
PSKPIR: Symmetric Keyword Private
Information Retrieval based on PSI with Payload?

Zuodong Wu1,2[0000−0001−7702−4965], Dawei Zhang1,2[0000−0001−5942−8245], Yong
Li3[0000−0002−1419−6257], and Xu Han1,2[0000−0002−1030−2462]

1 School of Computer and Information Technology, Beijing Jiaotong University,
Beijing, China

2 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,
Beijing, China dwzhang@bjtu.edu.cn

http://scit.bjtu.edu.cn
3 School of Electronic and Information Engineering, Beijing Jiaotong University,

Beijing, China
liyong@bjtu.edu.cn

Abstract. Symmetric Private Information Retrieval (SPIR) is a proto-
col that protects privacy during data transmission. However, the exist-
ing SPIR focuses only on the privacy of the data to be requested on the
server, without considering practical factors such as the payload that may
be present during data transmission. This could seriously prevent SPIR
from being applied to many complex data scenarios and hinder its further
expansion. To solve such problems, we propose a primitive (PSKPIR) for
symmetric private keyword information retrieval based on private set in-
tersection (PSI) that supports payload transmission and batch keyword
search. Specifically, we combine probe-and-XOR of strings (PaXoS) and
Oblivious Programmable PRF (OPPRF) to construct PSI with payload
(PSI-Payload) not only satisfies client privacy and server privacy, but
also facilitates efficient payload transmission. The client can efficiently
generate symmetric keys locally using keywords in the intersection, and
receive payloads with matching labels in batches. In addition, we pro-
vide security definitions for PSKPIR and use the framework of universal
composability (UC) to prove security. Finally, we implement PSKPIR
with sublinear communication costs in both LAN and WAN settings.
Experimental results show that our payload transfer speed is 10× faster
than previous work on sufficiently large data sets.

Keywords: Symmetric private information retrieval · Private informa-
tion retrieval · Private set intersection with payload · Batch retrieval ·
Payload data transfer.

1 Introduction

The Private Information Retreival (PIR) [1,2,8,30,33] protocol considers the
client’s privacy and allows them to retrieve data from the server while hid-
ing data of interest to them. However, some servers may contain valuable data
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(e.g., medical servers, government document servers), and it is necessary for the
PIR protocol to protect the server’s privacy as well. For this question, Gertner
et al. [13] proposed the Symmetric Private Information Retrieval (SPIR) proto-
col to enable clients to retrieve data without revealing any information about
the server except for the requested data. This approach ensures the privacy of
the client retrieval and maintains the confidentiality of the server’s data. These
properties have made SPIR one of the most promising candidate protocols for
PIR extension protocol research. [18,28,31,32]. However, most these implemented
SPIR protocol focuses primarily on ensuring privacy for both parties while fre-
quently overlooking the issue of batch item retrieval and payload data transfer
[21,12,14]. In many instances, the server must not only supply privacy data for
the specific item requested by the client, but for complex data, the client may
also need to provide additional payload data (data size, check bit), which also
requires privacy guarantees in the SPIR protocol. In addition, considering the
vast and personalized data requirements of client, SPIR also incorporate batch
data retrieval to deliver efficient and precise retrieval services. In order to explain
the above two types of requirements, we start with envisaged scenario:

Scenario 1. When a well-known international investment institution seeks
to invest in the driverless industry, it relies on securities companies to inquire
about and purchase stocks related to the industry. In order to prevent com-
petitors from learning about their intentions and causing volatility in the stock
market, the investment institution expects securities companies to protect the
anonymity of their identities as well as their retrieval records and trading data.
In turn, securities companies need to protect their clients’ valuable information
from unlawful access. The standard SPIR protocol provides a viable solution for
meeting these requirements.

However, in practice, investment internationals require background infor-
mation for analysis when purchasing stocks of driverless technology companies
through securities companies, such as audit reports, public opinion monitor-
ing, shareholder changes, and other relevant information to assist in subsequent
investment decisions. Furthermore, since there are many companies in the au-
tonomous driving industry, it is necessary for investment companies to search
for multiple autonomous driving companies in batches in order to obtain better
analysis results.

Privacy Set Intersection (PSI), as a mainstream privacy computing technol-
ogy [6,7,9,10,11,15,20,25,26,27], can effectively address the security and func-
tional requirements of Scenario 1 [11,15,23]. The PSI allows the client to get the
intersection data of both parties, and the server does not need to worry about
leaking data outside the intersection. Therefore, PSI can not only ensure the
privacy of both parties, but can also be applied to PIR and SPIR, where both
parties can calculate the intersection of two private data sets to form a redirected
authentication or negotiation process, which is conducive to secure data trans-
mission [29]. Besides, Pinkas et al. [23] introduced a new variant, PSI-Payload,
where each keyword is associated with some data ("payload"). Although the
purpose of this protocol is to calculate payload data rather than transmit it,
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PSI-Payload provides a promising example for building a SPIR protocol that
meets the requirements of scenario 1 because of its unique advantages. Privacy-
preserving Policy-based Information Transfer (PPIT) is a Privacy-preserving Set
Intersection (PSI) variant proposed by De Cristofaro et al. [5]. It comprises three
protocols: RSA-PPIT, Schnorr-PPIT, and IBE-PPIT. These protocols can not
only meet the privacy requirements of both parties involved, but also allow client
to retrieve data in batches. However, all PPIT incur expensive computational
costs for authentication.

Goals and Challenges. In this paper, we aim to introduce PSI-Payload
for the development of a SPIR protocol that meets the practical requirements
of scenario 1, and then propose a new primitive (PSKPIR) to improve batch
retrieval and payload data transmission capabilities. However, in specific cases,
some challenges also need us to solve. Firstly, most protocols such as Jarecki
et al. [15] and Pinkas et al. [23] are based on public key or OT, which may
lead to increased computing or communication costs when using PSI-Paylaod
to transmit payload data. Thus, it is necessary to identify a PSI technique that
strikes a balance between data privacy and transmission efficiency. Secondly, the
design of PSKPIR should align with the privacy requirements of SPIR and the
practical needs of scenario 1. Thirdly, our protocol can achieve malicious security
with no significant increase in overhead compared to the semi-honest setting.

1.1 Our Contributions

Specifically, our main contributions are summarized as follows:

- A new primitive. First, we propose a new primitive built through PSI-
Payload, PSKPIR, to support batch keyword retrieval and improve payload
data transmission capabilities. Our PSI-Payload is built on PaXOS and OP-
PRF, where PaXoS can not only compress keywords into vectors in batches,
but also improve the stability of encoding and transmission efficiency. In
addition, the OPPRF function based on Vector-OLE can achieve sublin-
ear communication consumption, and the resulting PSKPIR can achieve
stronger security with lower performance costs. The client can not only cal-
culate the negotiated key locally by using keywords in the intersection, but
also realize batch retrieval of payload data through matching labels.

- Formal definition and malicious setting. Secondly, we formalize the def-
inition of the PSKPIR protocol and show that PSKPIR can be constructed
under the semi-honest and malicious model. Security analysis shows that
PSKPIR can effectively protect the privacy of both parties under the UC
framework.

- Lower communication and higher speed. Finally, we demonstrate the
feasibility of the proposed PSKPIR protocol with experimental results. Com-
pared to PPIT, our protocol requires much less than factor 10 communica-
tion. Our protocol improves runtime by up to a factor of 20 in the WAN
setting and up to a factor of 10 in the LAN setting.
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2 Related Work

2.1 PIR

Chor et al. [4] first proposed a computationally secure PIR protocol based on
a single function and realized the privacy of the clinet, but its communication
complexity is o(n2). In 2005, Lipmaa et al. [19] proposed an efficient single-server
PIR protocol. The protocol uses homomorphic encryption and oblivious transfer
(OT) to ensure client privacy, and the communication complexity is o(log2 n).
In order to further reduce the computational overhead of PIR, Giovanni et al.
[8] demonstrate the equivalence between PIR protocol and OT. They also use
a variant of OT to build the PIR protocol, so that the security of the PIR
protocol no longer requires weak computing assumptions [24]. Up to now, most
PIR protocols do not consider the privacy issue of the server, but focus more on
reducing the calculation and communication consumption of the protocol.

2.2 SPIR

Aiming at the problem that the PIR protocol cannot guarantee server privacy,
Gertner et al. [12] implements an honest client SPIR protocol, achieving privacy
for both parties. However, the protocol structure is complex and makes it difficult
to implement data transfer. In 2013, Jarecki et al. [14] proposed an outsourced
SPIR protocol. The protocol is designed to facilitate arbitrary boolean queries in
malicious model, while at the same time withstanding adversarial non-colluding
servers. Inspired by literature [8], Naor et al. [21] demonstrated how to efficiently
and directly transform any PIR protocol into a SPIR protocol. Moreover, the
SPIR protocol built by the OT protocol can have the advantage of sublinear
communication. This greatly reduces the communication cost of SPIR protocol
in data transmission.

3 Preliminaries

Below we present pivotal concepts and technologies that are fundamental to the
comprehension of the PSKPIR.

3.1 Notations

Let n denote the set of natural numbers. The expression x←M signifies that x is
chosen uniformly at random from the set M . The notation y ← A(x) represents
the probability that algorithm A outputs y given input x. The probability of
event E occurring after undergoing random processes r1, . . . , rn is denoted as
Pr[r1; . . . ; rn : E]. The notation {R1; . . . ;Rm: v} refers to a sequence of random
processes that yield the value v. The function tC,S(x, rC , y, rS) represents the
transcript of an execution of an interactive protocol, where party C inputs x
and party S inputs y, along with their respective random strings rC and rS .
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The expression (rC , rS , t) ← tC,S(x, ·, y, ·) denotes the output of algorithm A
after the execution, with rC and rS generated randomly. Similarly, (rS , t) ←
tC,S(x, rC , y, ·) represents the process of selecting a random string rS and setting
t = tC,S(x, rC , y, rS). Likewise, (rC , t) ← tC,S(x, ·, y, rS) signifies the process of
selecting a string rC , and (rC , rS , t) ← tC,S(x, ·, y, ·) indicates that rS and rC

are uniformly chosen at random. The notation
−→
A = (a1, . . . , an) represents row

vectors, and Mi,j denotes the element at row i and column j of matrix M . The
expression <

−→
A,
−→
B > denotes the inner product of vectors

−→
A and

−→
B .

3.2 PaXoS

PaXoS is a mapping function with excellent linear characteristics [27]. In the
present study, PaXoS is regarded as a Garbled Cuckoo Table function. The
function entails mapping binary strings to a binary vector with length ofm while
simultaneously preserving the linear independence of the output binary vector.
PaXoS is agnostic to any input and guarantees that no input information is
leaked.

Definition 1. Let (n,m, ε) is a random algorithm vH : {0, 1}∗ → {0, 1}m, we
say that (n,m, ε) is a PaXoS algorithm for any x1, . . . , xn ∈ {0, 1}∗ if there
a1, . . . , an can be arbitrary, not all 0, such that:

Prob[a1v
H(x1), . . . ,+anv

H(xn) = 0] ≥ 1− 1/2ε (1)

where ε is sufficiently large, and vH(x) is a random vector which independence
is over the vector space (Z2)

m.

Definition 2. Let (n,m, ε) is a random algorithm vH : {0, 1}∗ → {0, 1}m, we
say that (n,m, ε) is a PaXoS algorithm for any x1, . . . , xn ∈ {0, 1}∗ if there
a1, . . . , an can be arbitrary, not all 0, such that:

Prob[a1v
H(x1), . . . ,+anv

H(xn) = 0] ≥ 1− 1/2ε (2)

where ε is sufficiently large, and vH(x) is a random vector which independence
is over the vector space (Z2)

m.

Garbled Cuckoo Table. Our construction utilizes Garbled Cuckoo Tables,
which are designed to allow the data to exhibit near-optimal size and opti-
mal encoding/decoding speed during the preprocessing [22]. The construction of
the Garbled Cuckoo Table combines both the garbled Bloom filter (GBF) and
Cuckoo hashing, but has unique advantages over them: 1) Parameter: It has just
2 hash functions instead of λ and Cuckoo hashing and can be used against ma-
licious models; 2) Speed: The ratio is fixed at n/m with a constant rate, while
the GBF has a rate of O (1/λ): 3) Private: The independence of mapping from
inputs is implicit.
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3.3 Vector-OLE (VOLE)

Vector-OLE [3] represents a valuable extension to the Oblivious Linear Function
Evaluation (OLE) method, which allows the Client to obtain information about
any linear combination of two vectors owned by the Server.

VOLE Functionality. The figure 1 depicts the VOLE ideal function de-
noted as Fvole. The Server obtains a random value ∆ and a random vector

−→
B

of length m from the field Fm. Similarly, the Client receives a random vector
−→
A

from Fm and the vector
−→
C =

−→
B +∆

−→
A .

VOLE Ideal Functionality Fvole

Parameters:
F : a random field.
Functionality 1:
(No Corrupted): The

−→
A and

−→
B is sample from F and define

−→
C :=

−→
B +

−→
A∆. If

the functionality does not reply success, abort.
(Corrupted Client): The ∆ is a sample from the F . Then the functionality com-
putes

−→
B =

−→
C −

−→
A∆, where the

−→
A and

−→
C are sent from the Client.

(Corrupted Server): The
−→
A is a sample from the F . Then the functionality com-

putes
−→
C :=

−→
B +

−→
A∆ , where the ∆ and

−→
B are sent from the Client.

Outputs:The functionality sends
−→
B , ∆ to the Server and

−→
A ,
−→
C to the Client.

Fig. 1: Ideal functionality Fvole of VOLE.

3.4 Oblivious Programmable PRF (OPPRF)

The OPPRF constructed is largely based on Oblivious Pseudorandom Func-
tion (OPRF) [17], and OPPRF has the same security as OPRF. In this section,
we first review the basic functionality of OPRF and then introduce its pro-
grammable variant: OPPRF.

OPRF. OPRF is a protocol for calculating PRF covertly, and its output
results are random and unpredictable [16]. The Server holds the key k, and the
Client holds the input x. The two parties jointly calculate the function Fk(x)
through interaction, and finally the Client gets the function value. We describe
the ideal functionality for an OPRF in Figure 2.

OPPRF. Compared to OPRF, OPPRF adds programmable properties. The
server may set the PPF output at certain points, and these points and the PPF
output may be determined by the server. The ideal functionality for an OPPRF
is shown in Figure 3.

3.5 Private Set Intersection with Payload (PSI-Payload)

PSI-Payload [15] is a cryptographic protocol that allows two parties, Client and
Server, to privately compute the intersection of their sets while also including an
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OPRF Ideal Functionality FOPRF

Parameters:
Fr: some PRF family. n: the size of set X, Y .
Functionality 1:
(No Corrupted): Wait for the Client send a set of X = {x1, . . . , xn}. The func-
tionality samples the Fr : {0, 1}∗ → {0, 1}l, where the key r is uniformly chosen.
(Corrupted Client): Wait for the Client send a set of X ′ = {x1, . . . , xn′},
where n′ 6= n. The functionality samples the Fr : {0, 1}∗ → {0, 1}l and sends
{Fr(x1), . . . , Fr(xn′)} to the Client.
Outputs: the functionality returns Fr(y) to the Server.

Fig. 2: Ideal functionality FOPRF of OPRF

OPPRF Ideal Functionality FOPPRF

Parameters:
Y : a set Y = {(y1,ỹ1), . . . , (yn,ỹn)} with n sets of data, where yi ∈ {0, 1}∗ and
ỹi ∈ {0, 1}l. l:the output bit length.
Functionality 1:
Wait for the Client send a set of X = {x1, . . . , xn}. The functionality samples
the Fk :→ {0, 1}l, where the key k is uniformly chosen and for each (yi,ỹi) ∈ Y,
satisfying Fk(yi) = ỹi. Then the functionality sends set of X ′ = {Fk(xi)|xi ∈ X}
to the Client.
Outputs:the functionality returns Fr(y) to the Server.

Fig. 3: Ideal functionality FOPPRF of Oblivious Programmable PRF

associated data (payload) for each element in the intersection. The PSI-Payload
ideal functionality is presented in Figure 4.

PSI-Payload Functionality. The PSI-Payload protocol uses intersection
operations to facilitate the safe computation of payload data, while also ensuring
that both parties’privacy is maintained. This protocol implements anonymous
privacy calculation of payload data while maintaining the confidentiality of their
respective private request retrieval items.

4 PSKPIR

Informally, our PSKPIR is an interactive protocol between two parties, the S
(Server) and the C (Client). The S holds the target keyword ID′ and payload
data D ∈ {0, 1}n, where n ∈ N . The C holds retrieval keyword ID′. First, the
Client sends multiple keywords ID for retrieval (random algorithm generates
input). Then the server performs keyword matching (efficient PSI-Payload). Fi-
nally, the client can obtain the corresponding payload data for their retrieval
keywords (symmetric encryption algorithm).
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PSI-Payload Ideal Functionality FPayload
PSI

Parameters:
Y : a set Y = {(y1,ỹ1), . . . , (yn,ỹn)} with n sets of data, where ỹi is a payload data.
Functionality:
(No Corrupted): Wait for the Client send a set of X = {x1, . . . , xn} and the Server
send a set of Y = {(y1,ỹ1), . . . , (yn,ỹn)}.
(Corrupted Client): If the Client send a set of X, where the |X| > n, the func-
tionality abort.
(Corrupted Server): If the Server send a set of Y , where the |Y | > n, the func-
tionality abort.
Outputs: The functionality returns X̃ = {(xi, ỹi)|xi = yi} to the Client.

Fig. 4: Ideal functionality FPayloadPSI of PSI-Payload

4.1 The Formal Definitions

Next, we will focus on formally defining a PSKPIR protocol in the two-party
setting. Let (C, S) be an interactive protocol, and let F be a polynomial time
algorithm. We define that (C, S, F) is a PSKPIR protocol if:

Definition 3 (Correctness). For each IDi, 1 ≤ i ≤ n and D = {Di ∈
{0, 1}n|0 ≤ i ≤ n} from Server, each IDi, 1 ≤ i ≤ n from Client, and all
constants c, and all sufficiently large k,

Pr[(rC , rS , t)← tC,S((1
k, ID′, D), ·, (1k, n, ID),·)

: F (1k, rS , ID, t, n) = D] ≥ 1− k−c (3)

Definition 4 (Client Privacy). For each i, j ∈ {1, . . . , n}, each IDi, 1 ≤ i ≤ n
and D = {Di ∈ {0, 1}n|0 ≤ i ≤ n} from Server, and each IDi, 1 ≤ i ≤ n for
Client, each polynomial time S′, for all constants c, and all sufficiently large k,
it holds that |Pi − Pj | ≤ k−c, where

Pi = Pr[(rS′ , rC , t)← tS′,C((1
k, ID′), ·, (1k, n, ID),·) :

S′(1k, IDi, rS′ , t, n) = 1]
Pj = Pr[(rS′ , rC , t)← tS′,C((1

k, ID′), ·, (1k, n, ID),·) :
S′(1k, IDj , rS′ , t, n) = 1]

(4)

Definition 5 (Server/Data Privacy). For each polynomial time C ′, each
random string rc′ , there exists two set D = {Di|1 ≤ i ≤ n}, D′ = {D′i|1 ≤ i ≤ n}
and such that Di=D

′
i. For all sufficiently large k, for all constants c, it holds

that |PD − PD′ | ≤ k−c, where

PD = Pr[(rC′ , rS , t)← tS,C′((1
k, ID′, D), ·, (1k, n, ID), ·)

: C ′(1k, n, IDi, rC′ , D, t) = 1]
PD′ = Pr[(rC′ , rS , t)← tS,C((1

k, ID′, D′), ·, (1k, n, ID), ·)
: C ′(1k, n, IDi, rC′ , D

′, t) = 1]

(5)
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5 Main Construction

This section introduces the components and detailed content of PSKPIR in a
semi-honest setting. Without loss of generality, we assume that ID instead of i
is the keyword retrieved by the Client from the Server. The Server will transmit
payload data to the Client according to the ID.

5.1 Components

The PSKPIR involves two players:

– Server: stores the set ID′ =
{
ID′i ∈ {0, 1}

l
, 0 ≤ i ≤ n

}
. The ID′i as an

keyword uniquely identifies the payload data D, where Di ∈ {0, 1}∗.
– Client: set of keywords ID = {IDi|IDi ∈ {0, 1}l, 0 ≤ i ≤ n}, where IDi is

an l-bit string.

5.2 PSKPIR with Semi-Honest Model

Theorem 1 (correctness). In the Fvole, F
payload
PSI -hybrid model with a random

oracle, PSKPIR implements correctness with computational security in Semi-
Honest environment, corresponding to Definition 3.

Proof. Assuming −→p is a non-trivial random solution vector, distinct from the
zero vector (0, 0, . . . , 0), the protocol is advanced by the Client transmitting
−→
A +−→p to the Server. Upon receiving this transmission, the Server proceeds to
define a vector

−→
K as

−→
K = ∆(

−→
A +−→p ) +

−→
B . The crucial observation is that

M
−→
K =M

−→
B T +∆(M

−→
A +M−→p T )

=M
−→
B T +∆M

−→
AT

=M
−→
C T

(6)

For each ID′i, the Server holds that <
−→
Ms,
−→
K >=<

−→
Mc,
−→
C > where

−→
Ms is the

ID′i’s row of Ms. An OPRF can then be obtained by having the Client apply a
random oracle as H1(<

−−→
Mc,
−→
C >) while the server computes the output at any

ID′i as F−→K (ID′) := H1(<
−→
Ms,
−→
K >).

The second building block enables the Server to sample an OPPRF key,
denoted as

−→
K , such that the output of the function F−→

K
(ID′i) is equal to the

desired value vi for a particular ID′i selected by the Server. In contrast, F−→
K

returns a random output at all other data points. The Server solves the system
Ms

−→
p′ , observe that at IDi = ID′i ∈ ID′:

x′ = F ′(IDi)+ <
−−→
M∗c,

−→p ′ >
= F ′(IDi) + vi − F ′(IDi)

= vi

(7)
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PSKPIR Protocol with Semi-Honest Model
Parameters:
H1 : {0, 1}∗ → {0, 1}l1 , H2 : {0, 1}∗ → {0, 1}l2 : two hash functions. v =
{v1, . . . , vn}: random variables set. X: a set X = {IDi, . . . , IDn} with n of key-
word. Y : a set Y = {(ID′1,D1), . . . , (ID

′
n,Dn)} with n sets of data, where the ID′i

as a keyword and Di ∈ {0, 1}l1 is payload data.
Input: Input (start, sid,X) from the Client and (start, sid, Y ) from the Server.
Setup:

1. The Client sends (Client, sid) and the Server sends (Client, sid) to Fvole. Then
the Client receives

−→
C = ∆

−→
A +

−→
B ,
−→
A and the Server receives ∆,

−→
B .

2. The Client takes (ID1, ID2, . . . , IDn) map the random binary matrix Mc =
[vH(ID1), . . . , v

H(IDn)]
T by PaXoS. The Client then solves the linear system:

MC
−→p = (0, 0, . . . , 0)T .

PSI-Payload:

3. The protocol proceeds by having the Client sends
−→
A + −→p and r to the

Server that defines
−→
K = ∆(

−→
A + −→p ) +

−→
B . Meanwhile, the Server outputs

Ms = [vH(ID′1, r), . . . ,V
H(ID′n, r)]

T .
4. The parties perform an OPRF protocol and the Server outputs the OPRF

function is F−→
K
(ID′1) = H1(Decode(

−→
M∗S ,
−→
K)) = H1(Decode(

−−→
M∗C ,

−→
C )).

5. The server utilizes the PaXoS solver to find the solution to the linear system:
Ms

−→
p′ = (v1 − F ′(ID′1), v2 − F ′(ID′2), . . . , vn − F ′(ID′n))T and sends

−→
p′ to the

Client.

Transfer:

6. The Server encrypts plaintext Di using symmetric secret key: EncH1(vi)(Di) =
Ci, i ∈ {1, n}.

7. Then the Server computes the labels: ti = H2(H1(vi)), i ∈ {1, n}, and sends
ciphertext sets and label sets

−→
C = {Ci},

−→
T = {ti} to the Client.

8. The Client computes xi = F ′(IDi)+ <
−→
Mc,
−→
p′ >, i ∈ {1, n}. If IDi = ID′i,

then xi = vi as intended. Otherwise, the output will be unpredictable.
9. The Client computes and outputs t′i=H2(H1(xi)), i∈{1, n}.

Outputs: If ∃i ∈ {1, n}, t′i = ti, the Client decrypts and outputs D′i =
Decxi(Ci), i ∈ {1, ...n}.

Fig. 5: PSKPIR Protocol in Semi-Honest Secure Setting
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To prove the correctness of the PSKPIR protocol, we also need to show
that the Client outputs {(IDi, Di)|IDi = ID′i} with a probability of at least
1− k−c. First, note that if the Client is able to correctly transfer payload data
{Di, 1 ≤ i ≤ n} after executing the PSI-Payload protocol in step 5, then it can
compute the correct {Di, ID

′ ∈ X} in step 8. Next, based on the randomness and
unpredictability of the OPRF/OPPRF, the Client outputs {Di|IDi = ID′i} with
probability at least (1− k−c)|IDi=ID

′
i,1≤i≤n| since PSKPIR calculates |ID∩ID′|

and transfers {Di|IDi ∈ X} are all independent.

Theorem 2 (Client Privacy). In the FOPRF,Fvole,F
payload
PSI -hybrid model, the

protocol in Figure 5 can ensure client privacy in Semi-Honest environment, ac-
cording to definition 4.

Proof. It is assumed that there exists a probabilistic polynomial-time algorithm
that can guess {IDi|1 ≤ i ≤ n} with a probability of at least k−c, for some
constant c and infinitely many k, after running the protocol. In step 4, the
Client sends

−→
A + −→p to the Server, such that −→p is the solution of the linear

system. In addition,
−→
A +−→p is evenly distributed for the semi-honest Server. The

parties then perform OPRF protocol under PSI-Payload invocations. Therefore,
the semi-honest Server can guess {IDi|1 ≤ i ≤ n} with at least k−c probability.
This implies, by a hybrid argument, that for some keyword {IDi|1 ≤ i ≤ n}, the
Server can guess with probability at least 1/n + k−c. Since all maps vH(·) are
linear and independent (assuming that the random binary of different keywords
is linear and independent), it is straightforward to use the Server to construct a
random binary map that distinguishes in a PSI-Payload execution between the
different keywords, with a probability of at least 1/n+k−c. Since n is polynomial,
this is a non-negligible advantage, and thus contradicts our assumption and
indirectly verifies the correctness of the client privacy.

Theorem 3 (Server Privacy). In the FOPRF, FOPPRF, and F
payload
PSI -hybrid

model, our protocol is server/Data privacy in Semi-Honest environment accord-
ing to definition 5.

Proof. We first assume that there exists a semi-honest Client that can guess
{Di|IDi /∈ ID′} with probability ε in the probability polynomial algorithm. In
step 3− 5, the Server defines the OPPRF protocol. The outside of the intersec-
tion is theoretically hidden data. Moreover, since OPRF exhibits the property
of randomness, it can be shown that at any other point in the input domain
where IDi does not belong to the subset ID′, the output is completely random.
Therefore, the scenario where IDi is not equal to ID′i and F ′(IDi) = F ′(ID′i)
is unattainable. In the semi-honest setting, the OPRF approach is to define the
output domain of F ′ to be {0, 1}out where out := λ+log2

(2n), the overall proba-
bility of a collision is 2−λ+log2

(2n)

. Then, in step 9, the Client invokes two random
oracles H1, H2 are independent to output t′i and determines t′i = ti. This means
that the Client can guess {Di|IDi /∈ ID′} with probability ε = 2(λ−log2

(2n))l1l2 ,
where the probability of H1 collision is 2−l1 and the probability of H2 collision is
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2−l2 . Since λ, l1, l2 are polynomial and 2(λ−log2
(2n))l1l2 are negligible, the protocol

guarantees Server/data privacy.

6 The Enhanced Protocol

In this section, we present a PSKPIR protocol that is secure against a mali-
cious adversary, and Appendix A provides proof of its security under the UC
model. One security concern is that −→p could leak the data about ID. Our
protocols are optimized with XoPaXoS (X-oblivious PaXoS) [27]. In our mali-
cious model construction, we will use a random oracle instead of H1, and set
Ms
−→p = (H1(ID

′
i), . . . ,H1(ID

′
n))

T . In addition, the random seed r is sam-
pled uniformly and the random function row (ID, r) is defined by XoPaXoS.
XoPaXoS implements a distribution over the values assigned to each position of
the vector −→p , whereby either a uniform random value is assigned or the value is
the sum of the previous positions and a given offset zi −Fk(IDi). This protocol
ensures an equitable spread of possible values for each −→p . Another security issue
is that the malicious Server can play tricks like defining the OPRF function and
running multiple hashing experiments to find collisions. In the malicious setting,
the randomness of the OPRF function is further complicated by the fact that
the random oracle is set to contain a random z negotiated by both parties. In
addition, the Client can also check whether cs 6= HF (ws) ,where zs is sent by
the Server. Compared to PaXoS, XoPaXoS has the following advantages under
the malicious model:

– For XoPaXoS, the position of the 0 value of −→p i is replaced by a random
value, and then solved by Gaussian elimination method to replace the fixed
value generated by PaxoS. It is easy to verify that −→p values have an ideal
uniform distribution.

– To solve this problem in XoPaXoS, tree vertices are also populated with
random values. Subsequently, the remainder of the distribution −→pi :=IDi ⊕
pj ⊕ . . . is generated, where each value of −→pi corresponds to a value of IDi.

Theorem 4 (Client Privacy). The PSKPIR protocol in malicious model can
protect Client’privacy. The Client Privacy is based on the FOPRF , F

payload
PSI -

hybrid model with a random oracle, corresponding to Definition 4.

Proof. This is different from step 3 in a semi-honest environment. We setM−→p =
(H1(ID1), H1(ID2), . . . ,H1(IDn))

T to prevent corruption Server from solving
linear systems, invocations are independent and break the linear correlation.
Therefore, the probability that corruption Server can guess {IDi|1 ≤ i ≤ n}
is negligible. Moreover, since r is uniformly distributed and mapped to binary
vectors with keywords, the mapping of each keyword is linear and independent.
If any vH(IDi, r) query has been performed before, it will be aborted. Therefore,
the mapping is also indistinguishable from different keywords in PSI-Payload,
at least with probability 1/n+ k−c and contradicts Client privacy.
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Theorem 5 (Server/data Privacy). In the FOPRF, FOPPRF, and F
payload
PSI -

hybrid model with a random oracle, our protocol in the malicious model is server
privacy by definition 5.

Proof. We pay more attention to the probability of corruption of a probabilistic
polynomial-time algorithm. Client can guess {(ID′i, Di)|ID′i /∈ X}. This is dif-
ferent from step 6 in a semi-honest environment. We use the Decode algorithm
proposed by XoPaXoS and select a random value of z in the malicious model. As
a result of these modifications, the Decode algorithm is transformed into a linear
function for −→p , thus altering its original nonlinear form. The Decode exhibits
the feature that Decode(

−→
P ∆, IDi) 6= H1(IDi+1) is valid on all other positions,

resulting in an incongruity of outputs, saving for a negligible probability. In ad-
dition, it is distributed uniformly for the corrupted Client and we use a random
oracle to resolve the linear correlation to end. Server/data privacy is met by ma-
licious OPRF construction. Futhermore, the Server also establishes the OPPRF
using the XoPaXoS, ensuring that each position in the vector is either assigned
a uniformly random value or computed as the sum of the previous positions
and offsets H1(ID

′
i)−F ′(ID′i). XoPaXoS-based cuckoo-graph is uniformly sam-

pled from all possible (n,m)-cuckoo graphs, resulting in a collision probability of
2−(λ+d). Since both λ and d are constant polynomial values and the probability
is considered negligible, this approach is consistent with Server/data privacy.

7 Performance Evaluation

7.1 Experimental Details and Results

We develop PSKPIR on the basis of volePSI [27], and the implementation of
related work depends on libPSI library. All our experiments were implemented on
a benchmark machine with Intel Core i5 2.4 GHz, 16 GB RAM, 8 physical cores
(all implementations are single-threaded). The network types were simulated
using the Linux command tc. Specifically, a LAN setting with 0.02 ms round-
trip latency and 1 Gbps network bandwidth was used, as well as a WAN setting
with a simulated 80 ms round-trip latency and different network bandwidths
including 100 Mbps, 10 Mbps, and 1 Mbps. The variables n1 and n2 held the
same number of input elements in n1, n2 ∈

{
212, 216, 220

}
. The best protocol

within a setting is marked in gray.
PSI with Payload. Here, we compare our semi-honest PSI with the work of

[16,20,22] to demonstrate the benefits of our PSI in trade-off of communication
costs and runtime when building PSI-Payload. The results of our evaluation in
the semi-honest setting are shown in Table 1. The protocol proposed by Mead-
ows et al. [20] exhibits a relatively minimal communication overhead, yet its
execution speed is notably slow, being approximately 14× slower than our work.
This is because protocol of Meadows et al. [20] requires computationally ex-
pensive public key operations, resulting in an accelerated increase in runtime
as the number of sets increases. However, it has fewer communication instances
compared to OT-based protocols [16,22]. Conversely, the protocol introduced by
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Table 1: Comparison of Our PSI to Previous Works in the Semi-honest Setting.

N Protocol
Communication (MB) Running time (ms)
Client Server Total LAN 100Mbps 10Mbps 1Mbps

212

Meadows [20] 0.16 0.13 0.29 3,438 28,686 47,641 998,114
Kolesnikov [16] 0.11 0.32 0.43 150 460 1,860 3,551
Pinkas [22] 0.66 0.08 0.74 160 489 6,235 15,920
Our PSI 0.3 0.06 0.36 42 200 1,650 14,550

216

MEAMeadows [20] 2.63 2.06 4.69 45,369 466,606 7,743,818 9,761,826
Kolesnikov [16] 1.7 5.2 6.9 412 1,596 4,558 57,565
Pinkas [22] 9.13 1.06 10.19 235 1,682 11,860 12,280
Our PSI 1.554 3.345 4.899 172 451 3,277 31,180

220

Meadows [20] 33.96 37.06 71.02 657,509 5,007,681 15,070,325 24,212,419
Kolesnikov [16] 50.02 84.28 134.30 1,891 9,948 77,264 961,084
Pinkas [22] 140.12 20.20 160.32 5,378 24,090 195,600 4,052,400
Our PSI 2.03 50.03 52.06 4,398 8,496 48,690 449,700

Kolesnikov [16] performed faster speed, making it more suitable for deployment
in low bandwidth environments, surpassing all other protocols in LAN setting.
This is due to the fact that their can be preprocessed through a cuckoo hash,
greatly reducing its runtime. However, if the input sets are larger and the band-
width is reduced, the communication costs and runtime of protocol may increase
significantly due to the need to send the OPRF value multiple times. Finally,
Pinkas et al. [22] protocol avoids expensive computational overhead, although
at the cost of enhanced communication compared to Meadows et al. [20] proto-
col. For medium input sizes and bandwidths, the protocol of Pinkas et al. [22]
sometimes outperforms the protocol proposed by Kolesnikov et al. [16] protocol,
thanks to its use of Paxos compression and data transfer. Our PSI utilizes not
only the efficient running speed of Pinkas et al. [22] protocol but also leverages
VOLE-based sublinear communication consumption to address the limitations of
OT relied upon by Pinkas et al. [22] protocol. As a result, our approach reduces
communication costs by 2×, and it is more applicable for large data sets.

In Table 2, we present the state of the art in the malicious setting, as shown
by De et al. [6], Pinkas et al. [22], Rindal et al. [25], and Rindal(SM) et al. [26].
Our PSI demonstrates significantly faster performance compared to the blind-
RSA protocol proposed by De et al. [6]. This improvement can be attributed to
the execution of multiple exponentiation operations. In the protocol introduced
by Rindal et al. [25], a substantial portion of the communication takes place
during the OT extension phase, resulting in a total communication cost approx-
imately 10× than that of our PSI. Furthermore, our PSI outperforms the LAN
setting protocol proposed by Rindal(SM) et al. [26] for σ = 64. Although the
performance is weakly dependent on σ, it is worth noting that our PSI remains
competitive with their previously reported fastest protocol while eliminating the
random-oracle assumption. However, in the WAN setting, the performance of
the Rindal(SM) et al. [26] is limited by OT communication overhead, resulting
in slightly slower performance than their improved protocol, Rindal et al. [25].
While our implementation consistently outperforms the protocol of Pinkas et
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Table 2: Comparison of Our PSI to Previous Works in the Malicious Setting.

N Protocol
Communication (MB) Running time (ms)

Client Server Total LAN 100Mbps 10Mbps 1Mbps

212

De [6] 0.32 0.51 0.83 22,400 53,200 131,004 818,500
Rindal [25] 4.80 4.28 9.08 900.0 9,600 13,200 452,000

Rindal(SM) [26] 179 179.53 358.53 752.9 5,680 78,940 156,800
Pinkas [22] 1.6 3.1 4.7 135 225 1,895 22,450
Our PSI 0.26 0.51 0.77 56 120.7 1,699 17,890

216

De [6] 5.13 8.20 13.33 365,000 567,000 793,000 1,275,054
Rindal [25] 82.15 72.03 154.18 9,700 76,000 129,790 2,451,654

Rindal(SM) [26] 1,521.03 1,515.97 3,037.01 6,172.8 565,000 1,563,400 89,124,000
Pinkas [22] 12.62 2.097 14.717 651 1,808 13,130 125,500
Our PSI 4.5 4.7 9.2 454 989 42,360 465,960

220

De [6] 82.13 131.13 213.26 305,0000 4,634,000 8,721,000 21,101,854
Rindal [25] 693.53 608.03 1,301.56 127,000 1,480,000 16,163,245 18,963,210

Rindal(SM) [26] 11,182 11,001 22,183 13,4000 7,654,000 26,663,000 455,889,921
Pinkas [22] 63.55 254 317.55 6,119 10,348 540,900 4,950,000
Our PSI 56 59 115 3,489 7,856 20,719 780,075

al. [22] in scenarios with reduced bandwidth, the latter demonstrates superior
performance within a LAN. For 220 elements, Pinkas et al. [22] protocol employs
almost 11× less communication than Rindal et al. [25] protocol. This difference
can be attributed to a more optimized implementation in the protocol of Pinkas
et al. [22]. In terms of runtime, Pinkas et al. [22] outperforms Rindal et al. [25]
protocol by a factor of approximately 10.5 in the LAN and by a factor of 20 in
settings with a bandwidth of 1 Mbps. This disparity is due to the log n factor
in computation that the protocol of Rindal et al. [25] requires. It is likely that
the greater enhancement observed in the WAN configuration is due to the more
pronounced impact of communication improvements on WAN performance.

Table 3: Comparison of PSKPIR to Previous PPIT Works.

N Protocol
Communication (MB) Running time (ms)
Client Server Total LAN 100Mbps 10Mbps 1Mbps

212

RSA-PPIT 2.2 27.4 29.6 210 3,150 37,800 429,200
Schnorr-PPIT 0.6 16.43 17.03 204 2,048 24,576 107,200
IBE-PPIT 0.7 6.6 7.3 568 6,826 85,325 928,840

Our 0.35 1.1 1.45 106 170.2 2,382.8 2,553
Our (mal) 0.48 2.0 2.48 110 175.9 1,875.1 2,568

216

RSA-PPIT 128 346 474 4,033 50,412 645,273 40,066,268
Schnorr-PPIT 30.3 80.6 112.9 2,100 32,768 4,65,305 14,20,403
IBE-PPIT 15.57 58.06 73.63 60,014 109,226 1,551,009 7,271,827

Our 1.60 16.62 18.22 189 2,161.1 30,688 478,726
Our (mal) 4.83 21.06 25.89 256 2,493.4 38,897 707,926

220

RSA-PPIT 1,714 5,890 7,604 12,483 174,762 2,184,533 22,282,240
Schnorr-PPIT 765 1,053 1,818 43,690 524,288 4,928,307 13,861,934
IBE-PPIT 500 201 701 116,508 1,017,916 16,078,159 94,861,139

Our 22 226 248 3,610 41,511.6 423,418 6,012,540
Our (mal) 56 331 387 4,082 41,980.3 507,962 5,841,563
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PPIT. In this analysis, we compare PSKPIR implementations against the
works of RSA-PPIT, Schnorr-PPIT and linear asymptotic overhead protocol
IBE-PPIT, respectively, and the results of our evaluation are shown in Table 3.
Schnorr-PPIT and RSA-PPIT are two-round interactive protocols that utilize
power multiplication several times during computation, resulting in a quadratic
computation overhead. As the size of the set grows, our OT-based protocol
features fast computing, with performance that is 20× and 10× better than
RSA-PPIT and Schnorr-PPIT protocols in LAN settings, and 12× and 10×
better in WAN settings, respectively. IBE-PPIT completes the protocol within
a single round of interaction, with the calculation cost mainly consumed by
bilinear mapping, and the communication cost being linear. However, its protocol
transmission data primarily relies on asymmetric encryption. Compared with our
protocol in a large data set, the running time of IBE-PPIT is 10× longer, and
the communication cost is 3× higher in LAN settings.
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2) In the event that the query for F ′−→
K
(IDi′) is initiated by A, and given that

Decode(
−→
K, ID′i)−∆H1(ID

′
i) + z has not been queried beforehand, the sim-

ulator transmits (start, sid, ID′i) to Foprf and establishes F ′−→
K
(ID′i) as the

response. Then the simulator sends Y to F payloadPSI and receives
−→
p′ to A.

3) TheA sends Y ′, the simulator samples Y ∗ = {ID′i|F ′−→k (ID
′
i) = F ′−→

k
(IDi), ID

′
i 6=

IDi} and computes Ŷ ′ = {ID′i|ID′i ∈ Y ∗, F ′−→k (IDi) ∈ Y ′}. Then the simula-

tor sends Ŷ ′ to FPayloadPSI and receives
−→
p′ to A.

To prove that this simulation is indistinguishable consider the following hy-
brids:

Expt0. The same as the real protocol except the simulation in this hybrid
plays the role of Fvole .

Expt1. The previous experiment is now modified: The simulator sends r,
−→
A =

−→
P +

−→
A′ to A. Recall

−→
A′ that is distributed uniformly in the view of A, this

−→
A

has an identical distribution. Besides, When A queries after samples r, if vH(r, ·)
has previously been made, it aborts. Due to the distributed uniformly sampling
of r, making it impossible to differentiate distinguishable from the previous.
Therefore, computational indistinguishability of A’s view in Expt0 and Expt1
follows.

Expt2. We have modified the previous experiment by having the simulator
call Encode and terminate if Encode fails. Since none of the queries F ′−→

K
(ID′) and

H1(ID
′) have been made before, ID′ is uniformly sampled and the probability

of termination is negligible. Thus, this hybrid is statistically indistinguishable
from the previous one.

Expt3. This study modified the previous experiment by implementing pro-
tocol FOPRF with A. Whenever A requests F ′−→

K
(ID′i), the simulator sends ID′i to

Foprf and instructs F ′−→
K
(ID′i) to the response if Decode(

−→
K, ID′i)−∆H1(ID

′
i)+z

has not been requested previously. Otherwise, F ′−→
K
(ID′i) responds normally. It is

worth noting that z is uniformly distributed before transmission. As a result,
any particular Decode(

−→
K, ID′i) − ∆H1(ID

′
i) + z follows a similar distribution,

and it is improbable that A has previously requested F ′−→
K
(ID′i). Consequently,

we can deduce that this hybrid is indistinguishable from the simulation.
Expt4. Now consider some collision F ′−→

K
(ID′i) = F ′−→

K
(IDi). Observations sug-

gest that the simulator would only need to extract the values of ID′i and IDi

if there is a significant likelihood of one of these values being present in X.
Therefore, consider the probability of F ′−→

K
(ID′i) = F ′−→

K
(IDi) for some IDi ∈ X .

Since |X| = |Y |, the probability of the sender finding such a collision is negligi-
ble. Moreover, the simulator calls the H(x) hash function, which is also used to
eliminate collisions.

Therefore,computational indistinguishability ofA’s view inExpt4 andExpt3
follows. Since Expt4 corresponds to a real-world execution of the protocol, this
completes the proof.
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Proof. Consider a Malicious Client A. The simulator plays the role of Fvole ,and
interacts with the Client as follows:

1) When A sends
−→
A′,
−→
C to the Fvole. Upon transmitting of r,

−→
A by A, the

simulator calculates −→p and performs a check on <
−→
P , r, ID′i >= H(IDi) for

each of the preceding H (IDi) queries made by A. If the check is successful,
it adds IDi to the set X.

2) The simulator random sample z ← {0, 1}k and proceeds to program: F ′(IDi) :=

{H(Decode(
−→
C , IDi)+z, IDi), 1 ≤ i ≤ n} for each IDi ∈ X. Then it forwards

X to F payloadPSI and receives X̃ = {(IDi, Di)|IDi ∈ IDi = ID′i} in response.
3) The simulator random sample−→p such that F ′−→

K
(IDi)={H(Decode(

−→
K, IDi, r)−

∆H1(IDi)+z, IDi), IDi /∈ X}.
4) The simulator computes Y ′ as containing all {H(F (ID∗i ))|ID∗i ∈ ID∩ID′}∪
{H(F (ID∗i ))|ID∗i /∈ X}.The simulator sends Y ′.

To prove that this simulation is indistinguishable consider the following hy-
brids:

Expt0. The same as the real protocol except the simulation in this hybrid
plays the role of Fvole. The simulator waits for A to send

−→
A′,
−→
C . Whenever A

queries H (IDi) , the simulator checks whether <
−→
P , r, ID′i >= H(IDi). If the

check is successful, it adds IDi to the set X.
Expt1.WheneverA queriesH (IDi), the simulator checks whether<

−→
P , r, ID′i >=

H(IDi). If the check is successful, it adds IDi to the set X. The simulator sends
(start, sid,X) to Foprf and programsX ′ := {Fk(IDi)|IDi ∈ X} to the response.
Otherwise, X ′ responds normally.

Expt2.Upon sampling z ← {0, 1}k , the simulator checks if anyH(Decode(
−→
C , IDi)+

z, IDi) has been previously computed by A and aborts if this is the case.
However, since z is just sampled, all Decode(

−→
C , IDi) + z are uniformly dis-

tributed, making the probability of abort negligible. The simulation programs
F ′(IDi) := H(Decode(

−→
C , IDi)+ z, IDi) for all IDi ∈ X . Given the uniformity

of the F ′(x) function, the addition of programming H does not result in any
changes to the distribution. Therefore, computational indistinguishability of A’s
view in Expt1 and Expt2 follows.

Expt3. Now we change the previous experiment:
The simulator aborts if A ever makes a F ′−→

k
(IDi) query such that F ′−→

K
(IDi) =

{H(Decode(
−→
K, IDi, r)−∆H1(IDi)+z,IDi),IDi /∈ X}. However, through calcu-

lation and observation: Decode(
−→
K, IDi, r)−∆H(IDi) = ∆(< −→p , vH(IDi, r) >

−H(IDi))+<
−→
C , vH(IDi, r) >. For X = {ID1, . . . , IDn} and r ∈ {0, 1}k , the

A can trivially construct the unique −→p such that < −→p , vH(IDi, r) >= H(IDi)
for all IDi ∈ X. But for ID∗i /∈ X, Since H(x) is a hash function and all
< −→p , vH(ID∗i , r) > are fixed, the probability of < −→p , vH(ID∗i , r) >= H(ID∗i )
is negligible. Therefore, this hybrid is statistically indistinguishable from the
previous.

The −→p in previous experiment is modified and the simulator samples −→p by
XoPaXoS:
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1) Let random values be assigned the redundant pi positions: pi ← {0, 1}m+d+λ.
2) For the remaining positions of −→p in R, define: ID′i = IDi− < Mi

−→pi >,
otherwise pi is assigned zero. As a fully determined system, there exists a
unique solution.

3) Each tree in G assigns a uniform value to a singular node i.
4) In summary, the residual assignments can be represented as pi = vk+pj+ . . .,

with the stipulation that every assignment comprises an exclusive uniformly
distributed vk value, thereby ensuring the uniformity of pi as intended.

It can be deduced from the security of XoPaXoS that the distribution of the
output vector −→p in Expt4 is computationally indistinguishable from the output
distribution in the ideal-world scenario. As Expt4 reflects the actual implemen-
tation of the protocol in the real-world setting, this completes the proof.
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