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Abstract

The algebraic degree of a vectorial Boolean function is one of the main
parameters driving the cost of its hardware implementation. Thus, finding
decompositions of functions into sequences of functions of lower algebraic
degrees has been explored to reduce the cost of implementations. In this
paper, we consider such decompositions of permutations over F2n . We
prove the existence of decompositions using quadratic and linear power
permutations for all permutations when 2n − 1 is a prime, and we prove
the non-existence of such decompositions for power permutations of dif-
ferential uniformity strictly lower than 16 when 4|n. We also prove that
any permutation admits a decomposition into quadratic power permuta-
tions and affine permutations of the form ax + b if 4 ∤ n. Furthermore,
we prove that any permutation admits a decomposition into cubic power
permutations and affine permutations. Finally, we present a decomposi-
tion of the PRESENT S-Box using the power permutation x7 and affine
permutations.

Keywords— power function, vectorial Boolean function, decomposition, permu-
tation

1 Introduction

Vectorial Boolean functions are one of the fundamental building blocks of many cryp-
tographic primitives. For instance, symmetric ciphers where permutations are used as
S-Boxes. The permutations used in cryptographic primitives are usually quite complex
and have a high algebraic degree. Unfortunately, a high algebraic degree is one of the
main factors driving the area requirements in hardware implementations, especially
when side-channel countermeasures such as Threshold Implementations [NRR06] are
employed. Thus, decompositions of permutations into sequences of functions of low
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algebraic degree is a useful tool to reduce the area requirements of hardware imple-
mentations. For instance, the circuit can be composed of Threshold Implementations
of those functions with low algebraic degree as it was done in [Pic+23] for the AES
S-box. There are many examples in the literature of searches for such decompositions,
for instance in [Bil+12], or [Bil+15]. These early works are carried out with the goal
of constructing secure implementations, thus focusing on particular S-Boxes, or being
limited to very low dimensions.

An important step towards a general treatment of the problem of finding decom-
positions was taken in [NNR19], where an algorithm for searching decompositions of
the inverse power function into quadratic and linear power functions was presented.
Using the algorithm, decompositions into quadratic or cubic power permutations of the
inverse power function over F2n were found for 3 ≤ n ≤ 16. The existence of a decom-
position can then be extended to any permutation using Carlitz Lemma [Car53]. The
result of [NNR19] was later extended in [Pet23] to n up to 32, and by using a different
number theoretical analysis for all odd n ≤ 250 in [LSS23]. In the last two papers,
the existence of a decomposition of the inverse into quadratic power permutations for
some infinite family of values of n was also proven.

Another approach to the search of decompositions tries to get rid of the middle-
man that is the inverse power function. Using a generalization of the Carlitz Lemma
presented by Stafford [Sta98, Theorem 1], one can show that it is possible to decom-
pose any permutation over F2n into odd power permutations and affine permutations.
The problem of finding decompositions into permutations of low algebraic degrees can
then be reduced to studying the parity of power permutations. A first important step
in this direction was taken in [ÇÖ21], where the existence of odd quadratic power
permutations for all n not doubly even up to n = 127 is proven.

Our contribution

Our contributions touch on both kinds of decompositions mentioned above.
In the first place, we focus on decompositions of power permutations into sequences

of power permutations of lower algebraic degree. We show that any power permutation,
including the inverse function, can be decomposed into quadratic power permutations
when 2n−1 is a Mersenne prime, a family of values of n that is conjectured to be infi-
nite. Moreover, we prove that no power permutation with differential uniformity lower
than 16 can be decomposed into quadratic power permutations when n is divisible by
4.

In the second place, we consider decompositions of any permutation into power
permutations of lower algebraic degree, and affine permutations of the form ax +
b. We use the Zolotoroff-Frobenius Lemma to show a link between the parity of a

power permutation xk and its Jacobi Symbol
(

k
2n−1

)
. We use this link to show that

all permutations can be decomposed into quadratic power permutations and affine
permutations of the form ax + b if and only if n is not divisible by 4. Moreover, we
show that all permutations can be decomposed into cubic power permutations and
affine permutations.

Finally, we find a decomposition of the PRESENT S-Box into quadratic power
permutations and affine permutations.
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2 Preliminaries

2.1 Vectorial Boolean functions

A vectorial Boolean function over the vector space (over the two element field F2)
Fn
2 (respectively, the finite field F2n dimension n over F2) is a function from Fn

2 (re-
spectively, F2n) to itself. Further, it is called a permutation if it is also bijective. A
vectorial Boolean function F over F2n is uniquely represented as a univariate polyno-
mial, F (x) =

∑2n−1
i=0 cix

i where ci ∈ F2n , called the univariate representation. The
algebraic degree of F , denoted by d◦(F ), is equal to the maximum Hamming weight
of the binary expansion of the exponents i of the terms of the polynomial F (x) such
that ci ̸= 0. The function F is called affine, quadratic, or cubic if the algebraic degree
of F is respectively 1, 2, or 3. A function F is called linear if it is affine and F (0) = 0.

The differential uniformity of a function F over Fn
2 is the positive integer

δF = max
a,b∈Fn2 , a ̸=0

δF (a, b),

where
δF (a, b) = |{x ∈ Fn

2 | F (x+ a) + F (x) = b}|.
The function F is called almost perfect nonlinear (APN) if δF = 2. The function
F is called δ-uniform if δ ≥ δF . We refer to Table 1 in [Bud+22] for a survey of
known families of APN power functions, which are tabulated in Table 1. It has been
observed by Dobbertin in [Car21, Proposition 165] that any APN power function xd

over F2n is such that gcd(d, 2n − 1) = 1 (hence, xd is a permutation) if n is odd and
gcd(d, 2n − 1) = 3 (hence, xd is 3-to-1). Moreover, we consider 4−differential uniform
power functions in Table 2.

Family Exponent Conditions Alg. Degree
Gold 2i + 1 gcd(i, n) = 1 2
Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1
Welch 2t + 2 + 1 n = 2t+ 1 3

Niho 2t + 2
t
2 − 1 n = 2t+ 1, t even t/2 + 1

2
3t+1

2 + 2t − 1 n = 2t+ 1, t odd t+ 1
Inverse 2n − 2 n = 2t+ 1 n− 1
Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t t+ 3

Table 1: Known APN power functions over Fn
2

Two functions F and G over F2n are called affine equivalent if F = A1◦G◦A2 where
A1 and A2 are affine permutations. More generally, F and G are called extended affine
(EA) equivalent if F is affine equivalent to G+A for some affine function A. Still more
generally, F and G are called CCZ equivalent if there exists an affine permutation of
F2
2n mapping {(x, F (x)) : x ∈ F2n} to {(x,G(x)) : x ∈ F2n}. A particular case of CCZ

equivalence is between any permutation and its compositional inverse. If a notion
is preserved by affine (respectively, EA, CCZ) equivalence, we shall say that it is
affine (respectively EA, CCZ) invariant. A power function over F2n is a function
F with univariate representation of the form F (x) = xd for some positive integer
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Family Exponent Conditions Alg. Degree References
Gold∗ 2i + 1 gcd(i, n) = 2 2 [Gol68]
Kasami∗ 22i − 2i + 1 gcd(i, n) = 2 i+ 1 [Kas71]
B-L 22t + 2t + 1 n = 4t, t odd 3 [BL10]
Inverse 2n − 2 n = 2t n− 1 [Nyb93]

Table 2: Known 4-uniform power functions over Fn
2

∗ Permutation if and only if n = 2t, t odd.

d < 2n − 1. Two power functions xd1 and xd2 are called cyclotomic equivalent if
d1 ≡ 2jd2 (mod 2n − 1), or d1d2 ≡ 2j (mod 2n − 1) if gcd(d2, 2

n − 1) = 1, for some
0 ≤ j ≤ n− 1. It is known that two power functions are cyclotomic equivalent, if and
only if they are CCZ equivalent [Dem18; Dem22].

2.2 Quadratic residues and permutations

We give some preliminaries on quadratic residues. We use [Wei20, Chapter 8] as a
reference, but the reader can use any of her/his preferred algebraic number theory
book.

Let p be an odd prime. We say that an integer a is a quadratic residue modulo
p if the equation x2 ≡ a (mod p) has solutions and otherwise we say that a is a

quadratic non-residue modulo p. We denote by
(

a
p

)
the Legendre symbol of a over p,

defined as
(

a
p

)
= 1 if a is a quadratic residue modulo p,

(
a
p

)
= −1 if a is a quadratic

non-residue modulo p, and
(

a
p

)
= 0 if gcd(a, p) > 1. The Legendre symbol can

be explicitly computed using Euler’s Criterion [Wei20, Theorem 8.5], as
(

a
p

)
≡ a

p−1
2

(mod p). Using Euler’s Criterion, it is immediate to see that the symbol is (completely)

multiplicative, that is,
(

ab
p

)
=
(

a
p

)(
b
p

)
, and that

(
a
p

)
=
(

b
p

)
if a ≡ b (mod p).

Moreover, we have a specific result for a = 2, that(
2

p

)
= (−1)

p2−1
8 , (1)

see for instance [Wei20, Theorem 8.10]. The Legendre symbol also satisfies one last
property, crucial for its computation, Gauss’ Quadratic Reciprocity Law [Wei20, The-
orem 8.22]. Let p and q be distinct odd primes, then(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 . (2)

The Legendre symbol is extended to the Jacobi symbol that allows the denominator
to be any odd positive integer n. Let n = pe11 . . . p

eℓ
ℓ be its prime factorization, then

the Jacobi symbol of a over n is defined as( a
n

)
=

(
a

p1

)e1

. . .

(
a

pℓ

)eℓ

.

It follows immediately from the definition that the Jacobi symbol shares many of the
properties of the Legendre symbol, such as Gauss’ Quadratic Reciprocity Law, being
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multiplicative, Gauss’ Lemma, and its corollary. Moreover, it is also multiplicative in

the denominator, so that
(

a
mn

)
=
(

a
m

) (
a
n

)
. However, while the Legendre symbol

(
a
p

)
is equal to −1 if and only if a is a quadratic non-residue modulo p, for a composite n
we can only say that if

(
a
n

)
= −1, then a is a quadratic non-residue for at least one of

the prime factors of n.
We denote as (Sym(F2n), ◦) the group of all permutations F over F2n . A per-

mutation T ∈ Sym(F2n) is called a transposition if there exists α, β ∈ F2n such that
T (α) = β, T (β) = α, and T (x) = x for all x ∈ F2n \ {α, β}. Every permutation
F ∈ Sym(F2n) can be written as a composition of transpositions F = T1 ◦ · · · ◦ Tℓ, for
some transpositions T1, . . . , Tℓ [Wei20, Proposition 8.12]. Such writing is not unique,
but given two decompositions of F of length ℓ1 and ℓ2, then ℓ1 ≡ ℓ2 (mod 2). Then,
we can define sgn (F ) to be equal to (−1)ℓ, where ℓ is the length of a decomposition
of F into transpositions [Wei20, Theorem 8.14]. We say that F is even if sgn (F ) = 1,
while we say that F is odd otherwise.

We are now ready to give a useful characterization of the Jacobi symbol using the
parity of some permutations over Z2n−1. This result was first used by Zolotareff in
[Zol72] to give an alternate proof of Gauss’ Quadratic Reciprocity Law for the Legendre
symbol. It was then extended by Frobenius in [Fro14] to the Jacobi symbol, and this
is the result we shall use.

Lemma 2.1 (Zolotareff-Frobenius Lemma [Fro14]). Let a, b be positive integers such
that b ≥ 3 odd and gcd(a, b) = 1. Let σa : Zb → Zb be the multiplication map x 7→ ax.
Then sgn (σa) =

(
a
b

)
.

A more recent and simpler proof of the Zolotareff-Frobenius Lemma [Fro14] can
be found in [DS76].

3 On the existence of a decomposition into
quadratic power permutations

Let ZN be the ring of integers modulo N, we will denote as U(ZN ) the multiplicative
group of integers k modulo N such that gcd(k,N) = 1, that is the set of invertible
elements in ZN . For any integer n, we define the set Qn as the multiplicative subgroup
of U(Z2n−1) generated by all the residues d ∈ U(Z2n−1) with Hamming weight in their
binary expansion at most 2.

Theorem 3.1. Let n be odd. The APN exponents Gold, Kasami, and Niho for n ≡ 1
(mod 4) all belong to Qn.

Proof. Referring to Table 1, each of the exponents mentioned can be written as prod-
ucts of quadratic exponents and inverse of quadratic exponents as in [Bud+22], that
all belong to Qn.

3.1 The case 2n − 1 prime

The following folklore result (see [FV03] for reference) gives a necessary and sufficient
condition on N to determine if U(ZN ) is cyclic.

Proposition 3.1. Let N be a positive integer. Then U(ZN ) is cyclic if and only if
N ∈ {2, 4, pℓ, 2pℓ} where p is an odd prime.
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Note, however, that N = 2n − 1 is odd, so it is not equal to 2, 4, or 2pℓ where p
is an odd prime. We are going to prove that 2n − 1 ̸= pℓ for ℓ ≥ 2. The following
theorem is also known as the Catalan’s conjecture, proven to be true in 2002 by P.
Mihăilescu.

Theorem 3.2 ([Bil04]). Let a, b, x, y be positive integers such that x > 1, y > 1, a > 1
and b > 1. Then the only solution to the equation

xa − yb = 1

is x = 3, y = 2, a = 2, b = 3.

Proposition 3.2. Let n be a positive integer, p an odd prime, and ℓ ≥ 2. Then
2n − 1 ̸= pℓ.

Proof. Suppose 2n − 1 = pℓ, then (x, y, a, b) = (2, p, n, ℓ) is a solution to the equation

xa − yb = 1,

but this is in contradiction with Theorem 3.2.

Corollary 3.1. Let n be a positive integer. Then U(Z2n−1) is cyclic if and only if
2n − 1 is prime.

Remark 3.1. It is easy to observe that if n = pq is composite, then 2n − 1 has 2p − 1
and 2q − 1 as factors. On the other hand, if n is prime, then 2n − 1 might also be
prime, called a Mersenne prime. For instance, we have that 22 − 1 = 3, 23 − 1 = 7,
25 − 1 = 31, 27 − 1 = 127 are all primes. The fact that n is prime is not a sufficient
condition, and the first counterexample is 211 − 1 = 23 · 89. It is not known if the set
of Mersenne primes is finite or infinite.

Suppose that 2n − 1 is prime. If we can find an element d of weight 2 that is a
generator of U(Z2n−1), we can use that to decompose any power permutation over

F2n . For this, we need to find a d such that
(

d
2n−1

)
= −1 because then d

2n−2
2 ≡ −1

(mod 2n − 1) by Euler’s criterion, and this implies that d has order 2n − 2 that is the
order of U(Z2n−1).

Proposition 3.3. Let n ≥ 3 be such that 2n − 1 is a prime, then we have that

1.
(

3
2n−1

)
= −1.

2.
(

5
2n−1

)
= −1 if and only if n ≡ 3 (mod 4).

Proof. Since 2n − 1 is prime, then n is an odd prime. Since n ≥ 3, we have that
2n − 1 ≡ 3 (mod 4) and (

3

2n − 1

)
= −

(
2n − 1

3

)
by (2).

Observe that 2n ≡ 2 (mod 3) because n is odd and(
2n − 1

3

)
= (2n − 1)(3−1)/2 = 2n − 1 ≡ 1 (mod 3)
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by Euler’s criterion. So we must have that
(

3
2n−1

)
= −1 and therefore 3 is a primitive

root modulo 2n − 1.
Considering now 5, surely 5 ≡ 1 (mod 4), and so(

5

2n − 1

)
=

(
2n − 1

5

)
.

Since 22 ≡ −1 (mod 5), we have that 2n ≡ −2 (mod 5) if n ≡ 3 (mod 4) and 2n ≡ 2
(mod 5) if n ≡ 1 (mod 4). So we have that

(2n − 1)(5−1)/2 = (2n − 1)2 =

{
1 (mod 5) if n ≡ 1 (mod 4),

−1 (mod 5) if n ≡ 3 (mod 4).

Therefore, 5 is a primitive root modulo 2n − 1 if and only if n ≡ 3 (mod 4).

Theorem 3.3. Let n > 2 such that 2n − 1 is a prime, then Qn = U(Z2n−1) and it is
a cyclic group generated by 3. Moreover, if n ≡ 3 (mod 4) then it is also generated by
5.

Proof. It is known that U(Z2n−1) is a cyclic group of order 2n − 2 since Z2n−1 is a
field. By Proposition 3.3, we have that 3 is a generator of the cyclic group U(Z2n−1).
Since the group generated by 3 is contained in Qn and Qn ⊆ U(Z2n−1), we have that
Qn = U(Z2n−1). If n ≡ 3 (mod 4), we have that 5 is a generator of U(Z2n−1) by
Proposition 3.3.

Corollary 3.2. Let n be a positive integer such that 2n−1 is prime. Then, any power
permutation xd over F2n can be decomposed into quadratic power functions by repeated
compositions of x3, or alternatively x5 if n ≡ 3 (mod 4).

3.2 Non-existence of decomposition into quadratics for
some power permutations in doubly even dimension

Let n be a positive integer. Observe the following:

1. If n ̸= 2k, then there exists 1 ≤ i ≤ n− 1 such that n
gcd(i,n)

is odd and therefore

2i + 1 ∈ Qn.

2. If n = 2k, then Qn is a cyclic group generated by 2 of order n.

Let k be a positive integer such that k divides n. For any xd power permutations
over F2n , we have that xd restricted to F2k is a power permutation xe where e = d
(mod 2k − 1). Then, the algebraic degree of xe over F2k is lower or equal than the

algebraic degree of xd over F2n . Indeed, if xd = xd0x2kd1x22kd2 . . . x2n−kdn/k−1 then
we can rewrite the algebraic degree over F2k as

d◦(xd0x2kd1x22kd2 . . . x2n−kdn/k−1) ≤ d◦(xd0) + d◦(xd1) + . . .+ d◦(xdn/k−1),

since x2k = x over F2k . Since d◦(xdi) = w(di), then the sum of the degrees is equal
to the sum of the weights, which is equal to w(d) because of how we split d. Thus,
d◦(xe) ≤ d◦(xd). Moreover, there is a natural surjective homomorphism from Qn to
Qk induced by the surjective homomorphism from U(Z2n−1) to U(Z2k−1) that maps
d ∈ U(Z2n−1) to e ≡ d (mod 2k −1). So we have that Qk is isomorphic to a subgroup
of Qn. As a consequence, we have the following lemma for the case k = 4.
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Lemma 3.1. Let n be a positive integer such that n ≡ 0 (mod 4). Let d be a positive
integer such that gcd(d, 2n − 1) = 1 and d (mod 24 − 1) is not a power of 2. Then
d ̸∈ Qn.

Proof. It follows from the fact that for any d ∈ Qn, we have that e ∈ Q4 where e ≡ d
(mod 24 − 1). Indeed, Q4 is a cyclic group generated by 2.

Theorem 3.4. Let n be a positive integer such that n ≡ 0 (mod 4). For any d ∈ Qn

with gcd(d, 2n−1) = 1, the power permutation xd has differential uniformity at least 16.
In particular, the inverse function cannot be decomposed in quadratic power functions
in dimension n.

Proof. Let d ̸∈ Qn, then Lemma 3.1 we have that F (x) = xd defined over F2n is linear
over F24 . Therefore, for any x ∈ F24 we have that

(x+ 1)d + xd = xd + 1 + xd = 1

and so δF (1, 1) ≥ 16. Therefore, δF ≥ 16. Since the inverse function is 4-uniform, it
cannot be decomposed in quadratic power functions.

4 On decompositions using power
permutations and affine permutations

Stafford proved in [Sta98, Theorem 1] that if πk = xk is an odd permutation, then
Sym (F2n) is generated by πk and the affine permutations τa,b = ax + b, for a ∈
F2n \ {0} , b ∈ F2n . This means that we can write any permutation in Sym (F2n) as

π = τa1,b1 ◦ πk ◦ τa2,b2 ◦ πk ◦ . . . ◦ πk ◦ τal,bl , (3)

for an appropriate choice of a1, . . . , al and b1, . . . , bl, which is clearly a decomposition
of π as a sequence of affine permutations and the power permutation πk. Thus, the
problem of proving the existence of decompositions can be reduced to studying the
parity of power permutations over F2n .

Remark 4.1. Note that, as stated in[Sta98, Theorem 1], the Alternating group, that
is the group of even permutations over F2n , is generated by any power permutation and
affine permutations. A quadratic permutation over F2n exists if and only if n is not
a power of 2. Then, even permutations admit a decomposition into quadratic power
permutations and affine permutations if and only if n is not a power of 2.

Some results on the parity of power permutations were presented in [ÇÖ21] where
an algorithm to compute the parity of a power permutation over F2n was presented
and used to justify the following conjecture.

Conjecture 4.1. [ÇÖ21, Conjecture 6.3]

• For all n odd integers, the power permutation x3 is odd over F2n ,

• for all n ≡ 2, 3 (mod 4), the power permutation x5 is odd over F2n ,

• for all n multiples of 4 and not a power of 2, all quadratic permutations are even
over F2n .
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In the next Lemma, we prove a relationship between the Jacobi symbol
(

k
2n−1

)
and the parity of the permutation xk over F2n . We will then use this result to prove the
conjecture and give some further results on the parity of power permutation and the
existence of decomposition in quadratic power permutation and affine permutations,
as described by (3).

Lemma 4.1. Let n ≥ 3. A power permutation πk = xk on F2n is odd if and only if

the Jacobi symbol
(

k
2n−1

)
= −1.

Proof. This is a direct consequence of the Zolotareff-Frobenius Lemma. We briefly
recall the statement of the lemma. Let k be an integer such that gcd(k, 2n − 1) = 1 ,
then (

k

2n − 1

)
= sgn (σk) ,

where σk is the permutation induced by the multiplication by k over Z2n−1. First,
note that since πk is a permutation, gcd(k, 2n − 1) = 1, and 2n − 1 is an odd integer,
meaning that we can apply the lemma. Now, let α be a primitive element of F2n , we
consider the isomorphism

Ψα : Z2n−1 → F2n \ {0}

b 7→ αb,

and its inverse Ψ−1
α : F2n \{0} → Z2n−1. Note that Ψα depends on the choice of α, but

this choice does not affect the proof. Here, for brevity, we drop the subscript α. We
now consider π̄k, the restriction of πk to F2n \{0}. Then, π̄k = Ψ(σk(Ψ

−1(x))), because
Ψ(σk(Ψ

−1(x))) = αbk = xk for any x = αb ∈ F2n \ {0}. Finally, let σk = T1 . . . Tℓ be
a decomposition of σk in transpositions. Since Ψ ◦ T ◦Ψ−1 is still a transposition for
any transposition T , then

π̄k =
(
Ψ ◦ T1 ◦Ψ−1) . . . (Ψ ◦ Tℓ ◦Ψ−1)

is a decomposition of π̄k in transpositions. Since πk is equal to the extension of π̄k to
F2n that fixes 0, then it also has the same decomposition in transpositions, and

sgn (πk) = sgn (π̄k) = (−1)ℓ = sgn (σk) =

(
k

2n − 1

)
,

because of the Zolotareff-Frobenius lemma, concluding the proof.

Lemma 4.1 gives us a tool to easily show that a particular power permutation is
odd. This is quite useful in proving theoretical results by manipulating the appropriate
Jacobi symbol. Moreover, this result also gives a more efficient way to compute the
parity of a power permutation, reducing it to the computation of the Jacobi symbol(

k
2n−1

)
. Efficient algorithms exist for the computation of Jacobi symbols. For in-

stance, [ES96, RS k− ary algorithm] runs in sub-quadratic time O(n2/log(n)), which
is much faster than [ÇÖ21, Algorithm 1], which runs in O(2n/3n2/3).

We now use Lemma 4.1 to prove [ÇÖ21, Conjecture 6.3]. Before starting, we give
a couple of useful notions. First, let n be a positive integer, we denote by ν2 (n) the
dyadic valuation of n, that is, the integer i such that 2i|n, but 2i+i ∤ n. Moreover, we
give a small lemma, which will be useful for many of the following proofs.
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Lemma 4.2. Let n ≥ 2. If 0 < i < n, then(
2i + 1

2n − 1

)
= (−1)δ1(i)

(
2n − 1

2i + 1

)
, (4)

where δi is the Kronecker delta defined by

δi(j) =

{
1 if i = j,

0 otherwise.

Moreover, if 0 < i < j < n, then(
2j + 2i + 1

2n − 1

)
= (−1)δ1(i)

(
2n − 1

2j + 2i + 1

)
. (5)

Proof. Equations (5) and (5) are a direct consequence of Gauss’ Quadratic Reciprocity
Law. Now, 2n − 1 ≡ 3 (mod 4) for any n ≥ 2. Equation (4) follows directly from the
fact that 2i+1 ≡ 1 (mod 4) for any i > 1 and 21+1 ≡ 3 (mod 4) for i = 1. Similarly,
Equation (5) follows directly from the fact that 2j +2i +1 ≡ 1 (mod 4) for any i > 1,
while for i = 1, 2j + 3 ≡ 3 (mod 4) because j > i > 0.

We are now ready to prove the three points of [ÇÖ21, Conjecture 6.3]. We remem-
ber that this conjecture on the parity of power permutations is tied to the existence
of decompositions for any permutation by [Sta98, Theorem 1].

Theorem 4.1. Let n ≥ 3. Then

1. x3 is an odd permutation over F2n if and only if n ≡ 1 (mod 2),

2. x5 is an odd permutation over F2n if and only if n ≡ 2, 3 (mod 4),

3. quadratic power permutations over F2n are even for any n ≡ 0 (mod 4).

Proof. To prove the first two points, we can directly prove that the Jacobi symbols(
3

2n−1

)
and

(
5

2n−1

)
are always odd for the appropriate values of n. In particular, we

use Lemma 4.2 to say that (
3

2n − 1

)
= −

(
2n − 1

3

)
,

and that (
5

2n − 1

)
=

(
2n − 1

5

)
.

Now, for n = 2t = 1, we have that 2n − 1 = 22t+1 − 1 = 2(4t)− 1 ≡ 1 (mod 3), and(
3

2n − 1

)
= −

(
2n − 1

3

)
= −

(
1

3

)
= −1.

On the other hand, for n = 4t+s with 1 ≤ s ≤ 3 (s cannot be zero since otherwise x5 is
not a permutation), we have that 2n−1 = 24t+s−1 = 2s(42t)−1 = 2s(−1)2t−1 ≡ 2s−1
(mod 5), and (

2n − 1

5

)
=

(
2s − 1

5

)
=

(
5

2s − 1

)
,

10



using Lemma 4.2 and Euler’s Criterion. For s = 1, we have
(

5
2s−1

)
=
(
5
1

)
= 1. For

s = 2, we have
(

5
2s−1

)
=
(
5
3

)
=
(−1

3

)
= −1. For s = 3, we have

(
5

2s−1

)
=
(
5
7

)
=(

7
5

)
=
(
2
5

)
= (−1)

25−1
8 = −1, because of Lemma 4.2 and (1). Using Lemma 4.1, we

can conclude.
Let us consider the third point. We denote n = 4t and start with some necessary

conditions for a power function to be a permutation. Let us consider x2i
′
+1. This is a

permutation if and only if 4t
gcd(i′,4t) is odd, which is true if and only if 4|i′. This means

that from now on, we can assume i′ = 4i for some integer i > 0. Moreover, for t
gcd(i,t)

to be odd, we also need that ν2 (i) ≥ ν2 (t). Any other combination of i and t falls in
the cases where the power function is not a permutation.

We now aim to prove that
(

24i+1
24t−1

)
= 1 for any i, t such that 0 < i < t and

ν2 (i) ≥ ν2 (t), meaning that the Jacobi symbol must be either 1 or −1. First, note
that using Lemma 4.2, (

24i + 1

24t − 1

)
=

(
24t − 1

24i + 1

)
,

because 4i > 1. To continue the proof, we first consider the case i|t, and then the
more general case t = is+ r, with 0 ≤ r < i.
Case i|t. Note that in this case ν2 (i) ≤ ν2 (t), so ν2 (i) = ν2 (t). Therefore, We must
have that t = is for some odd integer s > 0. Then,(

24t − 1

24i + 1

)
=

(
(24i)s − 1

24i + 1

)
,

and since 24i ≡ −1 (mod 24i + 1),(
(24i)s − 1

24i + 1

)
=

(
(−1)s − 1

24i + 1

)
=

(
−2

24i + 1

)
=

(
−1

24i + 1

)(
2

24i + 1

)
,

using the fact that s is odd in the second equality, and the complete multiplicative
property of the Jacobi symbol, for the third identity. Both factors are now easy to
compute, as(

−1

24i + 1

)
= (−1)2

4i−1

= 1, and

(
2

24i + 1

)
= (−1)

(24i+1)2−1
8 = 1,

where the second to last equality is due to Equation (1).

We therefore infer that
(

24i+1
24t−1

)
= 1.

Case t = is + r, with 0 ≤ r < i. We prove by induction on i that
(

24i+1
24t−1

)
= 1. For

i = 1, this falls back on the case i|t, so it is trivially true for any t. Now, assume(
24j+1
24t−1

)
= 1 for any j < i. If r = 0, we fall back to the case i|t, so we assume r > 0.

Then, (
24t − 1

24i + 1

)
=

(
24r(24i)s − 1

24i + 1

)
=

(
24r(−1)s − 1

24i + 1

)
.

If s is even, then (
24t − 1

24i + 1

)
=

(
24r − 1

24i + 1

)
=

(
24i + 1

24r − 1

)
, (6)

11



where the second equality holds for Lemma 4.2. Since r < i, we can say that i =
s1r + r1, for some non-negative integers s1, r1 < i, and we can rewrite(

24i + 1

24r − 1

)
=

(
(24r)s124r1 + 1

24r − 1

)
=

(
24r1 + 1

24r − 1

)
,

because 24r ≡ 1 (mod 24r−1). Now, note that this last symbol must be different from
zero, otherwise, the original symbol would also be zero, and we restricted ourselves to

cases where the symbol
(

24i+1
24t−1

)
is either 1 or −1. Since the symbol cannot be zero,

then 24r1 +1 and 24r −1 must be coprime, and then we are in one of the cases covered

by the inductive hypothesis. Thus,
(

24r1+1
24r−1

)
= 1, concluding the proof for s even.

On the other hand, if s is odd, then(
24t − 1

24i + 1

)
=

(
−24r − 1

24i + 1

)
=

(
24i + 1− 24r − 1

24i + 1

)
=

(
24r(24(i−r) − 1)

24i + 1

)
.

Now, using the fact that the Jacobi symbol is multiplicative, we can rewrite(
24r(24(i−r) − 1)

24i + 1

)
=

(
24r

24i + 1

)(
24(i−r) − 1

24i + 1

)
=

(
24(i−r) − 1

24i + 1

)
,

where the second equality holds because(
24r

24i + 1

)
=

(
2

24i + 1

)4r

= 1.

Using Lemma 4.2, we can rewrite(
24(i−r) − 1

24i + 1

)
=

(
24i + 1

24(i−r) − 1

)
.

This is the same as the symbol in Equation (6), with the care of replacing r with
(i − r), because both r and i − r are non-zero integers strictly lower than i. We can
then rewrite the symbol as(

24i + 1

24(i−r) − 1

)
=

(
24r1 + 1

24(i−r) − 1

)
= 1,

using the same reasoning as above to justify the application of the inductive hypothesis.
This concludes the proof for s odd, and also the induction.

Therefore, we can say that
(

24i+1
24t−1

)
= 1 for any i, t such that 0 < i < t and

ν2 (i) ≥ ν2 (t), and using Lemma 4.1 we can say that x24i+1 is an even permutation.

In any other case, 4t
gcd(i′,4t) is even, so x2i

′
+1 is not a permutation.

Remark 4.2. Note that this is a generalization of Theorem 3.3 to any odd n, as the
Jacobi symbol is the same as the Legendre symbol when the modulus is prime. However,
this new result does not allow a generalization of 3.3, since it requires the equivalence
between an element being of maximal order, and its Legendre symbol having value −1.
This strong connection is not present for the Jacobi symbol.

Proving the conjecture allows the formulation of the following theorem on the
existence of decompositions in quadratic and affine permutations.
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Theorem 4.2. Let n ≥ 3. All permutations over F2n admit a decomposition in
quadratic power permutations and affine permutations, if and only if 4 ∤ n.

Proof. In Theorem 4.1 we show the existence of an odd quadratic power permutation
over F2n for any 4 ∤ n. Using [Sta98, Theorem 1], we can say that Sym (F2n) is
generated by affine permutations of the form ax + b and by the quadratic power
permutations π3 and π5 respectively when n is odd and when n is even, but not doubly
even. This means that if 4 ∤ n, then all permutations over F2n admit a decomposition
in quadratic and affine permutations.

On the other hand, in the same Theorem 4.1, we also proved that all quadratic
permutations on F2n are even if 4|n. Moreover, all affine permutations ax+b are even,
as proved in the proof of [Sta98, Theorem 1], and also the Frobenius automorphism

π2 is even, since
(

2
2n−1

)
= (−1)

(2n−1)2−1
8 = (−1)

22n−2n+1

8 = 1 for any n ≥ 3, using

(1). Thus, all affine permutations over F2n are even. This means that if 4|n, then all
compositions of quadratic power permutations and affine permutations are even. We
can then conclude that odd permutations do not admit a decomposition in quadratic
and affine permutations when 4|n.

Corollary 4.1. Any APN permutation in dimension n ̸≡ 0 (mod 4) can be decom-
posed using quadratic power permutations and affine permutations.

Remark 4.3. Note that this is not a generalization of Corollary 3.2 to any permu-
tation and n not divisible by 4. Indeed, the decompositions we are considering in this
section do not use only power permutations, but also polynomial affine permutations.

This result leads to one last question. Is it always possible to decompose a permu-
tation using cubic power permutations and affine permutations when 4|n? In order to
answer this question, we first give a preliminary lemma proving that the cubic power
permutation x13 is odd over F2n when n = 4t and t ̸≡ 0 (mod 3).

Proposition 4.1. Let n = 4t, with t ̸≡ 0 (mod 3). Then x13 is an odd permutation
on F2n .

Proof. Using Lemma 4.1, we can say that x13 is odd if and only if
(

13
24t−1

)
= −1.

Using Lemma 4.2, we have that(
13

24t − 1

)
=

(
24t − 1

13

)
=

(
3t − 1

13

)
,

because 24 ≡ 3 (mod 13). We now consider the two cases t ≡ 1, 2 (mod 3).
Case t ≡ 1 (mod 3), so that t = 3s+ 1 for some integer s. Then(

3t − 1

13

)
=

(
33s+1 − 1

13

)
=

(
3(33)s − 1

13

)
=

(
2

13

)
= (−1)

132−1
8 = −1,

where the third equality holds because 33 ≡ 1 (mod 13), while the second last is due
to Equation (1).

Case t ≡ 2 (mod 3), so that t = 3s+ 2 for some integer s. Then(
3t − 1

13

)
=

(
33s+2 − 1

13

)
=

(
9(33)s − 1

13

)
=

(
8

13

)
=

(
2

13

)3

= −1,

13



reusing the value for
(

2
13

)
that we just found for the case t = 1.

Thus, combining the two cases, we show that
(

13
24t−1

)
= −1 for all t ̸≡ 0 (mod 3).

We are now ready to give our most general result on the existence of odd decom-
positions. In particular, we show that for any value of n, an odd decomposition always
exists.

Theorem 4.3. Let n ≥ 3 be a positive integer, n = 2ν2(n)s, so that s is odd. Then
xkn is an odd power function, where

• kn = 22s + 2s + 1, for any n, except when s = 1 and ν2 (n) is an odd integer,

• kn = 13, if s = 1 and ν2 (n) is an odd integer.

Proof. First, we consider the exceptional case where s = 1 and ν2 (n) is odd. When n
is fixed, for easy writing, we let ν2(n) = ℓ. Then 2ℓ = 4 · 2ℓ−2, and 2ℓ−2 ≡ 2 (mod 3),
and 4.1 applies.

We can now assume that either s = 1 and ℓ is even, or s > 1. Next, we write

2n − 1 = (2s − 1)
(
2(2

ℓ−1)s + 2(2
ℓ−2)s + · · ·+ 2s + 1

)
.

If s = 1 and ℓ is even, since the Jacobi symbol is completely multiplicative in one
parameter (when the other parameter is fixed), it will be sufficient to show that(

22s + 2s + 1

2s − 1

)
=

(
7

1

)
= 1 and

(
7

2(2
ℓ−1)s + · · ·+ 2s + 1

)
=

(
7

22ℓ − 1

)
= −1.

The first identity is immediate and the second follows (via Gauss’ Quadratic Reci-
procity Law) from (

7

22ℓ − 1

)
=

(
22

ℓ

− 1

7

)
=

(
1

7

)
= 1,

using the fact that 22
ℓ

≡ 2 (mod 7), for even ℓ. The reason that this argument does

not work for odd ℓ is because 22
ℓ

≡ 4 (mod 7), for odd ℓ, and so, the second Jacobi

symbol is then
(

7

22
ℓ−1

)
=

(
22

ℓ
−1
7

)
=
(
3
1

)
= 1.

Let now s ≥ 2. As above, it will be enough to show that the two Jacobi symbols
satisfy (

22s + 2s + 1

2s − 1

)
= −1 and

(
22s + 2s + 1

2(2
ℓ−1)s + · · ·+ 2s + 1

)
= 1.

Since 22s + 2s + 1 ≡ 3 (mod 2s − 1), then(
22s + 2s + 1

2s − 1

)
=

(
3

2s − 1

)
= −

(
2s − 1

3

)
=

(
1

3

)
= −1,

since s is odd and so, 2s − 1 ≡ 1 (mod 3).
We now consider two cases, depending upon the parity of ℓ. If ℓ ≡ 0 (mod 2),

then the number of terms in 2(2
ℓ−1)s+2(2

ℓ−2)s+ · · ·+2s+1 is congruent to 1 modulo
3, and so,

2(2
ℓ−1)s + 2(2

ℓ−2)s + · · ·+ 2s + 1 ≡ 1 (mod 22s + 2s + 1),
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which implies (via Gauss’ Quadratic Reciprocity Law and the fact that s > 1, and so
22s + 2s + 1 ≡ 1 (mod 4)) that the Jacobi symbol(

22s + 2s + 1

2(2
ℓ−1)s + · · ·+ 2s + 1

)
=

(
2(2

ℓ−1)s + · · ·+ 2s + 1

22s + 2s + 1

)

=

(
1

22s + 2s + 1

)
= 1.

If ℓ ≡ 1 (mod 2), using the same argument on the number of terms as above, then

2(2
ℓ−1)s + 2(2

ℓ−2)s + · · ·+ 2s + 1 ≡ 2s + 1 (mod 22s + 2s + 1),

which implies (again, via Gauss’ Quadratic Reciprocity Law and using that 22s +2s +
1 ≡ 1 (mod 4), for s > 1) that the Jacobi symbol(

22s + 2s + 1

2(2
ℓ−1)s + · · ·+ 2s + 1

)
=

(
2(2

ℓ−1)s + · · ·+ 2s + 1

22s + 2s + 1

)

=

(
2s + 1

22s + 2s + 1

)
=

(
22s + 2s + 1

2s + 1

)
=

(
22s + 2s + 1

2s + 1

)
=

(
1

2s + 1

)
= 1.

The theorem is therefore shown.

Remark 4.4. We note that in the case n = 4t and t is odd, the power function xkn

from Theorem 4.3 is the Bracken-Leander power function.

Just as in the case of quadratic permutations, we can now formulate the following
theorem on the existence of decompositions of permutations into cubic power permu-
tations and affine permutations.

Theorem 4.4. Let n ≥ 3 be a positive integer. All permutations on F2n admit a
decomposition in cubic power permutations and affine permutations.

Proof. In Theorem 4.3 we show the existence of an odd cubic power permutation xkn

over F2n for any n. Using [Sta98, Theorem 1], we can say that Sym (F2n) is generated
by affine pemrutations and by the cubic power permutation xkn for any value of n.
Then, all permutations over F2n admit a decomposition in cubic power permutations
and affine permutations.

Finally, we give an alternative odd power permutation for some values of n. Al-
though this is not necessary for our existence result, the power function x7 is interesting
as it can be computed with only two multiplications and two squarings in the finite
field.

Proposition 4.2. Let n = 3t+ 1. Then x7 is an odd permutation on F2n .

Proof. Once again, using Lemma 4.1, we can say that x7 is odd if and only if
(

7
23t+1−1

)
=

−1. Using Lemma 4.2, we have that(
7

23t+1 − 1

)
= −

(
23t+1 − 1

7

)
.
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Now, 23t ≡ (−1)t (mod 7), so we have two cases.
Case t even. (

23t+1 − 1

7

)
=

(
(2(−1)t − 1)

7

)
= 1,

so the symbol
(

7
23t+1−1

)
= −1.

Case t odd.(
23t+1 − 1

7

)
=

(
2(−1)t − 1

7

)
=

(
4

7

)
=

(
2

7

)2

= 1,

so the symbol is once again
(

7
23t+1−1

)
= −1.

Thus, combining the two cases, we show that
(

7
23t+1−1

)
= −1 for all t.

5 Computational search of Stafford-like decom-
positions

In this section, we give some observations on the computational search of decomposi-
tions of the form

τa0,b0 ◦ πk ◦ τa2,b2πk ◦ . . . ◦ πk ◦ τaℓ,bℓ . (7)

We then use them to decompose the PRESENT [Bog+07] S-Box into cubic power
permutations and affine permutations. Note that the S-Box of PRESENT is also a
cubic permutation, but it is not equivalent to a power function. Thus, decomposing it
into affine permutations and cubic power permutations gives a different representation,
that can be useful for implementations.

At first glance, the cost of exhaustively searching all possible decomposition of
length ℓ would be the cost of iterating through ℓ pairs of ai, bi. However, we notice
that if we consider two pairs a, b and c, d, we can rewrite

c(ax+ b)k + d = cak(x+ ba−1)k + d,

since a must be non-zero. Iterating this procedure, it is easy to see that if a decom-
position of length ℓ exists, then we can always rewrite it as a decomposition where all
ai except aℓ are equal to 1. Then, we can replace τai,bi with τ1,bi = x + bi for any
0 ≤ i < ℓ in (7), obtaining a significant reduction of the search space. One further
improvement can be achieved by relaxing our search to any function D in the affine
equivalence class of the target function F . Note that this is usually not problematic,
since finding a decomposition

D = τ1,b0 ◦ πk ◦ τ1,b1 ◦ . . . ◦ τ1,bℓ−1 ◦ πk ◦ τaℓ,bℓ

naturally yields a decomposition of the same length, where every term still has the
same algebraic degree, since the composition of A and τ1,b0 and the composition of B
and τaℓ,bℓ are still affine functions. Then, it is justified to search for a decomposition
up to affine equivalence. This has two advantages. On one hand, we do not have to
brute force b0, aℓ, bℓ, further reducing the search space. On the other hand, we now
target an entire affine equivalence class, rather than a single function.

We target the PRESENT S-Box C56B90AD3EF84712 using these observations. We
use the cubic power permutation π7 = x7, since we proved in Proposition 4.2 that

16



we can decompose any permutation in F24 using π7. However, we remember that in
F24 all cubic power permutations are affine equivalent so that the search result would
be the same using any other cubic power permutation. The truth table we use for
x7 is 019EDB76F2C5A438, obtained constructing F25 using the primitive polynomial
x5 + x2 + 1 ∈ F2[x]. We find that the S-Box is not decomposable with 5 power
permutations or less, while we find 2280 decompositions length 6. That is, we find
2280 combinations of b1, . . . , b5 such that

π7 ◦ τ1,b1 ◦ π7 ◦ . . . ◦ π7 ◦ τ1,b5 ◦ π7

is affine equivalent to the PRESENT S-Box F . We give a particular solution for the
sake of exposition. Consider the affine transformations A and B with truth tables,
respectively, 09B2F64D813A7EC5 and 62C815BF379D40EA. Then we can rewrite F =
A ◦D ◦B. Now, D can be decomposed using π7 and XORs as

D = π7 ◦ τ1,3 ◦ π7 ◦ τ1,4 ◦ π7 ◦ τ1,3 ◦ π7 ◦ τ1,3 ◦ π7 ◦ τ1,3 ◦ π7.

6 Conclusions

In this paper, we studied different methods to decompose a permutation into a se-
quence of permutations of lower algebraic degree with the aim to find useful decom-
positions for hardware implementations.

The first direction we explored is the search for decompositions of the power per-
mutations into power permutations of lower algebraic degrees. We showed that a de-
composition of any power permutation into quadratic power permutations, including
the inverse, always exists when 2n − 1 is a Mersenne prime, and that such a decom-
position does not exist when n is doubly even and the target power permutation has
differential uniformity lower than 16. The case when 2n − 1 is not prime and n is not
divisible by 4 is still an open problem, though progress has been made [NNR19; Pet23;
LSS23].

The second direction we explored is the search of decompositions using [Sta98,
Theorem 1]. We have shown that any permutation on F2n can be decomposed as a se-
quence of affine permutations and quadratic power permutations when n is not doubly
even. We have also shown that when n is doubly even, it is not possible to decompose
odd permutations using only affine permutations and quadratic power permutations.
We further prove that any permutation can be decomposed as a composition of affine
permutations and cubic power permutations for any n.

Finally, we give an example of a decomposition of the PRESENT S-Box using cubic
power permutations and affine permutations, but a more efficient search algorithm,
and finding more instances of Stafford-like decompositions remain as open problems.
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