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Abstract. Symmetric Private Information Retrieval (SPIR) is a stronger
PIR protocol that ensures both client and server privacy. In many cases,
the client needs authorization from the data subject before querying
data. However, this also means that the server can learn the identity of
the data subject. To solve such problems, we propose a new SPIR primi-
tive, called authorized symmetric keyword information retrieval protocol
(ASKPIR). Specifically, we designed an efficient DID identification algo-
rithm based on the Pedersen Commitment, which is used to solve the
identity management and privacy problems of data subject when data is
shared by multiple parties in a distributed environment. Then, we present
a novel authorization algorithm combining NIZK proof and DID, which
can preserve client privacy. Finally, to improve the efficiency of client re-
trieval, our protocol constructs PSI-Payload with mqRPMT and OTE so
as to support batch keyword searches. In addition, we provide a formal
security analysis for the anonymity and unforgeability of the protocol and
demonstrate that ASKPIR can achieve malicious security under the UC
framework. Theoretical analysis and experimental results show that the
ASKPIR protocol is more efficient than other related works and solves
the problem of incompatibility between data subject authorization and
client privacy.
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1 Introduction

The symmetric private information retrieval (SPIR) protocol [10,19,24] is an
extension of the private information retrieval (PIR) protocol [1,4,8] and there
are generally two players: a client and a server. The server has a database that
contains some value data, and the client submits a query item to the server in
order to retrieve a particular data, where the items can be index-based[13,20]
or keyword-based queries [15,29,28]. In general, the client usually does not know
the index of the data. In some query scenarios, the client usually submits a
keyword to the server for search and obtains the corresponding data [28,17,18],
which is also the technology we focus on in this paper. The goal of SPIR is to
maintain the privacy of both the client and the server [26,27]. That is, on the one
hand, the client can retrieve data from the server without disclosing the specific
keywords used in the query [25,29]. On the other hand, the server does not
provide any additional information other than the data queried [19,24]. These
properties have made SPIR one of the most promising candidate protocols for
the PIR extension protocol [19,24,26,27]. SPIR has many practical applications.
For instance, consider a financial scenario where two types of participants are
involved: (1) a National Credit Center (NCC) containing the ID numbers and
personal credits or loan records of consumer(C)s, (2) a bank (B) can query
personal credit or loan records from the NCC using the consumer’s ID number
as a keyword. The B and the NCC can be thought of as the client and server,
respectively, in a traditional SPIR setting. The requirements in the financial
application are as follows:

Requirement 1 (Client privacy) When the B queries NCC about C’s per-
sonal credit or loan records, they do not want to reveal C’s ID number to the
server.

Requirement 2 (Server privacy) The B should not learn any personal in-
formation about the NCC, beyond the C’s personal credit or loan records.

However, from the C’s perspective, B used his/her ID number to inquire about
personal credit or loan records without authorization. In the same way, NCC
also needs to obtain C’s authorization to share personal credit or loan records
with B. Therefore, we also need to introduce consumer C into the scenario, and
C can be called a data subject who is the real owner of the personal credit or loan
records that exist in the server. The data subject has the following requirements:

Requirement 3 (Data subject authorization) The B should be authorized
by C before using his/her ID number as a query keyword, and NCC should be
able to verify whether B has a valid authorization from C.

Limitation and Motivation The above example shows a typical scenario
where common SPIR have two limitations: (1) Limitation 1: common SPIR can-
not meet Requirement 1, 2 and 3 at the same time. According to the requirements
3, NCC needs to verify whether the ID number queried by B is authorized by
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C, but the traditional SPIR protocol cannot meet the requirements 1. (2) Lim-
itation 2: another limitation of SPIR is that batch keyword searching is also
not implemented. In order to improve efficiency, B hopes to query the personal
credit or loan records of multiple consumers (e.g. C1,C2, · · · , Cn) at one time.
Therefore, we need stronger SPIR to break through two limitations.

Currently, much research (cf., Table 1) has focused on the problem of au-
thorization and batch keyword searching. De Cristofaro et al.[6] proposed a new
primitive called privacy-preserving policy-based information transfer (PPIT).
The protocol guarantees client and server privacy, and client input is controlled
by well-defined access policies (such as authorization certificates). Then, in 2011,
De Cristofaro et al.[7] proposed a privacy-preserving sharing of sensitive infor-
mation protocol (PPSSI). The protocol utilized PSI to ensure the privacy of both
the client and server. The client received data from the server, which requires
authorization from the Certification Authority (CA). Goyal et al.[11] presented
a novel framework for access control where only authorized clients can decrypt.
Jarecki et al. [13] presented an Outsourced SPIR. The server is not able to learn
about query keyword from the client while still being able to verify the validity
of queries with the access policy. However, these related works in [22,7,13,11] do
not allow data subjects to authorize, instead using the server or third-party to
formulate access policies so that appropriate clients can retrieve the data. For-
tunately, Song et al. [22] presented a protocol that allows for keyword search on
encrypted data. The server can only process search queries on the stored cipher-
text of data subjects if given proper authorization. Besides, it is unclear how
the server can hide the identities of data subjects. layouni et al. [17] focused on
Requirement 3 in SPIR. This protocol allowed data subjects to send anonymous
credential [5] to clients for authorization while maintaining Requirement 1. Sub-
sequently, they proposed a Multi-authorizer protocol [18] extend on protocol of
[17]. However, the computational cost of both protocols is very expensive, and
using a third-party CA can easily create a single point of failure. Additionally,
both protocols are not suitable for data sharing among multiple parameter par-
ties in a distributed environment.

Table 1: Comparison of the related surveys in the terms of Client pri-
vacy (T1), Server privacy (T2), PSI (T3), Batch retrieval (T4), Data subject
authorization(T5) and Decentralized certification authority (T6) where � indi-
cates that topic was covered, × indicates that topic was not covered.

Reference T1 T2 T3 T4 T5 T6

[6] � � × × × ×
[7] � � � � × ×
[11] � × × � × ×
[13] � � × � × ×
[22] × � × � × ×
[17] � � × × Credential ×
[18] � � × × Credential ×
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Challenges and Goals: We summarize some technical challenges based on the
two limitations and the problems described in some related works in Table 1.

– Challenge 1: In a distributed environment, when multiple participants share
data, it is difficult to achieve unified identity management and ensure the
identity privacy of each participant.

– Challenge 2: How to make the server complete authorization verification
withoutviolating client privacy (i.e., Requirement 1) is difficult to achieve.

– Challenge 3: How to reduce the computational and communication costs of
data subject authorization and client batch retrieval.

The goals of this paper is to introduce authorization in SPIR and address the
issue of incompatibility with Requirement 1. In addition, we hope to establish a
decentralized institution to manage the identity information of data subjects, so
that the identity information of participants does not have to be disclosed when
sharing data, and the anonymity of the identity of data subjects is maintained.
Besides, we should optimize the computational and communication overhead
of the protocol and enable client to receive authorized personal information in
batches. Finally, we can formally construct a new primitive called ASKPIR,
which is mainly used to solve the authorization problem in SPIR when multiple
participants share data.

High-level Solution: In the ASKPIR setting, we have multiple players: a
server, a client, and data subjects. The client sends query keywords (i.e., ID
number of data subject) to the server for search. The server compares the stored
keywords with the query keywords and responds with relevant data (i.e., personal
information of data subject). The main contribution of ASKPIR is to ensure
that the client has obtained the data subjects’ authorization before the server
processes the query keywords and that the server’s verification of authorization
does not reveal the data subjects’ ID numbers.

The ASKPIR protocol we propose, combines DID (Decentralized identifier)
with three cryptographic primitives: Pedersen Commitment, NIZK Proof and
PSI-Payload. We designed a new type of DID identification method based on
the Pedersen Commitment, which has the characteristics of global uniqueness,
and is suitable for managing and hiding identities of data subjects in a dis-
tributed and multi-party data sharing environment. In principle, DID enable
data subjects to manage their identities without the need to register with third
parties. In addition, data subjects can participate in NIZK proof with DID and
issue authorizations to the client. This enables client to prove to the server that
they have the right to use ID numbers of data subjects without revealing any
personally information about data subjects. This perfectly meets SPIR’s secu-
rity Requirement 1. Furthermore, during authorization, the generated Token
can be used for pre-computation during client’s keyword search phase, reduc-
ing computing consumption. In addition, we use mqRPMT and OTE to build
PSI-Payload to add the function of batch keyword retrieval for customers, thus
improving the query efficiency of the protocol. In general, the ASKPIR protocol
can meet all requirements and solve all challenges mentioned above.
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1.1 Our Contributions

Specifically, our contributions are summarized as follows:
- Data Subject Authorization. First, for the identity management and pri-
vacy of data subjects when sharing data with multiple parties, we can design
an effective DID identification algorithm. The DID identification algorithms
not only uniquely bind the identity of the data subject, guaranteeing the
anonymity of the data subject without the need for third-party registra-
tion, but also allow servers to authenticate in a confidential and lightweight
manner. For the privacy of the client, we propose a novel authorization al-
gorithm combining Zero knowledge proof and DID. The data subject can
authorize the client without exposing any information to the server during
verification. For multi-data subject authorization, our protocol to build PSI-
Payload, which facilitates the client to perform batch searches for authorized
keywords and receive the corresponding payloads.

- A New SPIR Primitive. Secondly, based on the above ideas, we formally
construct a new SPIR primitive through DID and PSI-Payload, ASKPIR,
where DID is based on Pedersen Commitment and cooperates with NIZK
proof to generate authorization. Our PSI-Payload is built on mqRPMT and
OTE, where authorization pahse can realize offline pre-computation of client
in mqRPMT and OTE allows client to calculate symmetric key locally by us-
ing keyword in the intersection, the resulting ASKPIR can achieve batch key-
word search of client. Besides, we give a formal security model and propose
new definitions of anonymity and unforgeability which address the threats
in our scenarios. Furthermore, we demonstrate ASKPIR with security in the
presence of malicious adversaries within the framework of Universal Com-
posability (UC).

- Effective Implementation. Finally, the viability of the proposed ASKPIR
protocol is evaluated through experimental results. Compared with related
work, our computational and communication costs still advantages. Despite
the introduction of data subject authorization, the additional cost of our
build has a small impact on the protocol compared to the underlying building
blocks. Source code is available at https://github.com/ZuodongWu2021/ASKPIR.

Outline: In the following section, we will review related work in Section 2 and
then we outline the preliminary concepts and notations in the Section 3. In
Sections 4, we give a system definition, algorithm and security model design of
ASKPIR protocol. We describe our building blocks in Section 5. The main con-
struction and security proof are displayed in Section 6. We evaluate the proposed
protocol in terms of theoretical and practical performance in Sections 7 and 8,
respectively. We conclude this work in Section 9. The detailed UC security proof
of our protocol is described in Appendix A.

2 Related Work

Much research has gone into the problem of SPIR with authorization. For in-
stance, Layouni [17] proposed an accredited SPIR (ASPIR) protocol based on
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ElGamal homomorphic encryption and anonymous credential. Specifically, the
data subject displays the public key along with a signed proof of knowledge to
the server. Signing is performed on a challenge chosen by the server, which checks
the validity of the credential by verifying the signature and credential also hides
the identity of data subject. If the credential is valid, the server moves on to
check the validity of the signed proof of knowledge. Moreover, for the credential
security problem, this paper provides three solutions based on RSA and discrete
logarithm. However, this protocol only allows the client to obtain authorization
from a single user, and the client cannot retrieve data in batches. In order to
prevent collusion attacks between server and CA, the protocol uses anonymous
certificates for selective disclosure. However, anonymous credential can also in-
crease the computational cost of the protocol, and there is also a single point of
failure issue with CA. In 2008, Layouni et al. [18] further the ASPIR protocol
of [17] to a protocol where each data can have multiple owners. This protocol
uses a bilinear pairings-based signature scheme instead of anonymous credential
and allows data subjects to encode, in the issued authorizations, any privacy
policy they want to enforce on their data, including the client’s identity, an ex-
piry date etc. Although the constructions in [18] improves on the shortcomings
of ASPIR [17], the two protocols still have common flaws: (1) The protocol uses
a third-party CA and is not suitable for data sharing between multiple parties
in a distributed environment. (2) Neither protocol considers whether the proto-
col can be safely executed in the presence of malicious client or server. Recently
Jarecki et al. [13] proposed an outsourcing SPIR that supported authorization of
data subject. The protocol allowed the server to provide search tokens to clients
based on their queries and according to a given authorization policy. Besides,
the protocol also showed that forging tokens or signatures is infeasible even by
completely malicious clients. However, the protocol is more concerned with sce-
narios involving outsourcing, where multiple third-party clients retrieve data,
but always need to be authorized by the data subject.

3 Preliminaries

3.1 Notations

We provide the pivotal concepts and description to be used in Table 2.

3.2 Cryptographic Assumptions

Let Setup(1k) be a PPT algorithm that on input a security parameter k, outputs
description of an elliptic curve G(Fp) with base point G of of prime order p =
Θ(2k).

Assumption 1 (ECDLP Assumption) Given the tuples (G, a, a ·G), where
a ·G ∈ G(Fp). We define the Elliptic Curve Discrete Logarithm (ECDLP) prob-
lem to hold if the advantage εECDLP obtained by any polynomial-time adversary
A is negligible under the security parameter k:

εECDLP := Pr[AECDLP (G, a ·G) = a : a ∈ Zq] ≤ negl(k) (1)
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Table 2: Notations and description.
Symbol Definition

Z The set of integer numbers
[n] The set 1, . . . , n.
n1 The input set of client.
n2 The input set of server.
k System security parameter
λ Statistical security parameter.
M The number of queries that F can ask to the random oracle.
F1 A probabilistic polynomial time Turing machine.
sid The identity of the client or the server.
Fp A field of prime numbers of order p.
l1 The length of keyword.
l The length of the data subject’s personal data (Payload).
Ω The Bloom filter.
F Commutative weak PRF F : K ×D → D, where K is the key space, D is domain.
G(Fp) An elliptic curve with base point G and order N , where p is a large prime number.
H3 A random oracles, where H3 : [n2] · {0, 1}k → {0, 1}l.

Assumption 2 (ECDH Assumption) Given the tuples (G, a ·G, b ·G), where
a·G, b·G ∈ G(Fp). We define the Elliptic Curve Diffie-Hellman (ECDH) problem
to hold if the advantage εECDH obtained by any polynomial-time adversary A is
negligible under the security parameter k:

εECDLP := Pr[AECDH(G, a ·G, b ·G) = (h, hab) ∈ G : h ∈ G(Fp), a, b ∈ Zq] ≤ negl(k)
(2)

3.3 The Forking Lemma

Theorem 1 (The Forking Lemma). Let (ð, Σ, V ) represent a digital signa-
ture scheme with a security parameter k. We use the symbol M to denote the
total number of queries that F1 is allowed to make to the random oracle. We
assume that F1 is capable of producing a valid signature (m,σ1, h, σ2) within a
specific time constraint of T ∗, with a probability ε ≥ 7M/2k. By utilizing another
machine, which has control over F1, it is possible to generate two valid signatures
(m,σ1, h, σ2) and (m,σ1, h

′, σ′2) such that h 6= h′. The expected time required for
this process is given by T ′∗ ≤ 84480T ∗M/ε.

3.4 Decentralized Identifier (DID)

DID [9] is an identifier composed of a string that represents a digital identity
which is a decentralized and verifiable identifier. DID does not require third-
party registration, and data subjects can register different DIDs at different
institutions. Data subjects can independently complete the registration, pars-
ing, updating or revoking operations of DID, and can achieve global uniqueness
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without the need for a CA. Each DID is stored in the corresponding DID docu-
ment, and any user can query the DID document on the Blockchain. Here is an
example DID:

did : ASPIR : jfijf3reiEojeoureW
where did is the DID Scheme (similar to http,https,ftp and other protocols in
the URL); ASPIR is the DID Method Identifier (usually the name of the DID
method); jfijf3reiEojeoureW is the specific identifier in the DID method: it
is unique in the entire DID method namespace. Its advantages are as follows:

– Decentralization: Based on Blockchain, identity is not controlled by a
single centralized authority.

– Identification and Authentication: The identity-related data is recorded
on the Blockchain, and the process of authentication does not need to depend
on the data subjects providing the identities.

– Trusted Multi-party Data Sharing: The identity of the data subject can
be managed and used in a decentralized environment, and the data subject
can share the identity and data through authorization.

3.5 Private Set Intersection with Payload (PSI-Payload)

PSI-Payload [14] is a modified version of PSI, where each keyword belonging to
the input set of the server is linked with a corresponding value, referred to as a
payload.

PSI-Payload Ideal Functionality. The PSI-Payload protocol uses inter-
section operations to facilitate the safe computation of payload, while also en-
suring that both parties’privacy is maintained. The PSI-Payload functionality is
presented in Figure 1.

PSI with payload Ideal Functionality F payloadPSI

Parameters:
X: a set X = {xi, . . . , xn1} with n1 of data.
Y : a set Y = {(y1,ỹ1), . . . , (yn2 ,ỹn2)} with n2 sets of data, where ỹi is a payload.
Input: Input a message (start, sid) from the server and (start, sid) from the
client.
Functionality: (No Corrupted): Wait for the client send a set of X and the server
send a set of Y .
(Corrupted Client): If the client send a set of X,where the |X| > n, the function-
ality abort.
(Corrupted Server): If the server send a set of Y , where the |Y | > n, the function-
ality abort.
Outputs: The functionality returns X̃= {(xi, ỹ)|xi ∈ X ∩ Y } to the client.

Fig. 1: Ideal functionality F payloadPSI of PSI-Payload.
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4 System Definition and Algorithm Definition

4.1 System Definition

Through the analysis in the introduction 1 section, it can be seen that the com-
bination of DID and PSI-Payload can effectively solve the identity identification
and authorization problems in SPIR under distributed environments. Therefore,
this paper introduces the data subject and designs an effective DID identifica-
tion algorithm to protect the identity privacy of the data subject in a distributed
environment; Combined with zero-knowledge proof, we proposed a new autho-
rization algorithm to solve the identity privacy and authorization issues of SPIR;
Finally, in order to achieve batch retrieval and multi-data subject authorization,
we use PSI-Payload to build the SPIR protocol. The system model is shown in
Figure 2. Specifically, the system model is divided into 5 pahses:

(1) Registration Phase: Multiple data subjects register the DID with sys-
tem parameters into the smart contract of the Blockchain, generating DID, DID
documents, and some service information. DID documents and service informa-
tion can be stored in the Blockchain. The client and server query the DID and
other information of the data subject in the Blockchain.

(2) Authorization Phase: Each data subject generates authorization proof
with the help of zero-knowledge proof, and sends the proof and other authoriza-
tion information to the client.

(3) Verification Authorization Phase: The server receives the proofs and
corresponding retrieval information. The server verifies whether the client has
been authorized by the data subjects. If the verification is successful, the server
can continue execution, otherwise the protocol is aborted.

(4)Keyword Search Phase: The client and server execute the PSI protocol
and the client uses the Tokens of multiple data subjects to retrieve correspond-
ing payloads in batches, the server performs keyword matching, and the client
receives the matching result.

(5) Payload Transmission Phase: The client and server execute the OTE
protocol, and the client receives the payload corresponding to a successful key-
word match with the server.

4.2 Algorithm Design

Based on the above ideas, we formally constructed a new primitive, ASKPIR,
through DID and PSI-Payload, where DID is based on Pederson Commitment
and combined with NIZK proof to generate authorization. Our PSI-Payload is
built on mqRPMT and OTE. An ASKPIR protocol includes the following five
polynomial time algorithms:

- Setup(k, λ)→ (pp, SKc, ski, sks, PKc): On inputting the security parameter
k and λ, the algorithm outputs public parameter pp, public-private key pair
(SKc, PKc) of the client, private key ski of the data subjects, private key
sks of the server.
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Fig. 2: System Model

- RegDID(pp, ski, IDi, αi)→ (DIDi, UIDi): The algorithm is performed by
the data subject. On inputting pp, ski, IDi, and a random integer αi ∈ Zq
to smart contracts in blockchain, the algorithm generates the DIDi and the
corresponding DID document. The data subject sends UIDi to the server,
where UIDi indicates computing rights to the data subject’s personal data.

- GenAut(DIDi, pp, PKc) → (Tokeni, proofi): This is an authorization al-
gorithm executed by the data subject. On inputting public parameter pp,
DIDi and PKc, the algorithm outputs a Tokeni and proofi.

- V erAut(DID,PKc, T oken
∗
i , proof

∗
i ) → (0, 1): This algorithm is executed

by the server. The input DIDi, PKc, Token∗i and proof∗i , the algorithm
returns 0 or 1. 1 means that the verification is passed; 0 means that the
verification fails and the next step is refused.

- GenKS(Token, I, sks) → e: The algorithm is executed by the server and
client. The client inputs a set Token = (Token1, . . . , T okenn1

), and the
server inputs a set I = {(UIDi, D1), . . . , (UIDn2 , Dn2)} and sks. The al-
gorithm returns the indication bit e to the client, while the server learns
nothing.

- PayTrans(e, I) → Di: The algorithm is executed by the server acts as a
receiver and client as a sender with input e. The algorithm outputs the Client
receives the Payloads corresponding to the keyword successfully matches in
the server.

4.3 Security Model

In this section, we will describe the security model of the ASPIR protocol and
provide definitions for two security attributes: Anonymity and Unforgeability.



Title Suppressed Due to Excessive Length 11

Before formalizing the definition, we provided the following oracle through Chal-
lenger C to simulate adversary A’s ability to attack the security of the protocol:

- OReg: Register Oracle. Adversary A queries the oracle to obtain the DIDi

and public-private key pair (ski, pk). The oracle is used to simulate that the
A can register as a real data subject and legally obtain the correct DID and
(ski, pk).

- ODID: Adversary A can obtain the corresponding DIDi, Tokeni, and NIZK
proofi on the Blockchain through the index. The oracle simulates that ad-
versary A can obtain the authorization information of some honest data
subjects by observing the Blockchain, and the DID Document also has a
corresponding pk.

Anonymity. The Anonymity means that except the holder of the DID, no
participant can obtain the real ID corresponding to the DID. We define the
Anonymity through the following interactive experiment ExptAnonASPIR(k) between
challenger C and adversary A.

(1) Setup: C executes the public parameter generation algorithm pp← SysGen(1k)
and sends pp to A;

(2) Queries1: A adaptively query OReg and ODID.
(3) Challenge: A sends (ID0, ID1) to C. C first selects a bit β R←− [0, 1], then

uses Pedersen Commitment to generate DIDβ , and finally sends it to A.
(4) Queries2: A continues to adaptively query OReg and ODID.
(5) Guess: A guesses bit β′ ∈ [0, 1], if β = β′, then the experiment output is 1,
A will win the experiment; Otherwise, the experiment outputs 0.

The advantage of adversary A in breaking the data subject anonymity is as
follows:

AdvAnonASPIR(k) = |Pr
[
ExptAnonASPIR(k) = 1

]
− 1

2
| = |Pr [β = β′]− 1

2
| (3)

Definition 1 (Anonymity). For any PPT adversary A, if the advantage of
adversary A in breaking the anonymity is AdvAnonASPIR(k) ≤ negl(k), then the
protocol satisfies the anonymity.

Unforgeability. The Authorization Unforgeability of authorization means that
if the data subject’s ID and ski are not leaked, the adversary A cannot forge
correct authorization information (eg., DIDi, Tokeni, NIZK proofi). We de-
fine Unforgeability through the following interactive experiment ExptUnforASPIR(k)
between challenger C and adversary A.

(1) Setup: C executes the public parameter generation algorithm pp← SysGen(1k)
and sends pp to A;

(2) Queries1: A adaptively query OReg and ODID.
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(3) Forgery:A forged NIZK proof: proofi∗ = AORegODID (pp,DID∗i , pk
∗, T oken∗i )

(4) Queries2: A continues to adaptively query OReg and ODID.
(5) Judges: C receives the NIZK Proof and outputs a judge(proof∗i ,pk,Token

∗
i ,

DID∗i ) = true, the experiment outputs 1; otherwise, it outputs 0.

The advantage of adversary A in breaking the unforgeability of data subject as
follows:

AdvUnforASPIR(k) = Pr
[
ExptUnforASPIR(k) = 1

]
(4)

Definition 2 (Unforgeability). For any PPT adversary A, if the adversary
A has negligible advantage AdvUnforASPIR(k) in breaking the unforgeability of data
subject, that is, AdvAnonASPIR(k) ≤ negl(k), then the protocol satisfies the unforge-
ability.

5 Protocol Building Blocks

Below we will introduce the following building blocks to form a new primitive,
ASKPIR.

5.1 Pedersen Commitment

Pedersen Commitment [21] is a commitment protocol that satisfies perfect hiding
and computational binding. Below we recall the Pedersen commitment, as show
in Figure 3:

Pedersen commitment Πcom

Parameters:
Input a security parameter k, output pp = (G(Fp), p,H,G), where H R←− G(Fp).
Input:
Input m ∈ Zp and r R←− Zp, output c = m ·G+ r ·H.
Outputs:
Output "1" if c′ = m′ ·G+ r′ ·H and "0" otherwise.

Fig. 3: Protocol Πcom which the Pedersen commitment functionality.

Definition 3 (Hiding). A Pedersen commitment Com(m, r) → c should not
disclose any information about its committed value m. Let A represent an ad-
versary against hiding. We define the advantage of the following experiment:

Adv(k) = Pr

 β′ = β :

pp← Setup(k)
(ID0, ID1)← A1(pp);
β ← {0, 1}, β ← {0, 1}
β′ ← A2(c)

c← Com(IDβ ; r)

− 1

2
(5)

The Pedersen Commitment is perfectly hiding under the discrete logarithm as-
sumption and Adv(k) = 0 even for an unbounded adversary.
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Definition 4 (Binding). A Pedersen commitment c cannot be opened to two
different messages. Let A denote an adversary against binding. We define the
advantage of A through the following experiment:

Adv(k) = Pr

[
m0 6= m1∧

c = Com(m0, r0) = Com(m1, r1)
:

pp← Setup(k)
(c,m0,m1, r1, r0)← A

]
(6)

The Pedersen Commitment is perfectly binding under the discrete logarithm
assumption and Adv(k) = 0 even for an unbounded adversary.

5.2 Multi-query reverse private membership test

The Reverse Private Membership Test (RPMT) [16] is a protocol where a client,
with input X, interacts with a server that holds a set Y . After the interaction,
the client learns only whether xi ∈ Y , while the server learns nothing about
the set X. RPMT typically focuses on the client querying for a single element.
RPMT can repeat this process multiple times, so it is called multi-query RPMT
(mqRPMT). In Figure 4 we formally define the ideal functionality for mqRPMT.

Ideal functionality FmqRPMT for mqRPMT

Parameters:
The client specifies the number of queries n1 and the server’s set size n2.
Input: The server inputs a set Y = (y1,...,yn1), where yi ∈ {0, 1}l1 . The client
inputs a set X = (x1,...,xn2), where xi ∈ {0, 1}l1 .
Outputs: The client receives a vector −→e = (e1, . . . , en2) ∈ {0, 1} where ei = 1 if
xi ∈ Y and ei = 0 otherwise. The server receives no information.

Fig. 4: Ideal functionality FmqRPMT .

In Figure 5, we show how to build mqRPMT from Commutative Weak PRF
to realize the mqRPMT functionality FmqRPMT .

5.3 Oblivious transfer extension (OTE)

An Oblivious transfer extension (OTE) [2,12] protocol involves using a small
number of base OTs to obtain many OTs by using cheap symmetric crypto-
graphic operations. Hybrid encryption is a process that involves encrypting large
messages using a symmetric key instead of RSA, which would be too expensive.
To achieve this, a single RSA computation is performed to encrypt the symmet-
ric key, which is then used to encrypt the long message using only symmetric
operations. OTE can be achieved with remarkable efficiency, and the security
parameter is independent of the number of OTs, allowing it to be as small as
128. In this work, we need the primitives of OTE to build symmetric keys for
payload transmission, which can be achieved through Figure 6, and the ideal
functionality is defined in Figure 7.
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MqRPMT from cwPRF Protocol ΠmqRPMT

Parameters:
The size of the client’s set is denoted by n1, and the size of the server’s set is

denoted by n2. A cwPRF denoted by F : K×D → D and a hash function denoted
by H :{0, 1}∗ → D are used.
Input: The server inputs a set Y = (y1,...,yn1), where yi ∈ {0, 1}l1 . The client
inputs a set X = (x1,...,xn2), where xi ∈ {0, 1}l1 .

- The client random selects k1
R←− K, then it sends the value of

{Fk1(H(xi))}i∈[n1] to server.
- The server random selects k2

R←− K. It then computes and sends the
value of {Fk2(H(yi))}i∈[n2] to client. The server also computes the value of
{Fk2(Fk1(H(xi)))}i∈[n1] and picks a random permutation π R←− [n1]. It then
sends the value of {Fk2(Fk1(H(xπ(i)

)))}i∈[n1] to the server.

Outputs: The client computes the value of {Fk1(Fk2(H(yi)))}i∈[n2], and sets ei= 1
iff Fk1(Fk2(H(xi))) = Fk2(Fk1(H(xπ(i)

))).

Fig. 5: Protocol ΠmqRPMT which realizes the ideal mqRPMT functionality.

Oblivious Transfer Extension Ideal Functionality FOTE

Parameters:
Number of OT instances n and the length of the message, denoted by l.
Input:
The server inputs {(mi,0,mi,1)}i∈n, where each mi,b ∈ {0, 1}l. The client inputs
a bit vector (b1, . . . ,bn) ∈ {0, 1}n.
Outputs:
The server does not receive anything, while the client receives {mi,b}i∈[n].

Fig. 6: Ideal functionality FOTE of OTE.
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Oblivious Transfer Extension Protocol ΠOTE

Parameters:
A random oracle H3 : [m]× {0, 1}k → {0, 1}l, where |m| is the number of
columns of the matrix.
Input: The server inputs m pairs (xj,0, xj,1)j∈[1,m] of l-bit strings. The client
inputs m selection bits r = (r1, . . . ,rm).

- The server initializes a random vector ∈ {0, 1}n and client a random m × k
bit matrix T .

- The parties utilize the OT primitive, where the server acts as a receiver with
input s, and the client acts as a sender with inputs (ti, r ⊕ ti)i∈[1,k].

- Let Q be the m× k matrix of values received by the server. Then, the server
sends (yj,0, yj,1) where yj,0 = xj,0 ⊕H3(j, qj) and yj,1 = xj,1 ⊕H3(j, qj ⊕ s).

Outputs: The client outputs zj = yj,rj ⊕H3(j, tj).

Fig. 7: Protocol ΠOTE which realizes the OTE functionality FOTE .

5.4 Schnorr protocol

In our work, Schnorr protocol [23] are the main building blocks for NIZK Proof.
The protocol is a way of proving knowledge of the elliptic curve discrete logarithm
(ECDH) with a low probability of cheating (knowledge error) which is equal to
2−k. The protocol is also designed to ensure that an honest verifier cannot gain
any additional information.

Schnorr protocol ΠSchnorr

Parameters:
Input a security parameter k, output pp = (G(Fp), p,H,G), where H1

R←− G(Fp).
Input:

- The prover selects a random integer rα , computes a commitment t = rα ·G.
The challenge is then computed as c = H1(G||y||m||t), wherem is the message
and PK{(α) : y = α ·G}.

- The prover computes the protocol response s = rα−c · α. The proof consists
of the pair (s, c) and sends it to the verifier.

- The verifier performs the computation t̂ = G · s + y · c and subsequently
validates the equation c = H1(g||y||t̂) for consistency.

Outputs: "1" if the verifier accepts the protocol and "0" otherwise.

Fig. 8: Protocol ΠSchnorr which the Schnorr signature functionality.
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6 Main Construction and Security Analysis

This section introduces the detailed construction and security proof. The ASKPIR
involves three players:

– Data Subject(DU): The actual owner of the payload and ID numbers in
the server.

– Client(C): uses the DUs’ ID numbers X = {IDi, IDi ∈ {0, 1}l1 , i ∈ [n1]}
to retrieve the corresponding payload. However, the client requires the au-
thorization of the DUs to use IDi.

– Server(S): stores the set Y =
{
(ID′i, Di), ID

′
i ∈ {0, 1}

l1 , Di ∈ {0, 1}l, i ∈ [n2]
}
,

where ID′i denotes a DU ’s ID number and Di represents the associated pay-
load.

6.1 ASKPIR

The ASKPIR protocol consists of six algorithms and the detailed algorithm
design is as follows:

Setup Algorithm:(Setup(k, λ) → (pp, SKc, PKc, ski, sks)). It inputs
security parameters k and λ, generates SKc, PKc, ski, and sks, and generates
public parameters pp. The specific steps are as follows:

1) The system runs the setup algorithm to produce an elliptic curve denoted
as G(Fp) with base point G. Suppose H is a point on the elliptic curve,
H1 : {0, 1}∗ −→ {0, 1}l′ and H2 : {0, 1}∗ −→ {0, 1}l′ are two random
oracles, where l′ ≥ λ + log2

n1n2 , and the output public parameter pp =

{G(Fp), G,H,H1, H2, N}. It also outputs a sks
R←− [N − 1] for the S, a

sk = {ski
R←− [N − 1]|i ∈ [n1]} for the DUs, and a public-private key pair

(PKc, SKc) for the C, where SKc
R←− [N − 1] and PKc = skc ·G.

RegDID Algorithm:(GenDID(pp, ski, IDi, αi) → DIDi, UIDi). The
DUi takes IDi to register with the Blockchain smart contract and generates a
DIDi and a DID document. The DID document contains the DIDi and can be
stored on the Blockchain. The specific registration steps are as follows:

1) DUi uses a hash algorithm to generate hidi = H1(IDType ‖ IDi) ·αi, where
αi is secret blinding factor randomly chosen in Zp and the IDtype denotes
the class of identifier that is present within a keyword.

2) Then DUi uses hidi and ski to generate the unique identifier of the DIDi

Method-Specific Identifier through the Pedersen Commitment. The compu-
tation process is as follows:

ComHIDi
= ski ·H + hidi ·G (7)

3) The DUi sets DID = did : ASKPIR : Comhid and the DID document is
stored in the blockchain. In addition, the DUi calculated UIDi = hidi · G,
which represents the right that the S can use IDi to do computations. These
UIDs are also stored on the blockchain.
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GenAut Algorithm: (GenAut(DID, pp, pkc) → (Tokeni, proofi)). If
C wants to use DUi’s ID as the keywords to retrieve the corresponding payload,
they must obtain authorization from DUi. The DUi authorization process is as
follows:

1) The DUi first computes a Token for payload query authorization where
Tokeni = hidi · PKc. Then, DUi sends DIDi, Tokeni to the C.

2) The DUi generates a proof from DID and Token. Given H, G, PKc, DIDi,
N , Tokeni, the DUi to prove to S:

PoK

ski, hidi : DIDi = ComtHIDi
= ski ·H + hidi ·G
∧

Tokeni = hidi · PKc

 (8)

The DUi constructs NIZK proof based on the Schnorr protocol and the Fait-
Shamir heuristic:
- Select r1,i, r2,i

R←− Zq and compute Q1,i = r1,i ·G+ r2,i ·H;
- Compute Q2,i = r1,i · PKc;
- Compute ci = H1 (G ‖H‖DIDi ‖N‖Tokeni||PKc||Q1,i ‖Q2,i‖);
- Compute s1,i = r1,i − ci · hidi;
- Compute s2,i = r2,i − ci · ski;

3) The DU sends a parameter of NIZK Proof: proofi = (ci, s1,i, s2,i) to the C.

VerAut Algorithm:(VerAut(DIDi,PKc,Token
′
i, proof

′
i ) → (0, 1)).

1) After receiving the NIZK proof ′i=
(
c′i, s

′
1,i, s

′
2,i

)
, if C wants to use the

DUi’s ID to query personal information, they must send the relevant au-
thorization parameters (DID′i, PKc, T oken

′
i, proof

′
i) to S for authoriza-

tion verification, so that S can check whether the DU ′i queried by C and
the DUi authorized to C have the same ski and IDi. the S performs the
following verification operations:
- Compute Q′1,i = DID′i · c′i +G · s′1,i +H · s′2,i;
- Compute Q′2,i = Token′i · c′i + PKc · s′1,i;
- Compute ci∗ = H1

(
G ‖H‖DID′i ‖N‖Token′i||PKc||Q′1,i||Q′2,i

)
;

- The server verifies whether the equation c′i = ci
∗ is true. If true, the

verification passes, otherwise the verification fails.
2) If the verification is passed, S performs subsequent operations; if the ver-

ification fails, the retrieval request operations are refused. The number of
times this process is executed is determined by the number of keywords
(n1) queried by the C.

GenKS Algorithm:(GenKS(Token, I, SKc, sks) → e). This algorithm
is inspired by the construction of mqRPMT and the C uses the Token as the
keywords to search the associated payloads. After running, the C outputs a
choice bit vector e = (e1, . . . , en1

) such that ei = 1 if and only if IDi = ID′i but
without knowing ID′i, while the S learns nothing.

1) C inputs a set Token = {Token1, . . . , T okenn1
} and the S inputs a set I =

{(UID1, D1) . . . , (UIDn2 , Dn2)}, where Di ∈ {0, 1}l.
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2) S computes Fsks(UIDi) = sks ·UIDi, i ∈ [n2] with a sks and Mi = H2(Fsks
(Tokeni)) = H2(sks · Tokeni), i ∈ [n1].

3) S picks a random permutation π over [n2] and sends MΠ(i) = H2(Fsks(Toke
nΠ(i))) = H2(sks · TokenΠ(i)), i ∈ [n1] and Fsks(UIDi) = sks · UIDi, i ∈
[n2] to C. Another option is to add Mi = H2(Fsks(Tokeni)) = H2(sks ·
Tokeni), i ∈ [n1] to a Bloom filter Ω instead of shuffling explicitly. Then S
sends the resulting filter Ω′ to the C.

4) For i ∈ [n2], C computes M ′i = H2(FSKc,sks(UIDi)) = H2(SKc · sks ·UIDi)
and if ∃i ∈ [n1], s.t.Mi =M ′i or M ′i ∈ Ω′, they set ei = 1, else set ei = 0.

PayTrans Algorithm: (PayTrans(e, I) → D′
i). The two parties invoke

the FOTE algorithm to negotiate the symmetric key, in which e is used as the se-
lection bits. Then the server uses symmetric encryption to transmit the payloads
(corresponding to the e) to the client.

1) S initializes a random vector s ∈ {0, 1}k and C a random n1 ·k bit matrix T .
2) C as a sender with inputs (ti, e ⊕ ti), i ∈ [k] and S acts as a receiver with

input s. The parties invoke k times OT primitive.
3) let Q denote the n2 · k matrix of values received by S. (Note that qj =

(ej · s) ⊕ ti.) For j ∈ n2, S sends (yj,0, yj,1) where yj,0 = D ⊕H3(j, qj),
yj,1 = Dj,1 ⊕H3(j, qj ⊕ s). The D is a random string of the same length as
Dj,1.

4) For 1 ≤ j ≤ n2 ∩ ej = 1 , C outputs D′i = yj,1 ⊕H3(j, tj).

Correctness.

– Given the PKc, pp from running Setup algorithm and a tuple (DIDi, tokeni),
the Completeness, Soundness and Zero-Knowledge of the NIZK proof =
(ci, s1,i, s2,i) is verified by the following:
• Completeness: As long as the DUi has the corresponding IDi and ski,

it can be verified by S through the following equations:

Q′1,i = DIDi · ci +G · s1,i +H · s2,i
= (ski ·H + hidi ·G) · ci +G·
(r1,i − ci · hidi) +H · (r2,i − ci · ski)
= r1,i ·G+ r2 ·H = Q1,i

(9)

Q′2,i = Tokeni · ci + PKc · s1,i
= hidi · PKc · ci + PKc · (r1 − ci · hidi)
= PKc · r1 = Q2,i

(10)

c′i = H1

(
G ‖H‖DID′i ‖N‖Token′i||PKc||Q′1,i||Q′2,i

)
= ci (11)

• Soundness: If the DU does not have the corresponding ID and sk, it
cannot pass the S’s verification, that is, the probability of the prover
deceiving the verifier is negligible. For detailed proof see Equations 9, 10
and Theorem 3.
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• Zero-Knowledge: The DU only discloses to S whether he/she has the
corresponding IDi and ski statement (DIDi and Token respectively),
and uses the Pedersen Commitment and Shamir protocol to ensure that
no additional information about the IDi and ski will be leaked.

– Given the SKc,i and sks,i from running GenKS Algorithm, and input a tuple
set (Token, I), the output e is correct except the event E that FSKc,sks(UIDi) =
Fsks(TokenΠ(i)) for some ID′ 6= ID. Assuming x 6= y, by the collision resis-
tance of H2, we have Pr[H1(ID

′) = H1(ID)] = 2−k. The crucial observation
is that

Fsks,SKc
(Tokeni) = H2(sks · (SKc · hidi · αi ·G))

= H2(SKc · sks · (hidi · αi ·G))
= FSKc,sks(UIDi)

(12)

By pseudorandomness of F , we have Pr[Ei] = 2−k. Apply the union bound,
we have Pr[E] = n1 · n2 · 2−k = negl(λ)

6.2 Security Proof

In this section, we provide detailed security proofs of Anonymity and Unforge-
ability of the proposed protocol. Moreover, we demonstrate that ASKPIR can
achieve malicious security in the framework of Universal Composability (UC),
which is described in Appendix A).

Theorem 2 (Data Subject Anonymity). If Pedersen Commitment is hid-
ing, the ASKPIR protocol satisfies anonymity of data subject.

Proof. Suppose there exists a PPTA has a non-negligible advantage in ExptAnonASPIR(k),
we can build a simulator B breaks hiding of Pedersen Commitment with the same
advantage. B simulates ExptAnonASPIR(k) of definition 1 as follows:

- Setup:B executes the Setup algorithm, the system generates pp← SysGen(1k),
and sends pp to A;

- Queries 1: Throughout the experiment, B responds A’s queries as below:
• OReg: After receiving the query, B outputs honest DUi’s DIDi and

responds it to A;
• ODID: After receiving the query, B access the DIDs on the Blockchain

and return its to adversary A;
- Challenge: A submits ID0, ID1 to B as the challenge values. B picks a
random bit 0, 1

R← β and runs the Pedersen Commitment algorithm. B
outputs DIDβ and return it to adversary A.

- Queries 2: A continues to adaptively query OReg and ODID.
- Guss: A outputs a guess β′ for β and wins if β = β′.

Since DID0 and DID1 are two Pedersen Commitments, then suppose A can
win the ExptAnonASPIR(k) with a non-negligible advantage, then the B solves the
hiding of Pedersen Commitment with the same advantage. It contradicts the
hiding of Pedersen Commitment and the advantage of an adversary against
hiding is Adv(k) = 0, corresponding to Definition 3. Thereby, the advantage of
AdvAnonA (k) ≤ negl(k), this proves the anonymity of data subject.
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Theorem 3 (Unforgeability). In ROM, the protocol is unforgeability of au-
thorization if ECDLP is hard.

Proof. Suppose there exists a PPTA has a non-negligible advantage in ExptUnforASPIR(k),
we can build a simulator B breaks the ECDLP with the same advantage. B con-
trols the oracle and simulates an experiment ExptUnforASPIR(k) of definition 1 as
follows:

- Setup: Suppose that B gets a stochastic example ((Q,H, γ1, γ2) ∈ Gp|γ1 =
x1 ·G, γ2 = x2 ·H) of ECDLP problem and they want to compute x1, x2. The
B inputs the challenge instance and runs pp← SysGen(1k). The algorithm
outputs pp, PKc and ski and sends them to A.

- Queries 1: B controls the ROM and completes the interaction between B
and A as follows:
• OReg: After receiving the query, the B outputs honest DU’s DID and

responds it to A;
• ODID: After receiving the query, theB gets the {DID1, . . . , DIDn},{PKc,
. . . , PKn}, {Token1, . . . , T okenn} and {proof1, . . . proofn} on the block
chain and return its to adversary A;

• Hs: B maintains list L of tuple {δi, ci}. When adversary A issues a query
δ = (G,H,DID∗, N, UID∗, T oken∗, pk∗, Q1, Q2), B checks whether it
has been inquired before. If it has been inquired before, it finds the
corresponding record and returns it to A; Otherwise, B randomly selects
C∗i and adds {δi, c∗i } to L.

- Forge: After receiving the query, B outputs a forged NIZK proof (proof∗ =
(c∗, s∗1, s

∗
2)). B first picks two randomly numbers r1, r2 ∈ Zq, and computers

Q1 = r1 ·G+ r2 ·H and Q2 = r1 · pk to A. Then A inputs some parameters
(G,H,DID∗||N ||Token∗||PK∗c ||Q1||Q2) to ROM and return c∗i .

- Queries 2: A continues to adaptively query OReg and ODID.

Solve ECDLP Problem: To generate the forged NIZK proof (proof∗ = (c∗i , s
∗
1,

s∗2)) on the tuple (G,H,DID∗, N, UID∗, T oken∗, pk∗, Q1, Q2), A must query
ROM and return c∗i . Follow on, if B verifies that the NIZK proof∗ is invalid, in-
terrupt interaction with the A; Otherwise, from the Forking Lemma(Theorem 1),
after a polynomial replay of the adversary A, we obtain two valid NIZK proofs
proof ′ = (c′, s′1, s

′
2) and proof∗ = (c∗, s∗1, s

∗
2) with c′ 6= c∗. Then B has the

following equalities: x1 = HIDi = (s′1 − s∗11)/(c′ − c∗) and x2 = ski = (s′2 −
s∗2)/(c

′ − c∗), from which it obtain discrete logarithm of elliptic curves G · γ−11

and G · γ−12 .
Therefore, B can solve the ECDLP with a ε probability, which contradicts

the Assumption 1, so the advantage of AdvUnforA (k) ≤ negl(k). Thereby, our
protocol satisfies the authorization unforgeability.

7 Theoretical Comparison

Table 3 presents an evaluation of the theoretical computational and communi-
cation complexity of our protocol in compare with the protocols of Cristofaro
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et al. [6] and Layouni et al. [17,18]. We divide all protocols into three phase
for detailed analysis, namely the initial stage, the authorization phase and the
SPIR phase. The elliptic curve group elements are sized by ρ, with a value of 256
bytes. Additionally, for the exponentiation operations in cyclic group, there are
|p| = 1024 bytes. l is the length of payloads (l = 32 in the concrete numbers). Te
is the exponentiation operation time in the cyclic group; Tm is the multiplication
operation time in the cyclic group; Tbp is the execution time of a bilinear pairing
operation; Th is the execution time of a general hash function operation; Tm(ec)

is the execution time of a scale multiplication operation related to the ECC.

In terms of computational complexity, our protocol does not result in a sig-
nificant increase in computation cost for authorization. Furthermore, when com-
pared to other related works, our protocol exhibits notable advantages in terms
of computational overhead. (1) In the Setup phase, the protocol of Cristofaro et
al. [6] and Layouni et al. [17] must generate RSA-based keys, which requires a lot
of computing resources. Besides, the computational overhead of Layouni et al.
[17] is also related to the l, which is not suitable for transmitting large messages.
The computing cost of Layouni et al. [18] is mainly related to the number of
data subjects nm that need to be authorized, and the computing cost is up to
O(n2). In our protocol, the system generates keys simply and DU can quickly
calculate and generate DID, which is mainly completed by Tm(ec). (2) In the Au-
thorization phase, the computational cost of Layouni et al. [17] is related to the
DU ’s anonymous credential, which involves a lot of Te operations.The computa-
tional overhead of Layouni et al. [17] protocol and Cristofaro et al. [6] protocol
is similar, mainly consisting of Te operations. Our protocol is the lowest because
we mainly spend Tm(ec) computational overhead in building the authorization
algorithm. Furthermore, our protocol generates Tokens during authorization
and performs precomputation for client input, reducing the computing overhead
during the next phase. (3) In the SPIR phase, the computational cost is mainly
related to n2. The protocol of Layouni et al. [18] performs a large number of
bilinear operations Tbp and uses asymmetric encryption to transmit data, with
a computational cost of up to O(n2). The computational cost of Layouni et al.
[17], Cristofaro et al. [6] and our protocol is mainly related to Te, Tm and Tm(ec)
respectively, among which Tm(ec) requires the least computing resources. More-
over, our protocol uses OTE technology, which avoids public key calculation and
can form symmetric encryption to transmit data. Based on the above analysis,
our protocol performs best in terms of computational consumption.

In terms of communication complexity, our protocol performs better and
requires less communication bandwidth overhead. (1) In the Setup phase, our
protocol does not require registration with a third party and does not consume
bandwidth by interacting with any party. the protocol of Layouni et al. [17]
needs to interact with CA to generate attribute-based anonymous credential,
and bandwidth consumption is also related to l. The computational overhead of
Layouni et al. [18] protocol and Cristofaro et al. [6] protocol is similar, mainly
consisting of n1|p|. (2) In the Authorization phase, the Layouni et al. [17] protocol
involves multiple rounds of interactions betweenDU and the client in the process
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of issuing anonymous credentials, and the communication data is generated by
Te and Th operations. The protocol of Layouni et al. [18] and Cristofaro et al. [6]
have fewer rounds of interaction, and the main communication data is generated
by Te. As for our protocol, the bandwidth consumption is mainly related to the
length of the hash value. (3) In the SPIR phase, the two protocols of Layouni
et al. [17,18] rely heavily on asymmetric encryption, the communication cost
of transmitting ciphertext is high, and they are not suitable for batch retrieval
of large data payloads. In the SPIR phase, the two protocols of Layouni et al.
[17,18] rely heavily on public key encryption, and the communication cost of
transmission is mainly related to the value of |p|. The protocol of Cristofaro et
al. [6] performs best, with only two rounds of interaction and communication
complexity independent of the client’s query set n1. A large number of matrix
transfers mainly causes our bandwidth resource consumption. Still, the Setup
and Authorization phases save a lot of communication overhead, especially since
ECC-based protocol has low bandwidth requirements and can be easily piped.
Our protocol can run on millions of elements even on a standard PC.

Table 3: Comparison of Theoretical Computational and Communication Com-
plexity of Related Works.

Protocol Computational
Setup Authorization SPIR

[6] n1(Te + Th) n1(3Te + Tm + Th) n1(Te + 2Th) + n2(Tm + Th)

[17] n1lTe n1((l + 1)Te + Tm + 2Th) 3n1Te + 3n2Te
[18] nmn1Te n1(2Te + Th) n1n2Tp + n2Tm

ASKPIR Tm(ec) + n1(Th + 2Tm(ec)) n1(8Tm(ec) + 2Th) n1Th + n2(Tm(ec) + 3Th)

Protocol Communication
Setup Authorization SPIR

[6] 3n1|p| n1|p| n2(l + λ+ log2
n1n2 + |p|)

[17] n1l|p| n1(|p|(6 + 2l) + λ+ log2
n1n2) 4n1|p|+ 2n2|p|

[18] n1|p| 3n1|p| 3n1|p|+ n2(λ+ log2
n1n2 + l|p|)

ASKPIR ρ(1 + 2n1) n1(ρ+ 2|N |+ λ+ log2
n1n2) n1(1.2k) + n2(λ+ log2

n1n2 + ρ+ 2l)

8 Performance Evaluation

8.1 Security Attribute and Function Evaluation

This section examines the security attribute and function of our protocol and
compares it to related works. In Table 4, we list several features of the pro-
tocols, such as Anonymity (T1), Unforgeability (T2), Decentralized registration
(T3), Batch Retrieval (T4), Collusion Attack (T5) , Malicious Model (T7) and
Symmetric encryption (T7).

Our protocol is based on DID, which provides an effective method for data
subjects to authorize data and maintain identity privacy in a distributed envi-
ronment, and guarantees the anonymity of the data subject’s identity and the
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Table 4: Comparison of Security Attribute and Function of Related Works.

Protocol T1 T2 T3 T4 T5 T6 T7

[6] � × × � � × �
[17] � � × × × × ×
[18] × � × × × × ×

ASKPIR � � � � � � �

unforgeability of the authorization information. Additionally, the protocol builds
PSI-Payload to enable batch keyword searches and Transmit payload with sym-
metric encryption. The Layouni et al. [17] protocol offers anonymous credentials
to ensure both anonymity and unforgeability, but it only considers single-user
authorization. Besides, the protocol introduces a third-party CA that may col-
lude with the server and cannot resist collusion attacks. Fortunately, our protocol
does not require registration with a third party and is resistant to collusion at-
tacks. The Lajuni et al. [18] protocol enables multiple data subjects to authorize
client to query data. However, the asymmetric encryption used in data transmis-
sion is very complex and cannot be applied to uniformly manage the identities
of multiple data subjects and ensure their anonymity in a distributed environ-
ment. This protocol only hides the ID of data subjects in exponential operations
and does not uniformly manage IDs. Moreover, the server authorization is only
to verify whether the client’s access data complies with its defined policy, and
does not consider the unforgeability of the authorization. Overall, our protocol
compensates for all the shortcomings of existing protocols.

8.2 Experimental Results

We develop ASKPIR on the basis of Curve25519 [3], where a = 1157920892103562
48762697446949407573530086143415290314195533631308867097853948, b = 410
5836372515214212932612978004726840911444101599372555483525631403946740
1291, p = 2255−19, andN = 578960446051781243813487234747037867650430717
07645157097766815654433548926975 and Our PSI-Payload is developed based
on the mqrpmtpsi code in Kunlun library [30]. All our experiments were im-
plemented on a benchmark machine with Intel Core i5 2.4 GHz, 32 GB RAM,
8 physical cores. The network types were simulated using the Linux command
tc. Specifically, a LAN setting with 0.02 ms round-trip latency and 1 Gbps net-
work bandwidth was used, as well as a WAN setting with a simulated 80 ms
round-trip latency and 100 MB network bandwidth was used. The server held
the input sets in n2 ∈

{
212, 216, 220

}
. The comparison measures how much com-

munication a protocol would require over an idealized network, regardless of
other environmental and encoding factors.

In Table 5, we give detailed computational and communication performance
results for 4 threads execution. For the server size n2 = 220 and client set size
n1 = 28, we obtain an overall running time of 31.56 s and only 97.47 MB of
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Table 5: Communication cost and running time of our protocol.

n2 n1
Communication (MB) LAN(s) WAN(s)

Authn Client Server Total Authn Authz Total Authn Authz Total

212

28 0.4 0.32 0.099 0.8224 1.1 0.25 1.53 6.4 0.85 9.14

210 1.8 0.144 0.32 2.2 15.72 0.28 16.24 67.1 0.97 69.27

212 8.6 0.33 0.32 9.25 255.36 1.69 264.14 548.29 2.56 565.15

216

28 0.45 1.032 5.07 6.15 10.09 0.63 13.12 8.32 0.95 22.37

210 1.89 1.082 5.07 7.962 15.2 0.34 23.94 38.2 1.24 74.44

212 7.6 1.27 5.081 13.96 207.44 0.56 210.5 457.2 1.56 462.36

220

28 0.47 16 81 97.47 1.4 0.15 31.56 2.21 0.89 53.1

210 1.89 16.082 81 98.972 18.2 1.69 59.89 34.23 2.99 107.22

212 7.6 16 81 104.6 267.36 1.89 307.25 350.54 2.26 407.8

communications within a LAN, in which the running time of 1.4 s and the com-
munication cost of 0.47 MB for the authorization (Authn). In addition, the total
time it takes for the server to verify whether the data subjects’ authorization is
valid (Authz) only takes 0.15 s. When considering the medium server set size
n2 = 216 and client set size n1 = 28, our protocol requires only 6.15 MB of
communication and 22.37 s of total time of communications within a WAN, in
which the running time of 8.32 s and the communication cost of 0.45 MB for the
authorization (Authn). The total time to verify the authorization of the server
only takes 0.15 s. When considering the small server set size n2 = 212 and client
set size n1 = 210, our protocol requires only 2.2 MB of communication and 16.24
s of total time of communications within a LAN, in which the running time of
15.72 s and the communication cost of 1.8 MB for the authorization (Authn).
The total time to verify the authorization of the server only takes 0.28 s. It can
be seen that in the first two cases, the authorization operation does not affect
the communication and computing costs, and the performance is only related
to the size of the client. When the input set of the server is small, since we use
ECDH-based PSI-Payload in the SPIR phase, the computational cost and com-
munication overhead of the protocol are not high, which is quite different from
the authorization overhead determined by the size of the client set. However, in
real scenarios, DIDs are pre-generated by the data subject, and the time it takes
for the data subject to generate authorization is shorter than our experimental
results. The implementation also takes advantage of our authorization phase to
perform a precomputation to reduce the online running time of SPIR phase. We
remark that our pre-processing can be done entirely offline without involving the
client. Specifically, the Token issued by the data subjects to the client during
the authorization phase can not only participation in NIZK and be verified by
the server, but can also be used as an input set by the client, saving a lot of
computing overhead of client. It is worth noting that the computational work-
load for the client is minimal, involving only the sampling of random values and
a scale multiplication operation that is associated with the ECC. Moreover, all
the operations are performed in a streaming manner, allowing for the greatest
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amount of work to be carried out concurrently by the parties. Therefore, our
reported performance is also indicative of a scenario in which the client is a less
powerful device connected via a mobile network.

9 Conclusion

The focus of this paper is to solve the authorization problem of SPIR protocol.
More precisely, the protocol allows the client to use the identity of the data
subject to query personal information before the server needs to verify that the
identity information has been authorized by the data subject. At the same time,
the identity of the data subject cannot be learned by the server. The structure
we proposed mainly relies on DID, which not only realizes the identity manage-
ment and privacy of multiple data subjects when sharing data in a distributed
environment, but also solves the data authorization problem of data subjects
in combination with NIZK. On this basis, we introduced the functions of batch
retrieval based on PSI-Payload. Eventually, we implement this construct and
propose a new SPIR primitive, called ASKPIR. The proposed construction is
proved secure under the malcious environment and contain anonymity and un-
forgeability. Even with the expanded authorization, the presented protocol does
not introduce greater complexity than that of the underlying SPIR.
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A Security Proof in Malicious Mode

Theorem 4. The ASKPIR protocol realizes the functionality of FPayloadPSI against
a malicious adversary in the random oracle, FmqRPMT and FOTE-hybrid model.

Proof. First observe that the protocol is correct. We prove the following two
Lemmas:

Lemma 1. The ASKPIR protocol realizes the functionality of FPayloadPSI against
a malicious client in the ROM, FmqRPMT and FOTE-hybrid model.

Proof. Consider a malicious clientA. The simulatorB plays the role of FmqRPMT

and FOTE , and interacts with the client as follows:

1) Client sends X = (Token1, . . . , T okenn1
) to the FmqRPMT , the simulator B

observes X and sends e back as the FmqRPMT would.
2) B observes all of the client’s queries to random oracle H1.
3) B computes ID∗ = {Token∗ = SKc ·αi ·H1(ID

∗
i )·G|ID∗i was queried toH1},

and sends this to FPayloadPSI as the client’s effective input.
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4) Upon receiving from the ideal functionality the intersection payload Z∗ = {Di

|IDi= ID∗i , 1 ≤ i ≤ n1}, the simulator simulates the server’s input set Y ∗ as
{(UID∗i = H1(ID

∗
i )·G,D∗)|D∗ ∈ D′} along with |n1|−|e| additional random

values.

To demonstrate the indistinguishability of this simulation, consider the following
hybrid scenarios:

Hybrid 1: The same as the real protocol except the the simulator keeps
a list L of all queries directed to the random oracle H1 by the adversary A.
When the adversary selects its FmqRPMT input X = (Token1, . . . , T okenn1

),
the simulator checks all ID′ ∈ L and defines the set ID∗ = {Token∗ = SKc ·
H1(ID

∗
i )·G|ID∗i was queried toH1}. This hybrid remains indistinguishable from

the actual protocol interaction, as the only difference lies in internal record-
keeping data that is not utilized.

Hybrid 2: Now we change the previous Hybrid: after defining ID∗, the
simulator aborts if the honest server holds an UIDi = H1(ID

′
i) · αi · G where

ID′i /∈ ID∗i . It is adequate to demonstrate that the probability of this artificial
termination is negligible.

– Case ID′i ∈ L: then H1(IDi) was known at the time UID was defined.
Therefore it is by construction that IDi ∈ ID∗ ⇔ UIDi = H1(IDi) · αi ·G.
In other words, an abortion does not occur in this scenario.

– Case IDi /∈ L: then H1(IDi) is independent of UIDi, and thus UID∗ =
H1(ID

∗
i ) · αi ·G with probability 2−l1·N .

If l1 = k + log2
n2·n1 then by a union bound over at most n2 possible server’s

values, the probability of an abortion is indeed limited to 2−k.
Hybrid 3: The UID in previous experiment is modified and the simulator

samples UID. The simulator in this hybrid aborts if any Fskc(UIDi) has been
made by the adversary A. Since UIDi is randomly sampled, each sks · UIDi

follows a uniform distribution, thereby ensuring that the probability of abortion
is at most O(2−k).

Hybrid 4: Similar to Hybrid 3, we have the ability to modify the compu-
tation that defines the server’s Fsks(UIDi) message. Observe that

Fskc(UIDi) = {H2(sks · UIDi)|i ∈ [n1]}
= {H2(skc · αi ·H1(IDi) ·G)|i ∈ [n1]}

(13)

Due to the artificial termination introduced in the prior hybrid, this happens
for ID′i ∈ ID∗ if and only if ID′ ∩ ID∗. Hence, we can rewrite the server’s
Fsks(UIDi) message as:

Fsks(UIDi) = {H2(sks · UIDi)|UIDi ∈ X}
= {H2(sks · αi ·H1(ID

′
i) ·G)|ID′i ∈ ID′ ∩ ID∗}

∪{H2(sks · αi ·H1(ID
′
i) ·G)|ID′i ∈ ID′\ID∗}

(14)

where the {H2(sks · αi ·H1(ID
′
i) ·G)|ID′i ∈ ID′\ID∗} values are guaranteed to

be random. This hybrid is indistinguishable from the previous one, as we have
merely reformulated the same computation equivalently.
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Hybrid 5: Similar to Hybrid 4, except the the simulator no longer artifi-
cially terminates the process as introduced inHybrid 2. The indistinguishability
of the hybrids is upheld for the same reasons as previously explained. In this case,
the simulator does not utilize the items from {ID′\ID∗} at all. We conclude the
proof by observing that this hybrid exactly describes the final ideal-world simula-
tion: the simulator extracts ID∗, sends it to the ideal PSI functionality, receives
Z∗ , and uses it to simulate the server’s message Fsks(UIDi). We conclude the
proof by noting that this hybrid precisely character the final ideal-world simula-
tion. The simulator extracts ID∗, transmits it ideal PSI-Payload functionality,
receives Z∗, and employs it to simulate the server’s message Fsks(UIDi).

Lemma 2. The ASKPIR protocol realizes the functionality of FPayloadPSI against
a malicious server in the ROM, FmqRPMT and FOTE-hybrid model.

Proof. Consider a Malicious Server. The simulator plays the role of FmqRPMT

and interacts with the server as follows:

1) It observes the server’s input I = {UID1, . . . , UIDn} and output {Mi, i ∈ [n]}
from FmqRPMT , and also observes all of the server’s queries to random oracle
H2. Let I∗ be the set of all such UIDi.

2) When A sends Mi = H2(FSKcsks(UIDi)), the simulator computes I∗ =
{UID|UID ∈ I∗∧¬∃UID′ ∈ I∗s.t.UID 6= UID′∧FsksSKc

(UID) = FsksSKc
(UID′)}

and extracts I ′ = {UID|UID ∈ I∗ ∧H2(FsksSKc
(UID)) ∈Mi} and sends I ′

to FPayloadPSI .

To establish the indistinguishability of this simulation, consider the following
hybrid scenarios:

Hybrid 1: In this hybrid, which is identical to the actual protocol, the
simulation takes on the role of FmqRPMT .

Hybrid 2: Same as the real protocol interaction, except that the simulator
observes the server’s input I = {UID1, . . . , UIDn} and output {Mi, i ∈ [n]} for
FmqRPMT , and additionally observes all queries made to random oracle H2. The
simulator defines a set L consisting of all values Fsks,SKc

(UID) for which the
adversary queried H2 using the "correct" value Fsks,SKc(UID). Upon receiving
protocol message M , the simulator further defines the set I∗ = {UID|UID ∈
I∗ ∧ ¬∃UID′ ∈ I∗s.t.UID 6= UID′ ∧ FsksSKc

(UID) = FsksSKc
(UID′)}. This

hybrid scenario is indistinguishable from real protocol interaction, as it solely
involves recording bookkeeping information that remains unused.

Hybrid 3: Same as Hybrid 1, except the simulator aborts if the honest
client holds {Tokeni = UIDi·SKc|UIDi ∈ I\I∗} whereM ′i = H2(Fsks(Tokeni)) ∈
M . There are two cases for why such a Tokeni may not be in I∗:

– Case Fsks(Tokeni) ∈ L: then the value H2(Fsks(Tokeni)) was defined at the
time I∗ was computed, and Tokeni was excluded because the correct value
was not in M ′. The simulator will never abort in this case.

– Case Fsks(Tokeni) /∈ L: A did not query H2 at H2(Fsks(Tokeni)) prior to
sending M ′, thus the output of H2 is uniformly random and independent
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of M ′. The probability that this H2 output appears in M is thus |M | /2l2
where l2 is the output length of H2.

Overall, the probability of such an artificial abort is bounded by n |M | /2l2 ≤
n2/2l2 . Hence the two hybrids are indistinguishable.

Hybrid 4: The previous hybrid was modified in this study to compute the
output of the honest client. In the Hybrid 2, the honest client computes the
output according to the protocol specification as follows: {H2(Fsks(Tokeni)) ∈
M}. In this hybrid approach, we compute the output of the honest client as
e∗ = {ei|ID∗ = ID}. The two expressions are indeed equivalent, based on the
definition of I∗ and the introduction of artificial abort in the previous expression.
Furthermore, the equivalence betweenH2(Fsks(Tokeni)) and FsksSKc

(UID) dis-
cussed in the previous proof also holds.

Hybrid 5: Same as Hybrid 4, except we remove the artificial abort condi-
tion that was introduced in Hybrid 3. Similar to Hybrid 4, we eliminate the
artificial abort condition introduced in Hybrid 3. The indistinguishability of
the hybrids remains unchanged for the same reasons as before. It is important
to note that in this hybrid, the simulator solely utilizes the honest client’s input
I for computing their final output. By considering this hybrid, we can precisely
describe the simulation of an ideal world: The simulator observes both I and
M , which represents server’s oracle queries, to derive a set I∗. Subsequently, it
sends I∗ to the ideal functionality resulting in delivery of e∗ to the client.
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