key switching modulus
k number of key switching primes
ω key switching decomposition number
b, β bit size of qi and Pj, respectively
B upper bound on b and β

ci ciphertext polynomial
s secret key polynomial
e error polynomial

Afterward, we describe the Double CRT (DCRT) representation for effi-
cient implementations and end with a unified view of modulus switching
and key switching.

2.1 Notation

Let q =
∏`

i=1 qi be a product of primeswith each qi co-prime. For a subset
of primes qi, we write qa,b =

∏b
i=a qi for a ≤ b and a, b ∈ {1, . . . , `}. For

a power-of-two degree N, a ciphertext consists of polynomials ci in the
ringRq = Zq[X]/

(
XN + 1

)
. We denote the centered modular reduction to

the interval [−q/2, q/2) as [·]q and, for polynomials, applymodular reduc-
tion to each coefficient. We sometimes omit explicit modular reduction if
no ambiguity exists. We denote a generalized rounding over the integers
by dact, that is, we round to the closest integer such that [a]t = 0. If not
explicitly noted, we assume t = 1. We sample s,u← χs and e← χe from
the secret and error distributions, respectively, and, with slight abuse of
notation, write a← Rq for a uniformly random sample fromRq. Table 1
summarizes frequently used notation in the remainder of this work.

Polynomial norms.

The infinity norm ‖a‖∞ of a polynomial a ∈ R is the maximum absolute
value of all its coefficients. The canonical embedding norm is defined as
‖a‖can = maxj∈Z∗

2N
‖a
(
ξj
)
‖∞ for all primitive 2N-th roots of unity ξj with

‖a · b‖can = ‖a‖can · ‖b‖can for any a, b ∈ R. For a power-of-two degree,
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‖a‖∞ ≤ ‖a‖can [14]. The canonical norm is bounded by ‖a‖can ≤ D
√

NVa

for some D and the variance Va. For a random polynomial a ∈ Rq, we
have Va ≈ q2/12. Note that Va+b = Va + Vb, Vab = NVaVb, and, for a
constant γ, Vγa = γ2Va. For D, a common choice is D = 6 [12].

2.2 BGV-like schemes

Wedefine a unified public key using the scheme-specific error scaling fac-
tor t as

pk = ([as + te]q, [−a]q)

for a←Rq, s← χs, and e← χe. Using this public key, the individual en-
cryption routines of the BGV-like schemes BFV, BGV, and CKKS output
a ciphertext (c0, c1) ∈ R2

q . A useful perspective on a BGV-like ciphertext
is as polynomial c(s), and evaluating this polynomial in the secret key
results in

c(s) = c0 + c1s = m + te,

wherem is a (possibly encoded)message and te is an (initially small) error
that grows during homomorphic computation. The process of removing
the error and decoding themessage depends on the combination of encod-
ing and error scaling, and we describe it in more detail in the respective
scheme-specific sections.

Arithmetic operations nicely map to our polynomial representation:
Addition on the underlying plaintext data m with ciphertext c = (c0, c1)
and m′ with ciphertext c′ = (c′0, c

′
1) requires a polynomial addition

c(s) + c′(s) = c0 + c′0 + (c1 + c′1)s = m + m′ + teadd,

constant multiplication with a constant scalar or polynomial γ results in

γc(s) = γc0 + γc1s = γm + teconst,

and multiplication outputs the quadratic polynomial

c(s) · c′(s) = c0c′0 + (c0c′1 + c1c′0)s + c1c′1s
2 = mm′ + temul.

Usually, BGV-like schemes operate onmultiple integers simultaneously;
depending on the specific parameters, we encode up to N integers or ap-
proximate numbers in one message polynomial m. Polynomial addition
or multiplication corresponds to element-wise operations on the encoded
plaintext data. In Section 1, we state for simplicity that we encrypt a vec-
tor of numbers. In reality, the encoded data has a hypercube structure and
applying a parameter- and dimension-specific permutation π on each ci-
phertext coefficient ci rotates the hypercube along the chosen dimension.
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Key switching.

After a rotation, the ciphertext is encrypted under the permutation of the
secret keyπ(s), andwe apply key switching to transform c(s) = c0+c1π(s)
to c̃(s) = c0+ c̃0+ c̃1s, encrypting the samemessage for a known permuta-
tion π under the original secret key. For a multiplication, key switching
enables transforming the output c(s) = c0 + c1s + c2s2 to a new polyno-
mial c̃(s) = c0 + c̃0 + (c1 + c̃1)s, encrypting the same message. Under
certain circumstances, we can employ lazy key switching to delay this
expensive process. For example, when accumulating several ciphertext
products, it is more efficient to only apply key switching on the resulting
sum instead of applying it to each ciphertext term individually. However,
we often require a key switching, especially for rotations on the under-
lying hypercube structure, as these are usually used to enable operations
between elements at different positions in the hypercube. This requires
different permutations and, hence, key switching to get back to a shared
secret key before further operations are possible. In Subsection 2.8, we
define a unified approach to key switching.

Parameter selection.

Security for BGV-like schemes is based on the RLWE assumption. It de-
pends on the distributions χs and χe, the polynomial degree N, and the
product qP of the ciphertext modulus with the key switching modulus. A
great tool to estimate security is the Lattice Estimator [2], which, given
the parameters above, estimates the time and memory costs of the best-
known lattice attacks. Common choices are a uniform ternary distribu-
tion χs and a centered Gaussian distribution χe with variance σ = 3.19
[1]. In thiswork, we sometimes refer to a simplified perspective on secure
parameter selection, in which only the parameters N and qP determine
security, implicitly assuming fixed distributions χs and χe.

Choosing the remaining parameters for a given use case is an exten-
sive research area [2, 12, 1, 13, 28]. The following is a simplified (and
slightly inaccurrate) description; however, it suffices for our purposes:
An upper bound on the error is defined for each homomorphic operation
for a given input bound. After multiplication, a scheme-specific error
management technique slows down error growth to delay the necessity
for bootstrapping. We retrieve an upper bound on q by composing the
upper bounds of each operation according to a circuit model of a target
use case. We then choose the smallest power-of-two degree N such that
the security estimate for N and q is greater than λ. In most cases, the
security estimate will exceed λ; we use this security margin for the key
switching modulus P, choosing ω accordingly, such that a security esti-
mate on N and qP is still larger than λ. The above essentially delivers a
power-of-two degreeN and ciphertext modulus q for a given use case and
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security level, selecting key switching parameters afterward. Choosing
optimal parameters can significantly reduce execution time and memory
requirements.

2.3 The BFV scheme

The BFV scheme [6, 15, 25] is a state-of-the-art FHE scheme for integer
arithmetic. Given a plaintextmodulusp, themessage polynomialm ∈ Rp

is stored in the most significant bits of the ciphertext modulus encoded
as
⌈ q

pm
⌋
, while the error is stored in the least significant bits of the ci-

phertext modulus, that is, t = 1.

Encryption and decryption.

Using the unified public key pk, we encrypt a message as

(c0, c1) =

([
pk0u + e0 +

⌈
q
p
m
⌋]

q
, [pk1u + e1]q

)

with u← χs, e0, e1 ← χe, and decrypt with

m =

[⌈
p
q
[c0 + c1s]q

⌋]
p

which is correct as long as the error is small enough. For a thorough anal-
ysis of error growth and security, we refer to the relevant works on the
BFV scheme [6, 15, 25].

Error management.

In BFV, the error management technique requires a slight modification
to the unified perspective on multiplication in Subsection 2.2. Instead
of operating on c and c′ modulo q, we switch the modulus of the latter
to another co-prime modulus q′ of approximately the same size. Then,
after multiplication over the integers, a scaling and rounding

[⌈ p
q′ cc′

⌋]
q

corrects the encoding factor [25]. In contrast to BGV and CKKS, we usu-
ally use the entire ciphertext modulus q throughout the complete circuit
(temporarily operating modulo q′ or qP); hence, BFV is also called scale-
invariant, and the specific size of each qi has negligible impact on error
growth.

2.4 The BGV scheme

The BGV scheme [7, 25] is another state-of-the-art scheme for integer
arithmetic. Contrary to BFV, the message polynomial m ∈ Rp is stored
in the least significant bits of the ciphertext modulus, and the error sits
above the message, that is, t = p. BFV and BGV are, in fact, so similar
that we can convert between ciphertexts with a simple scalar multiplica-
tion [3].
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Encryption and decryption.

We encrypt a message in BGV as

(c0, c1) =
(
[pk0u + pe0 + m]q , [pk1u + pe1]q

)
with random samples u← χs, e0, e1 ← χe, and decryption computes as

m =
[
[c0 + c1s]q

]
p
.

As in BFV, the error needs to be small enough for correctness, and we
refer to the relevant literature on the BGV scheme for details on error
growth and security [7, 25, 28].

Error management.

In BGV, the error aftermultiplication is reduced by scaling the ciphertext
with a part of the ciphertext modulus itself, consuming RNS primes qi in
the process. This process, modulus switching, scales the ciphertext, in-
cluding the associated error, by qi, while keeping the message the same.
For example, consuming the ciphertext modulus prime q` scales the error
by 1/q`, and afterward, ciphertexts live in the space Rq1,`−1 . Therefore,
the size of the individual qi significantly impacts error growth during ho-
momorphic evaluation and is highly relevant during parameter selection.

2.5 The CKKS scheme

Although aCKKSmessagem ∈ R consists of integers, we assume that an
approximate result is good enough, such as with fixed-point arithmetic.
Hence, we can consider the homomorphic error as part of the message
itself, and both are stored in the least significant bits of the ciphertext
modulus (t = 1). We refer to the relevant works on CKKS investigating
security, error growth, and approximation error [11, 10, 24].

Encryption and decryption.

A CKKS encryption is the tuple

(c0, c1) =
(
[pk0u + e0 + m]q , [pk1u + e1]q

)
with u← χs, e0, e1 ← χe, and, for decryption, we compute

m′ = [c0 + c1s]q

recovering the approximate message m′.

Error management.

In CKKS, we use a conceptually similar approach as in BGV, serving a
different purpose on the underlying plaintext data. As in BGV, we scale
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by the individual qi, operating on ciphertext polynomials inRq1,i−1 after-
ward. There are two major differences: First, a small approximation er-
ror is acceptable as we are only interested in an approximate decryption.
Second, the encrypted message moves to the more significant bits of the
ciphertext modulus during multiplication, and instead of scaling the er-
ror, we move the message back to the least significant bits. As in BGV,
choosing appropriate qi is crucial to ensure correctness and a small ap-
proximation error.

2.6 The DCRT representation

The most common approach for implementing BGV-like schemes is us-
ing the Double CRT (DCRT) representation. We apply two Chinese Re-
mainder Theorem (CRT) decompositions on a polynomial: the RNS for
word-sized arithmetic modulo q and the NTT for fast polynomial multi-
plication.

Residue number system.

The RNS decomposes a number in Zq towards each prime qi. Instead of
using one polynomial in Rq, we use ` polynomials with ai = [a]qi ∈ Rqi

for a ∈ Rq. We also use the RNS for P1,k. The CRT then reconstructs
the original polynomial a based on the individual ai. In the RNS, we can
perform additions and (constant) multiplications as before. However, a
limitation is that division and the modulo operator do not natively map
to the RNS space, requiring other approaches. For division, there is a
notable exception: If a constant γ ∈ Z divides each coefficient of a ∈
Rq, division by γ over R corresponds to multiplication with the inverse
γ−1 mod q.

We can convert a polynomial ai ∈ REi between two arbitrary RNS
bases E1,n and E′

1,n′ with a fast base extension, only using word-sized
arithmetic. The fast base extension is defined as

BaseExt(a,E,E′) =

(
n∑

i=0

[
a

Ei

E1,n

]
Ei

E1,n

Ei
mod E′

j

)n′

j=1

and outputs a + εE in the base E′
1,n′ for a small ε. Under certain circum-

stances, we can consider εE as part of the homomorphic error. Other-
wise, we remove it using an error correction method such as BEHZ [5] or
HPS [20].

Number theoretic transform.

The forward and inverse NTT are variants of the Fast Fourier Transform
over a finite field evaluating a polynomial in the 2N-th roots of unity ξj

in time O(N logN). For Rqi , we require qi = 1 (mod 2N), and the NTT
corresponds to the factorization

∏
(X − ξj) mod qi into linear terms; an-

other perspective on the factorization is as generalized CRT, hence the
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name DCRT representation. For two polynomials in the NTT domain,
we compute their product in time O(N) using coefficient-wise multipli-
cation. Overall, NTT-based polynomialmultiplication has an asymptotic
complexity of O(N logN). Due to the linearity of the NTT, polynomial
addition and constant multiplication can be performed in either domain.
However, when interacting with polynomials of other primes, such as
during the fast base extension, we require a polynomial to be in the coef-
ficient domain, requiring costly inverse and forward NTT operations.

2.7 Modulus switching

We define a unified version of modulus switching for a ∈ Rq to a′ ∈ Rq′

for all BGV-like schemes based on the generalized rounding as

a′ =
[⌈

q′

q
a
⌋

t

]
q′

=

[
q′a + δ

q

]
q′

=

[
q′a− t

[
t−1q′a

]
q

q

]
q′

.

The above is RNS-friendly since, by definition, q |
(
q′a+δ), andmultiply-

ing with the multiplicative inverse corresponds to the required division.
For t = 1, this scales the encrypted data in the least significant bits by
roughly q′/q (the error for BFV and the approximate message for CKKS),
and, with t = p as in BGV, we have

−t
[
t−1q′a

]
q = 0 (mod p),

only scaling the error by q′/q and keeping the encrypted message intact.

2.8 Key switching

Key switching transforms a BGV-like ciphertext monomial cis′ to a poly-
nomial

cis′ = c̃0 + c̃1s + te

for a small error e. The following summarizes the current state-of-the-
art on key switching [25, 26]. We need to generate key switching keys,
and each distinct s′ requires a distinct key switching key. For example,
key switching after a multiplications needs one key switching key with
s′ = s2, while a fixed permutation π requires another key switching key
with s′ = π(s). A BGV-like key switching key is the tuple

ksw =
([

as + te + s′
]
q , [−a]q

)
for a←Rq, e← χe. For naïve key switching, we compute

ciksw(s) = ciksw0 + ciksw1s (mod q)

= cis′ + tcie (mod q)

Note, however, that the error tcie is, in fact, not small as initially claimed.
Hence, we need to modify key switching to reduce this error term.
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Single-decomposition technique.

Current state-of-the-art, which we also refer to as the single-decomp-
osition technique, employs two different approaches to control the error:
First, we decompose the ciphertext into ω groups, reducing the bound
to the decomposition (also known as BV technique) [8], and second, we
temporarily operate on an extendedmodulus qP, scaling the error byP af-
terward (also known as GHS technique) [19]. Kim, Polyakov, and Zucca
provide an excellent summary of each approach individually as well as
the generalization to their combination, the hybrid approach, in the ex-
tended version of their work, which we recommend for an in-depth de-
scription [25]. In the following, we summarize the generalization using
our notation.

For a decomposition D(·), its inverse D−1(·), and a, b ∈ RqP, we re-
quire ab = 〈D(a),D−1(b)〉. In DCRT-based implementations, we decom-
pose towards the RNS basis, dividing the primes into ω groups qDj with
up to d`/ωe primes in each group and use the CRT as D−1(·). Comput-
ing D(a) corresponds to [a]qi for qi ∈ qDj and is free [20]. We define a
BGV-like key switching key as

ksw =

([
ajs + tej + PD−1

j (s′)
]
qP
, [−a]qP

)ω

j=1

where a ← Rω
qP, e ← χω

e , and D−1
j (·) is the jth entry of D−1(·). Slightly

abusing notation, we switch keys with⌈
[〈D(ci), ksw〉( s)]qP

P

⌋
t
= cis′ +

⌈
[t 〈D(ci), e〉]qP

P

⌋
t
.

In practice, the resulting error is negligible for k = d`/ωe (and hence
P = P1,k with each Pj ≈ maxi qi) [25]. Thus, when selecting key switch-
ing parameters, the key switching error is always negligible if we either
choose ω and compute k accordingly, or choose k and compute ω accord-
ingly.

Choosing ω = 1 corresponds to only using the GHS techinque, and
choosing ω = `with P = 1 would correspond to the BV technique. How-
ever, the latter would require a second decomposition to a small digit
base as only decomposing toward the RNS base does not sufficiently re-
duce the error [25]. As this is rather inefficient, we reasonably assume
P ≥ maxi qi (with k = 1 and P ≈ maxi qi for ω = `); this corresponds
to current state-of-the-art. Kim, Polyakov, and Zucca [25] analyze the
complexity of key switching with respect to the number of NTT opera-
tions (the most costly building block of key switching), the number of
multiplications, and the memory requirements for a key switching key in
bits. However, they do not further explore the parameter space or discuss
further implications for parameter selection. We summarize their results
in Table 2.
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Table 2: Single-decomposition key switching complexity according to
the analysis of Kim, Polyakov, and Zucca [25] in terms of forward and
inverse NTT (ntt) as well as modular (constant) multiplications (mul)
with input and output in the same domain, coefficient for BFV and NTT
for BGV. ComplexityO(N logN) for ntt andO(N) for mul are implicit.

Metric Scheme Cost

ntt BFV/BGV (ω + 2)(`+ k)
mul BFV `(`+ 2ω + 2k + 5) + 2k
mul BGV `(`+ 2ω + 2k + 7) + 4k

bit size BFV/BGV 2ωN log qP

For a correct implementation, we also have to consider the fast base
extension as well as forward and inverse NTT operations. For complete-
ness, we also take into account that we add the output of key switching
to (parts of) an existing ciphertext. For example, considering BFV (input
and output in the coefficient domain), key switching is as follows:

1 Ciphertext extension: Perform a fast base extension on the
ω ciphertext decompositions modulo qDj as

cext = BaseExt(Dj(ci), qDj , qP).

2 Dot product: With a key switching key in the NTT domain,
perform the dot product as

c′i = 〈NTTfwd(cext), kswi〉 (mod qP).

3 Delta computation: Compute δ for scaling by P as

δi = −tBaseExt
(
NTTinv

([
t−1c′i

]
P

)
,P, q

)
(mod q).

4 Modulus switching: Scale down c′i + δi and add the result to
the input as(

c0 +
NTTinv(c′0) + δ0

P
, c1 +

NTTinv(c′1) + δ1
P

)
.

When we switch for c1, for example, after a rotation, we set
c1 = 0 in this final step.

Double-decomposition technique.

Kim et al. recently proposed a double-decomposition technique build-
ing upon single-decomposition key switching [26]. The technique only
changes the algorithmic approach to key switching and does not influ-
ence the error. Their idea is as follows: In the second step, instead of
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computing the dot product 〈D(ci), ksw〉 in RqP, we add a second decom-
position over qP into ω̃ groups such that each group has up to d(`+k)/ω̃e
primes. Then, switching to a shared RNS basis E = {E1, . . . ,Er} and
computing the dot product in RE can improve execution time. For more
details, we refer to the original publication [26].

In their evaluation, the authors assume CKKS with input and out-
put in the coefficient domain and without the modulus switching costs
for scaling down by P. We list their results, includingmodulus switching
costs, in Table 3 to keep consistencywithKim, Polyakov, andZucca [25].
For an implementation, again considering input and output in the coeffi-
cient domain, we compute

1 Ciphertext extension:

cext = BaseExt(Dj(ci), qDj ,E).

2 Dot product:

c′′i = [〈NTTfwd(cext), kswi〉]E
c′i = BaseExt(NTTinv(c′′i ),E, qP).

3 Delta computation:

δi = −tBaseExt
([

t−1c′i
]
P ,P, q

)
(mod q).

4 Modulus switching:(
c0 +

c′0 + δ0
P

, c1 +
c′1 + δ1

P

)
.

As for the single-decomposition technique, when switching
c1, we set c1 = 0 in this final step.

In contrast to the single-decomposition technique, where we can always
consider the error as part of the ciphertext error [28], the fast base ex-
tension in step (2) of the double-decomposition technique requires error
correction.

Single-decomposition key switching
Section 3

In this and the following section, we introduce our theoretical contribu-
tions for the single- and double-decomposition key switching techniques,
respectively. Both sections follow the same blueprint: We start by gener-
alizing key switching to arbitrary input and output domains. We then an-
alyze computational and memory complexity introducing our optimiza-
tions for constant folding. Afterward, we discuss strategies for optimiz-
ing parameters.
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Table 3: Double-decomposition key switching complexity, including
modulus switching costs, in terms of forward and inverse NTT (ntt) as
well as modular (constant) multiplications (mul) for input and output in
the coefficient domain.

Metric Cost

ntt (ω + 2ω̃)r
mul (3`+ 2ωω̃ + 2k + 2)r + `(2k + 7) + 6k

bit size 2ωω̃N logE

3.1 Generalizing NTT complexity to arbitrary domains

An annoying limitation of current analyses is the coupling with a specific
scheme such as BFV or BGV. Instead, we choose to analyze key switch-
ing for a given input and a target output domain, generalizing analysis
to all BGV-like schemes. For example, in BFV, the modulus switching
before a multiplication requires input in the coefficient domain, and the
scaling and rounding afterward results in output in the coefficient do-
main. Therefore, the most common input and output domain in BFV is
the coefficient domain; however, depending on use-case-specific circum-
stances, one might also want to work with input or produce output in
the NTT domain. In contrast, in BGV and CKKS, multiplication requires
input in the NTT domain and produces output in the NTT domain, and
thus, the most common input and output domain for key switching is the
NTT domain. For rotations, efficient variants exist for permuting the ci-
phertext polynomials in either domain, and homomorphic rotations do
not influence the common domain for a specific scheme.

Kim, Polyakov, and Zucca [25] show that ciphertext extension, dot
product, and delta computation require ω(` + k) + 2k NTT operations
independent of the input domain. Then, for modulus switching, we com-
pute (

c0 +
c′0 + δ0

P
, c1 +

c′1 + δ1
P

)
,

where ci is the ciphertext input, c′i the output of the dot product in the
NTT domain, and δi the output of the delta computation in the coefficient
domain. For rotations, we set c1 = 0.

For a matching input and output domain, it is relatively straightfor-
ward to get the desired result with 2` additional NTT operations and an
overall complexity of (ω + 2)(`+ k): For ci in the coefficient domain, we
apply ` inverse NTTs on each c′i, one for each ciphertext prime, while for
ci in the NTT domain, we apply ` forward NTTs on each δi. For a non-
matching input and output domain, we can achieve the same complexity
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in terms of NTT operations with(
Pc0 + c′0 + δ0

P
,

Pc1 + c′1 + δ1
P

)
,

scaling ci by P. Depending on the input domain, we add Pci to c′i or δi,
afterward applying 2` forward or inverse NTT operations as required for
the desired output domain. While this increases the number of multipli-
cations for now, we show in Subsection 3.3 how to avoid these additional
costs.

3.2 A new perspective on NTT complexity

In their work, Kim et al. [26] claim that the asymptotic key switching
complexity for the single-decomposition technique isO

(
`2
)
. The authors

reason as follows: By choosing k ∈ O(1), we must choose ω ∈ O(`) and
the bound follows accordingly. However, this implicitly limits the pa-
rameter space for k which results in a skewed perspective on key switch-
ing. In this work, we choose a different perspective on key switching. We
consider ω ≤ ` as a parameter in the security level, which we can choose
as we desire. Then, assuming b ≈ β ≈ B and, for simplicity, ω | `, the
number of primes in the key switching modulus follows as k = `/ω to
keep the key switching error small (see also Subsection 2.8).

Thus, the number of NTT operations is

(ω + 2)(`+ k) = ω`+ 3`+
2`
ω
.

For ω2 = 2, ω1 = 1,

ω2`+ 3`+
2`
ω2

= ω1`+ 3`+
2`
ω1

,

and for ω2 > ω1 > 1,

ω2`+ 3`+
2`
ω2

> ω1`+ 3`+
2`
ω1

.

A simple fact follows: Increasing ω increases the computational com-
plexity of key switching, and for better performance, we want to choose
k ∈ O(`/ω). This results in an asymptotic key switching complexity of

ω`+ 3`+
2`
ω

= O(ω`).

3.3 Improving multiplication complexity via constant folding

We split multiplication types in key switching into four context-based
groups:

1 the coefficient-wise multiplication with the key switching
key during the dot product step;
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2 multiplications with a constant scalar such as P−1 during
modulus switching;

3 during base extension, multiplication with Ei/E1,n mod Ei,
for example, for E = P; and

4 during base extension, multiplication with E1,n/Ei mod E′
j.

Note that, for group (1), we can only fold fixed values such as t or P since
the ciphertext modulus can change as in BGV or CKKS. For brevity, the
following only outlines our optimizations for input and output in the co-
efficient domain. However, the ideas also apply to other combinations of
input and output domain as well as optimizations introduced later in this
work; we refer the interested reader to our implementation in which all
folded variants are implemented and tested.

Our crucial observation is the following: After the dot product, we
use c′ = (c′0, c

′
1) mod P only to compute δ = (δ0, δ1) and use c′ mod q only

for switching the modulus. Thus, we can merge known multiplications
(group 2–4) for c′ mod q with the key switching key ksw mod q and with
ksw mod P separately (group 1). Additionally, for the delta computation,
we can merge the multiplication by −t over qi (group 2) with the second
part of the base extension from P to q (group 4). Below, we list our al-
gorithmic modifications to the key switching algorithm starting at the
dot product. For readability, we exclude the required NTT operations, as
constant multiplications can be performed in either domain:

[·]q [·]P

c′fold =
〈
cext,P−1ksw

〉
δ′fold =

〈
cext, (tP/Pj)

−1ksw
〉

δfold = P−1tP/Pj δ
′
fold

c + c′fold + δfold

The above reduces the number of constant multiplications down to a uni-
fied bound of

`

(
`+ 2ω + 2

`

ω
+ 3
)

for any t and any combination of input and output domain, each multipli-
cation with complexityO(N).

Given a degreeN and a number of primes `, finding the minimal num-
ber of multiplications depends only on 2ω + 2`/ω, which is minimal for
ω =

√
`. Due to the implicit scaling by P−1, we can add c without addi-

tionalmultiplications to either c′fold in theNTTdomain or to δfold in the co-
efficient domain. During precomputation, we simplify P−1tP/Pj = t/Pj.
Our folding ideas also apply to the fast base extension when correcting
the error with the HPS method, which we use for implementation.
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3.4 Analyzing memory costs

In the single-decomposition technique, each key switching key requires
ω polynomial pairs for the modulus qP. Thus, assuming B bits of storage
for each prime, the size of one key switching key requires

2ω (`+ k)NB = 2(ω`+ `)NB

bits of memory. Trivially, increasing ω increases storage requirements.

3.5 Optimizing ω by increasing the degree N

Our previous analysis assumes a fixed degreeN. But, we can also setω as
we please, choosingN securely for qP afterward. However, we then have
to consider the complexity of the NTT operation itself. Although using
the asymptotic boundO(N logN) at face value does not quite match real-
ity due to the hidden factors, it is sufficient for our following argument.

An optimal choice of ω = 2 results in 6` NTT operations for key
switching. If N has to be increased to the next power-of-two degree to
match a given security level, the count of NTT operations increases to
12`N log(N + 1) ≈ 12`N logN. Therefore, increasing the polynomial de-
gree to reduce key switching costs is approximately worth it once(

ω`+ 3`+
2`
ω

)
N logN > 12`N logN

and thus ω2 − 9ω + 2 > 0, and ω > 8.77 follows. Increasing the poly-
nomial degree to 2N with ω = 2 (which usually performs better than
ω = 1, see Section 5) reduces the memory requirements for each key
once 2(ω`+ `)NB > 12`NB, hence ω > 5. However, increasing the poly-
nomial degree does increase the computational complexity of all other
homomorphic computations, as these do not depend on the key switch-
ing parameters. We evaluate the above in Subsection 5.6 and discuss the
implications for implementations holistically in Subsection 6.2.

3.6 Optimizing ω with a second secret key

A common optimization is instantly switching the modulus after an en-
cryption. This reduces the fresh encryption error and, in the long run,
can be benefitial for noise growth in a given use case. This frees b bits of
the ciphertext modulus q which we can use for the key switching mod-
ulus P, which in turn enables us to possibly reduce ω. However, we do
have to be careful to stay secure with respect to the RLWE assumption.
To use the additional b bits securely, we set our key switching parame-
ters P and ω as usual, then generate our key material as required for a
secret key s. Now, we choose a second set of key switching parameters
P′ and ω′ for log q1,L−1 and generate our key material for N and q1,L−1P′

with a second secret key s′. For the second parameter set, we can choose
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P′ with logP′ ≤ logP + b, possibly resulting in an ω′ < ω and better key
switching performance.

In addition to an initial modulus switching, we thus also perform an
initial key switching to the secret key s′ using the worse-performing pa-
rametersP andω only once. Afterward, we can use the parametersP′ and
ω′ for better key switching performance for all remaining key switchings.
Note that this idea generalizes to any number of initial levels; however,
thismight lead to a large inflation in key switching keys depending on the
use case. For example, by doing so, wemight require a key switching key
to remove c2 after a multiplication for parameters qP and ω as well as for
parameters P′ and ω′.

3.7 Optimizing ` by choosing (mostly) large RNS primes

So far, our analysis assumes b ≈ β ≈ B, that is, RNS primes for q and
P close to the maximum size B. In general, choosing the RNS primes as
large as possible is beneficial for two apparent reasons:

Each additional prime increases the number of polynomial
operations during homomorphic evaluation. The larger each
prime, the fewer primesweneed, reducing computation time
and memory costs.

Assuming a maximum prime size of B bit, using fewer bits
usually wastes computational and memory resources as op-
erations are still performed over B-sized numbers.

Given a bound log q (the same idea extends to P), wewould like to choose
primes as follows: Compute ` = dlog q/Be, choose b such that log q ≈ `·b,
and generate ` primes close to 2b. However, for BGV and CKKS, the size
of qi significantly impacts the error growth, and scaling by roughly 2b

during modulus switching is not necessarily the optimal choice. Note
that no such limitations exist forP and the above approach alwaysworks.

To introduce the desired flexibility, we revisit an idea by Gentry, Ha-
levi, and Smart and add a few small primes, which we constantly switch
in and out of the modulus during homomorphic evaluation to control the
error [19]. Since their work only describes the high-level idea without
any details, we introduce some additional notation for the RNS setting,
integrate their idea with key switching to minimize costs, and analyze
the complexity of our integration.

Switching primes in and out.

We choose ` − κ primes close to 2b and κ > µ smaller primes with their
product close to 2µb, such that log q ≈ (` + µ)b; here, 2µb/κ should cor-
respond to the required size for controlling the error (BGV) or rescaling
(CKKS). A typical homomorphic evaluation then would look as follows:
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1 Receive a fresh encryption from the client.

2 Perform the desired homomorphic operations such as addi-
tions, multiplications, or rotations up to the level boundary;
note that we perform a key switching after a multiplication
or a rotation.

3 Apply modulus switching to reduce the error (for BGV) or
rescale the message (for CKKS) using one of the κ small
primes.

4 Repeat steps (2) and (3) until all κ small primes have been
used for modulus switching.

5 Perform homomorphic operations for the next level. During
the last key switching, replace any µ large primes with the κ
small primes; this restores our capabilities for scaling with
small primes.

6 Continue with step (3), using one of the κ small primes for
modulus switching.

Integrating prime switching with key switching.

If we want to replace the primes {q`−µ, . . . , q`}with {q1, . . . , qκ}, we can
switch the modulus of a ∈ Rqκ+1,` as⌈

q1,`−µ

qκ+1,`
a
⌋

t
=

q1,`−µa− t[t−1q1,`−µa]qκ+1,`

qκ+1,`
(mod q1,`−µ)

=
q1,κa− t[t−1q1,κa]q`−µ,`

q`−µ,`
(mod q1,`−µ)

∈ Rq1,`−µ
.

We can then integrate prime switching with modulus switching during
key switching by simply switching out the large primes {q`−µ, . . . , q`} in
addition to the primes {P1, . . .Pk}. Switching for c′i ∈ Rqκ+1,`P1,k trans-
forms the above to

q1,κc′i − t[t−1q1,κc′i]q`−µ,`P1,k

q`−µ,`P1,k
(mod q1,`−µ).

Compared to switching out only P1,k and switching in no primes, the
number of inverse NTT operations increases from 2k to 2(µ+ k) for base
extending δi = −t[t−1q1,κc′i]q`−µ,`P1,k . However, we also save 2µ NTT op-
erations on either c′i or δi since we reduce the number of primes for the
modulus switching output from ` to ` − µ. For output in the coefficient
domain, switching primes in and out requires no additional NTT opera-
tions. For output in the NTT domain, we need to perform 2κ additional
forward NTT operations (κ operations per δi). The former is free regard-
ing the number of NTT operations, and, with κ ∈ O(1), the latter has
only a small overhead.
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Choosing the primes.

Based on this more generic setup, we adjust the process for choosing the
primes qi as follows: Compute the number of RNS primes `′ = dlog q/Be,
and choose b such that log q ≈ `′ ·b. Then, we generate `′−µ primes close
to 2b and κ primes close to 2µb/κ. This results in ` = `′ − µ + κ cipher-
text primes. Compared to the more naïve approach, that is choosing all
primes of size µb/κ, we reduce ` (and thus computational and memory
complexity) as long as⌈

log q
µb/κ

⌉
≈
⌈

`′

µ/κ

⌉
> ` ⇔ κ`′ − µ` ≥ µ ⇔ ` ≥ κ+

µ

κ− µ
.

For example, with B = 60, we consider a use-case scaling each level
with 36-bit primes; then, choosing µ = 2 and κ = 3 results in b = 54,
which reduces the overall number of primes as soon as ` ≥ 5 (equivalent
to log q > 144). Evaluating the above idea generically for all parameter
settings is rather difficult due to the use-case-specific nature of parame-
ters for BGV-like schemes; however, choosing primes as large as possible
with a small number of additional scaling factors can also be adapted to
more complex scenarios.

Double-decomposition key switching
Section 4

We now extend our previous analysis to the double-decomposition tech-
inque following the same structure as before: We start with generalizing
input and output domain, follow with complexity analysis and conclude
with strategies for parameter optimization.

4.1 Generalizing NTT complexity to arbitrary domains

In contrast to the single-decomposition technique, the double-decompo-
sition technique always requires input and output in the coefficient do-
main. For our initial ciphertext extension, we require the input in the
coefficient domain. Thus, for input in the NTT domain, we apply ` in-
verse NTTs for c1 (after a rotation) or c2 (after a multiplication) before
extending the ciphertext2.

As with the single-decomposition technique, we switch a modulus
with (

c0 +
c′0 + δ0

P
, c1 +

c′1 + δ1
P

)
;

2 In the single-decomposition technique, we save ` forward NTT operations
later on by re-using the input, hence, the number of NTT operations stays the
same; this is not possible in the double-decomposition technique. For the precise
details, we refer to the in-depth description of Kim, Polyakov, and Zucca [25]
and our accompanying key switching implementation.
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Table 4: Double-decomposition key switching complexity regardingNTT
operations generalized to arbitrary input and output domains, either ap-
plied after a rotation or a multiplication.

Operation Domain Cost

Rotation

coef coef (ω + 2ω̃)r
coef ntt (ω + 2ω̃)r + 2`
ntt coef (ω + 2ω̃)r + 2`
ntt ntt (ω + 2ω̃)r + 3`

Multiplication

coef coef (ω + 2ω̃)r
coef ntt (ω + 2ω̃)r + 2`
ntt coef (ω + 2ω̃)r + 3`
ntt ntt (ω + 2ω̃)r + 3`

however, in contrast to before, c′i and δi are both in the coefficient do-
main. For output in theNTTdomain,we thus require 2` forwardNTTs for
c′i + δi (possibly adding Pci for input in the coefficient domain). For input
in the NTT domain and output in the coefficient domain, we apply ` in-
verse NTTs for c0 and, for multiplications, another ` inverse NTTs for c1.
We summarize the generalized complexity of the double-decomposition
technique in Table 4.

4.2 Analyzing NTT and multiplication complexity

As with the single-decomposition technique, Kim et al. [26] argue as fol-
lows about the asymptotic complexity of the double-decomposition tech-
nique: By choosing the k, r ∈ O(1), we choose ω, ω̃ ∈ O(`) and the bound
O(`) follows accordingly. To extend our new perspective to the double-
decomposition technique, we first need to estimate the number of primes
r in E. In the original work, the authors use the infinity norm; we use
the canonical norm which tends to result in tighter bounds. Assuming
b ≈ β ≈ B, E needs to be large enough to hold a product ab ∈ R with
Va ≈ 2`/ωb and Vb ≈ 2(`+k)/ω̃b. Then, for N = 2n, we can roughly upper
bound logE as

log
(
D
√

NVab

)
= (n− 1) + (`/ω + `/ω̃ + `/(ωω̃))b.

With n/b negligible in practice, a reasonable estimate for the number of
primes in E is

r =
ω`+ ω̃`+ `

ωω̃
.
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NTT complexity.

To minimize the number of NTT operations, we want to minimize the
term

(ω + 2ω̃)r =
(
ω2 + 3ωω̃ + 2ω̃2 + ω + 2ω̃

ωω̃

)
`.

However, minimizing this term for ω and ω̃ over R results in values out-
side the desired target range, and we instead bound ` and use an exhaus-
tive search over the integers to find solutions for ω and ω̃. For ` ≤ 200, a
generous bound on the number of ciphertext primes, the number of NTT
operations is minimal for

ω = ` and ω̃ =

√(
`+ 1
2

)
`.

Multiplication complexity.

We also apply our folding techniques to the double-decomposition tech-
nique. Overall, it requires (`+2ωω̃)r+ `(2k+3)multiplications, which,
using the estimates on k and r, transforms to

`

(
2ω + 2ω̃ +

3`
ω

+
`

ω̃
+

`

ωω̃
+ 5
)
.

Aswith theNTT complexity, we exhaustively search for a localminimum
for ` ≤ 200. The resulting optimal choices for ω and ω̃ are close to

√
`.

4.3 Analyzing memory costs

For the double-decomposition technique, one key switching key requires

2ωω̃rNB = 2(ω`+ ω̃`+ `)NB

bits, and increasing ω or ω̃ increases the size of the key switching key. In
contrast to the single-decomposition technique, where reducing ω bene-
fits NTT andmemory complexity, we now have a trade-off betweenmem-
ory size and NTT performance.

4.4 Optimizing parameters

Due to the trade-off between NTT and memory complexity, choosing op-
timal parameters for the double-decomposition technique is more com-
plex. One reason is that increasing the size of the key switching key
also increases execution time since we have to readmore data frommem-
ory. This is also observable in hardware accelerators significantly reduc-
ing the execution time for the NTT; this results in key switching being
limited by the speed of reading data from memory [9]. Still, the easi-
est strategy for choosing parameters in the double-decomposition tech-
nique is setting ω = ` and ω̃ =

√
`(`+ 1)/2. A better, but platform- and

implementation-specific strategy is as follows:
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1 Benchmark execution times for a NTT operation and a mul-
tiplication on the chosen platform using the selected imple-
mentation.

2 Benchmark reading NB bits from memory.

3 Exhaustively search for optimal solutions by combining the
number of operations/the amount of data to be readwith the
previously obtained benchmark results.

Note that the idea of choosingmostly large primes to reduce ` also applies
to the double-decomposition technique.

Evaluation
Section 5

We evaluate our contributions using a comprehensive set of benchmarks
to answer the following questions:

How costly is it to replace primes during key switching?

How fast is key switching with mostly large primes?

When is the double-decomposition technique better?

Is ω = 1 or ω = 2 better for the single-decomposition tech-
nique?

Atwhich point is it worth it to increase the degreeN in order
to reduce ω?

Howmuch speed-up do we gain with our novel ideas on con-
stant folding?

We start by describing our benchmarking setup and explaining our library
choice, afterward answering each question in a dedicated subsection.

5.1 Benchmarking setup

We run all our benchmarks on Ubuntu 20.04.5. The Central Processing
Unit (CPU) is an Intel Core i9-7900XCPU at 3.3GHzwith 20 cores, and
the system features 64 GiB of available memory. We disable Intel turbo
boost, and pin the benchmarking execution to a single CPU core. For
the polynomial degrees N ∈ {214, . . .217}, the closed formula by Mono
et al. [28] outputs {433,867, 1735,3470} as upper bounds for log qP,
respectively3. For our benchmarks, we only consider secure parameter
sets.

3 These bounds are slightly tighter than in the Homomorphic Encryption Stan-
dard [1], which only provides bounds for N ∈ {210, . . . ,215}. Since the stan-
dard’s initial release, more andmore published use cases requireN ≥ 215, which
we account for in our evaluation by shifting our degree range to larger degrees.
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Our state-of-the-art implementation4 uses the open-source BGV li-
brary fhelib which we choose for its highly flexibly Application Program-
ming Interface (API) and ease-of-use. For fast polynomial arithmetic,
fhelib uses a HEXL-based ring layer [22] which is a common denomi-
nator with homomorphic encryption libraries such as OpenFHE [4] or
SEAL [30], and implementing our improvements in these libraries should
result in speed-ups comparable to the ones we observe in fhelib. Note
that we do not measure key switching key sizes because, in fhelib, these
match the theoretical values. This, however, obviously depends on the
specific data structures used and their overhead in a given implementa-
tion.

5.2 Replacing primes during key switching

To find out how costly replacing primes is, we compare execution times
for our optimized implementation (folded) with an optimized implemen-
tation replacing µ large primes with κ small primes with the single-de-
composition technique (switch). We run benchmarks for parameter sets
using 1/2, 2/3, and 3/4 of the available modulus space for the cipher-
text modulus q with ω as small as possible and at least κ = 3 primes of
size 36 bit and as many 54 bit primes as possible. For log q = 1116, for
example, we use four primes of size 36 bit and 18 primes with size 54 bit.

We average execution times across all combinations of input and out-
put domain and report the results in Table 5; the overhead reports the
absolute difference between between the folded and the switch version.
Overall, switching primes does have a low overhead, especially consider-
ing the fact thatwe only have to do so everyκ levels. For a given degreeN,
the overhead is relatively constant. The relative overhead, as expected,
gets smaller the more primes we use.

5.3 Choosing mostly large primes

Wenowmeasure how large our performance gains are by choosingmostly
large primes. We re-use the parameter sets as defined in Subsection 5.2,
that is using 1/2, 2/3, and 3/4 of the maximum modulus size for q. We
now compare how choosing only small primes with b = 36 and choosing
mostly large primes with b = 54 and κ = 3 affects execution times.

As before, we average execution times across all combinations of in-
put and output domain, the results are in Table 6; we also report the
relative speed-up. On average, choosing mostly large primes provides
a speed-up of 36.9% across all measured parameter sets. Note that the
speed-ups here are much larger than the overhead of switching in primes
resulting in a highly effective method for improving performance.

4 https://github.com/Chair-for-Security-Engineering/owl
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Table 5: Execution times for parameter sets using 1/2, 2/3, and 3/4 of
the available modulus space for the ciphertext modulus q. For each pa-
rameter set, we choose mostly primes with 54 bit, but at least κ = 3
primes with 36 bit. The reported execution times are an average over all
combinations of input and output domain for the folded implementation.

Parameters Time (ms)

logN log q folded switch overhead

14 252 4.0 4.7 0.7
14 288 5.0 5.7 0.7
15 396 15.9 18.1 2.2
15 540 21.9 24.3 2.4
15 612 29.4 32.1 2.7
16 828 95.7 104.9 9.2
16 1116 170.1 178.2 8.1
16 1260 209.8 216.5 6.7
17 1692 783.0 818.0 35.0
17 2268 1013.1 1046.0 32.9
17 2556 1262.1 1302.6 40.5

5.4 Comparing decomposition techniques

Our goal is to compare how well both decomposition techinques would
perform in real-world parameter settings. To do so, we fix a degreeN and
compare performance in both techniques for different moduli sizes; this
increases the lower bound on ω the closer we get to the maximum mod-
ulus size. We generate parameter sets using 50%, 65 %, 75 %, 80 %, 85 %,
90%, and 95% of the available modulus space for the ciphertext modulus
q. We choose key switching parameters to optimize for theNTT complex-
ity of each technique. As before, we compare execution times across all
combinations of input and output domain.

We compare both decomposition techniques in Figure 1, the blue line
represents the single-decomposition technique while the green line rep-
resents the double-decomposition technique. As we can see, the double-
decomposition technique only becomes competitive when we get close
to the maximum modulus size for q. In fact, in our experiments, the
single-decomposition technique outperforms the double-decomposition
technique for all parameter sets except for logN = 16with log q = 1624.
We therefore recommend to use the single-decomposition technique for
key switching; an exception might be for very large ω.
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Table 6: Execution times for parameter sets using 1/2, 2/3, and 3/4 of
the available modulus space for the ciphertext modulus q. For each pa-
rameter set, we either choose only small primes with b = 36 or choose
mostly primes with b = 54, but at least κ = 3 primes of size 36 bit. The
reported execution times are an average over all combinations of input
and output domain for the folded implementation.

Parameters Time (ms) Speed-up

logN log q small large

14 252 4.7 4.0 17.5 %
14 288 5.9 5.0 18.0 %
15 396 18.8 15.9 18.2 %
15 540 29.3 21.9 33.8 %
15 612 38.3 29.4 30.3 %
16 828 156.4 95.7 63.4 %
16 1116 241.1 170.1 41.7 %
16 1260 301.9 209.8 43.9 %
17 1692 1065.6 783.0 36.1 %
17 2268 1529.5 1013.1 51.0 %
17 2556 1917.1 1262.1 51.9 %

5.5 Choosing ω = 1 or ω = 2

We decide whether ω = 1 or ω = 2 is better for the single-decomposition
technique using 50% of the available modulus space for q and comparing
the optimized key switching implementations; we list our results in Ta-
ble 7. For small N and q, the difference between setting ω = 1 and ω = 2
is negligible and within the margin of measurement error. For larger N
and q, however, the difference is rather large. There are most likely two
reason: First, ω = 2 is in general closer to the optimal multiplication
complexity ω =

√
l than ω = 1; this reduces the time spent on modu-

lar multiplication. Second, the key switching keys are smaller for ω = 1
and reading the keys from memory has a larger impact on performance
for smaller parameters. Overall, we recommend choosing ω ≥ 2 as small
as possible for best performance.

5.6 Increasing the degree N

To evaluate increasing the degree N, we re-use the parameter sets from
Subsection 5.4 using 90% and 95% of the available modulus space for
q. For these parameter sets, we create a sibling set for the degree 2N and
ω = 2. We list execution times averaged over all combinations of input
and output domain in Table 8 and list speed-ups in percent.
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Figure 1: Comparison of execution times for optimized implementations
of the single- and double-decomposition technique. We use different per-
centages of the available modulus space for the ciphertext modulus q,
choosing key switching parameters optimally with respect to the NTT
complexity. Execution times are averaged across all combinations of in-
put and output domain.

While increasing the degree can speed up execution times by up to
25%, it can also do more harm then good even when only considering
key switching. Since increasing the degree increases costs everywhere
else, we only recommend doing sowith benchmarking results confirming
a speed-up for a use-case specific implementation. We refer to Subsec-
tion 6.2 for additional remarks on increasing the degree.
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Table 7: Execution times for parameter sets using 50% of the available
modulus space for the ciphertext modulus q with ω = 1 and ω = 2. The
reported execution times are an average over all combinations of input
and output domain for the folded implementation. We also report the
speed-up in percent.

Parameters Time (ms) Speed-up

logN log q ω = 1 ω = 2

14 216 3.5 3.6 -2.7 %
15 432 19.2 19.1 0.5 %
16 855 118.0 113.3 4.1 %
17 1711 762.1 671.0 13.6 %

Table 8: Execution times for parameter sets using 90% and 95% of the
availablemodulus space for the ciphertextmodulus q. For eachparameter
set, we also generate a parameter set for the degree 2N with ω = 2. The
reported execution times are an average over all combinations of input
and output domain for the folded implementation. We also report the
speed-up in percent.

Parameters Time (ms) Speed-up

logN log q ω N 2N

15 780 10 98.6 80.7 22.2 %
16 1560 10 457.9 564.6 -18.9 %
16 1624 19 785.3 626.5 25.3 %
17 3120 9 2072.6 3172.6 -34.7 %
17 3300 19 3532.2 3462.4 2.0 %

5.7 Speed-ups from constant folding

We measure speed-ups from constant folding across a range of parame-
ters. As in Subsection 5.4, we use a certain percentage of the available
modulus space for q ranging from 50% to 85%. We use a non-optimized
implementation of key switching (naïve) and compare execution times to
our optimized implementation (folded) averaged across all combinations
of input and output domain; the results are in Table 9. Aswe can observe,
we improve execution times for key switching by up to 11.6% using our
constant folding techniques and, on average, speed up key switching by
4.8%.

Page 30



Table 9: Execution times for parameter sets using 50%, 65%, 75%,
80%, and 85% of the availablemodulus space for the ciphertextmodulus
q using optimal key switching parameters with respect to NTT complex-
ity. The reported execution times are an average over all combinations of
input and output domain comparing the naïve implementation with the
folded implementation with the speed-up in percent.

Parameters Time (ms) Speed-up

logN log q ω naïve folded

14 216 1 3.9 3.5 11.6 %
14 280 2 5.3 4.9 8.3 %
14 324 3 6.8 6.4 6.6 %
14 342 5 9.3 9.0 3.5 %

15 432 1 20.9 19.2 8.8 %
15 560 2 26.6 24.8 7.4 %
15 649 3 33.0 31.5 4.8 %
15 684 5 45.2 43.1 4.8 %
15 728 6 54.5 53.2 2.5 %

16 855 1 125.5 118.0 6.3 %
16 1121 2 159.2 152.3 4.5 %
16 1298 3 227.0 220.1 3.1 %
16 1380 5 275.6 269.0 2.4 %
16 1475 6 335.6 330.1 1.7 %

17 1711 1 801.5 762.1 5.2 %
17 2242 2 996.4 970.5 2.7 %
17 2580 3 1207.5 1176.4 2.7 %
17 2760 5 1444.6 1411.2 2.4 %
17 2940 6 1665.0 1647.7 1.0 %

Discussion
Section 6

In the following, we discuss multiple aspects of our work, starting with
the relevance of key switching for homomorphic use cases. We also dis-
cuss the implications of increasing the polynomial degree holistically,
highlight some limitations of our work, and explore opportunities for fu-
ture work.

6.1 Performance impact of key switching

In the FHE community, it is common knowledge that key switching is
one of the most expensive parts of homomorphic evaluation for BGV-like
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schemes. First, for most use cases, we perform many key switchings, as
performing a desired computation often involvesmany rotations, even for
low-level circuitswith only a handful ofmodulus switching. One such ex-
ample is homomorphic matrix multiplication [27], where a profiling run
of a highly optimized implementation on our benchmarking setup shows
that more than 50% of execution time is spent in key switching.

Second, on the server side, key switching and modulus switching are
the only homomorphic operations requiring forward and inverse NTT op-
erations, the main computational bottleneck for homomorphic encryp-
tion, with respective asymptotic complexities of O(ω`) and O(`). For
modulus switching, however, we often can amortize most of the costs
by merging it with key switching.

Third, key switching requires reading large keys frommemory, which
are only used for a single modular multiplication. This is especially rel-
evant in hardware accelerators, as once the computational bottlenecks
are accelerated, memory becomes the main problem even for custom-
designed memory architectures [9, 16].

Fourth, we often require key switching due to the algorithmic map-
pings from the unencrypted domain to the homomorphic realm, where
many values are encoded in a single message polynomial. Operations
between values encoded in different positions require different permuta-
tions on the ciphertext and, hence, a key switching to get back to a shared
secret key.

Thus, improving key switching boosts performance significantly in
most homomorphic use cases. When optimizing use cases, another re-
sult of our work comes in handy: Sometimes, a use case benefits from
key switching output with mixed output domains (output for some RNS
primes in the NTT domain and some in the coefficient domain), whichwe
show how to achieve for free using our folding optimizations.

6.2 Increasing the polynomial degree

Contrary to current folklore, increasing the polynomial degree can in-
crease performance for otherwise very large ω. However, although ex-
ecution time decreases for key switching, the computational complexity
of other operations increases with larger N. The same holds for memory:
we only reduce costs for key switching (such as the key switching keys
or the temporary storage for the extended polynomials during key switch-
ing), increasing all other ciphertext storage, permanent or temporary.

We believe that, in addition to a large ω, the following conditions
should be fulfilled before considering an increase of the polynomial de-
gree:

1 The main bottleneck of the use case is the key switching op-
eration;
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2 the use case requires many rotations, each with their own
unique key switching key; and

3 the key switching operation is memory-bound, for example,
in hardware.

The double-decomposition technique can also be better than increasing
the polynomial degree for large ω. However, key switching keys for the
double-decomposition technique are by default larger than for the single-
decomposition technique with the same parameters or require additional
computations for every use [26]; therefore, an increased polynomial de-
gree with a more straightforward key switching implementation and the
smaller keysmight bemore beneficial, especially for hardware implemen-
tations.

6.3 Limitations and future work

One limitation of our work is the somewhat simplified approach for se-
lecting key switching parameters ω and ω̃ for the double-decomposition
technique. In the single-decomposition technique, choosing ω ≥ 2 as
small as possible is beneficial regarding NTT and memory complexity.
In contrast, the double-decomposition technique requires a trade-off be-
tweenNTT complexity (ω = `) andmemory requirements (ω = 1), which
also has performance implications. We therefore recommend to use our
platform- and implementation-specific approach for a ciphertextmodulus
using over 90% of the available modulus.

Considering futurework, one open problem is finding closed formulas
for the multiplication complexity in the double-decomposition technique
instead of rough estimates for ω and ω̃. We also did not explore whether
our folding optimizations positively impact the error correction after a
fast base extensionwith the BEHZmethod. Selecting the best correction
method for a given platform could also be part of optimizing parameters
for the double-decomposition technique.

Conclusion
Section 7

Int this work, we provide theoretical and practical improvements to key
switching, the most expensive primitive in BGV-like schemes. We pro-
vide an in-depth analysis for parameter selection and, using a new per-
spective, introduce an improved asymptotic complexity of O(ω`). Addi-
tionally, we explore multiple opportunities for reducing the parameters
ω and ` for state-of-the-art key switching: We revisit an idea by Gentry,
Halevi, and Smart [19] reducing execution times by up to 63 %, dispel the
myth that increasing the degree N always results in worse performance,
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and introduce a new idea of using two seperate parameter sets for im-
proved performance.

We also correct analysis by Kim et al. [26], extend our new perspec-
tive to their double-decomposition technique, and show the technique’s
insignificance for practical parameter settings. We also highlight new
opportunities for constant folding which speed up key switching execu-
tion times by up to 11.6 %. Overall, our work provides a new perspective
on the most expensive homomorphic primitive in BGV-like schemes, key
switching, and improves the current state-of-the-art in theory and prac-
tice.
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