
Crystalor: Recoverable Memory Encryption Mechanism
with Optimized Metadata Structure

Rei Ueno
Tohoku University

Sendai, Japan
rei.ueno.a8@tohoku.ac.jp

Hiromichi Haneda
Tohoku University

Sendai, Japan
hiromichi.haneda.r5@dc.tohoku.ac.jp

Naofumi Homma
Tohoku University

Sendai, Japan
naofumi.homma.c8@tohoku.ac.jp

Akiko Inoue
NEC

Kawasaki, Japan
a_inoue@nec.com

Kazuhiko Minematsu
NEC

Kawasaki, Japan
k-minematsu@nec.com

ABSTRACT
This study presents an efficient recoverable memory encryption
mechanism, named Crystalor. Existing memory encryption mech-
anisms, such as Intel SGX integrity tree, offer neither crash con-
sistency nor recoverability, which results in attack surfaces and
causes a non-trivial limitation of practical availability. Although
the crash consistency of encrypted memory has been studied in
the research field of microarchitecture, existing mechanisms lack
formal security analysis and cannot incorporate with metadata op-
timization mechanisms, which are essential to achieve a practical
performance. Crystalor efficiently realizes provably-secure recov-
erable memory encryption with metadata optimization. To estab-
lish Crystalor with provable security and practical performance,
we develop a dedicated universal hash function PXOR-Hash and
a microarchitecture equipped with PXOR-Hash. Crystalor incurs
almost no latency overhead under the nominal operations for the
recoverability, while it has a simple construction in such a way
as to be compatible with existing microarchitectures. We evalu-
ate its practical performance through both algorithmic analyses
and system-level simulation in comparison with the state-of-the-
art ones, such as SCUE. Crystalor requires 29–62% fewer clock cy-
cles per memory read/write operation than SCUE for protecting a
4 TB memory. In addition, Crystalor and SCUE require 312GB and
554GB memory overheads for metadata, respectively, which indi-
cates that Crystalor achieves a memory overhead reduction of 44%.
The results of the system-level simulation using the gem5 simula-
tor indicate that Crystalor achieves a reduction of up to 11.5% in
the workload execution time compared to SCUE. Moreover, Crys-
talor achieves a higher availability and memory recovery several
thousand times faster than SCUE, as Crystalor offers lazy recovery.

KEYWORDS
Memory encryption, Secure computer architecture

1 INTRODUCTION
1.1 Background
Memory encryption is an essential security primitive for modern
computers. Owing to extensive attacks on main memory, includ-
ing the cold boot attack, Rowhammer, and RAMbleed [28, 37, 41],

which pose real threats, memory encryption is becoming increas-
ingly relevant in a wide range of computers. Trusted execution
environment (TEE) mechanisms, such as Intel software guard ex-
tension (SGX) andARM secure encrypted virtualization (SEV), sup-
port main memory (DRAM) encryption for realizing resource iso-
lation, remote attestation, etc. Moreover, non-volatile memory and
persistent memories (NVMs), such as MRAM [19], have been de-
ployed and have attracted substantial attention. In several recent
systems, NVMs have been deployed as main memory in addition
to or instead of DRAM for higher performance, lower power con-
sumption, and larger capacity, such as NVDIMM and Intel Optane
Persistent Memory [2]. Attacks on main memory are more seri-
ous and realistic for NVM than DRAM owing to the non-volatility.
With the advances in large-scale (persistent) memories, a high de-
manded exists for the development of efficient memory encryption
mechanism for the security of modern and future computers.

Conventional security notions.Memory encryption realizes
the confidentiality (privacy) and/or authenticity (integrity) of main
memory data based on symmetric cryptography, including encryp-
tion, authenticated message code (MAC), and authenticated en-
cryption (AE) [25]. In [6], Avanzi et al. classified and formalized
memory protection into three levels:

• L1: confidentiality only,
• L2: confidentiality and integrity,
• L3: confidentiality, integrity, and replay protection.

For example, AMD–SEV employs AES–XEX for memory encryp-
tion [1], corresponding to L1. Aswell, theOptanemodule is equipped
with a 256-bit AES–XTS engine for data privacy without authentic-
ity. However, authenticity is currently considered as essential for
protecting main memory, as some practical attacks have been re-
ported that exploit the lack of (full) authenticity of encryptedmem-
ory (e.g., ciphertext-based side-channel attacks) [12, 44–46, 55–57,
76, 79]. Here, replay attack, which involves a data move in the time
domain (i.e., copy-and-paste of data from past timing), is sophisti-
cated manipulation/forgery. Replay attack cannot be prevented by
the simple use of encryption and MAC (i.e., L2 security), as the ma-
nipulated data had been originally valid. Hence, many studies have
been devoted to the realization of L3 security, which considers the
strongest adversary counteracted by memory encryption (i.e., an
active but non-invasive hardware attacker AHW

active [6]), from both
cryptographic and microarchitectural perspectives [15, 17, 22, 25,

26, 31, 34, 43, 81]. For example, Intel SGX memory encryption,
based on the SGX integrity tree (SIT), achieves L3 security [15].

Memory authentication trees. For an L3memory encryption,
Merkle tree [52, 53] (in combination with an encryption of leaf
nodes) and parallelizable authentication tree (PAT) [29] have been
developed for protection against extensive attacks with a realis-
tic computational latency. SIT is a popular PAT instance [15, 25,
26]. Each leaf node consists of encrypted data, a counter value
(i.e., nonce), and a verification tag, whereas each intermediate/root
node consists of a nonce and a tag to verify its child node as secu-
rity metadata. When reading (resp. storing) data in a leaf node, all
nodes on the path from the leaf to root nodes are verified (resp.
updated). Such a tree structure enables real-time processing of ver-
ification and update because its path verification is far faster than
the MAC computation for the entire memory. In addition, the root
node, which consists of only several hundred bits, is stored on-chip,
as the attacker supposedly cannot manipulate on-chip data. Thus,
the root node acts as a root of trust to preclude replay attacks.

Crash consistency. The aforementioned L3 security has been
considered as a sufficiently strong goal in the plainmodel; however,
it is insufficient for the practice of memory encryption. For sound
availability, memory data should guarantee crash consistency: the
data are not broken after a crash (e.g., sudden power-off/blackout)
occurs [49]. For this purpose, a write pending queue (WPQ) is em-
ployed in CPUs as an asynchronous DRAM refresh (ADR) domain
to persist data to be stored inmainmemory. For encryptedmemory
based on Merkle tree or PAT, however, it is mandatory to guaran-
tee the consistency of all data, including metadata of intermediate
nodes. If a tag verification (on intermediate nodes) fails, the related
data (leaf node) becomes unavailable because it may have beenma-
nipulated. However, it is non-trivial to guarantee crash consistency
of the entire tree because a path is to be updated serially in practice
(although the computation may be parallelized [29]). This is called
crash window problem [32]: there must exist a moment when a
path is inconsistent (i.e., some nodes are updated while others are
not yet). Thus, it is challenging to efficiently guarantee consistency
against crashes whenever the system operates.

Attack on availability. The security (i.e., confidentiality and
integrity) of PAT has been proven [29, 34] in the adversarial model
in which the attacker (intentionally) causes crashes and queries
inconsistent trees. However, the crash consistency suggests an ad-
ditional security issue with respect to availability. A malicious at-
tacker may mount a type of denial-of-service (DoS) attack by in-
jecting error(s) into the tree nodes, which makes the related data
unavailable1. In addition, such faults can be accidentally injected
owing to, for example, soft errors. In contrast, the existing crash
consistency mechanisms (see Section 1.4) can neither correct the
errors (not owing to crash) nor recover the memory with integrity.
Thus, the L3 memory encryption significantly degrades availabil-
ity against malicious attackers and faults, and it is quite important
to develop how to maintain the availability of encrypted memory2.

1Although some memories are equipped with an error-correcting code (single
error correction and double error detection (SECDED)), it offers neither correc-
tion/detection capabilities nor security against malicious attackers.
2We stress that any mechanism cannot always recover the data if encrypted payload
data (i.e., contents unrelated to the tree structure) is compromised. Our proposed
mechanism can incorporate with error correction code(s) and tagged/colored mem-
ory [20, 27, 42, 58, 68], which offer an error correction in main memory (encrypted

New security notion and our motivation. Given the above
observations, we introduce a new security level for memory en-
cryption:

• L4: confidentiality, integrity, replay protection, and recov-
erability.

An encrypted memory is recoverable if the payload data can be re-
covered against any manipulation and error (except for leaf nodes)
in addition to crash. The L4 security considers the adversary as in
the L3 security (i.e.,AHW

active), but achieves a higher availability and
resilience against faults and DoS attacks than L3 memory encryp-
tion. The goal of this study is to develop an efficient and recov-
erable memory encryption mechanism that achieves L4 security
for the practice of memory encryption. Note that the crash consis-
tency is not equivalent to recoverability, as crash-consistent (but
not recoverable) memory encryption may not support a recovery
but only supports detection when data are manipulated.

1.2 State-of-the-art and its limitations
Crash consistency has been studied in the research field of microar-
chitecture (see Section 1.4), but little formal and provable security
analysis has been conducted. In HPCA 2023, Huang and Hua pre-
sented a state-of-the-art crash recovery mechanism for L3-secure
PAT, named shortcut update (SCUE) [32]. SCUE exploits a simple
property of naïve PAT metadata; that is, a parent node counter is
always equal to the sum of the child node counters. SCUE requires
almost no overhead when applied to a PAT-based secure memory,
and is currently the most efficient for L4 memory encryption.

However, SCUE has two major limitations in terms of provable
security and compatibility with existing optimization mechanisms.
SCUE is based on a property of counters in a naïve PAT with-
out optimization. Meanwhile, several PAT structural optimizations
using advanced counter mechanisms to compress security meta-
data have been presented, which significantly reduce the mem-
ory encryption overhead. Split Counter (SC) is the most typical ad-
vanced counter mechanism [80], followed by, e.g., Vault [71] and
Morphable Counters [67]. As the metadata overhead has a signifi-
cant impact on the latency of memory read/write operations ow-
ing to the limited bandwidth and cache size, the adoption of such
optimizations is crucial for efficient memory encryption. However,
SCUE cannot incorporate such structural optimizations using ad-
vanced counter mechanisms, which do not preserve the aforemen-
tioned simple property of counters. Other major crash consistency
mechanisms are also incompatible with these optimizations [88].

Indeed, combination of recoverable memory encryption and such
optimization techniques have rarely been studied and exploited to
date, and a mismatch exists between them. In addition, as the SCUE
does not support a lazy/partial recovery (that is, it requires a recon-
struction of the full tree at a recovery), the availability should be
maintained in a more efficient manner. Owing to the advantages
of optimization techniques, it is important for the deployment of

payload data). However, their error correction capability is necessarily bounded, and
attacker may manipulate leaf node(s) beyond it. Here, although compromised leaves
are no longer available, the authentication tree suppresses the unavailability against
manipulation/error as payload data encryption is fine-grained into small leaf nodes.
In contrast, unless recoverability, one manipulation/error makes all memory data un-
available. Thus, recoverability of authentication trees is essential for practical memory
encryption, in addition to error correction codes and tagging/coloring for memory.

2

secure main memory to develop a recoverable memory encryption
mechanism for PAT compatible with optimizations.

1.3 Our contributions
We propose a recoverable memory encryption mechanism, named
Crystalor, which stands for CRYptographically Secure Tree-based
Authentication with Leaf-Only Recovery. Crystalor efficiently sup-
ports the recoverability with almost no latency overhead and is
designed to be securely instantiated with any memory authentica-
tion tree, including optimized PAT. Crystalor enables an L4-secure
memory encryption on the basis of an L3-secure PAT, while our L4-
secure memory encryption is compatible with structural optimiza-
tions. Meanwhile, as Crystalor incurs almost no latency overhead
for the recoverability, our L4-secure memory encryption achieves
as efficient performance as that of L3-secure ones.

Our core concepts are twofold. First, Crystalor does not guar-
antee the consistency/recovery of the entire tree but guarantees
the integrity and recovery of only leaf nodes (i.e., payload data)
using a distinct verification tag, named recovery tag. Second, at a
recovery, Crystalor relinquishes the tree except for leaf nodes and
creates a new tree from the leaf nodes with resilience against re-
play attacks. In Section 3, we present our key observations: (1) an
almost universal (AU) hash function [14] is sufficient for provably
secure recovery tag verification, and (2) it is possible to build an
efficient AU hash function with two properties, namely rate-1 (i.e.,
one block cipher calls to process one input block) and incremen-
tal update capability. Accordingly, we develop a (computational)
AU hash function named PXOR-Hash, which is tailor-made for our
purpose. PXOR-Hash is designed similarly to PXOR-MAC, which
is used in the state-of-the-art PATnamed ELM [34]; however, PXOR-
Hash achieves another security goal/level thatwe set and has a con-
struction different from PXOR-MAC, which yields efficient imple-
mentation3. In addition, the recoverability of Crystalor is based on
the cryptographic protection, which enables lazy recovery. The L4-
secure memory encryption based on Crystalor achieves a higher
availability than conventional ones thanks to the lazy recovery.

The performance advantage of Crystalor is evaluated by algo-
rithmic analyses and a system-level simulation. Our results reveal
that, for protecting a 4 TBmemory as an example, Crystalor achieves
29–62% latency reduction per memory read/write in the algorith-
mic level and a 44% reduction in memory overhead compared to
SCUE owing to the compatibility with SC. The system-level simu-
lation using the gem5 simulator [10] shows that Crystalor achieves
atmost 11.5% lower latency than SCUE. In addition, Crystalor achieves
a recovery that is several thousand times faster (i.e., a recovery cost
reduction by 90–99.9%) than SCUE owing to the lazy recovery.

1.4 Related works
PATvs.Merkle tree. In PAT, theMAC tags on a path can be up-

dated in parallel. PAT enables algorithmically lower latency than

3Note that our major contribution includes presenting an L4-secure memory encryp-
tion mechanism with how to use cryptographic primitives to realize a secure and
recoverable memory and its concrete construction, rather than development of new
proof technique or refreshingly new cryptographic primitive.We developed Crystalor
with a simple construction to leverage the existing cryptographic theories and for the
compatibility with existing architectures and optimization mechanisms.

Merkle tree because the path update of Merkel tree is not paral-
lelizable. Although Merkle tree realizes crash recovery more easily
than PAT [32, 88], realizing a leaf recovery under fault/manipulation
(of even intermediate nodes) remain difficult. In this study, we de-
velop an efficient recoverable mechanism of PAT, which is promis-
ing for improving the memory encryption.

Crash consistency of encrypted memory. In [85], Mao et al.
presented Osiris, which recovers the tree only from counter values
by exploiting error-correcting code bits equipped with memory.
In [82], Yang et al. presented cc-NVM, which caches flushed counter
values in WPQ and employs a MAC, in contrast to Osiris. In [7],
Awad et al. presented Triad-NVM for the recovery of Merkle tree,
which reconstructs the tree from flushed nodes. In [88], Zubair
and Awad presented Anubis. It uses a shadow table stored in mem-
ory, which contains information on cached nodes and identifies
and recovers non-updated nodes. Anubis offers rapid recovery as
well as lazy recovery; however, it does not work with metadata
optimizations and incurs a non-trivial latency overhead for the
shadow table protection. In [3], Alwadi et al. presented Phoenix,
which combines Osiris and Anubis. In [81], Yang et al. presented
ShieldNVM, which introduces an epoch-based mechanism to ag-
gressively cache themetadatawith the consistency preserved. In [31],
Huang and Hua presented STAR to achieve a reduction in the write
overhead and fast recovery. It exploits SIT lazy scheme and instant
persistency for modifications in the cache. In [89], Zubair et al. in-
vestigated the error sensitivity of metadata in Merkle tree and pre-
sented Soteria to tolerate the errors by its lazy duplication.

Advancedmechanisms formetadata optimization. The SC,
which is the pioneering advanced counter mechanism [80], com-
presses and optimizes the tree/metadata structure by splitting nonce
counters into major and minor counters. In [71], Taassori et al. pre-
sented Vault, which adjusts the tree arity to reduce the frequency
of counter overflow and improve the capacity of the covered region.
In [67], Saileshwar et al. presented Morphable counters, which dy-
namically/adaptively determines the structure of major and minor
counters in SC, and enables to cachemore counters in a line. In [87],
Zhou et al. presented Lelantus, which improves the counter-mode
AES-based securememory by exploiting fine-granularity copy-and-
write operations. In [21], Freij et al. presented Bonsai Merkle Forest,
which divides a Merkle tree into subtrees.

1.5 Paper organization
Section 2 introduces the persistent memory encryption and secure
memory. Section 3 outlines the proposed crash recovery mecha-
nism Crystalor, and explains its hardware architecture and oper-
ation. Section 4 presents the algorithm-level evaluation regarding
SC and a system-level simulation using the gem5 simulator. Finally,
Section 5 concludes this paper.

2 PRELIMINARIES
2.1 System and threat models of memory

encryption
Figure 1 shows a system model with memory encryption, which is
simplified, but follows many existing studies and is based on a for-
malization in [6, 25]. We here omitted CPU core(s) to focus on our
interest. The model separates the memory system into two areas:

3

Cache

Untrusted area
(Off-chip)

Trusted area
(On-chip)

Memory protection hardware

Main memory

SRAM
(key, root, etc.)

 Write pending queue (WPQ)
Memory controller

Figure 1: System model of encrypted memory (CPU core(s)
are omitted).

the on-chip trusted area and the off-chip untrusted area. On-chip
data are assumed to be secure and trustable; that is, any attacker
can neither eavesdrop nor manipulate on-chip data. In contrast,
he/she can perform arbitrary eavesdropping/manipulation of off-
chip data. The goal of memory encryption is to realize the confi-
dentiality and integrity of memory data. Thus far, block cipher (e.g.,
AES) has been used for confidentiality, and MAC (e.g., HMAC) is
for integrity (i.e., the detection of data manipulation/forgery) [22].
The on-chip area contains cache(s), memory protection hardware,
SRAM, and aWPQ. The SRAM stores the secret key and root nonce
of PAT. The memory protection hardware performs cryptographic
computation (i.e., encryption/decryption and MAC). The CPU sys-
tems employ a WPQ as an ADR domain to buffer data from the
cache to memory until it is written, which guarantees the data per-
sistency at the time of cache data replacement/flush. This threat
model is compatible with many existing studies on memory en-
cryption [22, 25, 32] and corresponds to the strongest adversary
covered by memory encryption (i.e., AHW

active formalized in [6]).

Remark 2.1 (Side-channel attacks). We do not consider on-chip
side-channel attacks as in previous studies. For example, power,
EM, timing, and cache analyses on cryptographic primitives may
steal the secret key [39, 40, 72, 73]. Microarchitectural attacks rep-
resented by Flush+Reload and Prime+Probe [48, 83], which are ex-
ploited by Spectre and Meltdown [38, 47], may also be a threat to
the confidentiality of payload data. These side-channel attacks are
attempts to eavesdrop and manipulate on-chip data. Hence, they
are beyond our scope: protection of off-chip data against eaves-
dropping and manipulation. On-chip side-channel attacks should
be countered by different means, such as masking [24, 51] and
cache randomization [13, 62, 63, 78] (although an authentication
tree named MEAS claims a power/EM side-channel security [75]).

2.2 Symmetric cryptography for memory
encryption

Existing works on memory encryption (e.g., [17]) have frequently
employed AES encryption. For confidentiality, the counter-mode
AES has been utilized owing to its parallelizability and random ac-
cessibility. A nonce is also used for the encryption as securitymeta-
data, which is composed of a memory address and counter. For in-
tegrity, a MAC has been commonly employed in PAT. Note here

that replay attacks cannot be prevented by simple use of MAC, be-
cause theymanipulate data using a valid tuple of ciphertext, nonce,
and tag, which motivates the use of PAT for memory encryption.

Recently, for encrypting and verifying payload data, some state-
of-the-art PATs, such as ELM [34], utilize an authenticated encryp-
tion (AE) [64] for leaf nodes instead of a composition of the counter-
mode AES encryption and a MAC [9]. For efficient memory en-
cryption, AE should have two desirable properties: block-level par-
allelizability4 and rate-1. A parallelizable AE can encrypt several
blocks in parallel, which allows for low-latency implementation
using a multicore or pipelining. Rate-1 relates to the number of
AES calls to complete the encryption and tag computation. A rate-1
AE (e.g., [66]) has a latency of almost half of a composition of the
counter-mode AES encryption and a MAC. The use of AE signif-
icantly improves the performance of memory encryption, where
payload data essentially requires both confidentiality and integrity.

Parallelizability and rate-1 are also desirable for MAC to achieve
the integrity of intermediate nodes. In addition, certainMACs have
another desirable property known as incrementality [8]. When a
data block is changed, an incrementalMAC can update the tagwith
𝑂 (1) calls of the underlying cryptographic primitive using the old
data block and tag, whereas typical non-incremental MAC, such as
CMAC [18], requires𝑂 (𝑚) primitive calls, where𝑚 is the number
of input blocks. The tag of incremental MAC can be updated only
from an old tag, old data block, and new data block, as well as old
and new nonces. In a path update, the number of blocks updated
in a MAC computation is usually one; hence, incremental MAC
significantly improves the performance of memory encryption.

2.3 Parallelizable authentication tree (PAT)
PAT has been employed for memory encryption to realize (1) real-
time processing and (2) protection against replay attacks with a
minimal overhead of on-chipmemory. Figure 2 depicts an overview
of PAT with an arity of two as an example. The PAT encrypts
the leaf node using an AE and verifies intermediate nodes using
a nonce-based MAC. The 𝑖-th intermediate node of PAT (including
the root node) consists of (𝑁 [𝑖],𝑇 [𝑖]), where 𝑁 [𝑖] and 𝑇 [𝑖] are
its nonce and tag, respectively. The 𝑖-th leaf node of PAT consists
of (𝑁 [𝑖],𝑇 [𝑖],𝐶 [𝑖]), where 𝐶 [𝑖] is the ciphertext of payload data.
The nonce of each node is given by a concatenation of its address
addr[𝑖] and counter ctr[𝑖] as 𝑁 [𝑖] = addr[𝑖] ∥ ctr[𝑖], where · ∥ ·
denotes the bit concatenation5. The tag of an intermediate node
verifies its child node counters as the MAC input. In both verifi-
cation and update, the tag of each node in a path is computed in
parallel as its computation does not depend on the computation
results of any lower-level nodes, which indicates the node-level
parallelizability of PAT.

ELM. ELM is a state-of-the-art PAT proposed by Inoue et al.
[34]. ELM is optimized for low latency and scalability to largemem-
ory. For this purpose, Inoue et al. introduced an AE and incremen-
tal MAC named Flat-OCB and PXOR-MAC, respectively. In addi-
tion, ELM unifies some computations shareable with Flat-OCB and
PXOR-MAC among the entire tree. ELM has a lower latency and
4Block-level parallelizability is a property of the mode and MAC, whereas node-level
parallelizability is of the authentication tree.
5Note that addr[𝑖] does not need storing because it is implicitly determined from its
physical address [15, 34].

4

M[0]

AE C[0] …

MAC

ctr [0] || ctr [1]

…

…

Root nonce

T[0]N[0]

M[1]

AE C[1]

T[1]N[1]

M[− 1]

AE C[− 1]

T[− 1]N[− 1]

ctr [− 2] || ctr [− 1]

N[] T[]

MAC

NR TR

…

…
…

MAC

N[] T[]

Untrusted area
(Off-chip)

Trusted area
(On-chip)

Trusted area
(On-chip)

Figure 2: Overview of binary PAT. 𝑀 [𝑖], 𝐶 [𝑖], 𝑁 [𝑖], and 𝑇 [𝑖]
denote plaintext (i.e., payload data), ciphertext, nonce, and
tag of 𝑖-th node, respectively, where 𝑁 [𝑖] consists of address
addr[𝑖] and counter ctr[𝑖]. 𝑁𝑅 and 𝑇𝑅 are root nonce and
tag, respectively. Leaf node is defined as (𝑁 [𝑖],𝑇 [𝑖],𝐶 [𝑖]),
whereas other nodes are defined as (𝑁 [𝑖],𝑇 [𝑖]).

less memory overhead than SIT [15], while both schemes use AES-
128 and have an equivalent provable security reduction to AES.
Notably, several major previous studies on memory encryption
(e.g., [22, 32]) employed a classical HMAC, which has a larger la-
tency owing to its serial structure and does not have incrementality.
The MAC of ELM (and SIT) is significantly faster than the HMAC.

2.4 Shortcut update (SCUE)
SCUE is a state-of-the-art recoverable memory encryption mecha-
nism with PAT presented by Huang and Hua in HPCA 2023 [32].
In SCUE, the counter of the nonce in PAT is incremented by one
whenever the node is updated and never decreases under nominal
operation (without any reset nor overflow). Its security against re-
play relies on the fact that a replay attacker can decrease a counter
of a node by replacing the nonce and tag in the past but cannot
increase it, yet no formal security analysis has been conducted.

The proposals of SCUE include (i) the efficient integrity veri-
fication of leaf nodes and (ii) the reconstruction of intermediate
nodes from the leaf nodes. The basic concepts underlying SCUE
are that, unless any manipulation, (i) the root counter is always
equivalent to the sum of all leaf counters, and (ii) a parent node
counter is always equivalent to the sum of its child node counters.
These facts are apparent because the counter represents the num-
ber of node updates. After a crash, the integrity of leaf nodes is
first verified using the AE/MAC with the tag and nonce stored in
memory. Assuming the security of AE/MAC, the attacker cannot
perform any forgery except for replay. Subsequently, to detect a re-
play of leaf nodes, the SCUE checks the equivalence between the
root counter and the sum of leaf counters. Here, the root counter
is manipulation-free because it is on-chip. In addition, a replay de-
creases a counter but cannot increase it, indicating that the sum of
leaf counters must be fewer than the root counter if replayed.

MAC

ctrMa[0] ∥ ctrmi[0][0] ∥ ctrmi[0][1]

addr[0] ∥ ctrMa[0] ∥ ctrmi[0][0] addr[1] ∥ ctrMajor[0] ∥ ctrmi[0][1]

addr[i] ∥ ctrMa[i] ∥ ctrmi[i][0]

ctrMa[i] ∥ ctrmi[i][0] ∥ ctrmi[i][1]

T[j]

AE
C[0]

T[0]

M[0]

AE
C[1]

T[1]

M[1]

Figure 3: Example of SC-based binary PAT, where ctrMa [𝑖]
is 𝑖-th major counter, and ctrmi [𝑖] [𝑗] is 𝑗-th minor counter
sharing ctrMa [𝑖]. MAC input of parent node consists of ma-
jor counter(s) and all minor counters of child nodes.

Following the verification, SCUE recovers the intermediate nodes
before the crash in a bottom-up manner. It determines each parent
node counter value as the sum of its child node counters because
they are always equivalent unless manipulation.

2.5 Split Counter (SC)
SC is the foremost advanced countermechanism for PAT structural
optimization [80], which compresses the tree size (i.e., suppresses
the memory overhead for metadata) [5, 60, 61]. This contributes to
reduction of the amount of communication between memory and
CPU as well as lower latency of AE/MAC computation.

Figure 3 illustrates an overview of an SC-based PAT with an ar-
ity of two. An SC-based tree splits a counter into major and minor
counters. Minor counter is unique to a node, whilemajor counter is
shared by several nodes. In computingAE for a leaf node, the nonce
is determined by a concatenation of its address, its major counter,
and its minor counter (e.g., addr[0] ∥ ctrMa [0] ∥ ctrmi [0] [0]
in Figure 3) and the input (i.e., data to be encrypted/decrypted
and verified) is the payload data (e.g., 𝑀 [0]). In computing MAC
of an intermediate or root node, the nonce is determined by its
address, its own major counter, and its own minor counter (e.g.,
addr[𝑖] ∥ ctrMa [𝑖] ∥ ctrmi [𝑖] [0]) and the input (i.e., data to be ver-
ified) is a concatenation of the major counter(s) and all correspond-
ing minor counters of its child node (e.g., ctrMa [0] ∥ ctrmi [0] [0] ∥
ctrmi [0] [1]). In updating a node, its minor counter is incremented.
Here, if a minor counter overflows, then all minor counters that
share a major counter are reset to zero, and the major counter is
incremented. Thus, the SC significantly reduces the total bit length
of the counters, thereby maintaining the uniqueness of the nonce.

Let 𝑙ctr be the bit length of the counter without SC. Let 𝑙Ma and
𝑙mi be those of the major and minor counters of an SC-based PAT,
respectively. Typically, 𝑙ctr, 𝑙Ma, and 𝑙mi are 64, 56, and 8, respec-
tively [33, 80]. If 𝑘 nodes share a major counter, SC reduces the
counter size from 𝑘𝑙ctr to 𝑙Ma + 𝑘𝑙mi.

5

Payload data

M[0]

AE
ctr[0]

C[0]

T[0]

…

…

Recovery tag

Security metadata

ctr[0] ctr[1] ctr[m]…

Root Nonce

Real-time protection based on PAT
during nominal operation

Verification of leaf counters
only after crash

M[1]

AE
ctr[1]

C[1]

T[1]
M[m]

AE
ctr[m]

C[]

T[m]
MAC

…
MAC
…

…

MAC
…PXOR-Hash

Figure 4: Secure memory based on PAT and Crystalor.

3 PROPOSED MECHANISM: CRYSTALOR
3.1 Basic concept of Crystalor
Figure 4 depicts the proposed L4-securememory encryption named
Crystalor based on PAT. Crystalor distinctly provides crash recov-
erability and security against crashes, while PAT solely provides
confidentiality and integrity under nominal operationwithout a crash.
The basic concepts of Crystalor are the use of a distinct recovery
tag, which verifies the leaf node integrity only after a crash but can
be updated with almost no overhead under nominal operations,
and to construction of a new tree with a proven resilience against
replay following the recovery tag verification.

Our idea is based on the fact that, if we can verify the leaf nodes
(i.e., payload data) regarding replay attacks without intermediate
node consistency, the intermediate node is no longer required. Thus,
we disregard the entire tree consistency and relinquish the interme-
diate and root nodes. Crystalor realizes the leaf node verification
using the recovery tag stored on-chip. The recovery tag verifica-
tion is only performed after a crash or verification failure, while
PAT provides integrity under nominal operation. This indicates
that the recovery tag verification does not require real-time pro-
cessing. In contrast, the tag update requires real-time processing
because it should be performed whenever storing data. Thus, we
present an incremental universal hash [14] named PXOR-Hash,
which is tailor-made for an efficient and optimal realization of such
recovery tag. PXOR-Hash is designed similarly to PMAC (and PXOR-
MAC); however, PXOR-Hash and PMAC achieve different secu-
rity goals/levels owing to the difference in their contexts (see Sec-
tion 3.2), which enables PXOR-Hash to improve the efficiency and
latency compared to PMAC. Importantly, PXOR-Hash verifies any
data regardless of its structure, which enables the integrity verifi-
cation of PAT with structural optimizations (in contrast to SCUE).

The proposal of Crystalor includes how to rebuild the entire tree
(i.e., intermediate nodes) from the verified leaf nodes. Recovery of
an SC-based PAT is impossible because minor counter values at
overflow are discarded, which causes uncertainty on the intermedi-
ate counters. In contrast to existing mechanisms, Crystalor creates
a new tree, where resilience against replay attacks is proven.

3.2 Recovery tag verification using PXOR-Hash
AE can verify leaf nodes (i.e., payload data) with a nonce consisting
of its address and counter. Here, as we use an implicit (i.e., physical)
address for the nonce, we can detect a forgery, including splicing,
but not a replay attack on a leaf node. To detect a replay, we should

verify the integrity of counters using a recovery tag stored on-chip
securely. As the recovery tag is verified only after a crash, only its
update requires real-time processing (whereas its verification does
not). The requirements of recovery tags for security and practical
performance are as follows.

Requirement 1 (Security). Let 𝐹 denote a function that com-
putes an𝑛-bit recovery tag from input𝐷 , which consists of leaf counter
blocks. For any adversary with practical resources, the probability
of finding a collision on 𝐹 (i.e. a distinct pair 𝐷 and 𝐷′ such that
𝐹 (𝐷) = 𝐹 (𝐷′)) is negligible in 𝑛.

Requirement 2 (Incremental update). Assume that old tag and
old input blocks are available. If one input block is changed, then the
new tag can be computed with𝑂 (1) calls of symmetric cryptographic
primitive. Note that this assumption is generally true in our context
because old data remains on-chip before the update.

Requirement 3 (Fast recovery). The tag can be computed and
verified with 𝑚 + 𝑂 (1) calls of symmetric cryptographic primitive
(i.e., rate-1), where𝑚 is the input length.

Requirement 1 is crucial as it directly represents a forgery of a
recovery tag given an input (i.e., leaf node counters). The function
𝐹 is either keyed or unkeyed. In the former case, we assume that
the adversary does not know the (random) key, owing to the avail-
ability of on-chip key register. Here, if 𝐹 is keyed, Requirement 1
is equivalent to requiring 𝐹 to be an almost universal (AU) hash
function (See Definition 1) [14]. AU hash functions have been ex-
tensively studied, which can be efficiently constructed owing to
the secret key dependency, compared to one-way hash functions
such as SHA-2 or SHA-3.

For a keyed function 𝐹 : K ×X → Y whereK is the key space,
we write 𝐹𝐾 to denote 𝐹 (𝐾, ·).

Definition 1 (AU hash function). Let 𝐹 : K × D → {0, 1}𝑛 be
a function for a key 𝐾 ∈ K and plaintext 𝐷 ∈ D. The function 𝐹 is
an 𝜖-AU hash function if Pr[𝐾 ← K : 𝐹𝐾 (𝐷) = 𝐹𝐾 (𝐷′)] ≤ 𝜖 holds
for any 𝐷 and 𝐷′ ∈ D such that 𝐷 ≠ 𝐷′.

We remark that a full-fledged (nonce-based)MACwill alsowork;
however, an AU hash function is sufficient for our purpose. This
is because, in our architecture, the recovery tag is stored in the
on-chip trusted/secure area, where the adversary in Requirement 1
cannot see nor manipulate it. This feature is crucial because a colli-
sion is usually easy to find if the output of the AU hash is visible
to the adversary. A nonce is unnecessary because each leaf node
counter is never repeated under nominal operation. If the recovery
tag was stored off-chip or the plaintext of 𝐹 could take the same
value, we would need to employ a conventional MAC, or add a
nonce as a new input of 𝐹 and employ nonce-basedMAC. However,
this will increase the computational cost or latency compared to an
AU hash function. Based on these observations, we develop an AU
hash function PXOR-Hash, which fulfills these three requirements.
Although an AU hash function could be built using algebraic oper-
ations (e.g., GHASH in GCM), such constructions have difficulties
in incremental updates for large inputs. Instead, we adopt a compu-
tational variant of AU hash function, which is a simplified version
of PMAC (i.e., the sum of input-masked AES). This enables incre-
mental updates for large inputs and provable security guarantee
based on the symmetric primitive that we use (namely, AES) [65].

6

D[1] D[2] D[m]

T

L 2 · L m · L

EK EK EK

Figure 5: Block diagram of PXOR-Hash.

Algorithm TagGen(𝐷,𝐾, 𝐿)
1 𝑇 ← 0𝑛
2 for 𝑖 = 1 to𝑚
3 𝑇 ← 𝐸𝐾 (𝑖 · 𝐿 ⊕ 𝐷 [𝑖]) ⊕ 𝑇
4 return𝑇

Algorithm Verify(𝐷,𝐾, 𝐿,𝑇)
1 𝑇 ′ ← TagGen(𝐷,𝐾, 𝐿)
2 if 𝑇 = 𝑇 ′

3 return ⊤
4 else
5 return ⊥

Algorithm Update(𝐷 [𝑖], 𝐷 ′ [𝑖], 𝑖, 𝐾, 𝐿,𝑇)
1 𝑇 ← 𝐸𝐾 (𝑖 · 𝐿 ⊕ 𝐷 [𝑖]) ⊕ 𝑇
2 𝑇 ← 𝐸𝐾 (𝑖 · 𝐿 ⊕ 𝐷 ′ [𝑖]) ⊕ 𝑇
3 return𝑇

Figure 6: PXOR-Hash algorithms, where 𝐷 = (𝐷 [1], 𝐷 [2],
. . . , 𝐷 [𝑚]) and 𝐷′ [𝑖] is new data to be updated.

Construction of PXOR-Hash (forRequirement 3). Let𝐸𝐾 (·)
denote a block cipher encryption using a secret key 𝐾 (typically,
𝐸𝐾 is AES encryption). Let𝐷 [1], 𝐷 [2], . . . , 𝐷 [𝑖], . . . , 𝐷 [𝑚] be input
data blocks to be verified, where 𝑚 is the number of data blocks.
In the context of Crystalor, each 𝐷 [𝑖] consists of counters for a
leaf node nonce (see below). Figure 5 and Figure 6 show the block
diagram and algorithmic description of PXOR-Hash, respectively.
The tag of PXOR-Hash is computed as

𝑇 = 𝐸𝐾 (𝐿 ⊕ 𝐷 [1]) ⊕ 𝐸𝐾 (2 · 𝐿 ⊕ 𝐷 [2]) ⊕ · · ·
⊕ 𝐸𝐾 (𝑖 · 𝐿 ⊕ 𝐷 [𝑖]) ⊕ · · · ⊕ 𝐸𝐾 (𝑚 · 𝐿 ⊕ 𝐷 [𝑚]),

where 𝐿 = 𝐸𝐾 (0), the operator ⊕ denotes a bit-wise XOR, and the
multiplication is over F2𝑛 (𝑛 is the block length of 𝐸𝐾). Note that
𝐿 can be pre-computed and stored in on-chip memory in advance
to remove its latency. Obviously, the tag is computed with𝑚 calls
of 𝐸𝐾 , which means rate-1.

Incremental update (for Requirement 2). Given an old tag
𝑇 , let us consider updating the 𝑖-th block 𝐷 [𝑖] to 𝐷′ [𝑖]. The new
tag is expressed as

𝑇 ′ = 𝐸𝐾 (𝐿 ⊕ 𝐷 [1]) ⊕ 𝐸𝐾 (2 · 𝐿 ⊕ 𝐷 [2]) ⊕ · · ·
⊕ 𝐸𝐾 (𝑖 · 𝐿 ⊕ 𝐷′ [𝑖]) ⊕ · · · ⊕ 𝐸𝐾 (𝑚 · 𝐿 ⊕ 𝐷 [𝑚]) . (1)

Using the old tag𝑇 and old data𝐷 [𝑖], the new tag𝑇 ′ is equivalently
computed as

𝑇 ′ = 𝑇 ⊕ 𝐸𝐾 (𝑖 · 𝐿 ⊕ 𝐷′ [𝑖]) ⊕ 𝐸𝐾 (𝑖 · 𝐿 ⊕ 𝐷 [𝑖]), (2)

which requires only two 𝐸𝐾 calls, whereas the naïve computation
in Equation (1) requires𝑚 calls.

Concrete realization. For the leaf node verification, we com-
pute and store a recovery tag 𝑇 using PXOR-Hash on-chip, where
the inputs are ctr[1] ∥ ctr[2] ∥ · · · ∥ ctr[𝑚]. We use AES-128 for a
block cipher, and 64-bit counters (without SC). The input data are
expressed as 𝐷 [𝑖] = ctr[2𝑖] ∥ ctr[2𝑖 + 1] for each 1 ≤ 𝑖 ≤ 𝑚. If the
2𝑖- or (2𝑖 + 1)-th node is updated, then 𝐷 [𝑖] is also updated using
the computation in Equation (2). Also, if we use SC, the 𝑖-th input

data block is given by all node counters related to the 𝑖-th major
counter; that is,𝐷 [𝑖] = ctrMa [𝑖] ∥ ctrmi [𝑖] [0] ∥ ctrmi [𝑖] [1] ∥ · · · ∥
ctrmi [𝑖] [𝑘], where 𝑘 is the number of minor counters. If a leaf node
related to ctrMa [𝑖] and ctrmi [𝑖] [1], ctrmi [𝑖] [2], . . . , ctrmi [𝑖] [𝑘] is
updated, then𝐷 [𝑖] is updated. Note that the address is not required
to be input to PXOR-Hash because PXOR-Hash can detect a change
in the block order. If a crash occurs, Crystalor first verifies the leaf
node using the AE and then detects a replay attack by comparing
the on-chip recovery tag and the tag computed by Equation (1).

Security of PXOR-Hash (for Requirement 1).Asmentioned
previously, PXOR-Hash is a computational AU hash function, or
more precisely, an almost XOR-universal (AXU) hash function. An
AXU hash function is an AU hash function. Note here that, for a
leaf node with ctrMa [𝑖] and ctrmi [𝑖] [𝑗], 𝑖 and 𝑗 are implicit inputs
to PXOR-Hash (that is, the input order of the major and minor
counters, which represents the node address). As PXOR-Hash can
detect a swap of bits/blocks, Crystalor is secure against splicing.
Thus, PXOR-Hash can detect any manipulation on leaf node coun-
ters, if the collision probability is negligible.

Integrity will be lost if the securely stored hash value (i.e.,𝑇) and
output of PXOR-Hash with a modified (forged) input collide. Con-
cretely, the probability for each forgery attempt is at most 4𝑚/2𝑛
when 𝑚 ≤ 2𝑛−2, where 𝑛 = 128 and 𝑚 is the number of input
blocks, assuming that the underlying AES is computationally se-
cure (i.e., a pseudorandom permutation). Hence, the collision prob-
ability is negligible in practice if 𝑚 ≪ 2𝑛−2 = 2126. For example,
even for a very large memory of 1 P bits, the collision probability is
less than 2−83, which is practically negligible. The collision prob-
ability of PXOR-Hash can be obtained by analyzing (the message
hashing part of) PMAC [65]. Originally the collision probability
was at most𝑚2/2𝑛 [65]; Minematsu and Matsushima [54, Lemma
2] improved it to 4𝑚/2𝑛 , assuming that 𝑚 ≤ 2𝑛−2. These proofs
considered doubling-based masks, which means that the 𝑖-th input
mask is 2𝑖 · 𝐿, where “2” denotes the generator of the field GF(2𝑛).
This differs from 𝑖 ·𝐿 in PXOR-Hash as we adopted it for hardware
suitability. However, the proof of [54, Lemma 2] is applicable to
our case with trivial changes. Hence, we omit the proof here.

If a stronger security bound should, which may occur when𝑚
is even larger, or if the block size is smaller, we can use stronger
methods, such as (the message hashing part of) PMAC with mul-
tiple masks [23] and TBC-based PHASH [65]. The former could
be instantiated low-latency block ciphers such as Prince [11], and
the latter could be instantiated with a low-latency TBC such as
QARMA [4]. Both methods further reduce the contribution of in-
put length in the collision bound.

3.3 Memory recovery by constructing new tree
To date, PAT recovery after a crash has been realized by recon-
structing intermediate nodes (i.e., nonce counters) using a redun-
dancy or the relation between parent and child nodes. For exam-
ple, Anubis uses a shadow table to preserve the node addresses un-
der updates [88]. SCUE reconstructs intermediate nodes from leaf
nodes in a bottom-up manner, owing to the consistency between
the sum of child node counters and a parent node counter. These
existing methods cannot work with SC because minor counter val-
ues are discarded and reset when an overflow occurs.

7

Here, intermediate nodes are not payload data but are only used
for verifying leaf nodes regarding a replay attack. In other words,
the intermediate nodes are unnecessary if we can verify the leaf
nodes in another way (e.g., the recovery tag of PXOR-Hash). There-
fore, Crystalor relinquishes the old tree, except for the leaf node,
and constructs a new tree. However, if an old counter is used in the
new tree, it is exploited by a replay attack, resulting in a feasible
forgery. Thus, we should construct a new tree with counter values
greater than the old ones for resilience against replay.

We derive an upper bound of the number of updates of a node
from its child node counters and propose its use as the new counter
value. Consider a case in which 𝑘 leaf nodes share a major counter
and the minor counter bit length is 𝑙 . A parent node has a major
counter ctrMa [𝑖] and a minor counter ctrmi [𝑖] [𝑗] for each 1 ≤ 𝑗 ≤
𝑘 . For a PAT with arity of 𝛽 , it has 𝛽 child nodes with major coun-
ters ctrMa [𝑖′] and minor counters ctrmi [𝑖′] [𝑗 ′] (1 ≤ 𝑖′ ≤ 𝛽/𝑘 and
1 ≤ 𝑗 ′ ≤ 𝑘). After a crash, Crystalor computes the maximum pos-
sible number of the parent nodes (i.e., an upper bound), which is
denoted by ctrub [𝑖] [𝑗], as

ctrub [𝑖] [𝑗] =
𝛽/𝑘∑
𝑖′=1

(
ctrMa [𝑖′]

(
𝑘 (2𝑙 − 1) + 1

)
+

𝑘∑
𝑗 ′=1

ctrmi [𝑖′] [𝑗 ′]
)
.

Crystalor then computes the major and 𝑗-th minor counter values
of the 𝑖-th intermediate node as

ctrMa [𝑖] =
𝑘∑
𝑗=1

⌊
ctrub [𝑖] [𝑗]

2𝑙

⌋
, (3)

ctrmi [𝑖] [𝑗] = ctrub [𝑖] [𝑗] mod 2𝑙 , (4)

respectively, where ⌊·⌋ is the floor function. All counters of inter-
mediate and root nodes are computed bottom-up by repeating this
computation from the leaf nodes. This is based on a fact that the
upper bits of nonce are shared as a major counter while the lower
𝑙 bits are unique to each minor counter.

We prove Theorem 1 to validate the security of the recovery of
Crystalor against replay attack.

Theorem 1. Let ctrMa [𝑖] and ctrmi [𝑖] [𝑗] be the 𝑖-th parent node
major and minor counter values computed by Equations (3) and (4),
respectively. Any new tree is resistant to replay attacks.

Proof. First, we consider a single crash. Let 𝑐 be the number of
updates from the previous reset of minor counters until the next
reset (i.e., major counter increment). It always holds 2𝑙 ≤ 𝑐 ≤
𝑘 (2𝑙 −1) +1, because 𝑐 is the minimum if only one node is updated
(and the others are not updated at all), whereas 𝑐 is the maximum
if each of the 𝑘 minor counters has the maximum value (i.e., 2𝑙 −1).
Let 𝑢𝑖′ be the total number of updates of nodes sharing the 𝑖′-th
major counter, which is bounded above as

𝑢𝑖′ ≤ ctrMa [𝑖′]
(
𝑘 (2𝑙 − 1) + 1

)
+

𝑘∑
𝑗 ′=1

ctrmi [𝑖′] [𝑗 ′],

because ctrMa [𝑖′] denotes the number of minor counter resets. Let
𝑢𝑖, 𝑗 be the number of updates of a parent node with ctrmi [𝑖] [𝑗],

which is bounded above as

𝑢𝑖, 𝑗 ≤
𝛽/𝑘∑
𝑖′=1

𝑢𝑖′ = ctrub [𝑖] [𝑗] .

This indicates that ctrub [𝑖] [𝑗] is greater than or equal to the num-
ber of updates of the node (i.e., the true value of the parent counter
ever before). The equality holds if 𝑐 is the maximum value when-
ever andwherever theminor counter resets or if anyminor counter
reset has not occurred (i.e., ctrMa [𝑖′] = 0 for all 𝑖′). Thus, for all
1 ≤ 𝑗 ≤ 𝑘 , the parent node is updated at most ctrub [𝑖] [𝑗] times.
As 2𝑙 ≤ 𝑐 ≤ 𝑘 (2𝑙 − 1) + 1 also holds for the parent node, the
number of updates of the parent major counter must be less than∑𝑘
𝑗=1

⌊
ctrub [𝑖] [𝑗]/2𝑙

⌋
, which indicates that the newmajor counter

value never appears before the crash. Thus, its replay is impossible.
Next, we consider multiple crashes, in which the counter values

are given by Equations (3) and (4) in the past. If a leaf node counter
is incremented, then a corresponding ctrub [𝑖] always has a greater
value than the previous state, because it is strictly monotonically
increasing in terms of both ctrMa [𝑖′] and ctrmi [𝑖′] [𝑗 ′]. This im-
plies that either or both ctrMa [𝑖] and ctrmi [𝑖] [𝑗] are greater than
any previous state. In addition, if a child node is updated, its parent
node counter increases accordingly; however, its increase amount
is not as great as the number of updates, as aforementioned. Thus,
the new counter values determined by Equations (3) and (4) are al-
ways new, which guarantees resistance against replay attacks. □

The integrity of leaf nodes is verified by AE, excluding replay
attacks. The recovery tag verification detects the replay attacks on
leaf nodes. In addition, Theorem 1 states that the counter values of
the new tree are always greater than values before the crash, which
indicates the resistance of the new tree to replay attacks. Thus,
Crystalor provides both crash recoverability and integrity against
any manipulation attacks. Note that, in a recovery operation, the
new tree construction and leaf node/tag verification should be care-
fully executed so as to avoid replay attacks (see Section 3.5).

3.4 Hardware architecture
Figure 7 displays the hardware architecture of Crystalor for L4
memory encryption [34], in which we employ ELM. Crystalor uti-
lizes dedicated hardware components to compute and update the
recovery tag apart from memory protection hardware for ELM
computation, as Crystalor operates distinctly and independently of
PAT. The dedicated hardware consists of an SRAM to store and up-
date the recovery tag (Recovery TAG register) in addition to the se-
cret key of PXOR-Hash key (KEY register). PXOR-Hash hardware
consists of pipelined AES encryption hardware, which can process
multiple update transactions in parallel in the most efficient man-
ner. The recovery tag is stored in both the SRAM and cache (Re-
covery TAG register and cache) to improve the tag computation
speeds. This dedicated hardware operates at every timing of leaf
node update (i.e., storing encrypted payload data to memory) to
simultaneously and consistently update/store the recovery tag to
Recovery TAG register and cache. In Figure 7, the recovery tag is al-
ways updated on-chip but is not disclosed to the off-chip memory.
This is mandatory for security to prevent any manipulation attack

8

Tree nodes

Encrypted data

Cache WPQ

Secure processor (On-chip)

Main memory
(Off-chip)

Data1 Root+1
Data2 Root+2
Data3 Root+3

MAC
engine

Recovery TAG

Recovery TAG cache

Encryption
engine

PXOR-Hash
accelerator

PXOR-Hash hardware

ELM hardware

KEY

SRAM

Tree root

Memory controller

Figure 7: Crystalor hardware architecture.

on these data. In other words, as the recovery tag is securely pro-
cessed and stored, it does not require as strong protection as MAC,
which leads to an efficient implementation of PXOR-Hash.

Crystalor requires on-chip SRAM for storing the 128-bit recov-
ery tag and PXOR-Hash keys (𝐾 and 𝐿). The SRAM overhead is 384
(= 128 × 3) bits in total. Crystalor also utilizes a 128-bit on-chip
cache for Recovery TAG cache and an AES encryption engine for
PXOR-Hash, which is implemented with less than 15K GE [74].

The remaining parts other than Crystalor operate similarly to
the conventional ones. A memory controller controls the data flow
to handle the encrypted payload data and security metadata. The
ELM hardware includes a 952-bit cache for storing the ELM secret
key and its precomputable intermediate values. We employ an on-
chip WPQ to persist data during store operation using ADR [70].
Namely, as leaf nodesmust be consistent with the on-chip recovery
tag, we explicitly use a WPQ as an ADR domain for the leaf node
to guarantee its persistence at a timing. Note that the intermediate
nodes are discarded at a crash; hence, they do not require persis-
tency; thus, the MAC outputs (i.e., intermediate nodes) are directly
written to memory without using WPQ (which indicates that the
intermediate nodes are computed and updated with background
processing like SCUE). Furthermore, we utilize atomic persistency
mechanism(s) and hardware redo logging as in existing methods.

Remark 3.1 (Combinationwith othermechanisms). Figure 7 presents
the simplest construction without any optimization mechanism.
Advanced counter mechanisms such as SC, Vault, and Morphable
counters are applicable. The adoption of mechanism(s) for atomic
data persistencywould also be essential for consistent transactions
with high performance [16, 30, 35, 36, 50, 59, 69, 77, 84, 86]. As
PXOR-Hash operates distinctly from PAT, such optimizationmech-
anisms for PAT can be readily incorporated together.

Performance overhead. The latency overhead of Crystalor
during nominal operation does not depend on the cache size nor
covered memory region, but solely depends on the computational
cost of the recovery tag update. As mentioned in Section 3.2, the
recovery tag update is completed within only two AES encryption
calls for new and old 𝐷 [𝑖]’s. The two AES encryptions are per-
formed in parallel using pipelined AES hardware, which requires
significantly smaller latency of ELM update. Therefore, the latency

overhead is negligible and has no impact on the system perfor-
mance, as Crystalor and PAT operate distinctly. Crystalor incurs
little overhead in the memory controller owing to its simplicity.

3.5 Operations
We describe the store and recovery operations of ELM–Crystalor.
Read operation requires no Crystalor operation.

Store operation. For crash recoverability (covering a crash dur-
ing AE encryption) and security, we must simultaneously and con-
sistently update the leaf node counter in the memory and the on-
chip recovery tag, which is realized by the following steps:

1. Store operation to the memory is issued. It would corre-
spond to a cache data replacement (i.e., cache miss) or an
explicit instruction to guarantee the data persistency at a
timing, such as clflush and clwb in x86 architecture.

2. (ELM computation) Payload data are encrypted by AE.
The MAC tags of the corresponding intermediate nodes
and root node tags are computed in the background, and
the corresponding counters are incremented on-chip.When
AE encryption starts, a busy frag (one-bit on-chip NVM)
is raised. AE inputs (i.e., payload data) are preserved in a
non-volatile register until the result is moved to WPQ, to
achieve recovery from a crash during AE encryption.

3. (PXOR-Hash computation) The new recovery tag is com-
puted from the old tag, old data, and new data. This step
should be computed in parallel with Step 2.

4. (Write to WPQ) The AE encryption result is moved to
WPQ. The busy flag is put down when completed.

5. (Recovery tag update) Recovery TAG cache and regis-
ters are updated.

6. (Store data) The WPQ data are stored in memory. This
transaction is completed.

Note that Steps (4) and (5) should be synchronously executed in
parallel for consistency between the recovery tag and leaf coun-
ters. In addition, data should be updated in an atomically persis-
tent manner, with the aid of some mechanisms for this purpose
(e.g., [16, 30, 35, 36, 50, 59, 69, 77, 84, 86]).

Recovery. Recovery is executed after a crash or upon a verifi-
cation failure. Crystalor securely recovers the memory as follows:

1. (AE status check) If the busy flag has been raised, the AE
encryption is performed again using the non-volatile reg-
ister data and the result is stored to the memory through
the WPQ, according to the redo logs.

2. (New tree construction) According to Section 3.3, the
counter values of intermediate and root nodes are derived
in a bottom-up manner. The MAC tag of each node is also
computed from the counters and addresses.

3. (Recovery tag verification) The recovery tag of PXOR-
Hash is computed from all leaf node counters, and then the
computed tag is compared to the on-chip Recovery TAG
register value. If these are equivalent, the nominal opera-
tion restarts; otherwise, Crystalor gives an error signal.

Execution of Steps 2 and 3 in this order prevents any replay. Namely,
we create a new tree, although the leaf nodes may be manipulated.
Hereafter, PAT can detect any manipulation (while the leaf nodes

9

are not verified); the attacker cannot perform any manipulation af-
ter the new tree construction. Then, we verify the recovery tag to
detect replays (and verify the leaf node by AE to detect manipula-
tion after restart as lazy recovery). Thus, All manipulations before
the new tree construction are detected by the verifications of re-
covery tag and the leaf node AE. Contrarily, if we execute Steps 2
and 3 in the reverse order, a replay attack is possible at a timing be-
tween the recovery tag verification and the new tree construction.

Lazy recovery. Crystalor can detect any counter replay solely
by the recovery tag verification, whereas SCUE cannot due to lack
of cryptographic security6. Hence, upon a reboot, Crystalor does
not require verifying the AE leaf node for protection because it
will be verified before it is actually used. In other words, the leaf
node AE verification can be omitted at the time of recovery, and
the verification is completed lazily and concurrently during nomi-
nal operation after the recovery. Thus, Crystalor does not have to
read the leaf node data nor compute AE for the leaf node at the re-
boot time. This yields a significant reduction in the recovery cost
(as evaluated in Section 4.3) compared to the non-lazy recovery of
SCUE because the leaf node occupies a major part of encrypted
memory. Such a lazy strategy was adopted in some previous stud-
ies [88], and is covered by the provable security of ELM/PAT. An
attacker in a practical use scenario of memory encryption, who
can manipulate off-chip data and trigger crashes, cannot bypass
the recovery tag verification and PAT verification simultaneously,
while their combination thereof detects any replay.

4 PERFORMANCE EVALUATION
4.1 Algorithm-level evaluation
We consider a typical SC parameter [33, 60]: the lengths of major
and minor counters (i.e., 𝑙Ma and 𝑙mi) are 56 and 8 bits, respectively,
and the number of nodes sharing a major counter (i.e., 𝑘) is 8.

SCwas originally proposed as an optimizationmethod to reduce
the metadata size (i.e., memory overhead). The reduction of meta-
data size also contributes to a latency reduction because the length
of data to be verified by MAC and the amount of communication
between memory and CPU are reduced. We derive the relation be-
tween the covered region size and ELM parameters to calculate the
(optimal) latency of ELM for a given covered region size. Subse-
quently, we can select an optimal parameter that covers the region
with the minimum latency. Note here that the advantages of SC
directly represent the supremacy of Crystalor over SCUE.

Latency and covered region size. Let 𝑏 denote the number of
input blocks to MAC and let ℓ denote the bit length of a leaf node.
Here, 𝑏 is derived from the tree arity 𝛽 as 𝑏 = 𝛽/2 and 𝑏 = 𝛽/8
without and with SC, respectively. Without SC, an intermediate
node has 2𝑏 child nodes because a counter is represented by 64 bits.
This indicates that the tree has 2𝑑𝑏𝑑 leaf nodes. If SC is applied,
an intermediate node can have 8𝑏 nodes because an input block
𝐷 [𝑖] consists of a 64-bit major counter and 8-bit minor counters of

6Upon a crash, an attacker can insert a replay data without SCUE detected by incre-
menting another leaf node counter, such that the sum of leaf node counters is pre-
served. If the replayed node is loaded before detecting the incremented counters, the
replay attack is not detected and succeeds. Thus, entire leaf node AE verification is
mandatory to detect such a replay with a counter increment. This implies the inse-
curity of lazy recovery for SCUE. Thus, SCUE essentially requires verifying the leaf
node AE at the timing of recovery.

Table 1: Latency and covered region of ELM with and with-
out SC, where 𝑏 is number of input blocks (corresponding to
tree arity), ℓ is bit length of AE, and 𝑑 is tree depth

Covered region [Byte]
ELM w/o SC ELM with SC

𝑏 ℓ Update† Verify 𝑑 = 3 𝑑 = 5 𝑑 = 7 𝑑 = 3 𝑑 = 5 𝑑 = 7

4

512 21 18 33 K 2M 134M 2M 2G 2T
1,024 25 22 66 K 4M 268M 4M 4G 4T
2,048 33 30 131 K 8M 537M 8M 8G 9T
4,096 49 46 262 K 17M 1G 17M 17G 18 T
8,192 81 78 524 K 34M 2G 34M 34G 35 T

8

512 22 20 262 K 67M 17G 17M 69G 281 T
1,024 25 22 524 K 134M 34G 34M 137G 563 T
2,048 33 30 1M 268M 69G 67M 275G 1 P
4,096 49 46 2M 537M 137G 134M 550G 2 P
8,192 81 78 4M 1G 274G 268M 1T 5 P

16

512 30 28 2M 2G 2T 134M 2T 36 P
1,024 30 28 4M 4G 4T 268M 4T 72 P
2,048 33 30 8M 9G 9T 537M 9T 144 P
4,096 49 46 17M 17G 18 T 1G 18 T 288 P
8,192 81 78 34M 34G 35 T 2G 35 T 576 P

32

512 46 44 17M 69G 281 T 1G 70 T 5 E
1,024 46 44 34M 137G 563 T 2G 141 T 9 E
2,048 46 44 67M 275G 1 P 4G 281 T 18 E
4,096 49 46 134M 550G 2 P 9G 563 T 37 E
8,192 81 78 268M 1T 5 P 17G 1 P 74 E

64

512 78 76 134M 2T 36 P 9G 2 P 590 E
1,024 78 76 268M 4T 72 P 17G 5 P 1 Z
2,048 78 76 537M 9T 144 P 34G 9 P 2 Z
4,096 78 76 1G 18 T 288 P 69G 18 P 5 Z
8,192 81 78 2G 35 T 576 P 137G 36 P 9 Z

128

512 142 140 1G 70 T 5 E 69G 72 P 76 Z
1,024 142 140 2G 141 T 9 E 137G 144 P 151 Z
2,048 142 140 4G 281 T 18 E 275K 288 P 302 Z
4,096 142 140 9G 563 T 37 E 550K 576 P 604 Z
8,192 142 140 17G 1 P 74 E 1 P 1 Z 1 Y

† “Update” actually means “Verify then Update,” because PAT requires tag
verification always before update for security [15, 34].

eight child nodes. This indicates that the tree with SC has 23𝑑𝑏𝑑

leaf nodes. For given 𝑏 and ℓ , ELM can cover a region of 2𝑑𝑏𝑑 ℓ
and 23𝑑𝑏𝑑 ℓ bits without and with SC, respectively. Meanwhile, the
update latencies of Flat-OCB and PXOR-MAC hardware in [34]
are 14 + ℓ/128 and 12 + 𝑏 clock cycles, respectively. Note that the
metadata size does not include bits to indicate the address because
it is implicit. Table 1 reports the latency and covered region size for
different values of 𝑏 and ℓ without and with SC, where the latency
means min(14 + ⌈ℓ/128⌉ , 12 + 𝑏) as the bottleneck. From Table 1,
we confirm that SC significantly reduces the latency to cover a
given region. For example, for 𝑑 = 5 and 7, to cover a 4 TB region,
ELM without SC requires at least 78 and 30 clock cycles for the
update, whereas ELMwith SC requires only 30 and 22 clock cycles,
respectively. Thus, SC reduces the latency overhead by 38 and 8
cycles for 𝑑 = 5 and 7 (i.e., 62% and 29%), respectively.

Metadata size.We evaluate the contribution of SC to reducing
the memory overhead for storing metadata. Without SC, the meta-
data size is 112

∑𝑑
𝑖=0 𝛽

𝑖 − 56, whereas with SC, it is 72
∑𝑑
𝑖=0 𝛽

𝑖 −
56

∑𝑑−1
𝑖=0 𝛽

𝑖 , according to [33]. For example, to cover a 4 TB region
with a tree of 𝑏 = 4, ELM without and with SC has an overhead
of 554GB and 312GB for storing the metadata, respectively, which
indicates a 44% reduction of the overhead by SC. Thus, SC signifi-
cantly improves the memory encryption performance.

Additional latency due tominor counter overflow.When a
major counter is incremented (i.e., a minor counter overflows), SC
requires the re-computation of tags related to the major counter.
If the 𝑗-th node of 𝑖-th major counter overflows, then the major

10

counter ctrMa [𝑖] is incremented, and theminor counters ctrmi [𝑖] [𝑗]
for all 𝑗 (1 ≤ 𝑗 ≤ 𝑘) are reset to zero. We should recompute the tag
of nodes for all 𝑗 , as its nonce counter ctrMa [𝑖] ∥ ctrmi [𝑖] [𝑗] is up-
dated. This means that 𝑘 −1MAC/AE updates accompany a minor
counter overflow. The system-level simulation for the performance
evaluation should regard the latency due to minor counter over-
flow. Nevertheless, the latency overhead by minor counter over-
flow is not critical as its frequency is low. On average, it incurs
less than one clock cycle latency per store operation.

Remark 4.1 (Tree depth and hardware resource). The tree depth 𝑑
is a parameter that exploits tradeoffs between a hardware resource
(i.e., the number ofMAC engines) and covered region/latency, while
𝑏 and ℓ optimal in terms of latency are determined systematically
for a given covered region. In other words, for an optimal fixed 𝑏
and ℓ , we can enlarge the covered region size by increasing𝑑 , using
𝑑 − 1 parallel MAC engines. Conversely, we can reduce the latency
for a fixed covered size by increasing 𝑑 . Thus, the significance of
covered region size and improvement by SC depend on 𝑑 .

4.2 System-level simulation
We performed system-level simulations using the gem5 simula-
tor [10] for the validation. Here, we simulated a CPU with an en-
crypted main memory (NVM) as same as previous studies, while
it is applicable to standard DRAM as well. In this simulation, we
evaluated thememory encryptionmechanismswith ELM,which is
the state-of-the-art and achieves the highest performance among
PATs7. We assumed to utilize AE and MAC hardware presented
in [34] for the ELM hardware in this evaluation. We evaluated the
proposed and existing methods as follows:

• Insecure: Memory without any security mechanism.
• ELM w/o SC: ELM not using SC (not recoverable).
• ELM with SC: ELM using SC (not recoverable).
• ELM–SCUE: ELM with SCUE [32] (SC is inapplicable).
• ELM–ASIT: ELM with Anubis [88] (SC is inapplicable).
• ELM–Crystalor (this work): ELMwith Crystalor, to which

SC is applied.
Insecure and ELMs (not recoverable) were the baselines to eval-

uate the overhead of PAT and crash recoverability, respectively.
We determined the latency according to the memory capacity (i.e.,
4 TB) and Table 1. For the ease, feasibility, and reproducibility of
the experiment, we employed several simplifications for the simu-
lation and previous studies. We omitted the simulation of packet
metadata written to memory. We virtually inserted the latency to
write and store operations owing to ELM according to Table 1. For
ELM with SC, to evaluate the latency about minor counter over-
flow, we employed an apportionment, in which we assumed that
the writings to memory were uniformly distributed, calculated the
expected latency due to the minor counter overflow, and added the
7Some previous studies (e.g., [32]) utilized a classical HMAC, which is assumed to re-
quire 40, 80, or 160 clock cycles for Verify and Update. However, its concrete realiza-
tion/implementation was not mentioned, and the number of input blocks to AE/MAC,
which actually determines the latency, was not considered. Thus, its practical valid-
ity is unclear. We employ the ELM-style evaluation to determine the clock cycles for
a fair, modern, and practical performance comparison. Our results are based on the
in-depth evaluation of latency in the ELM paper, which considers a concrete crypto-
graphic hardware implementation and the number of input blocks to AE/MAC, while
previous studies did not. Note that HMAC is not optimal in terms of latency and is not
incremental, while PXOR-MAC in ELM was proposed for an optimized latency [34].

Table 2: Simulation conditions

CPU and caches
CPU core One core, out-of-order, 2.4 GHz
L1 instruction cache 32 KB, 8-way, 2 cycles
L1 data cache 64 KB, 8-way, 2 cycles
L2 cache 32 KB, 8-way, 2 cycles
Metadata cache 256 kB with cache line 64 byte

Memory controller and main memory (NVM)
WPQ size 8 entries
Memory latency Read 50 ns and Write 150 ns
Memory size (covered region) 4 TB

ELM (𝑑 = 5), to which SC is applied
Update and verify latency 30 and 28 cycles
Tree parameters 𝑏 = 16 and ℓ = 1,024

ELM (𝑑 = 5), to which SC is inapplicable/not applied
Update and verify latency 78 and 76 cycles
Tree parameters 𝑏 = 64 and ℓ = 1,024

ELM (𝑑 = 7), to which SC is applied
Update and verify latency 22 and 20 cycles
Tree parameters 𝑏 = 8 and ℓ = 1,024

ELM (𝑑 = 7), to which SC is inapplicable/not applied
Update and verify latency 30 and 28 cycles
Tree parameters 𝑏 = 16 and ℓ = 1,024

rounded-up value to the latency in Table 1. These simplifications
were applied to all of the above methods, which enabled a fair and
sound comparison in addition to reproducibility.

We employed a benchmarking workload set, which has been
commonly used in many previous studies as a de facto standard
(e.g., [31, 43, 81, 90]). The workloads include random insertions of
data to a hash table (HT), binary search tree (BST), red-black tree
(RBT), and queue (Queue), each of which has a distinct memory
access pattern. To analyze the difference, we simulated the work-
loads with data sizes of 64, 512, 1,024, and 4,096 bytes.

Results. Figure 8 reports the normalized workload execution
times of the gem5 simulation, in which Insecure is the baseline. We
did not evaluate 𝑑 = 3, as ELMwith 𝑑 = 3without SC cannot cover
a 4 TB region with a practical latency (this demonstrates the sig-
nificance of SC). ELM–Crystalor exhibits almost the same perfor-
mance as ELM with SC. As well, ELM–SCUE and ELM without SC
are the almost same. As Crystalor and SCUE incur no latency over-
head under nominal operation, the performances of ELM–Crystalor
and ELM–SCUE depend solely on the tree parameter. In contrast,
ASIT incurs a non-trivial latency overhead to verify and update the
shadow table. Comparing ELM with and without SC (i.e., ELM–
Crystalor and ELM–SCUE), the performance gain by SC is more
significant when the data size is larger. This is because the reduc-
tion in latency in reading and storing (i.e., verifying and updating)
memory data is more dominant and visible as the numbers of data
read and write increase for a larger data size. In addition, the im-
provement in execution time by SC is more significant when 𝑑 = 5
than 𝑑 = 7, because the reduction ratio of latency by SC is larger
when𝑑 = 5 for covering a 4 TB region. Thus, we confirm that ELM–
Crystalor can reduce the workload execution time by at most 11.5%
compared to the state-of-the-art mechanism (i.e., ELM–SCUE).

Improved scalability for larger memory. Regarding the tree
depth 𝑑 , the performance gain by the proposed method is greater
for a shallower tree (i.e., 𝑑 = 5 in this experiment). Recall that 𝑑 is
a parameter that exploits tradeoffs between a hardware resource
(i.e., the number of MAC engines) and a covered region. As the

11

ELM without SC (not recoverable)
ELM with SC (not recoverable)

64 bytes 512 bytes 1,024 bytes 4,096 bytes

ELM–SCUE
ELM–ASIT

ELM–Crystalor

Ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

 b
y

In
se

cu
re

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue

(a) 𝑑 = 5

ELM without SC (not recoverable)
ELM with SC (not recoverable)
64 bytes 512 bytes 1,024 bytes 4,096 bytes

ELM–SCUE
ELM–ASIT

ELM–Crystalor

Ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

 b
y

in
se

cu
re

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue

(b) 𝑑 = 7

Figure 8: Simulated execution times normalized by Insecure, where proposed method is right-most bin for each workload.

cover region size in the experiment is fixed at 4 TB, the size is rela-
tively larger for 𝑑 = 5, and the latency overhead by PAT-based pro-
tection is larger for 𝑑 = 5. The SC compresses the tree/metadata
size more effectively when protecting a larger memory. Hence, the
performance gain by SC (and the proposed method) is greater for
𝑑 = 5. More quantitatively, for a given arity 𝛽 , the use of SC can
reduce the number of input blocks to PXOR-MAC to 1/4 in the
used parameter. This indicates that the use of SC reduces the la-
tency of PXOR-MAC asymptotically by 1/4 for a larger 𝛽 . Thus, the
use of SC (and ELM-Crystalor) reduces the latency of the memory
read/write by up to 1/4 when protecting a larger memory. The ex-
perimental results on 𝑑 = 5 and 7 indicate an improved scalability.

4.3 Recovery cost estimation
Lazy recovery cost of Crystalor. We consider here an ELM–
Crystalor with SC, whose major and minor counters are 56 and
8 bits, respectively. The recovery time of Crystalor is evaluated
by the number of AES calls for PXOR-Hash of recovery tag verifi-
cation and PXOR-MAC of a new tree construction. To protect an
𝑀-bit memory, the number of AES calls in PXOR-Hash is equiva-
lent to 𝑀/8ℓ , while the leaf node verification by Flat-OCB is not
required at the time of recovery as mentioned in Section 3.5. In ad-
dition, for arity of 𝛽 , a PXOR-MAC computation requires 1 + 𝛽/8
AES calls, while a new tree construction is realized with

∑𝑑
𝑖=1 𝛽

𝑖−1

PXOR-MAC computations. This indicates that the new tree con-
struction requires (1+ 𝛽/8)∑𝑑𝑖=1 𝛽𝑖−1 AES calls in total. Moreover,
a new tree construction requires computations of new counter value∑𝑑
𝑖=1 𝛽

𝑖−1 times. Recall that 𝑀 = 𝛽𝑑 ℓ . Thus, Crystalor recovery is
realized with 𝛽𝑑/8 + (1 + 𝛽/8)∑𝑑𝑖=1 𝛽𝑖−1 AES calls and

∑𝑑
𝑖=1 𝛽

𝑖−1

new counter computations, which corresponds to the number of
intermediate nodes (including root node). In addition, Crystalor re-
quires to read 8𝛽𝑑 bits of leaf node metadata from memory, while
Crystalor writes 16(4 + 𝛽)∑𝑑𝑖=2 𝛽𝑖−1 bits of metadata to memory
during a recovery. Owing to the lazy recovery, the costs are inde-
pendent of the leaf node bit length (i.e., ℓ).

Recovery cost of SCUE. For comparison, we consider ELM–
SCUE recovery with a 64-bit counter. Its recovery cost is evalu-
ated by the number of counter-summings and PXOR-MAC compu-
tations. The equivalence check between the root counter and the
sum of leaf node counters requires

∑𝑑
𝑖=1 𝛽

𝑖−1 counter-summings.
The tree recovery performs one counter-summing and one PXOR-
MAC computation per node. A PXOR-MAC requires 1 + 𝛽/2 AES
calls and

∑𝑑
𝑖=1 𝛽

𝑖−1 intermediate nodes exist. The leaf node AE ver-
ification requires 𝛽𝑑 (⌈ℓ/128⌉ + 1) AES calls. Thus, the computa-
tional cost is 2

∑𝑑
𝑖=1 𝛽

𝑖−1 counter-summings and 𝛽𝑑 (⌈ℓ/128⌉ +1) +
(1 + 𝛽/2)∑𝑑𝑖=1 𝛽𝑖−1 AES calls. Meanwhile, SCUE reads 𝛽𝑑 ℓ + 64𝛽𝑑
bits frommemory and it writes 64(1+𝛽)∑𝑑𝑖=2 𝛽𝑖−1 bits to memory.

Evaluation result. Figure 9a and Figure 9b report the compu-
tational cost (i.e., the number of clock cycles) and the communica-
tion cost between CPU and memory for some covered region sizes,
respectively. Here, the throughputs of the counter-summing, new
counter computation, and one block AES encryption are assumed
to be one per clock cycle [15, 34]. In Figure 9b, we evaluated by the
number of transmitted bits, in which thewriting cost was tripled as
in Table 2. Crystalor achieved a reduction of 90–99.9% of recovery
costs from SCUE, owing to the lazy recovery. Although the compu-
tational and traffic costs of the leaf node AE verification is a major
part of SCUE (i.e., 𝛽𝑑 (⌈ℓ/128⌉ + 1) AES calls and 𝛽𝑑 ℓ bits read, re-
spectively), Crystalor does not require them. Thus, we confirm the
advantage of Crystalor in recovery cost as well as the performance.

5 CONCLUSION
This study presented Crystalor, an L4-secure memory encryption
mechanism. Crystalor incurs almost no latency overhead under
nominal operation and achieves an efficient recovery. Although
existing mechanisms (e.g., SCUE) are incompatible with structural
optimizations, Crystalor fully exploits its advantages and offers
the same security and recoverability. We algorithmically and ex-
perimentally confirmed that Crystalor has a significant advantage
over conventional mechanisms in terms of the memory overhead
and execution time/latency, with a reduced recovery cost. At the

12

106

107

108

109

1010

1011

1012

1013

1014

2G 275G 18T 563T 1P

ELM–SCUE
ELM–Crystalor

Covered region size [bits]

C
lo

ck
 c

yc
le

s

(a) Computational cost

108

109

1010

1011

1012

1013

1014

1015

1016

2G 275G 18T 563T 1P
Covered region size [bits]

Tr
an

sm
itt

ed
 b

its

ELM–SCUE
ELM–Crystalor

(b) Communication cost

Figure 9: Estimation of recovery costs.

algorithmic level, for protecting a 4 TB memory with ELM, Crys-
talor requires 29–62% fewer clock cycles per memory read/write
operation than SCUE, while Crystalor and SCUE require 312GB
and 554GB memory overheads for storing metadata, respectively
(namely, Crystalor achieves a 44% reduction of memory overhead).
We performed a system-level simulation using the gem5 simulator.
We confirmed that Crystalor achieves a reduction in the workload
execution time by at most 11.5% from SCUE. Moreover, Crystalor
offers a lazy recovery owing to its cryptographic protection, which
achieved a recovery that is several thousands faster than SCUE.

We employed the SC as the most typical optimization technique
for PAT. Alternatively, Crystalor can work with any structural op-
timization as it employs cryptographic protection. Its evaluation
with other optimization techniques are important future work.

REFERENCES
[1] 2023. AMD Secure Encrypted Virtualization (SEV). https://www.amd.com/en/

developer/sev.html. (2023). Visited in September 2023.
[2] 2023. Intel Optane Technology. https://www.intel.com/content/www/us/

en/architecture-and-technology/optane-technology/optane-for-data-centers.
html. (2023). Visited in September 2023.

[3] Mazen Alwadi, Kazi Abu Zubair, David Mohaisen, and Amro Awad. 2020.
Phoenix: Towards Ultra-Low Overhead, Recoverable, and Persistently Secure
NVM. IEEE Transactions on Dependable and Secure Computing 19, 2 (2020), 1049–
1063.

[4] Roberto Avanzi. 2017. The QARMA Block Cipher Family. Almost MDS Ma-
trices Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structionsWith Non-Involutory Central Rounds, and Search Heuristics for Low-
Latency S-Boxes. IACR Trans. Symmetric Cryptol. 2017, 1 (2017), 4–44.

[5] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Hector Montaner, Prakash
Ramrakhyani, Francesco Regazzoni, and Andreas Sandberg. 2020. Protecting
Memory Contents on ARM Cores. Real World Crypto (RWC). (2020). https:
//rwc.iacr.org/2020/slides/Avanzi.pdf

[6] Roberto Avanzi, Andreas Sandberg, Ionut Mihalcea, David Schall, and Héc-
tor Montaner. 2022. SoK: Hardware-Supported Cryptographic Protection of
Random Access Memory. Cryptology ePrint Archive, Paper 2022/1472. (2022).
https://eprint.iacr.org/2022/1472 https://eprint.iacr.org/2022/1472.

[7] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair. 2019.
Triad-NVM: Persistency for Integrity-Protected and Encrypted Non-Volatile
Memories. In ACM/IEEE 46th Annual International Symposium on Computer Ar-
chitecture (ISCA ’19). 104–115.

[8] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1995. Incremental Cryp-
tography and Application to Virus Protection. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing (STOC ’95). Associ-
ation for Computing Machinery, New York, NY, USA, 45âĂŞ56. https://doi.org/
10.1145/225058.225080

[9] Mihir Bellare and Chanathip Namprempre. 2008. Authenticated Encryption:
Relations among Notions and Analysis of the Generic Composition Paradigm.
Journal of Cryptology 21 (2008), 469–491.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718 Place: New

York, NY, USA Publisher: Association for Computing Machinery.
[11] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-

vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. 2012. PRINCE
-A Low-Latency Block Cipher for Pervasive ComputingApplications - Extended
Abstract. In ASIACRYPT (Lecture Notes in Computer Science), Vol. 7658. Springer,
208–225.

[12] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
2021. One Glitch to Rule Them All: Fault Injection Attacks Against AMD’s
Secure Encrypted Virtualization. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). Association for Computing Machinery, New
York, NY, USA, 2875–2889. https://doi.org/10.1145/3460120.3484779

[13] Federico Canale, Tim Güneysu, Gregor Leander, Jan Thoma, Yosuke Todo,
and Rei Ueno. 2023. SCARF: A Low-Latency Block Cipher for Secure Cache-
Randomization. In 32nd USENIX Security Symposium. https://eprint.iacr.org/
2022/1228

[14] J. Lawrence Carter and Mark N. Wegman. 1979. Universal classes of hash func-
tions. J. Comput. System Sci. 18, 2 (1979), 143–0154. https://doi.org/10.1016/
0022-0000(79)90044-8

[15] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology
ePrint Archive, Paper 2016/086. (2016). https://eprint.iacr.org/2016/086

[16] Nai-Jia Dong, Hsiang-Yun Cheng, Chia-Lin Yang, Bo-Rong Lin, and Hsiang-
Pang Li. 2022. Efficient and Atomic-Durable Persistent Memory through In-PM
Hybrid Logging. In 2022 IEEE 11th Non-VolatileMemory Systems andApplications
Symposium (NVMSA). 1–7. https://doi.org/10.1109/NVMSA56066.2022.00010

[17] Morris J. Dworkin. 2001. SP 800-38A 2001 edition. Recommendation for block
cipher modes of operation: Methods and techniques. Technical Report. National
Institute of Standards & Technology, Gaithersburg, MD, USA.

[18] Morris J. Dworkin. 2005. SP 800-38B. Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication. Technical Report. Gaithersburg,
MD, USA.

[19] Tetsuo Endoh, Hiroaki Honjo, Koichi Nishioka, and Shoji Ikeda. 2020. Re-
cent Progresses in STT-MRAM and SOT-MRAM for Next Generation MRAM.
In 2020 IEEE Symposium on VLSI Technology. 1–2. https://doi.org/10.1109/
VLSITechnology18217.2020.9265042

[20] Ali Fakhrzadehgan, Yale N. Patt, Prashant J. Nair, and Moinuddin K. Qureshi.
2022. SafeGuard: Reducing the Security Risk from Row-Hammer via Low-Cost
Integrity Protection. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 373–386. https://doi.org/10.1109/HPCA53966.
2022.00035

[21] Alexander Freij, Huiyang Zhou, and Yan Solihin. 2021. Bonsai Merkle Forests:
Efficiently Achieving Crash Consistency in Secure Persistent Memory. In 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 1227–1240.

[22] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. 2003. Caches and Hash Trees for Efficient Memory Integrity Verifica-
tion. In the 9th International Symposium on High-Performance Computing Archi-
tecture.

[23] Peter Gazi, Krzysztof Pietrzak, and Michal Rybár. 2016. The Exact Security of
PMAC. IACR Trans. Symmetric Cryptol. 2016, 2 (2016), 145–161.

[24] Hannes Gross, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Protec-
tion Order. In ACM Workshop on Theory of Implementation Security (TIS 2016).
3.

[25] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. Cryptology ePrint Archive, Paper 2016/204. (2016). https://eprint.
iacr.org/2016/204 https://eprint.iacr.org/2016/204.

[26] Shay Gueron. 2016. Memory Encryption for General-Purpose Processors. IEEE
Secur. Priv. 14, 6 (2016), 54–62.

[27] Richard H. Gumpertz. 1983. Combining tags with error codes. In 10th Annual
International Symposium on Computer Architecture (ISCA). 160–165.

[28] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Parl, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. 2009. Lest we remember: cold-boot attacks on encryption keys. Commu-
nication of the ACM 52 (2009), 91–98. Issue 5.

[29] W. Eric Hall and Charanjit S. Jutla. 2006. Parallelizable Authentication Trees. In
Selected Areas in Cryptography. Springer Berlin Heidelberg, 95–109.

[30] Xijing Han, James Tuck, and Armo Awad. 2021. Dolos: Improving the Perfor-
mance of Persistent Applications in ADR-Supported Secure Memory. In 54th
Annual IEEE/ACM International Symposium onMicroarchitecture (MICRO). 1241–
1253.

[31] JianmingHuang and YuHua. 2021. AWrite-Friendly and Fast-Recovery Scheme
for Security Metadata in Non-Volatile Memories. In 2021 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE, Seoul, Korea
(South), 359–370. https://doi.org/10.1109/HPCA51647.2021.00038

[32] Jianming Huang and Yu Hua. 2023. Root crash consistency of SGX-style
integrity trees in secure non-volatile memory systems. In Proceedings of the
29th IEEE International Symposium on High-Performance Computer Architecture

13

https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://eprint.iacr.org/2022/1472
https://eprint.iacr.org/2022/1472
https://doi.org/10.1145/225058.225080
https://doi.org/10.1145/225058.225080
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3460120.3484779
https://eprint.iacr.org/2022/1228
https://eprint.iacr.org/2022/1228
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://eprint.iacr.org/2016/086
https://doi.org/10.1109/NVMSA56066.2022.00010
https://doi.org/10.1109/VLSITechnology18217.2020.9265042
https://doi.org/10.1109/VLSITechnology18217.2020.9265042
https://doi.org/10.1109/HPCA53966.2022.00035
https://doi.org/10.1109/HPCA53966.2022.00035
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://doi.org/10.1109/HPCA51647.2021.00038

(HPCA).
[33] Akiko Inoue, Kazuhiko Minematsu, Maya Oda, Rei Ueno, and Naofumi Homma.

2020. ELM: A Low-Latency and Scalable Memory Encryption Scheme. Cryptol-
ogy ePrint Archive, Paper 2020/1374. (2020). https://eprint.iacr.org/2020/1374
Preliminary and long version of a paper with same title.

[34] Akiko Inoue, Kazuhiko Minematsu, Maya Oda, Rei Ueno, and Naofumi Homma.
2022. ELM: A Low-Latency and Scalable Memory Encryption Scheme. IEEE
Transactions on Information Forensics and Security 17 (2022), 2628–2643. https:
//doi.org/10.1109/TIFS.2022.3188146

[35] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng. 2018. Ef-
ficient Hardware-Assisted Logging with Asynchronous and Direct-Update for
Persistent Memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 520–532. https://doi.org/10.1109/MICRO.2018.00049

[36] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic Durability in Non-volatile Memory through Hardware Logging. In
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 361–372. https://doi.org/10.1109/HPCA.2017.50

[37] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors. In
2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).
361–372. https://doi.org/10.1109/ISCA.2014.6853210

[38] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Ex-
ecution. In 2019 IEEE Symposium on Security and Privacy (S&P). 1–19. https:
//doi.org/10.1109/SP.2019.00002

[39] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology—CRYPTO 1999 (Lecture Notes in Computer Science),
Vol. 1666. Springer, 388–397.

[40] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. InAdvances in Cryptology—CRYPTO 1996 (Lecture
Notes in Computer Science), Vol. 1109. Springer, 104–113.

[41] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAM-
Bleed: Reading Bits in Memory Without Accessing Them. In 2020 IEEE Sym-
posium on Security and Privacy (SP). 695–711. https://doi.org/10.1109/SP40000.
2020.00020

[42] Lamster, Martin Unterguggenberger, David Schrammel, and Stefan Man-
gard. 2023. HashTag: Hash-based Integrity Protection for Tagged Architec-
tures. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, Anaheim, CA, 2797–2814. https://www.usenix.org/conference/
usenixsecurity23/presentation/lamster

[43] Mengya Lei, Fan Li, FangWang, Dan Feng, Xiaomin Zou, and Renzhi Xiao. 2022.
SecNVM: An Efficient and Write-Friendly Metadata Crash Consistency Scheme
for Secure NVM. ACM Transactions on Architecture and Code Optimization 19, 1
(March 2022), 1–26. https://doi.org/10.1145/3488724

[44] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels
on AMD SEV-SNP. In 2022 IEEE Symposium on Security and Privacy (SP). 337–
351. https://doi.org/10.1109/SP46214.2022.9833768

[45] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1257–1272. https://www.usenix.org/conference/usenixsecurity19/
presentation/li-mengyuan

[46] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng.
2021. CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via
the Ciphertext Side Channel. In 30th USENIX Security Symposium (USENIX Se-
curity 21). USENIX Association, 717–732. https://www.usenix.org/conference/
usenixsecurity21/presentation/li-mengyuan

[47] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yu-
val Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Mem-
ory from User Space. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 973–990. https://www.usenix.org/
conference/usenixsecurity18/presentation/lipp

[48] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In IEEE Symposium on Security
and Privacy. IEEE, 244–256.

[49] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018. Crash Consis-
tency in Encrypted Non-volatile Main Memory Systems. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 310–323.
https://doi.org/10.1109/HPCA.2018.00035 ISSN: 2378-203X.

[50] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018. Crash Consis-
tency in Encrypted Non-volatile Main Memory Systems. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 310–323.
https://doi.org/10.1109/HPCA.2018.00035

[51] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer New York.

[52] Ralph C. Merkle. 1979. Method of providing digital signatures. US4309569A.
(1979). https://patents.google.com/patent/US4309569.

[53] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology—CRYPTO ’87. Springer Berlin Heidelberg,
Berlin, Heidelberg, 369–378.

[54] KazuhikoMinematsu and ToshiyasuMatsushima. 2007. New Bounds for PMAC,
TMAC, and XCBC. In Internatinoal Conference on Fast Software Encryption (FSE)
(Lecture Notes in Computer Science), Vol. 4593. Springer, 434–451.

[55] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In International Conference on
Cryptographic Hardware and Embedded Systems (CHES). Springer International
Publishing, 69–90.

[56] Mathias Morbitzer, Manuel Huber, Julian Horsch, and SaschaWessel. 2018. SEV-
ered: Subverting AMD’s Virtual Machine Encryption. In 11th European Work-
shop on Systems Security. 1–6.

[57] Mathias Morbitzer, Sergej Proskurin, Martin Radev, Marko Dorfhuber, and Er-
ick Quintanar Salas. 2021. SEVerity: Code Injection Attacks against Encrypted
Virtual Machines. In 2021 IEEE Security and Privacy Workshops (SPW). 444–455.
https://doi.org/10.1109/SPW53761.2021.00063

[58] Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Med-
wed, and StefanMangard. 2021. CrypTag: Thwarting Physical and Logical Mem-
ory Vulnerabilities Using Cryptographically Colored Memory. In Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Security (ASIA
CCS). Association for Computing Machinery, New York, NY, USA, 200âĂŞ–12.
https://doi.org/10.1145/3433210.3453684

[59] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. 2018. Steal but No
Force: Efficient Hardware Undo+Redo Logging for Persistent Memory Systems.
In 2018 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA). 336–349. https://doi.org/10.1109/HPCA.2018.00037

[60] Qi Pei and Seunghee Shin. 2021. Efficient Split Counter Mode Encryption for
NVM. In 2021 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). 93–95. https://doi.org/10.1109/ISPASS51385.2021.00026

[61] Qi Pei and Seunghee Shin. 2021. Improving the Heavy Re-encryption Over-
head of Split Counter Mode Encryption for NVM. In 2021 IEEE 39th Interna-
tional Conference on Computer Design (ICCD). 425–432. https://doi.org/10.1109/
ICCD53106.2021.00073

[62] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. 2021. Sys-
tematic Analysis of Randomization-based Protected Cache Architectures. In
IEEE Symposium on Security and Privacy (S&P). 987–1002.

[63] Moinuddin K. Qureshi. 2018. CEASER:Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In 51st Annual IEEE/ACM Internal Sym-
posium on Microarchitecture (MICRO ’51). 775–787.

[64] Phillip Rogaway. 2002. Authenticated-Encryption with Associated-Data. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security
(CCS ’02). Association for ComputingMachinery, NewYork, NY, USA, 98âĂŞ107.
https://doi.org/10.1145/586110.586125

[65] Phillip Rogaway. 2004. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In Advances in Cryptology—ASIACRYPT
2004, Pil Joong Lee (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–31.

[66] Phillip Rogaway, Mihir Bellare, and John Black. 2003. OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption. ACM Trans. Inf. Syst.
Secur. 6, 3 (aug 2003), 365âĂŞ403. https://doi.org/10.1145/937527.937529

[67] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser,
Jose A. Joao, and Moinuddin K. Qureshi. 2018. Morphable counters: enabling
compact integrity trees for low-overhead secure memories. In 51th Annual
IEEE/ACM International Symposium on Microarchitecture. 416–427.

[68] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser,
and Moinuddin K. Qureshi. 2018. SYNERGY: Rethinking Secure-Memory De-
sign for Error-Correcting Memories. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 454–465. https://doi.org/10.
1109/HPCA.2018.00046

[69] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.
Proteus: A Flexible and Fast Software Supported Hardware Logging approach
for NVM. In 2017 50th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 178–190.

[70] Solid State Storage Initiative. 2014. NVDIMM Messaging and FAQ. (Jan. 2014).
[71] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Re-

ducing Paging Overheads in SGXwith Efficient Integrity Verification Structures.
In Proceedings of the Twenty-Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ACM,Williamsburg VA
USA, 665–678. https://doi.org/10.1145/3173162.3177155

[72] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks
on AES, and Countermeasures. Journal of Cryptology 23, 1 (2010), 37–71.

[73] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. 2003. Cryptanalysis of DES Implemented on Computers with Cache.

14

https://eprint.iacr.org/2020/1374
https://doi.org/10.1109/TIFS.2022.3188146
https://doi.org/10.1109/TIFS.2022.3188146
https://doi.org/10.1109/MICRO.2018.00049
https://doi.org/10.1109/HPCA.2017.50
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP40000.2020.00020
https://www.usenix.org/conference/usenixsecurity23/presentation/lamster
https://www.usenix.org/conference/usenixsecurity23/presentation/lamster
https://doi.org/10.1145/3488724
https://doi.org/10.1109/SP46214.2022.9833768
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/HPCA.2018.00035
https://doi.org/10.1109/HPCA.2018.00035
https://patents.google.com/patent/US4309569
https://doi.org/10.1109/SPW53761.2021.00063
https://doi.org/10.1145/3433210.3453684
https://doi.org/10.1109/HPCA.2018.00037
https://doi.org/10.1109/ISPASS51385.2021.00026
https://doi.org/10.1109/ICCD53106.2021.00073
https://doi.org/10.1109/ICCD53106.2021.00073
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/937527.937529
https://doi.org/10.1109/HPCA.2018.00046
https://doi.org/10.1109/HPCA.2018.00046
https://doi.org/10.1145/3173162.3177155

In International Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2003). Springer Berlin Heidelberg, 62–76.

[74] Rei Ueno, Sumio Morioka, Noriyuki Miura, Kohei Matsuda, Makoto Nagata,
Shivam Bhasin, Yves Mathieu, Tarik Graba, Jean-Luc Danger, and Naofumi
Homma. 2020. High Throughput/Gate AES Hardware Architectures Based
on Datapath Compression. IEEE Trans. Comput. 69, 4 (2020), 534–548. https:
//doi.org/10.1109/TC.2019.2957355

[75] Thomas Unterluggauer, Mairo Werner, and Stefan Mangard. 2019. MEAS: mem-
ory encryption and authentication secure against side-channel attacks. Journal
of Cryptogarphic Engineering 9 (2019), 137–158.

[76] Wubing Wang, Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. 2023. Pwr-
Leak: Exploiting Power Reporting Interface For Side-Channel Attacks AMD
SEV. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer-Verlag, Berlin, Heidelberg, 46–66.
https://doi.org/10.1007/978-3-031-35504-2_3

[77] Xueliang Wei, Dan Feng, Wei Tong, Jingning Liu, and Liuqing Ye. 2020. Mor-
Log: Morphable Hardware Logging for Atomic Persistence in Non-Volatile Main
Memory. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 610–623. https://doi.org/10.1109/ISCA45697.2020.00057

[78] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks via
Cache Set Randomization. In 28th USENIX Security Symposium (USENIX Security
’19). 675–692.

[79] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. 2020.
SEVurity: No Security Without Integrity : Breaking Integrity-Free Memory En-
cryption with Minimal Assumptions. In 2020 IEEE Symposium on Security and
Privacy (SP). 1483–1496. https://doi.org/10.1109/SP40000.2020.00080

[80] Chenyu Yan, D. Englender, M. Prvulovic, B. Rogers, and Yan Solihin. 2006. Im-
proving Cost, Performance, and Security of Memory Encryption and Authen-
tication. In 33rd International Symposium on Computer Architecture (ISCA’06).
179–190. https://doi.org/10.1109/ISCA.2006.22 ISSN: 1063-6897.

[81] Fan Yang, Youmin Chen, Haiyu Mao, Youyou Lu, and Jiwu Shu. 2020. Shield-
NVM: An Efficient and Fast Recoverable System for Secure Non-Volatile Mem-
ory. ACM Transactions on Storage 16, 2 (June 2020), 1–31. https://doi.org/10.
1145/3381835

[82] Fan Yang, Youyou Lu, Youmin Chen, Haiyu Mao, and Jiwu Shu. 2019. No
Compromises: Secure NVMwith Crash Consistency,Write-Efficiency and High-
Performance. In 56th Annual Design Automation Conference (DAC ’19). IEEE, 1–
6.

[83] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: AHigh Resolution, Low
Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium.

[84] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and
Yan Solihin. 2023. Reconciling Selective Logging and Hardware Persistent Mem-
ory Transaction. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 664–676. https://doi.org/10.1109/HPCA56546.
2023.10071088

[85] Mao Ye, Clayton Hughes, and Amro Awad. 2018. Osiris: A Low-Cost Mecha-
nism to Enable Restoration of Secure Non-Volatile Memories. In 2018 51st An-
nual IEEE/ACM International Symposium onMicroarchitecture (MICRO). 403–415.
https://doi.org/10.1109/MICRO.2018.00040

[86] Zhan Zhang, Jianhui Yue, Xiaofei Liao, and Hai Jin. 2021. Efficient Hardware
Redo Logging for Secure Persistent Memory. In 2021 IEEE 23rd Int Conf on High
Performance Computing Communications; 7th Int Conf on Data Science Systems;
19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud Big
Data Systems Application (HPCC/DSS/SmartCity/DependSys). 41–48. https://doi.
org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00033

[87] Jian Zhou, Amro Awad, and Jun Wang. 2020. Lelantus: fine-granularity copy-
on-write operations for secure non-volatile memories. InACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA ’20). 597–607.

[88] Kazi Abu Zubair and Amro Awad. 2019. Anubis: ultra-low overhead and recov-
ery time for secure non-volatile memories. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture. ACM, Phoenix Arizona, 157–168.
https://doi.org/10.1145/3307650.3322252

[89] Kazi Abu Zubair, Sudhanva Gurumurthi, Vilas Sridharan, and Amro Awad.
2021. Soteria: Towards Resilient Integrity-Protected and EncryptedNon-Volatile
Memories. In 54th Annual IEEE/ACM International Symposium on Microarchitec-
ture. 1214–1226.

[90] Pengfei Zuo, Yu Hua, and Yuan Xie. 2019. SuperMem: Enabling Application-
transparent Secure Persistent Memory with Low Overheads. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
Columbus OH USA, 479–492. https://doi.org/10.1145/3352460.3358290

15

https://doi.org/10.1109/TC.2019.2957355
https://doi.org/10.1109/TC.2019.2957355
https://doi.org/10.1007/978-3-031-35504-2_3
https://doi.org/10.1109/ISCA45697.2020.00057
https://doi.org/10.1109/SP40000.2020.00080
https://doi.org/10.1109/ISCA.2006.22
https://doi.org/10.1145/3381835
https://doi.org/10.1145/3381835
https://doi.org/10.1109/HPCA56546.2023.10071088
https://doi.org/10.1109/HPCA56546.2023.10071088
https://doi.org/10.1109/MICRO.2018.00040
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00033
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00033
https://doi.org/10.1145/3307650.3322252
https://doi.org/10.1145/3352460.3358290

	Abstract
	1 Introduction
	1.1 Background
	1.2 State-of-the-art and its limitations
	1.3 Our contributions
	1.4 Related works
	1.5 Paper organization

	2 Preliminaries
	2.1 System and threat models of memory encryption
	2.2 Symmetric cryptography for memory encryption
	2.3 Parallelizable authentication tree (PAT)
	2.4 Shortcut update (SCUE)
	2.5 Split Counter (SC)

	3 Proposed mechanism: Crystalor
	3.1 Basic concept of Crystalor
	3.2 Recovery tag verification using PXOR-Hash
	3.3 Memory recovery by constructing new tree
	3.4 Hardware architecture
	3.5 Operations

	4 Performance evaluation
	4.1 Algorithm-level evaluation
	4.2 System-level simulation
	4.3 Recovery cost estimation

	5 Conclusion
	References

